JP2002037979A - Sealing resin composition and semiconductor sealing device - Google Patents
Sealing resin composition and semiconductor sealing deviceInfo
- Publication number
- JP2002037979A JP2002037979A JP2000223214A JP2000223214A JP2002037979A JP 2002037979 A JP2002037979 A JP 2002037979A JP 2000223214 A JP2000223214 A JP 2000223214A JP 2000223214 A JP2000223214 A JP 2000223214A JP 2002037979 A JP2002037979 A JP 2002037979A
- Authority
- JP
- Japan
- Prior art keywords
- group
- resin composition
- epoxy resin
- resin
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007789 sealing Methods 0.000 title claims abstract description 35
- 239000011342 resin composition Substances 0.000 title claims abstract description 29
- 239000004065 semiconductor Substances 0.000 title claims abstract description 22
- 239000003822 epoxy resin Substances 0.000 claims abstract description 47
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 47
- 150000001875 compounds Chemical class 0.000 claims abstract description 44
- 239000005011 phenolic resin Substances 0.000 claims abstract description 23
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000011256 inorganic filler Substances 0.000 claims abstract description 12
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 12
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229920001568 phenolic resin Polymers 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims description 15
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 14
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 9
- -1 phosphazene compound Chemical class 0.000 claims description 9
- 235000010290 biphenyl Nutrition 0.000 claims description 7
- 239000004305 biphenyl Substances 0.000 claims description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 6
- 238000005538 encapsulation Methods 0.000 claims description 5
- 238000004132 cross linking Methods 0.000 claims description 4
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 claims description 2
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 2
- 125000002030 1,2-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([*:2])C([H])=C1[H] 0.000 claims 1
- 125000001989 1,3-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([H])C([*:2])=C1[H] 0.000 claims 1
- 239000003063 flame retardant Substances 0.000 abstract description 12
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 abstract description 10
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 abstract description 10
- 150000002366 halogen compounds Chemical class 0.000 abstract description 7
- YUWBVKYVJWNVLE-UHFFFAOYSA-N [N].[P] Chemical compound [N].[P] YUWBVKYVJWNVLE-UHFFFAOYSA-N 0.000 abstract description 2
- 229910000410 antimony oxide Inorganic materials 0.000 abstract description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 abstract description 2
- 229920003986 novolac Polymers 0.000 description 33
- 239000004593 Epoxy Substances 0.000 description 29
- 239000012778 molding material Substances 0.000 description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 24
- 239000000843 powder Substances 0.000 description 23
- 238000012360 testing method Methods 0.000 description 23
- 239000001993 wax Substances 0.000 description 22
- 150000002148 esters Chemical class 0.000 description 21
- 239000005350 fused silica glass Substances 0.000 description 21
- 229920005989 resin Polymers 0.000 description 17
- 239000011347 resin Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 13
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 8
- 229930003836 cresol Natural products 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 229920000388 Polyphosphate Polymers 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000001205 polyphosphate Substances 0.000 description 3
- 235000011176 polyphosphates Nutrition 0.000 description 3
- 238000001721 transfer moulding Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 101100273357 Pisum sativum AB80 gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 125000000113 cyclohexyl group Chemical class [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000011346 highly viscous material Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Fireproofing Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Sealing Material Composition (AREA)
Abstract
(57)【要約】
【課題】 特にハロゲン化合物および酸化アンチモンを
含有しない、新規なリン−窒素系難燃剤と硼酸亜鉛の使
用により、難燃性、連続生産性、耐湿性および信頼性の
よい、封止用樹脂組成物および半導体封止装置を提供す
る。
【解決手段】(A)エポキシ樹脂、(B)フェノール樹
脂、(C)例えばフェニレン基で架橋した架橋フェノキ
シホスファゼン化合物および(D)硼酸亜鉛および
(E)無機充填剤を必須成分とし、樹脂組成物全体に対
して、前記(C)架橋フェノキシホスファゼン化合物を
0.1〜7重量%、(D)硼酸亜鉛を1〜10重量%、
また前記(E)無機充填剤を40〜95重量%の割合で
含有してなることを特徴とする封止用樹脂組成物であ
る。また、この封止用樹脂組成物の硬化物によって半導
体チップを封止してなる半導体封止装置である。PROBLEM TO BE SOLVED: To provide a flame-retardant, continuous productive, moisture-resistant and reliable, especially by using a novel phosphorus-nitrogen-based flame retardant and zinc borate which do not contain a halogen compound and antimony oxide. Provided are a sealing resin composition and a semiconductor sealing device. A resin composition comprising (A) an epoxy resin, (B) a phenolic resin, (C) a crosslinked phenoxyphosphazene compound crosslinked with, for example, a phenylene group, (D) zinc borate, and (E) an inorganic filler as essential components. 0.1 to 7% by weight of the crosslinked phenoxyphosphazene compound (C), 1 to 10% by weight of zinc borate (D),
A sealing resin composition comprising the inorganic filler (E) in a proportion of 40 to 95% by weight. Further, the present invention is a semiconductor sealing device in which a semiconductor chip is sealed with a cured product of the sealing resin composition.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ハロゲン化合物
(塩素原子または臭素原子を含む化合物)および三酸化
アンチモンを添加することなしに、優れた難燃性を有
し、また、成形性、耐湿性および信頼性に優れた封止用
樹脂組成物および半導体封止装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has excellent flame retardancy without adding a halogen compound (compound containing a chlorine atom or a bromine atom) and antimony trioxide, and has good moldability and moisture resistance. And a sealing resin composition and a semiconductor sealing device having excellent reliability.
【0002】[0002]
【従来の技術】半導体装置では、その封止樹脂に難燃性
をもたせることが一般的であり、難燃化の処方として、
ハロゲン化合物および金属酸化物を単独もしくは併用す
ることで難燃効果を現している。具体的には、臭素化エ
ポキシ樹脂と三酸化アンチモンの組合せが一般的であ
る。しかし、封止用樹脂組成物の難燃効果を現すために
添加されるハロゲン化合物、特に臭素化エポキシ樹脂、
およびその難燃効果を助けるために添加されている金属
酸化物、特に三酸化アンチモンは、いずれも半導体装置
の信頼性を低下させるという欠点があった。そればかり
か、最近では環境への悪影響も指摘されている。2. Description of the Related Art In a semiconductor device, it is general that a sealing resin thereof is provided with flame retardancy.
A flame retardant effect is exhibited by using a halogen compound and a metal oxide alone or in combination. Specifically, a combination of a brominated epoxy resin and antimony trioxide is generally used. However, a halogen compound added to exhibit the flame retardant effect of the sealing resin composition, particularly a brominated epoxy resin,
In addition, metal oxides added to assist the flame-retardant effect, particularly antimony trioxide, all have the drawback of lowering the reliability of the semiconductor device. Not only that, but it has recently been pointed out that it has a negative impact on the environment.
【0003】このため、ハロゲン化合物および金属酸化
物を含有しない封止用樹脂組成物の開発が強く要望され
ており、その代替材として、リン系難燃剤および金属水
和物などの検討が広く進められている。しかし、リン系
難燃剤の多くはリン酸エステル系のもので、難燃効果が
得られても、加水分解により発生するリン酸が、半導体
封止装置の耐湿信頼性を低下させる原因となってしま
い、十分な信頼性を確保することができない。また、金
属水和物についても十分な成形性が確保できないばかり
か、それによる吸湿特性の劣化は、半導体封止装置の信
頼性を大きく低下させてしまう欠点があった。[0003] Therefore, there is a strong demand for the development of a sealing resin composition containing no halogen compound and no metal oxide, and studies on phosphorus-based flame retardants, metal hydrates and the like as alternatives have been widely promoted. Have been. However, most of the phosphorus-based flame retardants are phosphate ester-based, and even if the flame-retardant effect is obtained, phosphoric acid generated by hydrolysis causes a decrease in the moisture resistance reliability of the semiconductor sealing device. As a result, sufficient reliability cannot be ensured. In addition, not only the metal hydrate cannot secure sufficient moldability, but also the deterioration of the moisture absorption property has a disadvantage that the reliability of the semiconductor sealing device is greatly reduced.
