JP2002038147A - Green phosphor and light-emitting device using the same - Google Patents
Green phosphor and light-emitting device using the sameInfo
- Publication number
- JP2002038147A JP2002038147A JP2000225830A JP2000225830A JP2002038147A JP 2002038147 A JP2002038147 A JP 2002038147A JP 2000225830 A JP2000225830 A JP 2000225830A JP 2000225830 A JP2000225830 A JP 2000225830A JP 2002038147 A JP2002038147 A JP 2002038147A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- green phosphor
- green
- manganese
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 349
- 239000011572 manganese Substances 0.000 claims abstract description 120
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 58
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 55
- 239000002245 particle Substances 0.000 claims abstract description 35
- 239000011248 coating agent Substances 0.000 claims abstract description 30
- 238000000576 coating method Methods 0.000 claims abstract description 30
- 150000004645 aluminates Chemical class 0.000 claims abstract description 29
- 239000000203 mixture Substances 0.000 claims abstract description 28
- 239000011164 primary particle Substances 0.000 claims abstract description 25
- XSMMCTCMFDWXIX-UHFFFAOYSA-N zinc silicate Chemical class [Zn+2].[O-][Si]([O-])=O XSMMCTCMFDWXIX-UHFFFAOYSA-N 0.000 claims abstract 4
- 239000010419 fine particle Substances 0.000 claims description 26
- 239000011362 coarse particle Substances 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 9
- -1 manganese-activated zinc silicate Chemical class 0.000 abstract description 7
- 108010043121 Green Fluorescent Proteins Proteins 0.000 abstract 1
- 238000004020 luminiscence type Methods 0.000 abstract 1
- 150000003839 salts Chemical class 0.000 abstract 1
- 229910052844 willemite Inorganic materials 0.000 description 23
- 239000006185 dispersion Substances 0.000 description 21
- ZOIVSVWBENBHNT-UHFFFAOYSA-N dizinc;silicate Chemical class [Zn+2].[Zn+2].[O-][Si]([O-])([O-])[O-] ZOIVSVWBENBHNT-UHFFFAOYSA-N 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000011701 zinc Substances 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 238000003756 stirring Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000012423 maintenance Methods 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 8
- 230000005284 excitation Effects 0.000 description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 description 7
- 238000010979 pH adjustment Methods 0.000 description 7
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 6
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000011565 manganese chloride Substances 0.000 description 6
- 235000002867 manganese chloride Nutrition 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052688 Gadolinium Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052841 tephroite Inorganic materials 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 150000002697 manganese compounds Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 150000003752 zinc compounds Chemical class 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 101150051106 SWEET11 gene Proteins 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- JMTIXSZQYHAMLY-UHFFFAOYSA-N [P].[Zn] Chemical compound [P].[Zn] JMTIXSZQYHAMLY-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052909 inorganic silicate Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
- Gas-Filled Discharge Tubes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、真空紫外線励起用
の蛍光体として好適な緑色蛍光体とそれを用いた発光装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a green phosphor suitable as a phosphor for exciting vacuum ultraviolet rays and a light emitting device using the same.
【0002】[0002]
【従来の技術】近年、希ガス放電により放射される短波
長の真空紫外線を、蛍光体の励起源とする発光装置が開
発されている。このような発光装置では、真空紫外線を
励起源として発光する蛍光体、すなわち真空紫外線励起
蛍光体が用いられる。真空紫外線励起の発光装置を利用
した表示装置としては、プラズマディスプレイパネル
(PDP)がよく知られている。2. Description of the Related Art In recent years, light emitting devices using short-wavelength vacuum ultraviolet rays emitted by rare gas discharge as an excitation source of a phosphor have been developed. In such a light emitting device, a phosphor that emits light using vacuum ultraviolet light as an excitation source, that is, a vacuum ultraviolet light excited phosphor is used. As a display device using a light emitting device excited by vacuum ultraviolet light, a plasma display panel (PDP) is well known.
【0003】PDPはマルチメディア時代の到来に伴っ
て、デジタルネットワークのコア機器となるディスプレ
イに求められている、大画面でかつ薄型でデジタル表示
が可能であるというような特性を備えている。すなわ
ち、PDPは様々な情報を緻密で高精細に映し出すこと
ができ、かつ大画面化および薄型化が可能なデジタルデ
ィスプレイデバイスとして注目されている。[0003] With the advent of the multimedia era, PDPs have characteristics such as large screens and thinness that enable digital display, which are required for displays as core devices of digital networks. That is, PDPs are attracting attention as digital display devices capable of projecting various kinds of information with high precision and high definition, and capable of increasing the screen size and thinning.
【0004】真空紫外線で蛍光体を励起して発光を得る
装置としては、PDPのような表示装置のみならず、キ
セノン(Xe)などの希ガスによる放電発光を利用した
希ガス放電ランプも知られている。Xe放電ランプなど
の希ガス放電ランプは、従来の水銀(Hg)放電ランプ
に代えて、車載用液晶ディスプレイのバックライトをは
じめとする、安全性などが求められる用途に使用される
ようになってきている。希ガス放電ランプは有害な水銀
を使用しないことから、環境安全性に優れる放電ランプ
としても注目されている。As a device for emitting light by exciting a phosphor with vacuum ultraviolet rays, not only a display device such as a PDP but also a rare gas discharge lamp utilizing discharge light emission by a rare gas such as xenon (Xe) is known. ing. Rare gas discharge lamps such as Xe discharge lamps have come to be used in applications requiring safety and the like, such as backlights for in-vehicle liquid crystal displays, instead of conventional mercury (Hg) discharge lamps. ing. Since noble gas discharge lamps do not use harmful mercury, they are also attracting attention as discharge lamps having excellent environmental safety.
【0005】上述したような真空紫外線励起タイプの発
光装置に共通することは、蛍光体の励起源として、従来
の電子線や水銀からの紫外線(波長:254nm)に代えて、
希ガス放電により放射される波長147nm、172nmなどの真
空紫外線を用いていることにある。このような真空紫外
領域で蛍光体を発光させる研究は少ないことから、真空
紫外線励起タイプの発光装置では、従来から既知の蛍光
体の中から真空紫外線による発光特性に比較的優れたも
のを経験的に選択して使用している。What is common to the vacuum ultraviolet excitation type light emitting devices described above is that instead of the conventional ultraviolet rays (wavelength: 254 nm) from an electron beam or mercury, the excitation source of the phosphor is replaced with a conventional one.
That is, vacuum ultraviolet rays having a wavelength of 147 nm, 172 nm, or the like emitted by rare gas discharge are used. Since there are few studies on emitting phosphors in the vacuum ultraviolet region, luminous devices of the vacuum ultraviolet excitation type are empirically selected from among conventionally known phosphors that have relatively excellent emission characteristics with vacuum ultraviolet rays. Select and use.
【0006】例えば、PDPでフルカラー表示を実現す
るためには、赤色、緑色、青色の各色に発光する蛍光体
が必要となる。そこで、従来のフルカラーPDPでは、
赤色蛍光体として(Y,Gd)BO3:Eu蛍光体、緑
色蛍光体としてZn2SiO4:Mn蛍光体、青色蛍光体
としてBaMgAl10O17:Eu蛍光体などが使用され
ている。また、希ガス放電ランプでは上記した各色発光
の蛍光体を混合したものが一般に使用されている。真空
紫外線励起用の緑色蛍光体としては、(Ba,Sr)A
l12O19:Mnや(Ba,Sr)MgAl10O17:Mn
などのマンガン付活アルカリ土類アルミン酸塩蛍光体な
ども知られている。For example, in order to realize full-color display on a PDP, phosphors that emit red, green, and blue light are required. Therefore, in the conventional full-color PDP,
(Y, Gd) BO3: Eu phosphor is used as a red phosphor, Zn2SiO4: Mn phosphor is used as a green phosphor, and BaMgAl10O17: Eu phosphor is used as a blue phosphor. In addition, in the rare gas discharge lamp, a mixture of the above-described phosphors of each color emission is generally used. (Ba, Sr) A
l12O19: Mn or (Ba, Sr) MgAl10O17: Mn
Such manganese-activated alkaline earth aluminate phosphors are also known.
【0007】[0007]
【発明が解決しようとする課題】上述した真空紫外線励
起用の緑色蛍光体のうち、(Ba,Sr)MgAl10O
17:Mnなどのマンガン付活アルカリ土類アルミン酸塩
蛍光体は、Zn2SiO4:Mnのようなマンガン付活珪
酸亜鉛蛍光体に比べて発光色度に優れている反面、輝度
(初期輝度)がマンガン付活珪酸亜鉛蛍光体に比べて劣
ると共に、デバイス点灯中の輝度劣化も大きいことか
ら、その使用が制限されているのが現状である。Among the above-mentioned green phosphors for exciting vacuum ultraviolet rays, (Ba, Sr) MgAl10O
17: A manganese-activated alkaline earth aluminate phosphor such as Mn is superior in emission chromaticity compared to a manganese-activated zinc silicate phosphor such as Zn2SiO4: Mn, but has a manganese luminance (initial luminance). At present, its use is restricted because it is inferior to the activated zinc silicate phosphor and greatly deteriorates in luminance during device lighting.
【0008】上記したようなマンガン付活アルカリ土類
アルミン酸塩蛍光体が有する欠点のうち、例えば輝度劣
化に対しては蛍光体の粒子表面に金属酸化物をコーティ
ングすることが行われている。しかしながら、金属酸化
物などの非発光性物質で蛍光体表面をコーティングする
ことは、必然的に初期輝度を劣化させることになる。こ
のような点からは、緑色蛍光体の初期輝度の低下を抑制
しつつ、デバイス点灯時の輝度劣化を抑制することが強
く望まれている。Among the drawbacks of the manganese-activated alkaline earth aluminate phosphors described above, for example, to reduce the luminance, coating of metal oxide on the particle surfaces of the phosphors has been performed. However, coating the phosphor surface with a non-emissive material such as a metal oxide necessarily degrades the initial luminance. From such a point, it is strongly desired to suppress a decrease in luminance at the time of device lighting while suppressing a decrease in the initial luminance of the green phosphor.
