JP2002029881A - Method for manufacturing compound semiconductor single crystal - Google Patents
Method for manufacturing compound semiconductor single crystalInfo
- Publication number
- JP2002029881A JP2002029881A JP2000208899A JP2000208899A JP2002029881A JP 2002029881 A JP2002029881 A JP 2002029881A JP 2000208899 A JP2000208899 A JP 2000208899A JP 2000208899 A JP2000208899 A JP 2000208899A JP 2002029881 A JP2002029881 A JP 2002029881A
- Authority
- JP
- Japan
- Prior art keywords
- compound semiconductor
- single crystal
- semiconductor single
- crystal
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 179
- 239000004065 semiconductor Substances 0.000 title claims abstract description 108
- 150000001875 compounds Chemical class 0.000 title claims abstract description 107
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims description 10
- 238000010438 heat treatment Methods 0.000 claims abstract description 58
- 239000007788 liquid Substances 0.000 claims abstract description 32
- 238000002844 melting Methods 0.000 claims abstract description 27
- 230000008018 melting Effects 0.000 claims abstract description 27
- 239000002994 raw material Substances 0.000 claims abstract description 23
- 239000000565 sealant Substances 0.000 claims abstract description 19
- 238000001816 cooling Methods 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 238000007789 sealing Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229910052582 BN Inorganic materials 0.000 description 5
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 5
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 4
- 239000003708 ampul Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000008393 encapsulating agent Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
(57)【要約】
【課題】量産性に優れるとともに結晶中の転位が少なく
均質な単結晶を低コストで得ることができる化合物半導
体単結晶の製造方法を提供する。
【解決手段】結晶成長容器1内に投入した化合物半導体
原料6の表面と結晶成長容器1の内面との間に液体封止
剤2を介在させた状態で、結晶成長容器1を、化合物半
導体原料6の融点を含む範囲で温度勾配を設けた加熱炉
7内で徐々に移動させて、加熱炉7における化合物半導
体原料6の融点以上の温度部分で化合物半導体原料6を
溶融させた後、融点以下の温度部分で化合物半導体単結
晶5を成長させ、化合物半導体単結晶5の成長終了後、
液体封止剤2及び化合物半導体単結晶5を200℃から
化合物半導体単結晶5の融点までの温度で加熱処理す
る。
[PROBLEMS] To provide a method for producing a compound semiconductor single crystal which is excellent in mass productivity and can obtain a homogeneous single crystal with a small number of dislocations in the crystal at low cost. In a state where a liquid sealant (2) is interposed between a surface of a compound semiconductor raw material (6) charged into a crystal growth container (1) and an inner surface of the crystal growth container (1), the compound semiconductor raw material (1) is removed. 6 is gradually moved in the heating furnace 7 provided with a temperature gradient within a range including the melting point of 6, and the compound semiconductor raw material 6 is melted in the heating furnace 7 at a temperature portion equal to or higher than the melting point of the compound semiconductor raw material 6, and then melted below the melting point. The compound semiconductor single crystal 5 is grown at the temperature portion of and after the completion of the growth of the compound semiconductor single crystal 5,
The liquid sealant 2 and the compound semiconductor single crystal 5 are heated at a temperature from 200 ° C. to the melting point of the compound semiconductor single crystal 5.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、化合物半導体単結
晶の製造方法に関し、特に、量産性に優れるとともに結
晶中の転位が少なく均質な単結晶を低コストで得ること
ができる化合物半導体単結晶の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound semiconductor single crystal, and more particularly to a method for producing a compound semiconductor single crystal which is excellent in mass productivity and which can obtain a homogeneous single crystal with few dislocations in the crystal at low cost. It relates to a manufacturing method.
【0002】[0002]
【従来の技術】近年、直径75mmを超える大口径のG
aAs、InP等の化合物半導体の単結晶を製造する方
法として、垂直ブリッジマン法(Vertical B
ridgman Method)が用いられている。2. Description of the Related Art In recent years, large-diameter G
As a method for producing a single crystal of a compound semiconductor such as aAs or InP, a vertical Bridgman method (Vertical B
Ridgman Method) is used.