【0004】そのため、ハロゲン化合物および金属酸化
物を含有しない封止用樹脂組成物であって、しかも成形
性、耐湿性および信頼性に優れたものの開発が強く要望
されてきた。また、今回使用している架橋フエノキシホ
スファゼン化合物も、反応系のものを除けば反応に関与
しない有機物であるため、連続生産性等に問題が生じ、
添加量が制限されるという欠点があり、封止用樹脂組成
物に単独で難燃効果を与えるには、無機充填剤の含有量
がある程度以上必要になるため、封止樹脂組成物全般に
使用できないのが現状であった。[0004] Therefore, there has been a strong demand for the development of a sealing resin composition containing no halogen compound and no metal oxide and having excellent moldability, moisture resistance and reliability. In addition, the crosslinked phenoxyphosphazene compound used this time is also an organic substance that does not participate in the reaction except for those in the reaction system, and thus causes a problem in continuous productivity and the like.
There is a drawback that the amount added is limited, and in order to provide the sealing resin composition with a flame retardant effect alone, the content of the inorganic filler is required to a certain degree or more, so it is used throughout the sealing resin composition. It was impossible at present.
【0005】本発明に用いるフエノキシホスファゼン化
合物は、一般に塩化アンモニウムと五塩化リンによりそ
の基本骨格が合成されるが、その際、環状および鎖状で
分子量の異なるものの混合物として得られる。混合物と
して得られたフエノキシホスファゼン化合物は高粘性物
であるために、封止用樹脂の製造および作業等に問題が
生じ、この改善のために、蒸留又は再結晶等の精製作業
により、単一物質とするか混合状態であってもより純度
を高めることで、固体のものを得ていた。そのような精
製工程を経ずに合成状態のままで固体であるフエノキシ
ホスファゼン化合物を開発することができれば、封止樹
脂製造の工程簡略化が可能である。The basic skeleton of the phenoxyphosphazene compound used in the present invention is generally synthesized from ammonium chloride and phosphorus pentachloride. In this case, the phenoxyphosphazene compound is obtained as a mixture of cyclic and linear compounds having different molecular weights. Since the phenoxyphosphazene compound obtained as a mixture is a highly viscous substance, there is a problem in the production and operation of the sealing resin, and in order to improve this, a purification operation such as distillation or recrystallization is performed. Even in the case of a single substance or a mixed state, a solid substance is obtained by increasing the purity. If a phenoxyphosphazene compound which is a solid in a synthesized state without such a purification step can be developed, the process of producing a sealing resin can be simplified.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記欠点を
解消し、上記要望に応えるためになされたもので、加水
分解されずしたがってリン酸を発生しないリン−窒素系
難燃剤と金属水酸化物との適当な組合せの配合により、
ハロゲン化合物および酸化アンチモンを含有せずに十分
な難燃性を付与し、また封止用樹脂の生産性、連続成形
性、耐湿性および信頼性のよい、封止用樹脂組成物およ
び半導体封止装置を提供しようとするものである。DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks and to meet the above-mentioned needs, and it is an object of the present invention to provide a phosphorus-nitrogen flame retardant which is not hydrolyzed and therefore does not generate phosphoric acid. By the combination of the appropriate combination with the thing,
A resin composition for encapsulation and a semiconductor encapsulation that imparts sufficient flame retardancy without containing a halogen compound and antimony oxide, and has good productivity, continuous moldability, moisture resistance and reliability of the encapsulating resin. It is intended to provide a device.
【0007】[0007]
【課題を解決するための手段】本発明者らは、上記の目
的を達成しようと鋭意研究を重ねた結果、樹脂組成物
に、特定の架橋をした架橋フエノキシホスファゼン化合
物と硼酸亜鉛を所定量、組み合わせ配合することによっ
て、十分な難燃性、成形性(連続生産性)とともに耐湿
性と信頼性が向上し、上記目的が達成されることを見い
だし、本発明を完成させたものである。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, a resin composition containing a specific crosslinked phenoxyphosphazene compound and zinc borate. It has been found that, by quantifying and combining the components, sufficient flame retardancy, moldability (continuous productivity), moisture resistance and reliability are improved, and the above object is achieved, and the present invention has been completed. .
【0008】即ち、本発明は、(A)エポキシ樹脂、
(B)フェノール樹脂、(C)架橋フェノキシホスファ
ゼン化合物、(D)硼酸亜鉛及び(E)無機充填剤を必
須成分とし、樹脂組成物全体に対して、前記(C)の架
橋フェノキシホスファゼン化合物を0.1〜7重量%、
好ましくは0.5〜3重量%、前記(D)硼酸亜鉛を1
〜10重量%、また、前記(E)無機充填剤を40〜9
5重量%の割合で、それぞれ含有してなることを特徴と
する封止用樹脂組成物である。また、この封止用樹脂組
成物の硬化物によって、半導体チップを封止してなるこ
とを特徴とする半導体封止装置である。That is, the present invention provides (A) an epoxy resin,
(B) a phenolic resin, (C) a crosslinked phenoxyphosphazene compound, (D) zinc borate and (E) an inorganic filler are essential components, and the crosslinked phenoxyphosphazene compound (C) is added to the resin composition in an amount of 0%. 0.1 to 7% by weight,
Preferably, 0.5 to 3% by weight of the zinc borate (D) is 1%.
10 to 10% by weight, and the inorganic filler (E) is 40 to 9% by weight.
It is a resin composition for encapsulation characterized by being contained at a ratio of 5% by weight. Further, there is provided a semiconductor encapsulating apparatus characterized in that a semiconductor chip is encapsulated with a cured product of the encapsulating resin composition.
【0009】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.
【0010】本発明に用いる(A)エポキシ樹脂として
は、その分子中にエポキシ基を少なくとも2個有する化
合物である限り、分子構造および分子量など特に制限な
く、一般に封止用材料として使用されるものを広く包含
することができる。例えば、ビフェニル型エポキシ樹
脂、ビスフェノール型等の芳香族系、シクロヘキサン誘
導体等の脂肪族系、また次の各一般式で示されるエポキ
シ樹脂等が挙げられる。The epoxy resin (A) used in the present invention is not particularly limited in molecular structure and molecular weight as long as it is a compound having at least two epoxy groups in the molecule, and is generally used as a sealing material. Can be widely encompassed. For example, an aromatic resin such as a biphenyl type epoxy resin or a bisphenol type, an aliphatic type such as a cyclohexane derivative, or an epoxy resin represented by each of the following general formulas may be used.
【化5】 (但し、式中、R1 、R2 は水素原子あるいはアルキル
基を、nは0又は1以上の整数をそれぞれ表す)Embedded image (Wherein, R 1 and R 2 represent a hydrogen atom or an alkyl group, and n represents 0 or an integer of 1 or more, respectively)
【化6】 (但し、式中、nは0〜5の整数を表す)これらのエポ
キシ樹脂は、単独もしくは2種類以上混合して用いるこ
とができる。Embedded image (In the formula, n represents an integer of 0 to 5.) These epoxy resins can be used alone or in combination of two or more.
【0011】本発明に用いる(B)フェノール樹脂とし
ては、前記(A)のエポキシ樹脂と反応し得るフェノー
ル性水酸基を2個以上有する化合物であれば、特に制限
なく使用することができる。具体的なものとしては、例
えば、次の各一般式に示されるフェノール樹脂が挙げら
れる。As the phenolic resin (B) used in the present invention, any compound having at least two phenolic hydroxyl groups capable of reacting with the epoxy resin (A) can be used without any particular limitation. Specific examples include, for example, phenol resins represented by the following general formulas.
【0012】[0012]
【化7】 (但し、式中、nは0または1以上の整数を表す)Embedded image (Where n represents 0 or an integer of 1 or more)
【化8】 (但し、式中、nは0または1以上の整数を表す)これ
らの樹脂は、単独もしくは2種類以上混合して用いるこ
とができる。Embedded image (In the formula, n represents 0 or an integer of 1 or more.) These resins can be used alone or in combination of two or more.
【0013】(B)フェノール樹脂の配合割合は、前述
したエポキシ樹脂のエポキシ基(a)とフェノール樹脂
のフェノール性水酸基(b)との当量比(a)/(b)
の値が0.1〜10の範囲内であることが望ましい。当
量比が0.1未満あるいは10を超えると、耐湿性、耐
熱性、成形作業性および硬化物の電気特性が悪くなり、
いずれの場合も好ましくない。従って上記の範囲内に限
定するのがよい。(B) The mixing ratio of the phenol resin is the equivalent ratio (a) / (b) of the epoxy group (a) of the epoxy resin and the phenolic hydroxyl group (b) of the phenol resin.
Is desirably in the range of 0.1 to 10. If the equivalent ratio is less than 0.1 or exceeds 10, the moisture resistance, heat resistance, molding workability, and electrical properties of the cured product are deteriorated,
Either case is not preferred. Therefore, it is better to limit to the above range.