【0009】本発明はこのような課題に対処するために
なされたもので、マンガン付活珪酸亜鉛蛍光体が有する
発光色度を維持しつつ、初期輝度の向上やデバイス点灯
時の輝度劣化の抑制を実現した緑色蛍光体、およびその
ような緑色蛍光体を用いることによって、輝度特性や表
示特性などを向上させた発光装置を提供することを目的
としている。SUMMARY OF THE INVENTION The present invention has been made to address such a problem, and it is possible to improve the initial luminance and suppress the luminance degradation during device lighting while maintaining the emission chromaticity of the manganese-activated zinc silicate phosphor. It is an object of the present invention to provide a green phosphor realizing the above, and a light emitting device in which luminance characteristics and display characteristics are improved by using such a green phosphor.
【0010】[0010]
【課題を解決するための手段】本発明者等は上記した目
的を達成するために種種検討した結果、(Ba,Sr)
MgAl10O17:Mnなどのマンガン付活アルミン酸塩
蛍光体とZn2SiO4:Mnのようなマンガン付活珪酸
亜鉛蛍光体とを混合して使用することによって、各緑色
蛍光体の長所を活かして、目的とする緑色蛍光体の輝度
や色度に対する自由度を高めることができることを見出
した。The present inventors have conducted various studies to achieve the above-mentioned object, and found that (Ba, Sr)
By using a mixture of a manganese-activated aluminate phosphor such as MgAl10O17: Mn and a manganese-activated zinc silicate phosphor such as Zn2SiO4: Mn, the advantages of each green phosphor can be utilized. It has been found that the degree of freedom for luminance and chromaticity of the green phosphor can be increased.
【0011】さらに、マンガン付活珪酸亜鉛蛍光体の作
製にゾルゲル法を適用することで、平均一次粒子径が1
μm未満というような微粒子蛍光体が得られ、このよう
な微粒子蛍光体を用いることによって、マンガン付活ア
ルミン酸塩蛍光体などの表面をコーティングすることが
可能であることを見出した。マンガン付活珪酸亜鉛蛍光
体によるコーティングは、例えばマンガン付活アルミン
酸塩蛍光体のデバイス点灯時の輝度劣化の抑制に対して
有効に作用すると共に、従来の酸化物コーティングのよ
うに初期輝度の低下を招くこともない。Further, by applying the sol-gel method to the preparation of a manganese-activated zinc silicate phosphor, the average primary particle diameter can be reduced to 1%.
It has been found that a fine particle phosphor having a particle diameter of less than μm can be obtained, and it is possible to coat the surface of a manganese-activated aluminate phosphor by using such a fine particle phosphor. Coating with a manganese-activated zinc silicate phosphor, for example, works effectively to suppress the luminance degradation of the manganese-activated aluminate phosphor when the device is turned on, and lowers the initial luminance as in a conventional oxide coating. Also does not invite.
【0012】本発明はこのような知見に基づいて成され
たものであり、本発明の緑色蛍光体は請求項1に記載し
たように、マンガン付活アルミン酸塩蛍光体からなる第
1の緑色蛍光体と、マンガン付活珪酸亜鉛蛍光体からな
る第2の緑色蛍光体との混合物を具備することを特徴と
している。The present invention has been made based on such findings, and the green phosphor of the present invention is, as described in claim 1, a first green phosphor comprising a manganese-activated aluminate phosphor. It is characterized by comprising a mixture of a phosphor and a second green phosphor made of a manganese-activated zinc silicate phosphor.
【0013】上記した本発明の緑色蛍光体において、請
求項2に記載したように、第1の緑色蛍光体と第2の緑
色蛍光体との混合比率は質量比で95:5〜5:95とするこ
とが好ましい。また、本発明の緑色蛍光体の好ましい形
態としては、請求項3に記載したように、第1の緑色蛍
光体として平均一次粒子径が2〜4μmの範囲の粗粒子蛍
光体を用いると共に、第2の緑色蛍光体として平均一次
粒子径が1μm未満の微粒子蛍光体を用い、かつ第2の緑
色蛍光体を構成する微粒子蛍光体を第1の緑色蛍光体を
構成する粗粒子蛍光体の表面に付着させた形態が挙げら
れる。In the above-described green phosphor of the present invention, the mixing ratio of the first green phosphor and the second green phosphor is from 95: 5 to 5:95 by mass ratio. It is preferable that In a preferred embodiment of the green phosphor of the present invention, as described in claim 3, a coarse particle phosphor having an average primary particle diameter in the range of 2 to 4 μm is used as the first green phosphor. A fine particle phosphor having an average primary particle diameter of less than 1 μm is used as the green phosphor, and the fine particle phosphor constituting the second green phosphor is placed on the surface of the coarse particle phosphor constituting the first green phosphor. An attached form may be mentioned.
【0014】また、本発明における他の緑色蛍光体は、
請求項4に記載したように、第1の緑色蛍光体からなる
蛍光体粒子と、前記蛍光体粒子の表面にコーティングさ
れ、前記蛍光体粒子とは異種の第2の緑色蛍光体からな
る蛍光体被膜とを具備することを特徴としている。Further, another green phosphor according to the present invention is:
As described in claim 4, phosphor particles made of a first green phosphor and a phosphor made of a second green phosphor coated on the surface of the phosphor particles and different from the phosphor particles. And a coating.
【0015】上記した本発明の緑色蛍光体において、蛍
光体被膜は請求項5に記載したように、例えば平均一次
粒子径が1μm未満のマンガン付活珪酸亜鉛蛍光体微粒子
により構成されるものである。また、母材となる蛍光体
粒子は特に限定されるものではないが、蛍光体粒子を構
成する第1の緑色蛍光体は請求項6に記載したように、
例えばマンガン付活アルミン酸塩蛍光体からなるもので
ある。In the above-described green phosphor of the present invention, the phosphor coating is composed of, for example, manganese-activated zinc silicate phosphor fine particles having an average primary particle diameter of less than 1 μm. . Further, the phosphor particles serving as the base material are not particularly limited, but the first green phosphor constituting the phosphor particles is as described in claim 6.
For example, it is made of a manganese-activated aluminate phosphor.
【0016】本発明の緑色蛍光体は、請求項7に記載し
たように、真空紫外線励起用の蛍光体として有効なもの
である。より具体的には、請求項8に記載したように、
プラズマディスプレイパネル用の真空紫外線励起蛍光体
として、特に有効に用いられるものである。The green phosphor according to the present invention is effective as a phosphor for exciting vacuum ultraviolet rays. More specifically, as described in claim 8,
It is particularly effectively used as a vacuum ultraviolet ray excited phosphor for a plasma display panel.
【0017】本発明の発光装置は、請求項9に記載した
ように、上記した本発明の緑色蛍光体を含む発光層を具
備することを特徴としている。本発明の発光装置の具体
的な形態としては、例えば請求項10に記載したよう
に、緑色蛍光体に加えて、真空紫外線励起の青色蛍光体
および赤色蛍光体を含む発光層と、この発光層に真空紫
外線を照射する手段とを具備し、プラズマディスプレイ
パネルの表示部を構成する発光装置が挙げられる。According to a ninth aspect of the present invention, there is provided a light emitting device including the above-described light emitting layer containing the green phosphor of the present invention. As a specific mode of the light emitting device of the present invention, for example, as described in claim 10, a light emitting layer containing a blue phosphor and a red phosphor excited by vacuum ultraviolet light in addition to the green phosphor, and the light emitting layer And a means for irradiating vacuum ultraviolet rays to the light-emitting device, and constituting a display portion of a plasma display panel.
【0018】[0018]
【発明の実施の形態】以下、本発明を実施するための形
態について説明する。Embodiments of the present invention will be described below.
【0019】本発明の緑色蛍光体は、マンガン付活アル
ミン酸塩蛍光体から第1の緑色蛍光体と、マンガン付活
珪酸亜鉛蛍光体からなる第2の緑色蛍光体との混合物を
具備するものである。The green phosphor of the present invention comprises a mixture of a first manganese-activated aluminate phosphor and a second green phosphor of a manganese-activated zinc silicate phosphor. It is.
【0020】第1の緑色蛍光体を構成するマンガン付活
アルミン酸塩蛍光体としては、例えばMMgAl10O1
7:MnやMAl12O19:Mn(MはBaおよびSrか
ら選ばれる少なくとも1種の元素を示す)などの組成を
有するものが用いられる。本発明においては発光輝度な
どの点から、特にBaMgAl10O17:Mn蛍光体を用
いることが好ましい。The manganese-activated aluminate phosphor constituting the first green phosphor is, for example, MMgAl10O1.
A material having a composition such as 7: Mn or MAl12O19: Mn (M represents at least one element selected from Ba and Sr) is used. In the present invention, it is particularly preferable to use a BaMgAl10O17: Mn phosphor from the viewpoint of emission luminance and the like.
【0021】Mnの付活量は緑色蛍光体としての良好な
発光色度や輝度を得る上で、蛍光体母体(MMgAl10
O17やMAl12O19)に対して10〜15mol%の範囲とする
ことが好ましい。ただし、上記した組成の蛍光体に限定
されるものではなく、M元素の一部を他の元素(例えば
希土類元素)で置換したり、また共付活剤を使用した組
成などを適用することも可能である。The activation amount of Mn is determined in order to obtain good emission chromaticity and luminance as a green phosphor.
(O17 or MAl12 O19) is preferably in the range of 10 to 15 mol%. However, the present invention is not limited to the phosphor having the above-described composition, and a part of the M element may be replaced with another element (for example, a rare earth element), or a composition using a co-activator may be applied. It is possible.