【0003】この垂直ブリッジマン法は、化合物半導体
原料を投入した結晶成長容器を、化合物半導体原料の融
点を含む範囲で温度勾配を設けた加熱炉内で徐々に移動
させて、加熱炉における前記化合物半導体原料の融点以
上の温度部分で化合物半導体原料を溶融させた後、融点
以下の温度部分で化合物半導体単結晶を成長させるもの
である。In this vertical Bridgman method, a crystal growth vessel into which a compound semiconductor raw material is charged is gradually moved in a heating furnace provided with a temperature gradient within a range including a melting point of the compound semiconductor raw material, and the compound growth in the heating furnace is performed. After melting the compound semiconductor raw material at a temperature portion higher than the melting point of the semiconductor raw material, a compound semiconductor single crystal is grown at a temperature portion lower than the melting point.
【0004】一方、この化合物半導体単結晶の製造方法
においては、結晶成長容器として窒化硼素製又は石英ガ
ラス製のるつぼが使用されている。これらの結晶成長容
器は、その内面に微細な凹凸を有するため、化合物半導
体単結晶を成長させる際に原料融液とるつぼ内面とが接
触すると、結晶の核が発生して得られる化合物半導体結
晶が多結晶化してしまうという問題があった。このた
め、酸化ホウ素(B2O3)を液体封止剤として化合物半
導体原料の表面と結晶成長容器の内面との間に介在させ
た状態で、化合物半導体単結晶を成長させる製造方法が
開示されている(特開平1−278490号公報、特開
平2−188485号公報等)。On the other hand, in this method of manufacturing a compound semiconductor single crystal, a crucible made of boron nitride or quartz glass is used as a crystal growth vessel. Since these crystal growth vessels have fine irregularities on the inner surface, when the raw material melt and the inner surface of the crucible come into contact with each other when growing a compound semiconductor single crystal, the compound semiconductor crystal obtained by generating crystal nuclei is formed. There has been a problem that polycrystallization occurs. For this reason, a manufacturing method for growing a compound semiconductor single crystal in a state where boron oxide (B 2 O 3 ) is interposed between the surface of the compound semiconductor raw material and the inner surface of the crystal growth container as a liquid sealing agent is disclosed. (JP-A-1-278490, JP-A-2-188485, etc.).
【0005】しかし、この製造方法では、化合物半導体
単結晶の成長終了後、結晶成長容器を室温まで冷却する
と液状封止剤も固化するため、液状封止剤を介して形成
された化合物半導体単結晶が結晶成長容器に固着し、そ
の取り出しが非常に困難であった。このため、図8に示
すように、従来は化合物半導体単結晶25の入った結晶
成長容器21をメタノール等の有機溶剤17中に浸漬し
て、液状封止剤222である酸化ホウ素(B2O3)を溶
解して化合物半導体単結晶25を取り出していた。However, in this manufacturing method, when the crystal growth container is cooled to room temperature after the completion of the growth of the compound semiconductor single crystal, the liquid encapsulant solidifies, so that the compound semiconductor single crystal formed via the liquid encapsulant is formed. Adhered to the crystal growth vessel, and its removal was very difficult. For this reason, as shown in FIG. 8, conventionally, a crystal growth container 21 containing a compound semiconductor single crystal 25 is immersed in an organic solvent 17 such as methanol, and boron oxide (B 2 O) as a liquid sealing agent 222 is formed. 3 ) was dissolved and the compound semiconductor single crystal 25 was taken out.
【0006】しかし、液状封止剤22である酸化ホウ素
(B2O3)の溶解時間は、1〜20日と極めて長いた
め、従来の製造方法では、化合物半導体単結25の取り
出しに時間を要し、量産性という点で必ずしも十分では
なかった。また、液状封止剤22である酸化ホウ素(B
2O3)の溶解が不十分な場合には、化合物半導体単結2
5を取り出す際に、結晶成長容器21の内壁が剥離され
てしまうことがあるため、結晶成長容器21の寿命を短
くし、延いては、化合物半導体単結晶25のコストを増
大させるという問題もあった。However, since the dissolution time of boron oxide (B 2 O 3 ) as the liquid sealing agent 22 is extremely long as 1 to 20 days, it takes a long time to take out the compound semiconductor 25 in the conventional manufacturing method. In short, mass production was not always sufficient. In addition, boron oxide (B
If the dissolution of 2 O 3 ) is insufficient, the compound semiconductor single bond 2
When the crystal growth container 21 is taken out, the inner wall of the crystal growth container 21 may be peeled off, so that the life of the crystal growth container 21 is shortened and the cost of the compound semiconductor single crystal 25 is increased. Was.