【0014】本発明に用いる(C)の架橋フェノキシホ
スファゼン化合物としては、次の構造式The crosslinked phenoxyphosphazene compound (C) used in the present invention has the following structural formula
【化9】 (式中、mは3〜25好ましくは3〜10の整数を表
す)で示される環状フェノキシホスファゼン化合物及び
/又は次の構造式Embedded image (Wherein m represents an integer of 3 to 25, preferably 3 to 10), and / or the following structural formula
【化10】 (式中、Xは基−N=P(OC6 H5 )3 又は基−N=
P(O)OC6 H5 を、Yは基−P(OC6 H5 )4 又
は基−P(OC6 H5 )2 を、nは3〜10000好ま
しくは3〜15の整数をそれぞれ表す)で示される鎖状
フェノキシホスファゼン化合物から選ばれた少なくとも
1種のホスファゼン化合物が、o−フェニレン基、m−
フェニレン基、p−フェニレン基および下記構造式で表
されるビスフェニレン基Embedded image (Wherein X is a group -N = P (OC 6 H 5 ) 3 or a group -N =
P (O) OC 6 H 5 , Y represents a group —P (OC 6 H 5 ) 4 or a group —P (OC 6 H 5 ) 2 , and n represents an integer of 3 to 10,000, preferably 3 to 15, respectively. ) Is at least one phosphazene compound selected from the chain phenoxyphosphazene compounds represented by
Phenylene group, p-phenylene group and bisphenylene group represented by the following structural formula
【化11】 (式中、Aは基−C(CH3 )2 −、基−SO2 −、基
−S−又は基−O−を、aは0又は1を表す)から選ば
れる少なくとも1種の架橋基により架橋されてなる架橋
フェノキシホスファゼン化合物である。Embedded image (Wherein, A represents a group —C (CH 3 ) 2 —, a group —SO 2 —, a group —S— or a group —O—, and a represents 0 or 1). Is a crosslinked phenoxyphosphazene compound crosslinked by
【0015】そして、(a)該架橋基はホスファゼン化
合物におけるフェノキシのフェニル基が脱離した2個の
酸素原子間に介在し、(b)架橋されてなる化合物にお
ける脱離しないフェニル基の含有割合が上記ホスファゼ
ン化合物化9及び/又は化10中の全フェニル基の総数
を基準に50〜99.9%であり、かつ(c)分子内に
フリーの水酸基を有しない架橋フェノキシホスファゼン
化合物である。また、これら架橋フェノキシホスファゼ
ン化合物は、単独又は2種以上混合して使用することが
できる。(A) the cross-linking group is interposed between the two oxygen atoms from which the phenyl group of phenoxy has been eliminated in the phosphazene compound; and (b) the content of the non-eliminated phenyl group in the cross-linked compound. Is 50 to 99.9% based on the total number of all phenyl groups in the phosphazene compound (9) and / or (10), and (c) is a crosslinked phenoxyphosphazene compound having no free hydroxyl group in the molecule. These crosslinked phenoxyphosphazene compounds can be used alone or in combination of two or more.
【0016】本発明において、「分子内にフリーの水酸
基を有しない」とは、分析化学便覧(改訂第3版、日本
分析化学会編、丸善(株)、1981年)第353頁に
記載の無水酢酸とピリジンによるアセチル化法に従って
定量した場合に、フリーの水酸基量が検出限界以下であ
ることを意味する。ここで検出限界とは、試料(本発明
の架橋フェノキシホスファゼン化合物)1g当たりの水
酸基当量としての検出限界であり、より具体的には1×
10-6水酸基当量/g以下である。なお、上記のアセチ
ル化法で本発明の架橋フェノキシホスファゼン化合物を
分析すると、残留する原料フェノールの水酸基の量も加
算されるが、原料フェノールは高速液体クロマトグラフ
ィーによって定量できるので、架橋フェノキシホスファ
ゼン化合物中のフリーの水酸基のみを定量することがで
きる。In the present invention, "having no free hydroxyl group in the molecule" is described in Analytical Chemistry Handbook (Revised 3rd Edition, edited by The Japan Society for Analytical Chemistry, Maruzen Co., Ltd., 1981), page 353. It means that the amount of free hydroxyl groups is below the detection limit when quantified according to the acetylation method using acetic anhydride and pyridine. Here, the detection limit is a detection limit as a hydroxyl equivalent per 1 g of a sample (crosslinked phenoxyphosphazene compound of the present invention), and more specifically, 1 ×
It is 10 -6 hydroxyl group equivalent / g or less. When the crosslinked phenoxyphosphazene compound of the present invention is analyzed by the above acetylation method, the amount of hydroxyl groups of the remaining raw phenol is also added.However, since the raw phenol can be quantified by high performance liquid chromatography, Only free hydroxyl groups can be quantified.
【0017】(C)の架橋フェノキシホスファゼン化合
物の配合割合は、全体の樹脂組成物に対して0.1〜7
重量%、好ましくは0.5〜3重量%含有することが望
ましい。この割合が0.1重量%未満では、難燃性の効
果が十分に得られず、また7重量%を超えると封止樹脂
の硬化物表面に滲み出すほか、硬化物の特性に悪影響を
与え、実用に適さず好ましくない。The compounding ratio of the crosslinked phenoxyphosphazene compound (C) is 0.1 to 7 with respect to the whole resin composition.
%, Preferably 0.5 to 3% by weight. If this proportion is less than 0.1% by weight, the effect of flame retardancy cannot be sufficiently obtained, and if it exceeds 7% by weight, it oozes on the surface of the cured product of the sealing resin and adversely affects the properties of the cured product. Is not suitable for practical use and is not preferred.
【0018】本発明に用いる(D)の硼酸亜鉛は、全体
の樹脂組成物に対して1〜10重量%含有することが望
ましい。この割合が1重量%未満では、難燃性の効果が
十分に得られず、また10重量%を超えても封止樹脂の
難燃効果が向上しないため、上記含有量が適当である。The zinc borate (D) used in the present invention is desirably contained in an amount of 1 to 10% by weight based on the whole resin composition. If this proportion is less than 1% by weight, the flame retardant effect cannot be sufficiently obtained, and if it exceeds 10% by weight, the flame retardant effect of the sealing resin is not improved, so the above content is appropriate.
【0019】本発明に用いる(E)の無機充填剤として
は、溶融シリカ、結晶シリカ、アルミナ、タルク、ジル
コン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、
窒化ホウ素、ベリリア、ジルコニア、酸化チタン等の粉
体又はこれらを球形化したビーズ、チタン酸カリウム、
炭化ケイ素、窒化ケイ素、アルミナ等の単結晶繊維およ
びガラス繊維等が挙げられ、これらは、単独もしくは2
種類以上混合して用いることができる。これらのなかで
も特にシリカ粉末やアルミナ粉末が好ましく、これらは
よく使用される。The inorganic filler (E) used in the present invention includes fused silica, crystalline silica, alumina, talc, zircon, calcium silicate, calcium carbonate, silicon carbide,
Powders of boron nitride, beryllia, zirconia, titanium oxide or the like or spherical beads thereof, potassium titanate,
Single crystal fibers such as silicon carbide, silicon nitride, and alumina; glass fibers; and the like.
More than one kind can be mixed and used. Among these, silica powder and alumina powder are particularly preferable, and these are often used.
【0020】(D)無機充填剤の配合割合は、全体の樹
脂組成物に対して40〜95重量%の割合で含有するこ
とが望ましい。その割合が40重量%未満では、耐熱
性、耐湿性、半田耐熱性、機械的特性および成形性が悪
くなり、また、95重量%を超えると、かさばりが大き
くなり成形性に劣り実用に適さない。(D) It is desirable that the compounding ratio of the inorganic filler is 40 to 95% by weight based on the whole resin composition. If the proportion is less than 40% by weight, heat resistance, moisture resistance, soldering heat resistance, mechanical properties and moldability deteriorate, and if it exceeds 95% by weight, the bulk becomes large and the moldability deteriorates, which is not suitable for practical use. .