【0022】第2の緑色蛍光体を構成するマンガン付活
珪酸亜鉛蛍光体は、例えばZn2SiO4:Mnで表され
る組成を有するものである。Mnの付活量は、緑色蛍光
体としての良好な発光色度や高輝度を得る上で、蛍光体
母体(Zn2SiO4)に対して3〜13mol%の範囲とする
ことが好ましい。また、第2の緑色蛍光体の組成はZn
2SiO4:Mnに限定されるものではなく、ZnやSi
の一部を他の元素などで置換した組成や共付活剤を使用
した組成などを適用することも可能である。The manganese-activated zinc silicate phosphor constituting the second green phosphor has, for example, a composition represented by Zn2SiO4: Mn. The activation amount of Mn is preferably in the range of 3 to 13 mol% with respect to the phosphor base material (Zn2SiO4) in order to obtain good emission chromaticity and high luminance as a green phosphor. The composition of the second green phosphor is Zn
It is not limited to 2SiO4: Mn.
It is also possible to apply a composition in which a part of is replaced with another element, a composition using a co-activator, or the like.
【0023】第1の緑色蛍光体としてのマンガン付活ア
ルミン酸塩蛍光体は、発光色度に優れている反面、初期
輝度が劣るという特性を有する。このようなマンガン付
活アルミン酸塩蛍光体を、色度は劣るものの初期輝度に
優れるマンガン付活珪酸亜鉛蛍光体(第2の緑色蛍光
体)と混合して使用することによって、緑色蛍光体の色
度や輝度を使用目的に応じて調整することができる。す
なわち、発光色度と初期輝度が共に優れる緑色蛍光体を
得ることが可能となる。The manganese-activated aluminate phosphor as the first green phosphor has excellent emission chromaticity, but has poor initial luminance. By using such a manganese-activated aluminate phosphor in combination with a manganese-activated zinc silicate phosphor (second green phosphor) which is inferior in chromaticity but excellent in initial luminance, a green phosphor can be obtained. Chromaticity and luminance can be adjusted according to the purpose of use. That is, it is possible to obtain a green phosphor excellent in both emission chromaticity and initial luminance.
【0024】上述した第1の緑色蛍光体と第2の緑色蛍
光体との混合比率は、質量比で95:5〜5:95の範囲とす
ることが好ましく、さらに好ましくは70:30〜30:70の
範囲である。第2の緑色蛍光体(マンガン付活珪酸亜鉛
蛍光体)の比率が少なすぎると、初期輝度の向上効果を
十分に得ることができないおそれがある。一方、第2の
緑色蛍光体の比率が多すぎると、第1の緑色蛍光体が相
対的に減少することで発光色度の劣化が大きくなる。第
1の緑色蛍光体と第2の緑色蛍光体との混合比率は、さ
らに質量比で55:45〜45:55の範囲とすることが望まし
い。The mixing ratio of the above-mentioned first green phosphor and second green phosphor is preferably in the range of 95: 5 to 5:95 by mass, more preferably 70:30 to 30. : 70 range. If the ratio of the second green phosphor (manganese-activated zinc silicate phosphor) is too small, the effect of improving the initial luminance may not be sufficiently obtained. On the other hand, if the ratio of the second green phosphor is too large, the first green phosphor is relatively reduced, so that the emission chromaticity is greatly deteriorated. The mixing ratio of the first green phosphor and the second green phosphor is desirably in the range of 55:45 to 45:55 in terms of mass ratio.
【0025】このような本発明の緑色蛍光体は、真空紫
外線励起用の蛍光体として好適なものである。具体的に
は、例えば波長が200nm以下の短波長の紫外線(真空紫
外線)で励起して発光させる用途に好適である。波長が
200nm以下というような真空紫外線は、Xeガス、Xe
−Neガスなどの希ガスを用いた放電(希ガス放電)に
より放射されるものであり、実用的には波長147nmの真
空紫外線や波長172nmの真空紫外線などが用いられる。Such a green phosphor of the present invention is suitable as a phosphor for exciting vacuum ultraviolet rays. Specifically, for example, it is suitable for applications in which light is emitted by excitation with ultraviolet light (vacuum ultraviolet light) having a short wavelength of 200 nm or less. Wavelength
Xe gas, Xe gas
It is emitted by discharge using a rare gas such as -Ne gas (rare gas discharge), and practically, vacuum ultraviolet rays having a wavelength of 147 nm or vacuum ultraviolet rays having a wavelength of 172 nm are used.
【0026】上述した第1の緑色蛍光体と第2の緑色蛍
光体との混合物は、同程度の粒子径を有する粉体同士を
混合したものであってもよいが、特に第1の緑色蛍光体
に粗粒子蛍光体を用いると共に、第2の緑色蛍光体に微
粒子蛍光体を用いることによって、第1の緑色蛍光体
(粗粒子蛍光体)の粒子表面に第2の緑色蛍光体(微粒
子蛍光体)を付着させて使用することが好ましい。The above-mentioned mixture of the first green phosphor and the second green phosphor may be a mixture of powders having substantially the same particle diameter. By using a coarse particle phosphor for the body and using a fine particle phosphor for the second green phosphor, the second green phosphor (fine particle fluorescent material) is formed on the particle surface of the first green phosphor (coarse particle phosphor). It is preferable to use the composition after adhering the body.
【0027】このように、第2の緑色蛍光体(マンガン
付活珪酸亜鉛蛍光体)の微粒子を第1の緑色蛍光体(マ
ンガン付活アルミン酸塩蛍光体)の粒子表面に付着させ
ることによって、マンガン付活アルミン酸塩蛍光体の良
好な発光色度を維持したまま初期輝度をより一層効果的
に向上させることができる。As described above, by adhering the fine particles of the second green phosphor (manganese-activated zinc silicate phosphor) to the particle surface of the first green phosphor (manganese-activated aluminate phosphor), The initial luminance can be more effectively improved while maintaining good emission chromaticity of the manganese-activated aluminate phosphor.
【0028】さらに、マンガン付活アルミン酸塩蛍光体
の粒子表面に存在するマンガン付活珪酸亜鉛蛍光体が熱
劣化の抑制材などとして機能することから、マンガン付
活アルミン酸塩蛍光体の輝度劣化(デバイス点灯時)が
抑制される。この輝度劣化の抑制作用は緑色蛍光体自体
で得ているため、従来の酸化物コーティングのように初
期輝度の低下を招くようなこともない。すなわち、マン
ガン付活アルミン酸塩蛍光体の初期輝度の低下を抑制し
つつ、デバイス点灯時の輝度劣化を抑えることが可能と
なる。Further, since the manganese-activated zinc silicate phosphor present on the particle surface of the manganese-activated aluminate phosphor functions as a suppressor of thermal deterioration, the luminance degradation of the manganese-activated aluminate phosphor is reduced. (When the device is lit) is suppressed. Since the effect of suppressing the luminance degradation is obtained by the green phosphor itself, there is no possibility of lowering the initial luminance unlike the conventional oxide coating. That is, it is possible to suppress a decrease in the luminance at the time of device lighting while suppressing a decrease in the initial luminance of the manganese-activated aluminate phosphor.
【0029】上述したように、第2の緑色蛍光体の微粒
子を第1の緑色蛍光体の粒子表面に付着させる場合、第
2の緑色蛍光体は平均一次粒子径が1μm未満の微粒子蛍
光体を有することが好ましく、また第1の緑色蛍光体は
平均一次粒子径が2〜4μmの範囲の粗粒子蛍光体を有す
ることが好ましい。このような粒子径を有する微粒子蛍
光体と粗粒子蛍光体を用いることによって、良好な付着
状態(付着による混合状態)を得ることができる。As described above, when the fine particles of the second green phosphor are adhered to the particle surface of the first green phosphor, the second green phosphor is a fine particle phosphor having an average primary particle diameter of less than 1 μm. The first green phosphor preferably has a coarse particle phosphor having an average primary particle diameter in the range of 2 to 4 μm. By using the fine particle phosphor and the coarse particle phosphor having such particle diameters, a good adhesion state (a mixed state due to adhesion) can be obtained.
【0030】なお、本発明における緑色蛍光体の平均一
次粒子径は、ブレーン法により測定した値を示すものと
する。具体的には、図1に示すような器具を用い、まず
セル内に蛍光体を詰めて、プランジャで一定の圧力で圧
縮する。ある一定の空隙と圧縮体が形成されたセルをマ
ノメータに密着させ、アスピレータでマノメータ内の液
面をAまで上げる。アスピレータを切り、液面がBから
Cまで降下する時間を測定し、下記の(1)式に基づいて
比表面積Sを算出し、得られた比表面積Sから下記の
(2)式に基づいて平均粒子径Dを算出する。The average primary particle diameter of the green phosphor in the present invention is a value measured by the Blaine method. Specifically, using a device as shown in FIG. 1, first, a phosphor is packed in a cell and compressed with a plunger at a constant pressure. A cell in which a certain gap and a compact are formed is brought into close contact with a manometer, and the liquid level in the manometer is raised to A by an aspirator. Turn off the aspirator, measure the time for the liquid surface to drop from B to C, calculate the specific surface area S based on the following equation (1), and calculate the following specific surface area S from the obtained specific surface area S.
The average particle diameter D is calculated based on the equation (2).
【0031】 S=S0(ρ0/ρ)(t/t0)1/2・(1−e0)/e03/2 ・e3/2/(1−e) …(1) D=6/(ρ・S) …(2) (式中、Sは未知試料の比表面積、ρは未知試料の比
重、eは未知試料の空隙率、tは未知試料の液面降下時
間、S0は標準試料の比表面積、ρ0は標準試料の比重、
e0は標準試料の空隙率、t0は標準試料の液面降下時
間、Dは平均粒子径である) 第2の緑色蛍光体の微粒子を第1の緑色蛍光体の粒子表
面に付着させる場合には、例えば純水中に粗粒子状のマ
ンガン付活アルミン酸塩蛍光体(平均一次粒子径:2〜4
μm)を分散させた後、同様に純水中に分散させた微粒
子状のマンガン付活珪酸亜鉛蛍光体(平均一次粒子径:
1μm未満)を添加し、例えば1時間程度撹拌する。これ
をろ過、乾燥させることによって、粗粒子蛍光体の表面
に微粒子蛍光体を付着させた緑色蛍光体が得られる。S = S0 (ρ0 / ρ) (t / t0) 1/2 · (1−e0) / e03 / 2 · e3 / 2 / (1−e) (1) D = 6 / (ρ · S) ... (2) (where, S is the specific surface area of the unknown sample, ρ is the specific gravity of the unknown sample, e is the porosity of the unknown sample, t is the liquid surface descent time of the unknown sample, and S0 is the specific surface area of the standard sample. , Ρ0 is the specific gravity of the standard sample,
e0 is the porosity of the standard sample, t0 is the liquid surface falling time of the standard sample, and D is the average particle diameter.) When the fine particles of the second green phosphor are adhered to the particle surface of the first green phosphor, For example, a coarse-grained manganese-activated aluminate phosphor (average primary particle diameter: 2 to 4) in pure water
μm) and then dispersed in pure water in the same manner as manganese-activated zinc silicate phosphor (average primary particle size:
(Less than 1 μm), and the mixture is stirred, for example, for about 1 hour. This is filtered and dried to obtain a green phosphor having fine particle phosphor adhered to the surface of the coarse particle phosphor.