【0007】これに対して、化合物半導体単結晶の成長
終了後、液体封止剤を軟化点温度以上の温度で加熱、軟
化して、結晶成長容器から化合物半導体単結晶を解離す
る製造方法が提案されている(特開平5−70288号
公報)。On the other hand, a method has been proposed in which, after the growth of the compound semiconductor single crystal, the liquid sealant is heated and softened at a temperature equal to or higher than the softening point to dissociate the compound semiconductor single crystal from the crystal growth vessel. (JP-A-5-70288).
【0008】この製造方法では、結晶成長容器から化合
物半導体単結晶を迅速に取り出すことができるため、量
産性を向上させることができるとともに、化合物半導体
単結晶を取り出す際に結晶成長容器の内壁を剥離するこ
とがないため、結晶成長容器の寿命を伸ばし、延いては
化合物半導体単結晶のコストを低減することができる。According to this manufacturing method, the compound semiconductor single crystal can be quickly taken out of the crystal growth container, so that mass productivity can be improved and the inner wall of the crystal growth container is peeled off when the compound semiconductor single crystal is taken out. Therefore, the life of the crystal growth container can be extended, and the cost of the compound semiconductor single crystal can be reduced.
【0009】[0009]
【発明が解決しようとする課題】しかし、この製造方法
では、化合物半導体単結晶の品質については特に考慮さ
れていないため、結晶の転位密度が大きくなり、電気的
特性にバラツキを生じる場合があった。従って、本発明
の目的は、量産性に優れるとともに結晶中の転位が少な
く均質な単結晶を低コストで得ることができる化合物半
導体単結晶の製造方法を提供することにある。However, in this manufacturing method, since the quality of the compound semiconductor single crystal is not particularly taken into consideration, the dislocation density of the crystal is increased, and the electric characteristics may vary. . Accordingly, it is an object of the present invention to provide a method for producing a compound semiconductor single crystal which is excellent in mass productivity and can obtain a homogeneous single crystal with few dislocations in the crystal at low cost.
【0010】[0010]
【課題を解決するための手段】本発明は、上記目的を達
成するため、以下の化合物半導体単結晶の製造方法を提
供する。The present invention provides the following method for producing a compound semiconductor single crystal in order to achieve the above object.
【0011】[1]結晶成長容器内に投入した化合物半
導体原料の表面と前記結晶成長容器の内面との間に液体
封止剤を介在させた状態で、前記結晶成長容器を、前記
化合物半導体原料の融点を含む範囲で温度勾配を設けた
加熱炉内で徐々に移動させて、前記加熱炉における前記
化合物半導体原料の融点以上の温度部分で前記化合物半
導体原料を溶融させた後、融点以下の温度部分で化合物
半導体単結晶を成長させ、前記化合物半導体単結晶の成
長終了後、前記液体封止剤及び前記化合物半導体単結晶
を200℃から前記化合物半導体単結晶の融点までの温
度で加熱処理することを特徴とする化合物半導体単結晶
の製造方法。[1] In a state where a liquid sealing agent is interposed between the surface of the compound semiconductor raw material charged into the crystal growth container and the inner surface of the crystal growth container, the crystal growth container is mixed with the compound semiconductor raw material. Is gradually moved in a heating furnace provided with a temperature gradient within a range including the melting point of the compound semiconductor raw material in the heating furnace at a temperature higher than the melting point of the compound semiconductor raw material. Growing a compound semiconductor single crystal in a portion, and after the growth of the compound semiconductor single crystal, heat-treating the liquid sealant and the compound semiconductor single crystal at a temperature from 200 ° C. to the melting point of the compound semiconductor single crystal. A method for producing a compound semiconductor single crystal, comprising:
【0012】[2]前記液体封止剤及び前記化合物半導
体単結晶の加熱処理を、500℃から前記化合物半導体
単結晶の融点までの温度で行う前記[1]に記載の化合
物半導体単結晶の製造方法。[2] The production of the compound semiconductor single crystal according to [1], wherein the heat treatment of the liquid sealant and the compound semiconductor single crystal is performed at a temperature from 500 ° C. to the melting point of the compound semiconductor single crystal. Method.
【0013】[3]前記液体封止剤及び前記化合物半導
体単結晶の加熱処理を、1100℃から前記化合物半導
体単結晶の融点までの温度で1時間以上加熱し、80〜
120℃/時間の冷却速度で500℃まで冷却し、50
0〜600℃で3時間以上加熱し、40〜60℃/時間
の加熱速度で800℃まで加熱し、800℃〜950℃
で3時間以上加熱し、90〜110℃/時間の冷却速度
で室温まで冷却して行う前記[1]又は[2]に記載の
化合物半導体単結晶の製造方法。[3] The liquid sealant and the compound semiconductor single crystal are heated at a temperature from 1100 ° C. to the melting point of the compound semiconductor single crystal for 1 hour or more.