【0021】本発明の封止用樹脂組成物は、前述したエ
ポキシ樹脂、フェノール樹脂、架橋フェノキシホスファ
ゼン化合物、硼酸亜鉛および無機充填剤を必須成分とす
るが、本発明の目的に反しない限度において、また必要
に応じて例えば、天然ワックス類、合成ワックス類、直
鎖脂肪族の金属塩、酸アミド類、エステル類、パラフィ
ン系等の離型剤、エラストマー等の低応力化成分、カー
ボンブラック等の着色剤、種々の有機シラン、有機チタ
ネート、アルミニウムアルコレートなどのカップリング
剤等の無機充填剤の処理剤、また、エポキシ樹脂とフェ
ノール樹脂の硬化反応を促進する種々の硬化促進剤など
を適宜、添加配合することができる。The encapsulating resin composition of the present invention contains the above-mentioned epoxy resin, phenolic resin, crosslinked phenoxyphosphazene compound, zinc borate and inorganic filler as essential components. If necessary, for example, natural waxes, synthetic waxes, linear aliphatic metal salts, acid amides, esters, paraffin-based release agents, elastomers and other low-stress components, carbon black and the like Colorants, various organic silanes, organic titanates, treating agents for inorganic fillers such as coupling agents such as aluminum alcoholate, and various curing accelerators for accelerating the curing reaction between the epoxy resin and the phenolic resin, as appropriate. It can be added and blended.
【0022】本発明の封止用樹脂組成物を成形材料とし
て調製する場合の一般的な方法としては、前述したエポ
キシ樹脂、フェノール樹脂、架橋フェノキシホスファゼ
ン化合物、硼酸亜鉛、無機充填剤およびその他の成分を
配合し、ミキサー等によって十分均一に混合した後、さ
らに熱ロールによる溶融混合処理、またはニーダ等によ
る混合処理を行い、次いで冷却固化させ、適当な大きさ
に粉砕して成形材料とすることができる。こうして得ら
れた成形材料は、半導体装置をはじめとする電子部品あ
るいは電気部品の封止、被覆、絶縁等に適用すれば、優
れた特性と信頼性を付与させることができる。A general method for preparing the encapsulating resin composition of the present invention as a molding material includes the above-described epoxy resin, phenol resin, crosslinked phenoxyphosphazene compound, zinc borate, inorganic filler and other components. After mixing uniformly with a mixer or the like, a melt-mixing process using a hot roll, or a mixing process using a kneader or the like is performed, and then the mixture is cooled and solidified, and pulverized to an appropriate size to obtain a molding material. it can. If the molding material thus obtained is applied to sealing, coating, insulating, etc. of electronic parts or electric parts such as semiconductor devices, excellent properties and reliability can be imparted.
【0023】本発明の半導体封止装置は、上記のように
して得られた封止用樹脂を用いて、半導体チップを封止
することにより容易に製造することができる。封止の最
も一般的な方法としては、低圧トランスファー成形方が
あるが、射出成形、圧縮成形および注型などによる封止
も可能である。封止用樹脂組成物を封止の際に加熱して
硬化させ、最終的にはこの組成物の硬化物によって封止
された半導体封止装置が得られる。加熱による硬化は、
150℃以上に加熱して硬化させることが望ましい。封
止を行う半導体装置としては、例えば、集積回路、大規
模集積回路、トランジスタ、サイリスタおよびダイオー
ド等で特に限定されるものではない。The semiconductor sealing device of the present invention can be easily manufactured by sealing a semiconductor chip using the sealing resin obtained as described above. The most common method of sealing is low pressure transfer molding, but sealing by injection molding, compression molding, casting or the like is also possible. The sealing resin composition is heated and cured at the time of sealing, and finally a semiconductor sealing device sealed with a cured product of this composition is obtained. Curing by heating
It is desirable to heat and cure at 150 ° C. or higher. As a semiconductor device for sealing, for example, an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and the like are not particularly limited.
【0024】[0024]
【作用】本発明の封止用樹脂組成物および半導体封止装
置は、樹脂成分として架橋フェノキシホスファゼン化合
物と硼酸亜鉛を用いたことにより、目的とする特性が得
られるものである。即ち、その架橋フェノキシホスファ
ゼン化合物の安定性に加えて、架橋フェノキシホスファ
ゼン化合物と硼酸亜鉛を適当な組合せで配合することに
より、十分な成形性を保ちながら、樹脂組成物に優れた
難燃性を付与し、半導体装置において特に耐湿性および
信頼性を向上させることができる。The resin composition for sealing and the semiconductor sealing device of the present invention can obtain desired properties by using a crosslinked phenoxyphosphazene compound and zinc borate as resin components. That is, in addition to the stability of the crosslinked phenoxyphosphazene compound, by adding a suitable combination of the crosslinked phenoxyphosphazene compound and zinc borate, while maintaining sufficient moldability, imparts excellent flame retardancy to the resin composition. However, in the semiconductor device, particularly, the moisture resistance and the reliability can be improved.
【0025】[0025]
【発明の実施の形態】次に、本発明を実施例によって具
体的に説明するが、本発明はこれらの実施例によって限
定されるものではない。以下の実施例および比較例にお
いて「%」とは「重量%」を意味する。Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, “%” means “% by weight”.
【0026】実施例1 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)16%に、ノボラック型フェノール樹脂(フェノ
ール当量105)10%、前記したフェニレン基を架橋
基とした架橋フェノキシホスファゼン化合物(Mw =1
100)2%、硼酸亜鉛3%、溶融シリカ粉末67%お
よびエステル系ワックス類0.3%を配合し常温で混合
し、さらに90〜95℃で混練してこれを冷却粉砕して
成形材料を製造した。Example 1 Cresol novolak type epoxy resin (epoxy equivalent 2
00) 16%, novolak type phenol resin (phenol equivalent 105) 10%, and a crosslinked phenoxyphosphazene compound ( Mw = 1) having a phenylene group as a crosslinkable group.
100) 2%, zinc borate 3%, fused silica powder 67% and ester waxes 0.3% are mixed, mixed at room temperature, further kneaded at 90-95 ° C, and cooled and pulverized to obtain a molding material. Manufactured.
【0027】この成形材料を175℃に加熱した金型内
にトランスファー注入し、硬化させて成形品(封止品)
を成形した。この成形品について燃焼性および耐湿性、
連続生産性の試験を行った。その結果を表1に示す。This molding material is transfer-injected into a mold heated to 175 ° C. and cured to form a molded product (sealed product).
Was molded. Flammability and moisture resistance of this molded product,
A continuous productivity test was performed. Table 1 shows the results.
【0028】実施例2 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)12%に、ノボラック型フェノールアラルキル樹
脂(フェノール当量175)12%、前記したフェニレ
ン基を架橋基とした架橋フェノキシホスファゼン化合物
(Mw =1100)1.5%、硼酸亜鉛2.5%、溶融
シリカ粉末70%およびエステル系ワックス類0.3%
を配合し常温で混合し、さらに90〜95℃で混練して
これを冷却粉砕して成形材料を製造した。また、実施例
1と同様にして成形品を作り、燃焼性、耐湿性および連
続生産性の試験を行った。その結果を表1に示す。Example 2 Cresol novolak type epoxy resin (epoxy equivalent 2
00) 12%, 12% of a novolak type phenol aralkyl resin (phenol equivalent: 175), 1.5% of a crosslinked phenoxyphosphazene compound having a phenylene group as a crosslinkable group (M w = 1100), 2.5% of zinc borate, 70% fused silica powder and 0.3% ester wax
Was mixed at room temperature, kneaded at 90 to 95 ° C., and cooled and pulverized to produce a molding material. Further, a molded article was prepared in the same manner as in Example 1, and tests for combustibility, moisture resistance and continuous productivity were performed. Table 1 shows the results.
【0029】実施例3 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)11%に、ノボラック型フェノール樹脂(フェノ
ール当量105)6%、前記したフェニレン基を架橋基
とした架橋フェノキシホスファゼン化合物(Mw =11
00)1%、硼酸亜鉛2%、溶融シリカ粉末77%およ
びエステル系ワックス類0.2%を配合し常温で混合
し、さらに90〜95℃で混練してこれを冷却粉砕して
成形材料を製造した。また、実施例1と同様にして成形
品を作り、燃焼性、耐湿性および連続生産性の試験を行
った。その結果を表1に示す。Example 3 Cresol novolak type epoxy resin (epoxy equivalent 2
00) 11%, 6% of a novolak type phenol resin (phenol equivalent 105), and a crosslinked phenoxyphosphazene compound ( Mw = 11) having a phenylene group as a crosslinkable group.
00) 1%, zinc borate 2%, fused silica powder 77% and ester waxes 0.2% are mixed, mixed at room temperature, further kneaded at 90-95 ° C, and cooled and pulverized to obtain a molding material. Manufactured. Further, a molded article was prepared in the same manner as in Example 1, and tests for combustibility, moisture resistance and continuous productivity were performed. Table 1 shows the results.