【0032】ところで、平均一次粒子径が1μm未満の微
粒子の集合体からなるマンガン付活珪酸亜鉛蛍光体は、
例えばゾルゲル法を適用することによって再現性よく得
ることができる。すなわち、水溶性のマンガン化合物と
水溶性の亜鉛化合物を所定の比率で含む水溶液を調製す
る。具体的には、MnおよびZnの塩化物や硝酸塩など
の水中で用意にMnイオンやZnイオンとなる水溶性化
合物を、それぞれZn2SiO4:Mnの組成式を満たす
ように所定量秤量し、これらを60〜80℃程度に加温され
た純水中に投入し、よく撹拌して溶解させる。Incidentally, a manganese-activated zinc silicate phosphor composed of an aggregate of fine particles having an average primary particle diameter of less than 1 μm is
For example, it can be obtained with good reproducibility by applying the sol-gel method. That is, an aqueous solution containing a water-soluble manganese compound and a water-soluble zinc compound at a predetermined ratio is prepared. Specifically, a predetermined amount of a water-soluble compound that becomes Mn ion or Zn ion is weighed in water such as chloride or nitrate of Mn and Zn so as to satisfy the composition formula of Zn2SiO4: Mn, respectively. Pour into pure water heated to about 80 ° C and stir well to dissolve.
【0033】次に、上記した水溶液に例えばNH4OH
やNaOHを添加して、MnイオンおよびZnイオンを
含む水溶液のpHを6〜9の範囲に調整する。このpH調整に
よって、Zn(OH)2やMn(OH)2などの水酸化物
を生成する。次いで、上記した組成式に応じて秤量した
珪素のアルコキシド化合物、例えば珪酸エチル(Si
(OC2H5)4)を添加し、例えば2〜3時間撹拌する。
このように、珪酸エチルなどのアルコキシド化合物を添
加して十分に撹拌し、珪酸エチルなどを加水分解させる
ことによって、Zn2SiO4:Mnになる微粒子前駆体
を合成する。Next, for example, NH4OH is added to the above aqueous solution.
Or NaOH is added to adjust the pH of the aqueous solution containing Mn ions and Zn ions to a range of 6 to 9. By this pH adjustment, hydroxides such as Zn (OH) 2 and Mn (OH) 2 are generated. Then, an alkoxide compound of silicon weighed according to the above composition formula, for example, ethyl silicate (Si
(OC2H5) 4) is added and stirred, for example, for 2-3 hours.
As described above, an alkoxide compound such as ethyl silicate is added, and the mixture is sufficiently stirred to hydrolyze ethyl silicate or the like, thereby synthesizing a fine particle precursor of Zn2SiO4: Mn.
【0034】この後、微粒子前駆体を含む溶液を洗浄、
ろ過、乾燥し、この乾燥物を還元性雰囲気中にて例えば
800〜1100℃×3〜6時間の条件で焼成することによっ
て、平均一次粒子径が1μm未満のマンガン付活珪酸亜鉛
蛍光体(微粒子蛍光体)を再現性よく得ることができ
る。Thereafter, the solution containing the fine particle precursor is washed,
After filtration and drying, the dried product is reduced in a reducing atmosphere, for example.
By firing at 800 to 1100 ° C. for 3 to 6 hours, a manganese-activated zinc silicate phosphor (fine particle phosphor) having an average primary particle diameter of less than 1 μm can be obtained with good reproducibility.
【0035】このようにして得られる微粒子状のマンガ
ン付活珪酸亜鉛蛍光体は、上記した付着状態をもたらす
混合法に好適である。さらに、粗粒子状のマンガン付活
アルミン酸塩蛍光体の粒子表面で直接的に上記した合成
反応を行わせることによって、マンガン付活アルミン酸
塩蛍光体の粒子表面を微粒子状のマンガン付活珪酸亜鉛
蛍光体でコーティングすることができる。The finely divided manganese-activated zinc silicate phosphor thus obtained is suitable for the mixing method that brings about the above-mentioned adhesion state. Further, by performing the above-described synthesis reaction directly on the particle surface of the coarse-grained manganese-activated aluminate phosphor, the particle surface of the manganese-activated aluminate phosphor is reduced to a fine-grained manganese-activated silicate. It can be coated with zinc phosphor.
【0036】すなわち、第1の緑色蛍光体からなる蛍光
体粒子の表面を、第2の緑色蛍光体からなる蛍光体被膜
でコーティングした緑色蛍光体が得られる。この際、第
2の緑色蛍光体からなる蛍光体被膜は、微視的に見ると
平均一次粒子径が1μm未満の微粒子からなるものであ
る。第2の緑色蛍光体を蛍光体被膜として使用する場
合、その被膜量は上記した混合比率に準じるものとする
が、特に蛍光体被膜量を蛍光体母材に対して1〜30質量%
の範囲とすることが好ましい。That is, a green phosphor is obtained in which the surfaces of the phosphor particles made of the first green phosphor are coated with a phosphor coating made of the second green phosphor. At this time, the phosphor coating made of the second green phosphor is made of fine particles having an average primary particle diameter of less than 1 μm when viewed microscopically. When the second green phosphor is used as a phosphor film, the amount of the film shall conform to the mixing ratio described above, and particularly, the amount of the phosphor film is 1 to 30% by mass based on the phosphor base material.
It is preferable to be within the range.
【0037】マンガン付活珪酸亜鉛蛍光体の被膜(蛍光
体被膜)でコーティングした緑色蛍光体は、例えば以下
のようにして得ることができる。すなわち、上記した微
粒子状のマンガン付活珪酸亜鉛蛍光体の合成反応におい
て、水溶性のマンガン化合物および亜鉛化合物を含む水
溶液に、予めマンガン付活アルミン酸塩蛍光体を分散さ
せておき、これに珪酸エチルなどのアルコキシド化合物
を添加して十分に撹拌する。このような工程に基づい
て、マンガン付活アルミン酸塩蛍光体の粒子表面で珪酸
エチルなどを加水分解させることによって、Zn2Si
O4:Mn被膜でコーティングしたマンガン付活アルミ
ン酸塩蛍光体が得られる。A green phosphor coated with a manganese-activated zinc silicate phosphor coating (phosphor coating) can be obtained, for example, as follows. That is, in the above-described synthesis reaction of the particulate manganese-activated zinc silicate phosphor, the manganese-activated aluminate phosphor is dispersed in advance in an aqueous solution containing a water-soluble manganese compound and a zinc compound, and the silicate is added thereto. Add an alkoxide compound such as ethyl and stir well. Based on such a process, ethyl silicate or the like is hydrolyzed on the particle surface of the manganese-activated aluminate phosphor, whereby Zn2Si
A manganese-activated aluminate phosphor coated with an O4: Mn film is obtained.
【0038】上記した蛍光体被膜(Zn2SiO4:Mn
被膜)でコーティングする蛍光体、すなわち母材となる
蛍光体粒子は、必ずしもマンガン付活アルミン酸塩蛍光
体に限られるものではなく、使用用途に応じて適宜に選
択して使用することができる。本発明の緑色蛍光体を真
空紫外線励起蛍光体として用いる場合、マンガン付活ア
ルミン酸塩蛍光体は真空紫外線励起による発光色度に優
れる反面、初期輝度が劣ると共に輝度劣化が大きいとい
う特性を有することから、上記した蛍光体被膜(Zn2
SiO4:Mn被膜)でコーティングすることが好まし
い。The above-mentioned phosphor film (Zn2SiO4: Mn)
The phosphor coated with the coating film, that is, the phosphor particles serving as the base material, is not necessarily limited to the manganese-activated aluminate phosphor, and can be appropriately selected and used depending on the intended use. When the green phosphor of the present invention is used as a VUV-excited phosphor, the manganese-activated aluminate phosphor has excellent emission chromaticity when excited by VUV, but has a property of having poor initial luminance and large luminance degradation. From the above phosphor coating (Zn2
(SiO4: Mn film).
【0039】このようなマンガン付活アルミン酸塩蛍光
体からなる蛍光体粒子の表面を、蛍光体被膜(Zn2S
iO4:Mn被膜)でコーティングした緑色蛍光体によ
れば、マンガン付活アルミン酸塩蛍光体の発光色度に優
れるという特性を維持しつつ、初期輝度を高めることが
できると共に、デバイス点灯時の輝度劣化を抑制するこ
とが可能となる。蛍光体被膜は輝度劣化の抑制に対して
特に有効に機能するものである。The surface of the phosphor particles composed of such a manganese-activated aluminate phosphor is coated with a phosphor coating (Zn 2 S).
According to the green phosphor coated with (iO4: Mn film), the initial luminance can be increased while maintaining the excellent chromaticity of the manganese-activated aluminate phosphor, and the luminance when the device is turned on. Deterioration can be suppressed. The phosphor coating functions particularly effectively for suppressing the luminance degradation.
【0040】本発明の緑色蛍光体は、例えば波長147nm
や波長172nmなどの真空紫外線で励起した際の発光特性
に優れることから、真空紫外線を蛍光体の励起源とする
発光装置、具体的にはプラズマディスプレイパネル(P
DP)の表示部や、Xe放電ランプのような希ガス放電
ランプの発光源として有用である。本発明の緑色蛍光体
は特に発光色度に優れることから、フルカラーPDP用
の緑色蛍光体に好適である。The green phosphor of the present invention has a wavelength of 147 nm, for example.