Cooling to 500 ° C at a cooling rate of 120 ° C / hour, 50
Heat at 0 to 600 ° C for 3 hours or more, and heat to 800 ° C at a heating rate of 40 to 60 ° C / hour, and 800 to 950 ° C.
The method for producing a compound semiconductor single crystal according to the above [1] or [2], wherein the method is performed by heating at a cooling rate of 90 to 110 ° C./hour to room temperature for 3 hours or more.
【0014】[4]前記液体封止剤及び前記化合物半導
体単結晶の加熱処理を、前記結晶成長容器をその開口部
が横向き又は下向きになるように設置して行う前記
[1]〜[3]のいずれかに記載の化合物半導体単結晶
の製造方法。[4] The heat treatment of the liquid sealant and the compound semiconductor single crystal is performed by setting the crystal growth container so that an opening thereof is directed sideways or downward. The method for producing a compound semiconductor single crystal according to any one of the above.
【0015】[0015]
【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照しつつ具体的に説明する。図1(a)に示すよ
うに、本発明の化合物半導体単結晶の製造方法では、ま
ず、結晶成長容器1内に投入した化合物半導体原料6の
表面と結晶成長容器1の内面との間に液体封止剤2を介
在させた状態で、結晶成長容器1を、化合物半導体原料
6の融点を含む範囲で温度勾配を設けた加熱炉7内で徐
々に移動させて、加熱炉7における化合物半導体原料6
の融点以上の温度部分で化合物半導体原料6を溶融した
後、融点以下の温度部分で化合物半導体単結晶5を成長
させる。Embodiments of the present invention will be specifically described below with reference to the drawings. As shown in FIG. 1A, in the method for producing a compound semiconductor single crystal of the present invention, first, a liquid is placed between the surface of the compound semiconductor raw material 6 charged into the crystal growth container 1 and the inner surface of the crystal growth container 1. With the sealing agent 2 interposed, the crystal growth vessel 1 is gradually moved in a heating furnace 7 provided with a temperature gradient within a range including the melting point of the compound semiconductor raw material 6 so that the compound semiconductor raw material in the heating furnace 7 6
After the compound semiconductor raw material 6 is melted at a temperature portion equal to or higher than the melting point, the compound semiconductor single crystal 5 is grown at a temperature portion equal to or lower than the melting point.
【0016】本発明に用いられる結晶成長容器1として
は、例えば、窒化硼素製又は石英ガラス製のものを挙げ
ることができる。The crystal growth vessel 1 used in the present invention may be, for example, one made of boron nitride or quartz glass.
【0017】本発明に用いられる化合物半導体原料6と
しては、GaAs、InP、GaP等を挙げることがで
きる。また、本発明においては、種結晶6aを予め化合
物半導体原料6と一緒に投入することが好ましい。Examples of the compound semiconductor raw material 6 used in the present invention include GaAs, InP, GaP and the like. Further, in the present invention, it is preferable that the seed crystal 6a is charged together with the compound semiconductor raw material 6 in advance.
【0018】本発明に用いられる液体封止剤2として
は、例えば、酸化硼素(B2O3)等を挙げることができ
る。液体封止剤2は、溶融した化合物半導体原料6の表
面と結晶成長容器1の内面との間に介在させるものであ
ればよく、化合物半導体原料6とともに結晶成長容器1
内に投入してもよく、結晶成長容器1内面に予め塗布し
ておいてもよい。Examples of the liquid sealant 2 used in the present invention include boron oxide (B 2 O 3 ). The liquid sealant 2 may be any material as long as it is interposed between the surface of the molten compound semiconductor raw material 6 and the inner surface of the crystal growth container 1.
And may be applied to the inner surface of the crystal growth vessel 1 in advance.
【0019】本発明に用いられる加熱炉7は、化合物半
導体原料6の融点を含む範囲で温度勾配を設けたもので
あり、この温度勾配は、熱歪みによる結晶の転位密度の
増加を抑制するため、1〜10℃/cmが好ましい。ま
た、加熱炉7内での結晶成長容器1の移動速度は、大口
径の結晶を形成させるため4mm/時間以下が好まし
い。The heating furnace 7 used in the present invention is provided with a temperature gradient within a range including the melting point of the compound semiconductor raw material 6, and this temperature gradient is used to suppress an increase in the dislocation density of the crystal due to thermal strain. 1 to 10 ° C / cm is preferred. The moving speed of the crystal growth vessel 1 in the heating furnace 7 is preferably 4 mm / hour or less in order to form a large-diameter crystal.