【0030】比較例1 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)14%に、臭素化エポキシ樹脂(エポキシ当量2
70)3%、ノボラック型フェノール樹脂(フェノール
当量105)9%、溶融シリカ粉末70%、三酸化アン
チモン2%およびエステル系ワックス類0.3%を配合
し常温で混合し、さらに90〜95℃で混練してこれを
冷却粉砕して成形材料を作成した。また、実施例1と同
様にして成形品を作り、燃焼性、耐湿性および連続生産
性の試験を行った。その結果を表2に示す。Comparative Example 1 Cresol novolak type epoxy resin (epoxy equivalent 2
00) 14% with a brominated epoxy resin (epoxy equivalent 2
70) 3%, 9% of novolak type phenol resin (phenol equivalent 105), 70% of fused silica powder, 2% of antimony trioxide and 0.3% of ester waxes, mixed at room temperature, and further mixed at 90 to 95 ° C. The mixture was cooled and pulverized to prepare a molding material. Further, a molded article was prepared in the same manner as in Example 1, and tests for combustibility, moisture resistance and continuous productivity were performed. Table 2 shows the results.
【0031】比較例2 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)14%に、ノボラック型フェノール樹脂(フェノ
ール当量105)8%、ポリリン酸エステル7%、溶融
シリカ粉末70%およびエステル系ワックス類0.3%
を配合し常温で混合し、さらに90〜95℃で混練して
これを冷却粉砕して成形材料を作成した。また、実施例
1と同様にして成形品を作り、燃焼性、耐湿性および連
続生産性の試験を行った。その結果を表2に示す。Comparative Example 2 Cresol novolak type epoxy resin (epoxy equivalent 2
00) 14%, novolak type phenol resin (phenol equivalent 105) 8%, polyphosphate 7%, fused silica powder 70% and ester wax 0.3%
Was mixed at room temperature, kneaded at 90-95 ° C., and cooled and pulverized to prepare a molding material. Further, a molded article was prepared in the same manner as in Example 1, and tests for combustibility, moisture resistance and continuous productivity were performed. Table 2 shows the results.
【0032】比較例3 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)17%に、ノボラック型フェノール樹脂(フェノ
ール当量105)10%、溶融シリカ粉末71%および
エステル系ワックス類0.3%を配合し常温で混合し、
さらに90〜95℃で混練してこれを冷却粉砕して成形
材料を作成した。また、実施例1と同様にして成形品を
作り、燃焼性、耐湿性および連続生産性の試験を行っ
た。その結果を表2に示す。Comparative Example 3 Cresol novolak type epoxy resin (epoxy equivalent 2
00) 17%, 10% of novolak type phenol resin (phenol equivalent 105), 71% of fused silica powder and 0.3% of ester waxes, and mixed at room temperature.
The mixture was further kneaded at 90 to 95 ° C. and cooled and pulverized to prepare a molding material. Further, a molded article was prepared in the same manner as in Example 1, and tests for combustibility, moisture resistance and continuous productivity were performed. Table 2 shows the results.
【0033】比較例4 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)14%に、ノボラック型フェノール樹脂(フェノ
ール当量105)8%、前記した架橋フェノキシホスフ
ァゼン化合物(Mw =1100)7%、溶融シリカ粉末
70%およびエステル系ワックス類0.3%を配合し常
温で混合し、さらに90〜95℃で混練してこれを冷却
粉砕して成形材料を作成した。また、実施例1と同様に
して成形品を作り、燃焼性、耐湿性および連続生産性の
試験を行った。その結果を表2に示す。Comparative Example 4 Cresol novolak type epoxy resin (epoxy equivalent 2
14), 8% of a novolak type phenol resin (phenol equivalent: 105), 7% of the above-mentioned crosslinked phenoxyphosphazene compound (M w = 1100), 70% of fused silica powder, and 0.3% of ester wax. The mixture was mixed at room temperature, further kneaded at 90 to 95 ° C., and cooled and pulverized to prepare a molding material. Further, a molded article was prepared in the same manner as in Example 1, and tests for combustibility, moisture resistance and continuous productivity were performed. Table 2 shows the results.
【0034】なお、表1乃至表6の注については下記の
とおりである。The notes in Tables 1 to 6 are as follows.
【0035】*1:トランスファー成形によって120
×12×3.2mmの成形品をつくり、175℃、8時
間放置した後、UL−94V耐炎性試験規格に基づき燃
焼性の試験を行った。* 1: 120 by transfer molding
A molded product of × 12 × 3.2 mm was prepared and left at 175 ° C. for 8 hours, and then subjected to a flammability test based on the UL-94V flame resistance test standard.
【0036】*2:成形材料を用いて2本のアルミ配線
を有するシリコン製チップ(テスト素子)を銅フレーム
に接着し、175℃で2分間トランスファー成形して、
TO−92の成形品をつくり、175℃において4時間
後硬化させた後、260℃の半田浸漬後、127℃、
2.5気圧の飽和水蒸気中においてPCTを行い、アル
ミニウムの腐食による断線を不良として評価した。* 2: A silicon chip (test element) having two aluminum wirings was adhered to a copper frame using a molding material, and transfer molded at 175 ° C. for 2 minutes.
After making TO-92 molded product, post-curing at 175 ° C for 4 hours, solder immersion at 260 ° C, 127 ° C,
PCT was performed in 2.5 atm of saturated steam, and the disconnection due to aluminum corrosion was evaluated as defective.
【0037】*3:成形条件175℃×90sのトラン
スファー成形によってDIP−14の連続生産性の評価
を行い、パッケージの外観不良発生までのショット数を
カウントした。* 3: The continuous productivity of DIP-14 was evaluated by transfer molding at 175 ° C. × 90 s under molding conditions, and the number of shots until the appearance failure of the package was counted.
【0038】[0038]
【表1】 [Table 1]
【表2】 実施例4 ビフェニル型エポキシ樹脂(エポキシ当量192)5
%、ノボラック型フェノール樹脂(フェノール当量10
5)4%、前記したフェニレン基を架橋基とした架橋フ
ェノキシホスファゼン化合物(Mw =1100)1%、
硼酸亜鉛1%、溶融シリカ粉末87%およびエステル系
ワックス類0.2%を配合し常温で混合し、さらに90
〜95℃で混練してこれを冷却粉砕して成形材料を製造
した。[Table 2] Example 4 Biphenyl type epoxy resin (epoxy equivalent 192) 5
%, Novolak type phenol resin (phenol equivalent 10
5) 4%, 1% of a cross-linked phenoxyphosphazene compound (M w = 1100) having the above-mentioned phenylene group as a cross-linking group,
1% of zinc borate, 87% of fused silica powder and 0.2% of ester waxes were blended and mixed at room temperature.
The mixture was kneaded at ~ 95 ° C and cooled and pulverized to produce a molding material.
【0039】この成形材料を175℃に加熱した金型内
にトランスファー注入し、硬化させて成形品(封止品)
を成形した。この成形品について燃焼性および耐湿性、
連続生産性の試験を行った。その結果を表3に示す。This molding material is transfer-injected into a mold heated to 175 ° C. and cured to form a molded product (sealed product).
Was molded. Flammability and moisture resistance of this molded product,
A continuous productivity test was performed. Table 3 shows the results.
【0040】実施例5 ビフェニル型エポキシ樹脂(エポキシ当量192)4
%、クレゾールノボラックエポキシ樹脂(エポキシ当量
200)2%、ノボラック型フェノール樹脂(フェノー
ル当量105)3%、前記したフェニレン基を架橋基と
した架橋フェノキシホスファゼン化合物(Mw =110
0)1%、硼酸亜鉛1%、溶融シリカ粉末87%および
エステル系ワックス類0.2%を配合し常温で混合し、
さらに90〜95℃で混練してこれを冷却粉砕して成形
材料を製造した。また、実施例4と同様にして成形品を
作り、燃焼性、耐湿性および連続生産性の試験を行っ
た。その結果を表3に示す。Example 5 Biphenyl type epoxy resin (epoxy equivalent: 192) 4
%, Cresol novolak epoxy resin (epoxy equivalent 200) 2%, novolak type phenol resin (phenol equivalent 105) 3%, a crosslinked phenoxyphosphazene compound having a phenylene group as a crosslinkable group ( Mw = 110)
0) 1%, zinc borate 1%, fused silica powder 87% and ester waxes 0.2% were mixed and mixed at room temperature,
The mixture was further kneaded at 90 to 95 ° C. and cooled and pulverized to produce a molding material. Further, a molded article was prepared in the same manner as in Example 4, and tests for combustibility, moisture resistance and continuous productivity were performed. Table 3 shows the results.