Because of its excellent light emission characteristics when excited by vacuum ultraviolet light having a wavelength of 172 nm or the like, a light emitting device using vacuum ultraviolet light as a phosphor excitation source, specifically a plasma display panel (P
It is useful as a display unit of DP) or a light source of a rare gas discharge lamp such as a Xe discharge lamp. Since the green phosphor of the present invention is particularly excellent in emission chromaticity, it is suitable for a green phosphor for a full-color PDP.
【0041】本発明の緑色蛍光体をフルカラーPDPの
表示部に適用する場合、本発明による緑色蛍光体(緑色
発光の真空紫外線励起蛍光体)と、公知の青色および赤
色発光の真空紫外線励起蛍光体とを有する発光層(蛍光
体層)を、マトリック状に配列された電極群を有する一
対の基板の一方に形成し、これら基板間をXeなどの希
ガスを封入した状態で気密封止する。そして、一対の基
板の電極間で希ガス放電を生じさせ、この希ガス放電に
より生じる真空紫外線で蛍光体層を発光させる。これら
によって、プラズマディスプレイパネルの表示部が構成
される。When the green phosphor of the present invention is applied to a display portion of a full-color PDP, the green phosphor according to the present invention (green-light-emitting VUV-excited phosphor) and a known blue- and red-emitting VUV-excited phosphor are used. Is formed on one of a pair of substrates having an electrode group arranged in a matrix, and the space between the substrates is hermetically sealed with a rare gas such as Xe. Then, a rare gas discharge is generated between the electrodes of the pair of substrates, and the phosphor layer is caused to emit light by vacuum ultraviolet rays generated by the rare gas discharge. These constitute a display unit of the plasma display panel.
【0042】また、本発明の真空紫外線励起蛍光体を希
ガス放電ランプに適用する場合には、本発明による緑色
蛍光体と公知の青色および赤色蛍光体とを混合し、この
混合蛍光体(三波長形白色発光蛍光体など)をガラスバ
ルブの内面に塗布して発光層(蛍光体層)を形成する。
このガラスバルブの両端に電極を取付け、さらにバルブ
内にXeガスなどの希ガスを充填した状態で封止する。
両端の電極間に電圧を印加して希ガス放電を生じさせ、
この希ガス放電により生じる真空紫外線で蛍光体層を発
光させる。これらによって、希ガス放電ランプが構成さ
れる。When the VUV-excited phosphor of the present invention is applied to a rare gas discharge lamp, the green phosphor of the present invention is mixed with known blue and red phosphors, and this mixed phosphor (3 A light emitting layer (phosphor layer) is formed by applying a wavelength type white light emitting phosphor on the inner surface of the glass bulb.
Electrodes are attached to both ends of the glass bulb, and the bulb is sealed while being filled with a rare gas such as Xe gas.
A voltage is applied between the electrodes at both ends to generate a rare gas discharge,
The phosphor layer is caused to emit light by vacuum ultraviolet rays generated by the rare gas discharge. These constitute a rare gas discharge lamp.
【0043】本発明の発光装置は上述したような構成を
有するものであり、具体的にはプラズマディスプレイパ
ネルの表示部や希ガス放電ランプとして用いられるもの
である。本発明の緑色蛍光体は発光色度や初期輝度、さ
らには輝度の維持率などに優れることから、それを用い
たプラズマディスプレイパネルなどの表示特性や輝度特
性を高めることができる。The light emitting device of the present invention has the above-described configuration, and is specifically used as a display portion of a plasma display panel or a rare gas discharge lamp. Since the green phosphor of the present invention is excellent in emission chromaticity, initial luminance, and maintenance ratio of luminance, display characteristics and luminance characteristics of a plasma display panel and the like using the same can be improved.
【0044】なお、青色および赤色発光の真空紫外線励
起蛍光体には、各種公知のものを使用することができ、
特にこれらに限定されるものではないが、例えば青色発
光の真空紫外線励起蛍光体としてはBaMgAl10O1
7:Eu蛍光体などが、また赤色発光の真空紫外線励起
蛍光体としては(Y,Gd)BO3:Eu蛍光体や
(Y,Gd)2O3:Eu蛍光体などを用いることができ
る。Various known phosphors can be used as the blue and red light emitting phosphors excited by vacuum ultraviolet rays.
Although not particularly limited to these, for example, as a vacuum-ultraviolet-excited phosphor emitting blue light, BaMgAl10O1
7: Eu phosphor and the like, and (Y, Gd) BO3: Eu phosphor and (Y, Gd) 2O3: Eu phosphor can be used as the red-light-emitting vacuum ultraviolet excitation phosphor.
【0045】[0045]
【実施例】次に、本発明の具体的な実施例およびその評
価結果について述べる。Next, specific examples of the present invention and evaluation results thereof will be described.
【0046】実施例1、比較例1 まず、蛍光体原料として、Zn(NO3)2とMnCl2
とSi(OC2H5)4を準備した。Zn(NO3)2が2mo
l、MnCl2が0.5molとなるように秤量し、これらを60
℃に加温された300ccの純水(DW)に溶解させた。次
に、この水溶液にNH4OHを添加して、水溶液のpHを8
に調整した。pH調整後、水溶液を1時間撹拌した。この
間、水温は60℃に保持した。次いで、1molのSi(OC
2H5)4と同等のエタノールを添加して2〜3時間撹拌し
た。Example 1 and Comparative Example 1 First, Zn (NO 3) 2 and MnCl 2 were used as phosphor raw materials.
And Si (OC2H5) 4 were prepared. Zn (NO3) 2 is 2mo
l, MnCl2 was weighed to be 0.5 mol,
It was dissolved in 300 cc of pure water (DW) heated to ℃. Next, NH4OH was added to this aqueous solution to adjust the pH of the aqueous solution to 8.
Was adjusted. After pH adjustment, the aqueous solution was stirred for 1 hour. During this time, the water temperature was maintained at 60 ° C. Then, 1 mol of Si (OC
Ethanol equivalent to 2H5) 4 was added and stirred for 2-3 hours.
【0047】撹拌後の水溶液を静置した後に、ろ過、乾
燥した。この乾燥物を一旦篩別した後、還元性雰囲気中
にて例えば1000℃×3時間の条件で焼成することによっ
て、目的とするZn2SiO4:Mn蛍光体を得た。得ら
れたZn2SiO4:Mn蛍光体の平均一次粒子径を前述
したブレーン法により測定したところ、0.47μmという
値を示した。After the stirred aqueous solution was allowed to stand, it was filtered and dried. The dried product was once sieved, and then baked in a reducing atmosphere at, for example, 1000 ° C. for 3 hours to obtain a desired Zn 2 SiO 4: Mn phosphor. When the average primary particle diameter of the obtained Zn2SiO4: Mn phosphor was measured by the Blaine method described above, it showed a value of 0.47 μm.
【0048】次に、上記した微粒子状のZn2SiO4:
Mn蛍光体(第2の緑色蛍光体)4.5gを15ccの純水中に
分散させた。一方、平均一次粒子径が2.5μmのBaMg
Al10O17:Mn蛍光体(第1の緑色蛍光体)25.5gを8
5ccの純水中に分散させた。この粗粒子蛍光体を含む分
散液中に、微粒子蛍光体を含む分散液を添加し、1時間
撹拌した。撹拌後、ろ過、乾燥することによって、Ba
MgAl10O17:Mn蛍光体とZn2SiO4:Mn蛍光
体との混合蛍光体を得た。Next, the above-mentioned fine particle Zn2SiO4:
4.5 g of Mn phosphor (second green phosphor) was dispersed in 15 cc of pure water. On the other hand, BaMg having an average primary particle diameter of 2.5 μm
Al10O17: 25.5 g of Mn phosphor (first green phosphor)
It was dispersed in 5 cc of pure water. The dispersion containing the fine particle phosphor was added to the dispersion containing the coarse particle phosphor, followed by stirring for 1 hour. After stirring, filtration and drying are performed to obtain Ba.
A mixed phosphor of MgAl10O17: Mn phosphor and Zn2SiO4: Mn phosphor was obtained.
【0049】このようにして得た混合蛍光体の状態を走
査電子顕微鏡(SEM)で観察したところ、BaMgA
l10O17:Mn蛍光体の粒子表面にZn2SiO4:Mn
蛍光体微粒子が付着していることが確認された。次に、
得られた混合蛍光体に波長147nmの真空紫外線を照射
し、その際の発光輝度および発光色度を測定した。発光
輝度はBaMgAl10O17:Mn単独の蛍光体(比較例
1)の輝度を100としたときの相対輝度として求めた。The state of the mixed phosphor thus obtained was observed with a scanning electron microscope (SEM).
ZnOSiO: Mn on the particle surface of 110O17: Mn phosphor
It was confirmed that the phosphor fine particles were attached. next,
The obtained mixed phosphor was irradiated with vacuum ultraviolet rays having a wavelength of 147 nm, and the emission luminance and emission chromaticity at that time were measured. The emission luminance was obtained as a relative luminance when the luminance of the phosphor of BaMgAl10O17: Mn alone (Comparative Example 1) was set to 100.
【0050】その結果、この実施例1により得たBaM
gAl10O17:MnとZn2SiO4:Mnとの混合蛍光
体の発光輝度は102%であり、発光色度はCIE色度値の
(x,y)の値として(0.16,0.75)であった。このよ
うに、実施例1の混合蛍光体は比較例1の蛍光体に比べ
て輝度が向上していることが分かる。また、実施例1の
緑色発光の色度は比較例1と同等である。As a result, the BaM obtained in Example 1 was used.
The light emission luminance of the phosphor mixture of gAl10O17: Mn and Zn2SiO4: Mn was 102%, and the light emission chromaticity was (0.16, 0.75) as the (x, y) value of the CIE chromaticity value. Thus, it can be seen that the luminance of the mixed phosphor of Example 1 is improved as compared with the phosphor of Comparative Example 1. Further, the chromaticity of green light emission of Example 1 is equivalent to that of Comparative Example 1.