【0020】本発明の化合物半導体単結晶の製造方法で
は、化合物半導体単結晶の成長終了後、液体封止剤及び
化合物半導体単結晶を200℃から化合物半導体単結晶
の融点までの温度で1時間以上加熱処理する。200℃
未満であると、化合物半導体単結晶の取り出しが困難に
なる。一方、融点温度を超えると結晶としての取り出し
が不可能になる。In the method for producing a compound semiconductor single crystal according to the present invention, after the compound semiconductor single crystal is grown, the liquid sealing agent and the compound semiconductor single crystal are heated at a temperature from 200 ° C. to the melting point of the compound semiconductor single crystal for at least one hour. Heat treatment. 200 ° C
If it is less than 1, it becomes difficult to take out the compound semiconductor single crystal. On the other hand, if it exceeds the melting point temperature, it will not be possible to take it out as crystals.
【0021】なお、この加熱処理の際には、結晶成長容
器1の温度分布を±20℃以内に制御して行うことが好
ましい。また、加熱処理後は、−50℃/cm以下の冷
却速度でゆっくり室温まで冷却するのが好ましい。It is preferable that the heat treatment is performed while controlling the temperature distribution of the crystal growth vessel 1 within ± 20 ° C. After the heat treatment, it is preferable to slowly cool to room temperature at a cooling rate of −50 ° C./cm or less.
【0022】図2に示すように、本発明の化合物半導体
単結晶の製造方法では、液体封止剤及び単結晶の加熱処
理を、以下に述べる工程で行うことにより、電気的特性
が均一な半絶縁性化合物半導体単結晶を得ることもでき
る。As shown in FIG. 2, in the method for producing a compound semiconductor single crystal of the present invention, the liquid sealant and the single crystal are subjected to a heat treatment in the following steps, so that the electric characteristics are uniform. An insulating compound semiconductor single crystal can also be obtained.
【0023】この加熱処理工程では、まず、As等の化
合物半導体単結晶成分を均一に固溶するため、1100
℃から化合物半導体単結晶の融点までの温度で1時間以
上加熱する。次いで、As等の化合物半導体単結晶成分
の析出を防止するため、−100℃/時間以上の冷却速
度で500℃〜600℃まで冷却する。次いで、As等
の化合物半導体単結晶成分を過飽和状態で均一に分散さ
せるため、500℃〜600℃で3時間以上加熱する。
次いで、As等の化合物半導体単結晶成分の均一な分散
を阻害せずにEL2を形成させるため、50℃/時間以
上の加熱速度で500℃〜600℃まで加熱する。最後
に、EL2を形成させて半絶縁性の化合物半導体単結晶
とするため、900℃〜950℃で3時間以上加熱し、
90〜110℃/時間の冷却速度で室温まで冷却する。
なお、この加熱処理の際には、結晶成長容器1の温度分
布を±20℃以内に制御して行うことが好ましい。In this heat treatment step, first, a compound semiconductor single crystal component such as As is uniformly dissolved in a solid solution.
Heating is performed for 1 hour or more at a temperature from ℃ to the melting point of the compound semiconductor single crystal. Next, in order to prevent the precipitation of a compound semiconductor single crystal component such as As, the cooling is performed at a cooling rate of -100 ° C / hour or more to 500 ° C to 600 ° C. Next, in order to uniformly disperse a compound semiconductor single crystal component such as As in a supersaturated state, the mixture is heated at 500 ° C. to 600 ° C. for 3 hours or more.
Next, in order to form EL2 without inhibiting uniform dispersion of a compound semiconductor single crystal component such as As, the substrate is heated from 500 ° C. to 600 ° C. at a heating rate of 50 ° C./hour or more. Finally, in order to form EL2 to obtain a semi-insulating compound semiconductor single crystal, heating is performed at 900 ° C. to 950 ° C. for 3 hours or more.
Cool to room temperature at a cooling rate of 90-110 ° C / hour.
It is preferable that the heat treatment is performed while controlling the temperature distribution of the crystal growth vessel 1 within ± 20 ° C.