【0041】比較例5 ビフェニル型エポキシ樹脂(エポキシ当量192)4
%、クレゾールノボラックエポキシ樹脂(エポキシ当量
200)2%に、臭素化エポキシ樹脂(エポキシ当量2
70)1%、ノボラック型フェノール樹脂(フェノール
当量105)4%、溶融シリカ粉末85%、三酸化アン
チモン2%およびエステル系ワックス類0.2%を配合
し常温で混合し、さらに90〜95℃で混練してこれを
冷却粉砕して成形材料を作成した。また、実施例4と同
様にして成形品を作り、燃焼性、耐湿性および連続生産
性の試験を行った。その結果を表4に示す。Comparative Example 5 Biphenyl type epoxy resin (epoxy equivalent: 192) 4
%, Cresol novolak epoxy resin (epoxy equivalent 200) and brominated epoxy resin (epoxy equivalent 2)
70) 1%, 4% of novolak type phenol resin (phenol equivalent 105), 85% of fused silica powder, 2% of antimony trioxide and 0.2% of ester waxes, mixed at room temperature, and further mixed at 90 to 95 ° C. The mixture was cooled and pulverized to prepare a molding material. Further, a molded article was prepared in the same manner as in Example 4, and tests for combustibility, moisture resistance and continuous productivity were performed. Table 4 shows the results.
【0042】比較例6 ビフェニル型エポキシ樹脂(エポキシ当量192)4
%、クレゾールノボラックエポキシ樹脂(エポキシ当量
200)2%に、ノボラック型フェノール樹脂(フェノ
ール当量105)3%、ポリリン酸エステル1%、硼酸
亜鉛1%、溶融シリカ粉末87%およびエステル系ワッ
クス類0.2%を配合し常温で混合し、さらに90〜9
5℃で混練してこれを冷却粉砕して成形材料を作成し
た。また、実施例4と同様にして成形品を作り、燃焼
性、耐湿性および連続生産性の試験を行った。その結果
を表4に示す。Comparative Example 6 Biphenyl type epoxy resin (epoxy equivalent: 192) 4
%, Cresol novolak epoxy resin (epoxy equivalent 200) 2%, novolak type phenol resin (phenol equivalent 105) 3%, polyphosphate 1%, zinc borate 1%, fused silica powder 87% and ester waxes 0. 2%, mix at room temperature, and further add 90-9
The mixture was kneaded at 5 ° C and cooled and pulverized to prepare a molding material. Further, a molded article was prepared in the same manner as in Example 4, and tests for combustibility, moisture resistance and continuous productivity were performed. Table 4 shows the results.
【0043】比較例7 前記ビフェニル型エポキシ樹脂(エポキシ当量192)
4.5%、クレゾールノボラックエポキシ樹脂(エポキ
シ当量200)2%に、ノボラック型フェノール樹脂
(フェノール当量105)4.5%、溶融シリカ粉末8
7%およびエステル系ワックス類0.2%を配合し常温
で混合し、さらに90〜95℃で混練してこれを冷却粉
砕して成形材料を作成した。また、実施例4と同様にし
て成形品を作り、燃焼性、耐湿性および連続生産性の試
験を行った。その結果を表4に示す。Comparative Example 7 Biphenyl epoxy resin (epoxy equivalent: 192)
4.5%, cresol novolak epoxy resin (epoxy equivalent 200) 2%, novolak type phenol resin (phenol equivalent 105) 4.5%, fused silica powder 8
7% and 0.2% of ester waxes were blended, mixed at room temperature, further kneaded at 90 to 95 ° C, and cooled and pulverized to prepare a molding material. Further, a molded article was prepared in the same manner as in Example 4, and tests for combustibility, moisture resistance and continuous productivity were performed. Table 4 shows the results.
【0044】比較例8 前記ビフェニル型エポキシ樹脂(エポキシ当量192)
3.5%、クレゾールノボラックエポキシ樹脂(エポキ
シ当量200)1%に、ノボラック型フェノール樹脂
(フェノール当量105)3.5%、前記した架橋フェ
ノキシホスファゼン化合物(Mw =1100)4%、溶
融シリカ粉末86%およびエステル系ワックス類0.2
%を配合し常温で混合し、さらに90〜95℃で混練し
てこれを冷却粉砕して成形材料を作成した。また、実施
例4と同様にして成形品を作り、燃焼性、耐湿性および
連続生産性の試験を行った。その結果を表4に示す。Comparative Example 8 The biphenyl type epoxy resin (epoxy equivalent: 192)
3.5%, cresol novolak epoxy resin (epoxy equivalent 200) 1%, novolak type phenol resin (phenol equivalent 105) 3.5%, crosslinked phenoxyphosphazene compound ( Mw = 1100) 4%, fused silica powder 86% and ester waxes 0.2
%, Mixed at room temperature, kneaded at 90-95 ° C., and cooled and pulverized to prepare a molding material. Further, a molded article was prepared in the same manner as in Example 4, and tests for combustibility, moisture resistance and continuous productivity were performed. Table 4 shows the results.
【0045】[0045]
【表3】 [Table 3]
【表4】 実施例6 前記化6で示したエポキシ樹脂(エポキシ当量260)
10%、ノボラック型フェノール樹脂(フェノール当量
105)5%、前記したフェニレン基を架橋基とした架
橋フェノキシホスファゼン化合物(Mw =1100)1
%、硼酸亜鉛2%、溶融シリカ粉末80%およびエステ
ル系ワックス類0.3%を配合し常温で混合し、さらに
90〜95℃で混練してこれを冷却粉砕して成形材料を
製造した。[Table 4] Example 6 Epoxy resin represented by Chemical formula 6 (epoxy equivalent: 260)
10%, novolak type phenol resin (phenol equivalent: 105), 5%, cross-linked phenoxyphosphazene compound (M w = 1100) 1 having a phenylene group as a cross-linking group
%, Zinc borate 2%, fused silica powder 80% and ester waxes 0.3% were mixed at room temperature, kneaded at 90-95 ° C, and cooled and pulverized to produce a molding material.
【0046】この成形材料を175℃に加熱した金型内
にトランスファー注入し、硬化させて成形品(封止品)
を成形した。この成形品について燃焼性および耐湿性、
連続生産性の試験を行った。その結果を表5に示す。This molding material is transfer-injected into a mold heated to 175 ° C. and cured to form a molded product (sealed product).
Was molded. Flammability and moisture resistance of this molded product,
A continuous productivity test was performed. Table 5 shows the results.
【0047】実施例7 前記化6で示したエポキシ樹脂(エポキシ当量260)
8%、ノボラック型フェノールアラルキル樹脂(フェノ
ール当量170)7%、前記したフェニレン基を架橋基
とした架橋フェノキシホスファゼン化合物(Mw =11
00)1%、硼酸亜鉛2%、溶融シリカ粉末80%およ
びエステル系ワックス類0.3%を配合し常温で混合
し、さらに90〜95℃で混練してこれを冷却粉砕して
成形材料を製造した。また、実施例6と同様にして成形
品を作り、燃焼性、耐湿性および連続生産性の試験を行
った。その結果を表5に示す。Example 7 Epoxy resin represented by Chemical formula 6 (epoxy equivalent: 260)
8%, 7% of a novolak type phenol aralkyl resin (phenol equivalent 170), a crosslinked phenoxyphosphazene compound having a phenylene group as a crosslinkable group ( Mw = 11)
00) 1%, 2% of zinc borate, 80% of fused silica powder and 0.3% of ester wax are mixed, mixed at room temperature, further kneaded at 90 to 95 ° C, and cooled and pulverized to obtain a molding material. Manufactured. Further, a molded article was prepared in the same manner as in Example 6, and a test for combustibility, moisture resistance and continuous productivity was performed. Table 5 shows the results.