【0051】また、上記した実施例1および比較例1の
蛍光体を用いてPDPをそれぞれ構成し、各PDPを点
灯させた際の発光輝度と発光色度をそれぞれ測定した。
その結果、実施例1の蛍光体を用いたPDPの発光輝度
は、比較例1の蛍光体を用いたPDPの発光輝度を100
としたときに103%であり、発光色度は(x,y)=(0.
16,0.75)であった。PDPs were respectively constructed using the phosphors of Example 1 and Comparative Example 1, and the emission luminance and emission chromaticity when each PDP was turned on were measured.
As a result, the emission luminance of the PDP using the phosphor of Example 1 was 100% less than that of the PDP using the phosphor of Comparative Example 1.
And the emission chromaticity is (x, y) = (0.
16, 0.75).
【0052】実施例2 平均一次粒子径が2.5μmのBaMgAl10O17:Mn蛍
光体21gを70ccの純水中に分散させた。この粗粒子蛍光
体を含む分散液中に、実施例1と同様にして作製したZ
n2SiO4:Mnの微粒子蛍光体9gを30ccの純水中に分
散させた分散液を添加し、1時間撹拌した。撹拌後、ろ
過、乾燥することによって、BaMgAl10O17:Mn
とZn2SiO4:Mnとの混合蛍光体を得た。Example 2 21 g of a BaMgAl10O17: Mn phosphor having an average primary particle diameter of 2.5 μm was dispersed in 70 cc of pure water. In the dispersion containing the coarse particle phosphor, Z produced in the same manner as in Example 1
A dispersion liquid in which 9 g of n2SiO4: Mn fine particle phosphor was dispersed in 30 cc of pure water was added, and the mixture was stirred for 1 hour. After stirring, the mixture was filtered and dried to obtain BaMgAl10O17: Mn.
And a mixed phosphor of Zn2SiO4: Mn.
【0053】このようにして得た混合蛍光体に真空紫外
線を照射した際の発光輝度および発光色度、さらにはこ
の蛍光体を用いて作製したPDPの発光輝度と発光色度
を、実施例1と同様にして測定した。それらの結果を表
1に示す。The emission luminance and emission chromaticity when the mixed phosphor thus obtained was irradiated with vacuum ultraviolet rays, and the emission luminance and emission chromaticity of the PDP produced using this phosphor were measured in Example 1. The measurement was performed in the same manner as described above. Table 1 shows the results.
【0054】実施例3 平均一次粒子径が2.5μmのBaMgAl10O17:Mn蛍
光体15gを50ccの純水中に分散させた。この粗粒子蛍光
体を含む分散液中に、実施例1と同様にして作製したZ
n2SiO4:Mnの微粒子蛍光体15gを50ccの純水中に
分散させた分散液を添加し、1時間撹拌した。撹拌後、
ろ過、乾燥することによって、BaMgAl10O17:M
nとZn2SiO4:Mnとの混合蛍光体を得た。Example 3 15 g of a BaMgAl10O17: Mn phosphor having an average primary particle diameter of 2.5 μm was dispersed in 50 cc of pure water. In the dispersion containing the coarse particle phosphor, Z produced in the same manner as in Example 1
A dispersion liquid in which 15 g of n2SiO4: Mn fine particle phosphor was dispersed in 50 cc of pure water was added, and the mixture was stirred for 1 hour. After stirring,
By filtering and drying, BaMgAl10O17: M
A mixed phosphor of n and Zn2SiO4: Mn was obtained.
【0055】このようにして得た混合蛍光体に真空紫外
線を照射した際の発光輝度および発光色度、さらにはこ
の蛍光体を用いて作製したPDPの発光輝度と発光色度
を、実施例1と同様にして測定した。それらの結果を表
1に示す。The emission luminance and emission chromaticity when the mixed phosphor thus obtained was irradiated with vacuum ultraviolet rays, and the emission luminance and emission chromaticity of the PDP produced using this phosphor were measured in Example 1. The measurement was performed in the same manner as described above. Table 1 shows the results.
【0056】実施例4〜8 BaMgAl10O17:Mn蛍光体とZn2SiO4:Mn
蛍光体との混合比を、それぞれ表1に示す比率とする以
外は、実施例1と同様にして、5種類のBaMgAl10
O17:MnとZn2SiO4:Mnとの混合蛍光体を作製
した。得られた各混合蛍光体に真空紫外線を照射した際
の発光輝度および発光色度、さらにはこの蛍光体を用い
て作製したPDPの発光輝度と発光色度を、実施例1と
同様にして測定した。それらの結果を表1に示す。な
お、表1の比較例2は実施例で用いたZn2SiO4:M
nの微粒子蛍光体を単独で用いたものであり、その測定
結果についても表1に併せて示す。Examples 4 to 8 BaMgAl10O17: Mn phosphor and Zn2SiO4: Mn
Five kinds of BaMgAl10 were prepared in the same manner as in Example 1 except that the mixing ratios with the phosphors were respectively set to the ratios shown in Table 1.
A mixed phosphor of O17: Mn and Zn2SiO4: Mn was prepared. The emission luminance and emission chromaticity of each of the obtained mixed phosphors when irradiated with vacuum ultraviolet rays, and the emission luminance and emission chromaticity of a PDP manufactured using this phosphor were measured in the same manner as in Example 1. did. Table 1 shows the results. Note that Comparative Example 2 in Table 1 shows the Zn2SiO4: M used in the examples.
n alone was used, and the measurement results are also shown in Table 1.
【0057】[0057]
【表1】 表1から明らかなように、本発明の混合蛍光体によれ
ば、BaMgAl10O17:MnとZn2SiO4:Mnと
の混合比率によって、種々の特性を有する緑色蛍光体を
得ることができる。そして、この混合比率を適宜に設定
することによって、発光色度および発光輝度が共に優
れ、PDPの表示部のような発光装置に好適な真空紫外
線励起の緑色蛍光体を得ることができる。[Table 1] As is clear from Table 1, according to the mixed phosphor of the present invention, green phosphors having various characteristics can be obtained depending on the mixing ratio of BaMgAl10O17: Mn and Zn2SiO4: Mn. By appropriately setting the mixing ratio, it is possible to obtain a vacuum ultraviolet-excited green phosphor that is excellent in both emission chromaticity and emission luminance and is suitable for a light-emitting device such as a display unit of a PDP.
【0058】実施例9 まず、平均一次粒子径が2.5μmのBaMgAl10O17:
Mn蛍光体100gを300ccの純水(温度60℃)中に分散さ
せ、この分散液に0.05molのZn(NO3)2および0.001
3molのMnCl2を添加し溶解した。次いで、NH4OH
を添加して分散液のpHを8に調整した。pH調整後、分散
液を1時間撹拌した。Example 9 First, BaMgAl10O17 having an average primary particle diameter of 2.5 μm:
100 g of Mn phosphor was dispersed in 300 cc of pure water (temperature 60 ° C.), and 0.05 mol of Zn (NO 3) 2 and 0.001
3 mol of MnCl2 was added and dissolved. Then NH4OH
Was added to adjust the pH of the dispersion to 8. After pH adjustment, the dispersion was stirred for 1 hour.
【0059】次に、0.025molのSi(OC2H5)4と同
等のエタノールを添加して2〜3時間撹拌した。撹拌後の
分散液を静置した後に、ろ過、乾燥した。この乾燥物を
一旦篩別した後、還元性雰囲気中にて例えば1000℃×3
時間の条件で焼成することによって、目的とする混合蛍
光体を得た。Next, ethanol equivalent to 0.025 mol of Si (OC2H5) 4 was added, and the mixture was stirred for 2 to 3 hours. After the dispersion after stirring was allowed to stand, it was filtered and dried. After once sieving the dried product, for example, 1000 ° C × 3 in a reducing atmosphere
The desired mixed phosphor was obtained by firing under the condition of time.
【0060】このようにして得た混合蛍光体の状態を走
査電子顕微鏡(SEM)で観察したところ、BaMgA
l10O17:Mn蛍光体の粒子表面がZn2SiO4:Mn
蛍光体被膜によりコーティングされていることが確認さ
れた。蛍光体被膜の量は5質量%に相当する。The state of the mixed phosphor thus obtained was observed with a scanning electron microscope (SEM).
110 O17: Mn phosphor particle surface is Zn2SiO4: Mn
It was confirmed that it was coated with the phosphor film. The amount of the phosphor coating corresponds to 5% by mass.
【0061】次に、得られた蛍光体被膜を有する緑色蛍
光体に波長147nmの真空紫外線を照射し、その際の発光
輝度および発光色度を測定した。発光輝度は実施例1と
同様にして求めた。また、得られた緑色蛍光体でPDP
を構成し、PDPを100時間点灯した後の輝度維持率を
求めた。なお、比較例1の蛍光体についても、同様にし
てPDPの輝度維持率を求めた。Next, the obtained green phosphor having a phosphor coating was irradiated with vacuum ultraviolet rays having a wavelength of 147 nm, and the emission luminance and emission chromaticity at that time were measured. The light emission luminance was obtained in the same manner as in Example 1. In addition, the obtained green phosphor is used for PDP.
And the brightness maintenance ratio after lighting the PDP for 100 hours was determined. In addition, the luminance maintenance ratio of the PDP was similarly obtained for the phosphor of Comparative Example 1.
【0062】その結果、この実施例9による蛍光体被膜
を有する緑色蛍光体の発光輝度は100%であったが、PD
Pの輝度維持率は比較例1の85%に対して88%まで向上し
ていた。実施例9の緑色発光の色度は比較例1と同等で
ある。As a result, the emission luminance of the green phosphor having the phosphor coating according to the ninth embodiment was 100%.
The luminance maintenance ratio of P was improved to 88% from 85% of Comparative Example 1. The chromaticity of green light emission of Example 9 is equivalent to that of Comparative Example 1.
【0063】実施例10 まず、平均一次粒子径が2.5μmのBaMgAl10O17:
Mn蛍光体100gを300ccの純水(温度60℃)中に分散さ
せ、この分散液に0.1molのZn(NO3)2および0.0026
molのMnCl2を添加し溶解した。次いで、NH4OH
を添加して分散液のpHを8に調整した。pH調整後、分散
液を1時間撹拌した。Example 10 First, BaMgAl10O17 having an average primary particle size of 2.5 μm:
100 g of Mn phosphor was dispersed in 300 cc of pure water (temperature 60 ° C.), and 0.1 mol of Zn (NO 3) 2 and 0.0026
mol of MnCl2 was added and dissolved. Then NH4OH
Was added to adjust the pH of the dispersion to 8. After pH adjustment, the dispersion was stirred for 1 hour.
【0064】次に、0.05molのSi(OC2H5)4と同等
のエタノールを添加して2〜3時間撹拌した。撹拌後の分
散液を静置した後に、ろ過、乾燥した。この乾燥物を一
旦篩別した後、還元性雰囲気中にて例えば1000℃×3時
間の条件で焼成することによって、目的とする混合蛍光
体を得た。Next, ethanol equivalent to 0.05 mol of Si (OC2H5) 4 was added and the mixture was stirred for 2 to 3 hours. After the dispersion after stirring was allowed to stand, it was filtered and dried. After the dried product was once sieved, it was baked in a reducing atmosphere at, for example, 1000 ° C. for 3 hours to obtain a desired mixed phosphor.
【0065】このようにして得た混合蛍光体の状態を走
査電子顕微鏡(SEM)で観察したところ、BaMgA
l10O17:Mn蛍光体の粒子表面がZn2SiO4:Mn
蛍光体被膜によりコーティングされていることが確認さ
れた。蛍光体被膜の量は10質量%に相当する。次に、こ
の蛍光体被膜を有する緑色蛍光体の発光輝度と発光色
度、さらにはこの蛍光体を用いて作製したPDPの輝度
維持率を、実施例9と同様にして測定した。それらの結
果を表2に示す。The state of the mixed phosphor thus obtained was observed with a scanning electron microscope (SEM).
110 O17: Mn phosphor particle surface is Zn2SiO4: Mn
It was confirmed that it was coated with the phosphor film. The amount of the phosphor coating corresponds to 10% by mass. Next, the emission luminance and emission chromaticity of the green phosphor having the phosphor coating, and the luminance maintenance ratio of the PDP produced using this phosphor were measured in the same manner as in Example 9. Table 2 shows the results.
【0066】実施例11 まず、平均一次粒子径が2.5μmのBaMgAl10O17:
Mn蛍光体100gを300ccの純水(温度60℃)中に分散さ
せ、この分散液に0.15molのZn(NO3)2および0.003
9molのMnCl2を添加し溶解した。次いで、NH4OH
を添加して分散液のpHを8に調整した。pH調整後、分散
液を1時間撹拌した。Example 11 First, BaMgAl10O17 having an average primary particle size of 2.5 μm:
100 g of Mn phosphor was dispersed in 300 cc of pure water (temperature 60 ° C.), and 0.15 mol of Zn (NO 3) 2 and 0.003
9 mol of MnCl2 was added and dissolved. Then NH4OH
Was added to adjust the pH of the dispersion to 8. After pH adjustment, the dispersion was stirred for 1 hour.
【0067】次に、0.075molのSi(OC2H5)4と同
等のエタノールを添加して2〜3時間撹拌した。撹拌後の
分散液を静置した後に、ろ過、乾燥した。この乾燥物を
一旦篩別した後、還元性雰囲気中にて例えば1000℃×3
時間の条件で焼成することによって、目的とする混合蛍
光体を得た。Next, ethanol equivalent to 0.075 mol of Si (OC2H5) 4 was added, and the mixture was stirred for 2 to 3 hours. After the dispersion after stirring was allowed to stand, it was filtered and dried. After once sieving the dried product, for example, 1000 ° C × 3 in a reducing atmosphere
The desired mixed phosphor was obtained by firing under the condition of time.
【0068】このようにして得た混合蛍光体の状態を走
査電子顕微鏡(SEM)で観察したところ、BaMgA
l10O17:Mn蛍光体の粒子表面がZn2SiO4:Mn
蛍光体被膜によりコーティングされていることが確認さ
れた。蛍光体被膜の量は15質量%に相当する。次に、こ
の蛍光体被膜を有する緑色蛍光体の発光輝度と発光色
度、さらにはこの蛍光体を用いて作製したPDPの輝度
維持率を、実施例9と同様にして測定した。それらの結
果を表2に示す。The state of the mixed phosphor thus obtained was observed with a scanning electron microscope (SEM).
110 O17: Mn phosphor particle surface is Zn2SiO4: Mn
It was confirmed that it was coated with the phosphor film. The amount of the phosphor coating corresponds to 15% by mass. Next, the emission luminance and emission chromaticity of the green phosphor having the phosphor coating, and the luminance maintenance ratio of the PDP produced using this phosphor were measured in the same manner as in Example 9. Table 2 shows the results.
【0069】実施例12 まず、平均一次粒子径が2.5μmのBaMgAl10O17:
Mn蛍光体100gを300ccの純水(温度60℃)中に分散さ
せ、この分散液に0.05molのZn(NO3)2および0.001
3molのMnCl2を添加し溶解した。次いで、NH4OH
を添加して分散液のpHを8に調整した。pH調整後、分散
液を1時間撹拌した。Example 12 First, BaMgAl10O17 having an average primary particle size of 2.5 μm:
100 g of Mn phosphor was dispersed in 300 cc of pure water (temperature 60 ° C.), and 0.05 mol of Zn (NO 3) 2 and 0.001
3 mol of MnCl2 was added and dissolved. Then NH4OH
Was added to adjust the pH of the dispersion to 8. After pH adjustment, the dispersion was stirred for 1 hour.
【0070】次に、1molのSi(OC2H5)4と同等の
エタノールを添加して2〜3時間撹拌した。撹拌後の分散
液を静置した後に、ろ過、乾燥した。この乾燥物を一旦
篩別した後、還元性雰囲気中にて例えば1000℃×3時間
の条件で焼成することによって、目的とする混合蛍光体
を得た。Next, ethanol equivalent to 1 mol of Si (OC2H5) 4 was added and stirred for 2 to 3 hours. After the dispersion after stirring was allowed to stand, it was filtered and dried. After the dried product was once sieved, it was baked in a reducing atmosphere at, for example, 1000 ° C. for 3 hours to obtain a desired mixed phosphor.
【0071】このようにして得た混合蛍光体の状態を走
査電子顕微鏡(SEM)で観察したところ、BaMgA
l10O17:Mn蛍光体の粒子表面がZn2SiO4:Mn
蛍光体被膜によりコーティングされていることが確認さ
れた。蛍光体被膜の量は20質量%に相当する。次に、こ
の蛍光体被膜を有する緑色蛍光体の発光輝度と発光色
度、さらにはこの蛍光体を用いて作製したPDPの輝度
維持率を、実施例9と同様にして測定した。それらの結
果を表2に示す。The state of the mixed phosphor thus obtained was observed with a scanning electron microscope (SEM).
110 O17: Mn phosphor particle surface is Zn2SiO4: Mn
It was confirmed that it was coated with the phosphor film. The amount of the phosphor coating corresponds to 20% by mass. Next, the emission luminance and emission chromaticity of the green phosphor having the phosphor coating, and the luminance maintenance ratio of the PDP produced using this phosphor were measured in the same manner as in Example 9. Table 2 shows the results.
【0072】実施例13 まず、平均一次粒子径が2.5μmのBaMgAl10O17:
Mn蛍光体100gを300ccの純水(温度60℃)中に分散さ
せ、この分散液に0.05molのZn(NO3)2および0.002
molのMnCl2を添加し溶解した。次いで、NH4OH
を添加して分散液のpHを8に調整した。pH調整後、分散
液を1時間撹拌した。Example 13 First, BaMgAl10O17 having an average primary particle diameter of 2.5 μm:
100 g of the Mn phosphor was dispersed in 300 cc of pure water (temperature 60 ° C.), and 0.05 mol of Zn (NO 3) 2 and 0.002
mol of MnCl2 was added and dissolved. Then NH4OH
Was added to adjust the pH of the dispersion to 8. After pH adjustment, the dispersion was stirred for 1 hour.
【0073】次に、0.025molのSi(OC2H5)4と同
等のエタノールを添加して2〜3時間撹拌した。撹拌後の
分散液を静置した後に、ろ過、乾燥した。この乾燥物を
一旦篩別した後、還元性雰囲気中にて例えば1000℃×3
時間の条件で焼成することによって、目的とする混合蛍
光体を得た。Next, ethanol equivalent to 0.025 mol of Si (OC2H5) 4 was added, and the mixture was stirred for 2 to 3 hours. After the dispersion after stirring was allowed to stand, it was filtered and dried. After once sieving the dried product, for example, 1000 ° C × 3 in a reducing atmosphere
The desired mixed phosphor was obtained by firing under the condition of time.
【0074】このようにして得た混合蛍光体の状態を走
査電子顕微鏡(SEM)で観察したところ、BaMgA
l10O17:Mn蛍光体の粒子表面がZn2SiO4:Mn
蛍光体被膜によりコーティングされていることが確認さ
れた。蛍光体被膜の量は5質量%に相当する。次に、この
蛍光体被膜を有する緑色蛍光体の発光輝度と発光色度、
さらにはこの蛍光体を用いて作製したPDPの輝度維持
率を、実施例9と同様にして測定した。それらの結果を
表2に示す。The state of the mixed phosphor thus obtained was observed with a scanning electron microscope (SEM).
110 O17: Mn phosphor particle surface is Zn2SiO4: Mn
It was confirmed that it was coated with the phosphor film. The amount of the phosphor coating corresponds to 5% by mass. Next, the emission luminance and emission chromaticity of the green phosphor having the phosphor coating,
Further, the luminance maintenance ratio of a PDP manufactured using this phosphor was measured in the same manner as in Example 9. Table 2 shows the results.