【0048】実施例8 前記化6で示したエポキシ樹脂(エポキシ当量260)
6%、クレゾールノボラックエポキシ樹脂(エポキシ当
量200)2%、ノボラック型フェノールアラルキル樹
脂(フェノール当量170)6%、前記したフェニレン
基を架橋基とした架橋フェノキシホスファゼン化合物
(Mw =1100)1%、硼酸亜鉛2%、溶融シリカ粉
末81.5%およびエステル系ワックス類0.2%を配
合し常温で混合し、さらに90〜95℃で混練してこれ
を冷却粉砕して成形材料を製造した。また、実施例6と
同様にして成形品を作り、燃焼性、耐湿性および連続生
産性の試験を行った。その結果を表5に示す。Example 8 Epoxy resin represented by Chemical formula 6 (epoxy equivalent: 260)
6%, cresol novolak epoxy resin (epoxy equivalent 200) 2%, novolak type phenol aralkyl resin (phenol equivalent 170) 6%, 1% of a crosslinked phenoxyphosphazene compound ( Mw = 1100) having a phenylene group as a crosslinkable group, 2% of zinc borate, 81.5% of fused silica powder and 0.2% of ester waxes were blended, mixed at room temperature, kneaded at 90 to 95 ° C, and cooled and pulverized to produce a molding material. Further, a molded article was prepared in the same manner as in Example 6, and a test for combustibility, moisture resistance and continuous productivity was performed. Table 5 shows the results.
【0049】比較例9 前記化6で示したエポキシ樹脂(エポキシ当量260)
7%、臭素化エポキシ樹脂(エポキシ当量270)2
%、ノボラック型フェノールアラルキル樹脂(フェノー
ル当量170)7%、溶融シリカ粉末80%、三酸化ア
ンチモン2%およびエステル系ワックス類0.3%を配
合し常温で混合し、さらに90〜95℃で混練してこれ
を冷却粉砕して成形材料を作成した。また、実施例6と
同様にして成形品を作り、燃焼性、耐湿性および連続生
産性の試験を行った。その結果を表6に示す。Comparative Example 9 Epoxy resin represented by Chemical formula 6 (epoxy equivalent: 260)
7%, brominated epoxy resin (epoxy equivalent 270) 2
%, Novolak type phenol aralkyl resin (phenol equivalent: 170), 7%, fused silica powder, 80%, antimony trioxide, 2%, and ester waxes, 0.3%, mixed at room temperature, and kneaded at 90-95 ° C. This was cooled and pulverized to prepare a molding material. Further, a molded article was prepared in the same manner as in Example 6, and a test for combustibility, moisture resistance and continuous productivity was performed. Table 6 shows the results.
【0050】比較例10 前記化6で示したエポキシ樹脂(エポキシ当量260)
8%、ノボラック型フェノールアラルキル樹脂(フェノ
ール当量170)7%、ポリリン酸エステル2%、硼酸
亜鉛2%、溶融シリカ粉末79%およびエステル系ワッ
クス類0.3%を配合し常温で混合し、さらに90〜9
5℃で混練してこれを冷却粉砕して成形材料を作成し
た。また、実施例6と同様にして成形品を作り、燃焼
性、耐湿性および連続生産性の試験を行った。その結果
を表6に示す。Comparative Example 10 Epoxy resin represented by Chemical formula 6 (epoxy equivalent: 260)
8%, 7% of novolak type phenol aralkyl resin (phenol equivalent 170), 2% of polyphosphate, 2% of zinc borate, 79% of fused silica powder and 0.3% of ester wax are mixed and mixed at room temperature. 90-9
The mixture was kneaded at 5 ° C and cooled and pulverized to prepare a molding material. Further, a molded article was prepared in the same manner as in Example 6, and a test for combustibility, moisture resistance and continuous productivity was performed. Table 6 shows the results.
【0051】比較例11 前記化6で示したエポキシ樹脂(エポキシ当量260)
9%、ノボラック型フェノールアラルキル樹脂(フェノ
ール当量170)8%、溶融シリカ粉末82%およびエ
ステル系ワックス類0.3%を配合し常温で混合し、さ
らに90〜95℃で混練してこれを冷却粉砕して成形材
料を作成した。また、実施例6と同様にして成形品を作
り、燃焼性、耐湿性および連続生産性の試験を行った。
その結果を表6に示す。Comparative Example 11 Epoxy resin represented by Chemical formula 6 (epoxy equivalent: 260)
9%, 8% of novolak type phenol aralkyl resin (phenol equivalent 170), 82% of fused silica powder and 0.3% of ester wax are mixed, mixed at room temperature, further kneaded at 90 to 95 ° C. and cooled. It was ground to form a molding material. Further, a molded article was prepared in the same manner as in Example 6, and a test for combustibility, moisture resistance and continuous productivity was performed.
Table 6 shows the results.
【0052】比較例12 前記化6で示したエポキシ樹脂(エポキシ当量260)
7%、ノボラック型フェノールアラルキル樹脂(フェノ
ール当量170)6%、前記した架橋フェノキシホスフ
ァゼン化合物(Mw =1100)5%、溶融シリカ粉末
80%およびエステル系ワックス類0.3%を配合し常
温で混合し、さらに90〜95℃で混練してこれを冷却
粉砕して成形材料を作成した。また、実施例6と同様に
して成形品を作り、燃焼性、耐湿性および連続生産性の
試験を行った。その結果を表6に示す。Comparative Example 12 Epoxy resin represented by Chemical formula 6 (epoxy equivalent: 260)
7%, 6% of novolak type phenol aralkyl resin (phenol equivalent 170), 5% of the above-mentioned crosslinked phenoxyphosphazene compound (M w = 1100), 80% of fused silica powder and 0.3% of ester waxes were blended at room temperature. The mixture was mixed, further kneaded at 90 to 95 ° C, and cooled and pulverized to prepare a molding material. Further, a molded article was prepared in the same manner as in Example 6, and a test for combustibility, moisture resistance and continuous productivity was performed. Table 6 shows the results.
【0053】[0053]
【表5】 [Table 5]
【表6】 [Table 6]
【0054】[0054]
【発明の効果】以上の説明ならびに表1乃至表6から明
らかなように、本発明の封止用樹脂組成物および半導体
封止装置は、難燃性に優れているにもかかわらず、連続
生産性を低下させることなしに耐湿信頼性に優れ、その
結果、電極の腐食による断線不良を著しく低減すること
ができ、また長期にわたる信頼性を保証することができ
た。As apparent from the above description and Tables 1 to 6, the encapsulating resin composition and the semiconductor encapsulating apparatus of the present invention have excellent flame retardancy but are continuously manufactured. It was excellent in moisture resistance reliability without lowering the reliability, and as a result, disconnection failure due to electrode corrosion could be significantly reduced, and long-term reliability could be guaranteed.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 3/10 C09K 3/10 L 4M109 Z 21/12 21/12 21/14 21/14 H01L 23/29 C07F 9/6581 23/31 9/659 // C07F 9/6581 H01L 23/30 R 9/659 (72)発明者 藤井 篤 神奈川県川崎市川崎区千鳥町9番2号 東 芝ケミカル株式会社川崎工場内 (72)発明者 多田 祐二 徳島県徳島市川内町加賀須乃463 大塚化 学株式会社徳島研究所内 Fターム(参考) 4H017 AA04 AA24 AA27 AA31 AB08 AB17 AC01 AC03 AD06 AE05 4H028 AA08 AA38 AA48 AB04 BA03 BA04 BA06 4H050 AA03 AB80 4J002 CC03X CD02W CD03W CD05W CQ013 DE097 DE137 DE147 DE237 DJ007 DJ017 DJ047 DK006 DK007 DL007 FA047 FD020 FD090 FD140 FD150 FD160 GQ01 GQ05 4J036 AA01 AA04 AB01 AB07 AC01 AC08 AD01 AD08 AD11 DA01 DA04 DB06 FB06 FB07 JA07 KA05 KA06 4M109 AA01 CA21 EA02 EB03 EB07 EB12 EC01 EC20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09K 3/10 C09K 3/10 L 4M109 Z 21/12 21/12 21/14 21/14 H01L 23/29 C07F 9/6581 23/31 9/659 // C07F 9/6581 H01L 23/30 R 9/659 (72) Inventor Atsushi Fujii 9-2 Chidoricho, Kawasaki-ku, Kawasaki-shi, Kanagawa Kawasaki Plant, Toshiba Chemical Corporation (72) Inventor Yuji Tada 463 Kagasuno, Kawauchi-machi, Tokushima City, Tokushima Prefecture F-term (reference) in Otsuka Chemical Co., Ltd.Tokushima Research Laboratories AA03 AB80 4J002 CC03X CD02W CD03W CD05W CQ013 DE097 DE137 DE147 DE237 DJ007 DJ017 DJ047 DK006 DK007 DL007 FA047 FD020 FD090 FD140 FD150 FD150 FD160 GQ01 GQ05 4J036 AA01 AA04 AB01 AB07 AC01 AC08 AD01 AD08 AD11 DA01 DA04 DB06 FB06 FB07 JA07 KA05 KA06 4M109 AA01 CA21 EA02 EB03 EB07 EB12 EC01 EC20
Claims (4)
樹脂、(C)(1)下記構造式で示される環状フェノキ
シホスファゼン化合物及び 【化1】 (式中、mは3〜25の整数を表す) (2)下記構造式で示される鎖状フェノキシホスファゼ
ン化合物 【化2】 (式中、Xは基−N=P(OC6 H5 )3 又は基−N=
P(O)OC6 H5 を、Yは基−P(OC6 H5 )4 又
は基−P(OC6 H5 )2 を、nは3〜10000の整
数をそれぞれ表す)から選ばれた少なくとも1種のホス
ファゼン化合物が、o−フェニレン基、m−フェニレン
基、p−フェニレン基および下記構造式で表されるビス
フェニレン基 【化3】 (式中、Aは基−C(CH3 )2 −、基−SO2 −、基
−S−又は基−O−を、aは0又は1を表す)から選ば
れる少なくとも1種の架橋基により架橋されてなる化合
物であって、(a)該架橋基はホスファゼン化合物のフ
ェニル基が脱離した2個の酸素原子間に介在し、(b)
架橋されてなる化合物におけるフェニル基の含有割合が
上記ホスファゼン化合物(1)及び/又は(2)中の全
フェニル基の総数を基準に50〜99.9%であり、か
つ(c)分子内にフリーの水酸基を有しない、架橋フェ
ノキシホスファゼン化合物、(D)硼酸亜鉛並びに
(E)無機充填剤を必須成分とし、樹脂組成物全体に対
して、前記(C)の架橋フェノキシホスファゼン化合物