【0075】[0075]
【表2】 表2から明らかなように、本発明の蛍光体被膜を有する
緑色蛍光体は、真空紫外線で励起した際の輝度が高く、
かつデバイス点灯時の輝度維持率にも優れることが分か
る。従って、このような緑色蛍光体を用いてPDPの表
示部のような発光装置を構成することによって、その発
光特性および表示特性を向上させることが可能となる。[Table 2] As is clear from Table 2, the green phosphor having the phosphor coating of the present invention has a high luminance when excited by vacuum ultraviolet light,
Further, it can be seen that the luminance maintenance ratio when the device is turned on is also excellent. Therefore, by forming a light emitting device such as a display portion of a PDP using such a green phosphor, it is possible to improve the light emission characteristics and display characteristics.
【0076】[0076]
【発明の効果】以上説明したように、本発明の緑色蛍光
体によれば、例えばマンガン付活珪酸亜鉛蛍光体が有す
る発光色度を維持しつつ、初期輝度やデバイス点灯時の
輝度維持率を向上させることができる。従って、このよ
うな本発明の緑色蛍光体をPDPのような発光装置に用
いることによって、発光特性や表示特性に優れた発光装
置を提供することが可能となる。As described above, according to the green phosphor of the present invention, for example, the luminous chromaticity of the manganese-activated zinc silicate phosphor is maintained while maintaining the initial luminance and the luminance maintenance ratio at the time of device lighting. Can be improved. Therefore, by using such a green phosphor of the present invention for a light emitting device such as a PDP, it is possible to provide a light emitting device having excellent light emitting characteristics and display characteristics.
【図1】 ブレーン法による粉体の平均粒子径Dの測定
方法を説明するための図である。FIG. 1 is a diagram for explaining a method for measuring an average particle diameter D of a powder by a Blaine method.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4H001 CA01 CA02 CA05 CA06 XA08 XA12 XA13 XA14 XA30 XA38 XA56 YA25 5C040 GG07 MA02 MA03 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4H001 CA01 CA02 CA05 CA06 XA08 XA12 XA13 XA14 XA30 XA38 XA56 YA25 5C040 GG07 MA02 MA03
Claims (10)
る第1の緑色蛍光体と、マンガン付活珪酸亜鉛蛍光体か
らなる第2の緑色蛍光体との混合物を具備することを特
徴とする緑色蛍光体。1. A green color comprising a mixture of a first green phosphor made of a manganese-activated aluminate phosphor and a second green phosphor made of a manganese-activated zinc silicate phosphor. Phosphor.
比率が質量比で95:5〜5:95の範囲であることを特徴と
する緑色蛍光体。2. The green phosphor according to claim 1, wherein a mixing ratio of the first green phosphor and the second green phosphor is in a range of 95: 5 to 5:95 by mass ratio. A green phosphor characterized by the above.
体において、 前記第1の緑色蛍光体は平均一次粒子径が2〜4μmの範
囲の粗粒子蛍光体を有すると共に、前記第2の緑色蛍光
体は平均一次粒子径が1μm未満の微粒子蛍光体を有し、
かつ前記第2の緑色蛍光体を構成する微粒子蛍光体は前
記第1の緑色蛍光体を構成する粗粒子蛍光体の表面に付
着していることを特徴とする緑色蛍光体。3. The green phosphor according to claim 1, wherein the first green phosphor has a coarse particle phosphor having an average primary particle diameter in a range of 2 to 4 μm, and the second green phosphor has a second particle diameter. The green phosphor has a fine particle phosphor having an average primary particle diameter of less than 1 μm,
And a fine particle phosphor constituting the second green phosphor adheres to a surface of the coarse particle phosphor constituting the first green phosphor.
と、前記蛍光体粒子の表面にコーティングされ、前記蛍
光体粒子とは異種の第2の緑色蛍光体からなる蛍光体被
膜とを具備することを特徴とする緑色蛍光体。4. A phosphor particle comprising a first green phosphor, and a phosphor coating formed on a surface of the phosphor particle and comprising a second green phosphor different from the phosphor particle. A green phosphor.
付活珪酸亜鉛蛍光体微粒子により構成されていることを
特徴とする緑色蛍光体。5. The green phosphor according to claim 4, wherein the phosphor coating is composed of manganese-activated zinc silicate phosphor fine particles having an average primary particle diameter of less than 1 μm.
体からなり、かつ前記第2の緑色蛍光体はマンガン付活
珪酸亜鉛蛍光体からなることを特徴とする緑色蛍光体。6. The green phosphor according to claim 4, wherein the first green phosphor is a manganese-activated aluminate phosphor, and the second green phosphor is a manganese-activated zinc silicate phosphor. A green phosphor comprising:
記載の緑色蛍光体において、 真空紫外線励起用の蛍光体として用いられることを特徴
とする緑色蛍光体。7. The green phosphor according to claim 1, wherein the green phosphor is used as a phosphor for exciting vacuum ultraviolet rays.
として用いられることを特徴とする緑色蛍光体。8. The green phosphor according to claim 7, wherein the green phosphor is used as a vacuum ultraviolet ray excited phosphor for a plasma display panel.
記載の緑色蛍光体を含む発光層を具備することを特徴と
する発光装置。9. A light-emitting device comprising a light-emitting layer containing the green phosphor according to claim 1. Description:
および赤色蛍光体を含む前記発光層と、前記発光層に真
空紫外線を照射する手段とを具備し、プラズマディスプ
レイパネルの表示部を構成することを特徴とする発光装
置。10. The light emitting device according to claim 9, wherein in addition to the green phosphor, the light emitting layer includes a blue phosphor and a red phosphor excited by vacuum ultraviolet light, and means for irradiating the light emitting layer with vacuum ultraviolet light. And a display unit of a plasma display panel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000225830A JP2002038147A (en) | 2000-07-26 | 2000-07-26 | Green phosphor and light-emitting device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000225830A JP2002038147A (en) | 2000-07-26 | 2000-07-26 | Green phosphor and light-emitting device using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002038147A true JP2002038147A (en) | 2002-02-06 |
Family
ID=18719544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000225830A Withdrawn JP2002038147A (en) | 2000-07-26 | 2000-07-26 | Green phosphor and light-emitting device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002038147A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005037956A1 (en) * | 2003-10-21 | 2005-04-28 | Sumitomo Chemical Company, Limited | Fluorescent material and fluorescent material paste |
WO2005071712A3 (en) * | 2004-01-23 | 2006-03-02 | Koninkl Philips Electronics Nv | A low-pressure mercury discharge lamp and process for its preparation |
JP2007099909A (en) * | 2005-10-05 | 2007-04-19 | Kasei Optonix Co Ltd | Mixed phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device |
WO2008098675A1 (en) * | 2007-02-12 | 2008-08-21 | Universität Karlsruhe (Th) | Transparent radiation source and radiation generation method |
-
2000
- 2000-07-26 JP JP2000225830A patent/JP2002038147A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005037956A1 (en) * | 2003-10-21 | 2005-04-28 | Sumitomo Chemical Company, Limited | Fluorescent material and fluorescent material paste |
CN1860203B (en) * | 2003-10-21 | 2010-08-25 | 住友化学株式会社 | Fluorescent material and fluorescent material paste |
US7964112B2 (en) | 2003-10-21 | 2011-06-21 | Sumitomo Chemical Company, Limited | Phosphor and phosphor paste |
WO2005071712A3 (en) * | 2004-01-23 | 2006-03-02 | Koninkl Philips Electronics Nv | A low-pressure mercury discharge lamp and process for its preparation |
JP2007099909A (en) * | 2005-10-05 | 2007-04-19 | Kasei Optonix Co Ltd | Mixed phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device |
WO2008098675A1 (en) * | 2007-02-12 | 2008-08-21 | Universität Karlsruhe (Th) | Transparent radiation source and radiation generation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4042372B2 (en) | Method for manufacturing phosphor | |
JP4122752B2 (en) | Light emitting device | |
JP4123758B2 (en) | Light emitting device | |
JP5036975B2 (en) | Nitrogen-containing phosphor, method for producing the same, and light-emitting device | |
JP2001172626A (en) | Display, light-emitting device | |
JPH11199867A (en) | Fluorescent body, fluorescent material containing the same and their production | |
JP4399518B2 (en) | Phosphor for vacuum ultraviolet ray, method for producing the same, phosphor paste composition, and vacuum ultraviolet light emitting device | |
JP2002038150A (en) | Vacuum ultraviolet ray-exited phosphor and light- emitting device using the same | |
JP3977551B2 (en) | Fluorescent substance for vacuum ultraviolet ray, phosphor paste composition, and vacuum ultraviolet ray excited light emitting device | |
JP2002038148A (en) | Green phosphor, method for producing the same, and light-emitting device using the same | |
JP2002038147A (en) | Green phosphor and light-emitting device using the same | |
JP3832024B2 (en) | Vacuum ultraviolet-excited luminescent phosphor and method for producing the same | |
JP5380790B2 (en) | Alkaline earth metal aluminate phosphor and fluorescent lamp using the same | |
JP2001279239A (en) | Method for producing phosphor for light emitting element and phosphor paste | |
JP2001335777A (en) | Vacuum ultraviolet ray-excited fluorophor and light emitting device using the same | |
JP3187952B2 (en) | Three-wavelength phosphor and fluorescent lamp using the same | |
JP2008050390A (en) | Vacuum ultraviolet excitation aluminate phosphor and vacuum ultraviolet excitation light emitting device using the same | |
CN100549127C (en) | Fluor with deterioration that uvioresistant causes, and picture quality is difficult for the gas discharge display device of deterioration in time | |
JP2001110309A (en) | Fluorescent lamp, method of manufacturing the same, and lighting device and electronic apparatus using the same | |
JP2001172625A (en) | Vacuum ultraviolet excitable fluorescent substance and light emitting device using the same | |
JP2001303047A (en) | Vacuum ultraviolet exciting fluorescent substance and emission device using the same | |
JPH0570774A (en) | Phosphor and fluorescent lamp | |
KR100447936B1 (en) | Green emitting phosphor by VUV excitiation and its preparation method | |
JP2003155479A (en) | Phosphor and vacuum ultraviolet-excited light-emitting element obtained by using the same | |
JP4016724B2 (en) | Phosphor for vacuum ultraviolet light-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20071002 |