を0.1〜7重量%、前記(D)硼酸亜鉛を1〜10重
量%、また前記(E)無機充填剤を40〜95重量%の
割合で、それぞれ含有してなることを特徴とする封止用
樹脂組成物。(A) an epoxy resin, (B) a phenolic resin, (C) (1) a cyclic phenoxyphosphazene compound represented by the following structural formula, and (Wherein, m represents an integer of 3 to 25) (2) A chain phenoxyphosphazene compound represented by the following structural formula: (Wherein X is a group -N = P (OC 6 H 5 ) 3 or a group -N =
P (O) OC 6 H 5 , Y is a group —P (OC 6 H 5 ) 4 or a group —P (OC 6 H 5 ) 2 , and n is an integer of 3 to 10,000. At least one phosphazene compound is an o-phenylene group, an m-phenylene group, a p-phenylene group, and a bisphenylene group represented by the following structural formula. (Wherein, A represents a group —C (CH 3 ) 2 —, a group —SO 2 —, a group —S— or a group —O—, and a represents 0 or 1). (A) the crosslinking group is interposed between two oxygen atoms from which the phenyl group of the phosphazene compound has been eliminated, and (b)
The content of phenyl groups in the crosslinked compound is 50 to 99.9% based on the total number of all phenyl groups in the phosphazene compound (1) and / or (2), and (c) A crosslinked phenoxyphosphazene compound having no free hydroxyl group, (D) zinc borate and (E) an inorganic filler are essential components, and the crosslinked phenoxyphosphazene compound (C) is used in an amount of 0.1 to the entire resin composition. 1 to 10% by weight of the zinc borate (D) and 40 to 95% by weight of the inorganic filler (E), respectively. Composition.
ポキシ樹脂である請求項1記載の封止用樹脂組成物。2. The sealing resin composition according to claim 1, wherein the epoxy resin (A) is a biphenyl type epoxy resin.
エポキシ樹脂 【化4】 である請求項1記載の封止用樹脂組成物。3. The epoxy resin according to claim 1, wherein the epoxy resin is represented by the following formula: The sealing resin composition according to claim 1, wherein
樹脂組成物の硬化物によって、半導体チップを封止して
なることを特徴とする半導体封止装置。4. A semiconductor encapsulation device comprising a semiconductor chip encapsulated with a cured product of the encapsulation resin composition according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000223214A JP2002037979A (en) | 2000-07-25 | 2000-07-25 | Sealing resin composition and semiconductor sealing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000223214A JP2002037979A (en) | 2000-07-25 | 2000-07-25 | Sealing resin composition and semiconductor sealing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002037979A true JP2002037979A (en) | 2002-02-06 |
Family
ID=18717342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000223214A Pending JP2002037979A (en) | 2000-07-25 | 2000-07-25 | Sealing resin composition and semiconductor sealing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002037979A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100523621B1 (en) * | 2003-02-11 | 2005-10-24 | 주식회사 케이씨씨 | Epoxy resin composition for environmental frendly sealing semiconductor element |
CN109021338A (en) * | 2018-06-04 | 2018-12-18 | 山东承坤信息科技有限公司 | A kind of nontoxic complex plastic runway of flame-proof abrasion-resistant and preparation method thereof |
WO2020075748A1 (en) * | 2018-10-09 | 2020-04-16 | 大塚化学株式会社 | Cyclic phosphazene compound, flame retardant for resin, resin composition including same, and molding of said resin composition |
-
2000
- 2000-07-25 JP JP2000223214A patent/JP2002037979A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100523621B1 (en) * | 2003-02-11 | 2005-10-24 | 주식회사 케이씨씨 | Epoxy resin composition for environmental frendly sealing semiconductor element |
CN109021338A (en) * | 2018-06-04 | 2018-12-18 | 山东承坤信息科技有限公司 | A kind of nontoxic complex plastic runway of flame-proof abrasion-resistant and preparation method thereof |
CN109021338B (en) * | 2018-06-04 | 2021-03-12 | 青岛汇文教育装备有限公司 | Flame-retardant wear-resistant nontoxic composite plastic track and preparation method thereof |
WO2020075748A1 (en) * | 2018-10-09 | 2020-04-16 | 大塚化学株式会社 | Cyclic phosphazene compound, flame retardant for resin, resin composition including same, and molding of said resin composition |
CN112839949A (en) * | 2018-10-09 | 2021-05-25 | 大塚化学株式会社 | Cyclic phosphazene compound, flame retardant for resin, resin composition containing same, and molded article thereof |
CN112839949B (en) * | 2018-10-09 | 2023-07-18 | 大塚化学株式会社 | Cyclic phosphazene compound, flame retardant for resin, resin composition containing the same, and molded article thereof |
TWI813790B (en) * | 2018-10-09 | 2023-09-01 | 日商大塚化學股份有限公司 | Cyclic phosphazene compound, flame retardant for resin, resin composition containing same, and molded article thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109096471A (en) | A kind of novel P-N-Si cooperative resistance combustion epoxy curing agent and preparation method thereof | |
JP3032528B1 (en) | Sealing resin composition and semiconductor sealing device | |
JP2003012890A (en) | Sealing resin composition and electronic component sealing device | |
JP2003213081A (en) | Epoxy resin composition and semiconductor device | |
JP3957957B2 (en) | Resin composition for sealing and semiconductor sealing device | |
JP2002037979A (en) | Sealing resin composition and semiconductor sealing device | |
JP2002037978A (en) | Sealing resin composition and semiconductor sealing device | |
JPH09241483A (en) | Epoxy resin composition | |
JP2002060460A (en) | Phosphorus-containing flame-retardant epoxy resin and method for producing the same | |
JP2000357765A (en) | Resin composition for sealing and semiconductor sealed device | |
JP3072099B1 (en) | Sealing resin composition and semiconductor sealing device | |
JP2000302948A (en) | Resin composition for sealing and semiconductor sealing device | |
JP3877935B2 (en) | Resin composition for sealing and electronic device sealing device | |
KR101334649B1 (en) | Halogen-free epoxy resin composition for sealing semiconductor and semiconductor device sealed using the same | |
JP2001192535A (en) | Resin composition for sealing and sealed semiconductor device | |
JP2001302880A (en) | Sealing resin composition and sealed semiconductor device | |
JP2005082731A (en) | Epoxy resin composition and semiconductor sealing device | |
KR101337247B1 (en) | Epoxy resin composition for sealing semiconductor and semiconductor device sealed using the same | |
JP2001210759A (en) | Epoxy resin composition and electronic component sealed device | |
JP2001323134A (en) | Resin composition for sealing and electronic part-sealing device | |
JP3096287B1 (en) | Sealing resin composition and semiconductor sealing device | |
JP2002220515A (en) | Resin composition for sealing and sealed electronic part device | |
KR20120110599A (en) | Environmentally friendly epoxy resin composition for sealing semiconductor and semiconductor device sealed using the same | |
JP2001031842A (en) | Epoxy resin composition and semiconductor device | |
JP2001220493A (en) | Resin composition for sealing and semiconductor-sealing device |