【0024】図1(b)及び(c)に示すように、本発
明における液体封止剤及び単結晶の加熱処理は、化合物
半導体単結晶5が入った結晶成長容器1を、例えば、石
英アンプル等に入れてその開口部1aが横向き又は下向
きになるように加熱炉7に設置して行うことが好まし
い。As shown in FIGS. 1 (b) and 1 (c), the heat treatment of the liquid encapsulant and the single crystal in the present invention is performed by using a crystal growth vessel 1 containing a compound semiconductor single crystal 5, for example, a quartz ampoule. It is preferable that the opening 1a is placed in the heating furnace 7 so that the opening 1a faces sideways or downward.
【0025】液体封止剤(B2O3)が、軟化点温度以上
で加熱されて化合物半導体単結晶5が結晶成長容器1の
内壁から解離すると、化合物半導体単結晶5が重力によ
り結晶成長容器1の開口部1aに自然に落下するため、
化合物半導体単結晶5の取り出しを簡単に行うことがで
きる。また、液体封止剤(B2O3)が加熱により溶解す
ると結晶成長容器1の開口部1aから自然に流出するた
め、例えば、液体封止剤受け8等により簡単に回収する
ことができる。When the liquid semiconductor (B 2 O 3 ) is heated above the softening point and the compound semiconductor single crystal 5 is dissociated from the inner wall of the crystal growth vessel 1, the compound semiconductor single crystal 5 is moved by gravity to the crystal growth vessel. To fall naturally into the opening 1a
The compound semiconductor single crystal 5 can be easily taken out. When the liquid sealant (B 2 O 3 ) is dissolved by heating, the liquid sealant (B 2 O 3 ) naturally flows out of the opening 1 a of the crystal growth container 1.
【0026】なお、加熱処理は、結晶中への不純物の混
入を防止するためガス導入部11から不活性ガス等を導
入して不活性ガス雰囲気下等で行うのが好ましい。ま
た、結晶落下の際の損傷等を防ぐため結晶成長容器1の
開口部1aの下に、例えば、ガラス繊維等からなる緩衝
材4を設置しておくとよい。Note that the heat treatment is preferably performed in an inert gas atmosphere or the like by introducing an inert gas or the like from the gas introduction unit 11 in order to prevent impurities from being mixed into the crystal. Further, a buffer 4 made of, for example, glass fiber or the like may be provided below the opening 1a of the crystal growth container 1 in order to prevent damage when the crystal is dropped.
【0027】[0027]
【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれら実施例によって何等限定されるも
のではない。EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
【0028】実施例1 まず、石英ガラス製の結晶成長容器中にGaAs種結晶
とGaAs6500gとSi(ドーパント)2.0gと
を順に投入後、結晶成長容器内を真空雰囲気とした。次
いで、石英ガラス製の結晶成長容器を加熱炉内に設置
後、加熱炉を昇温した。加熱炉の温度は、種結晶のある
下部を約1200℃とし、GaAs及びSiのある上部
を約1245℃とした。また、固液界面部の温度勾配
は、約10℃/cmに調整した。石英ガラス結晶成長容
器を、上部から3mm/時間の速度で下降させ、上部で
溶融したGaAs及びSiを順次結晶成長させた。Ga
As及びSiの融液がすべて固化して結晶成長が終了し
た後、石英ガラス結晶成長容器1を約−30℃/時間の
速度で室温まで冷却した。Example 1 First, a GaAs seed crystal, 6,500 g of GaAs, and 2.0 g of Si (dopant) were sequentially charged into a crystal growth vessel made of quartz glass, and then the inside of the crystal growth vessel was evacuated. Next, the crystal growth vessel made of quartz glass was placed in a heating furnace, and then the heating furnace was heated. The temperature of the heating furnace was about 1200 ° C. in the lower part with the seed crystal, and about 1245 ° C. in the upper part with GaAs and Si. The temperature gradient at the solid-liquid interface was adjusted to about 10 ° C./cm. The quartz glass crystal growth vessel was lowered from the upper part at a rate of 3 mm / hour, and GaAs and Si melted at the upper part were grown sequentially. Ga
After the melts of As and Si were all solidified and crystal growth was completed, the quartz glass crystal growth vessel 1 was cooled to room temperature at a rate of about -30 ° C / hour.
【0029】次ぎに、結晶が入った石英ガラス結晶成長
容器を加熱炉から取り出して石英アンプル内に挿入し、
この石英アンプルを結晶成長容器の開口部が下方向とな
るようにして加熱炉に設置し、窒素ガスを1リットル/
分の流量で流して加熱処理を行った。加熱処理は、炉内
全体の温度を±5℃以内となるように制御しながら10
0℃/時間の加熱速度で結晶成長容器が、600℃とな
るまで加熱し、600℃で2時間加熱後、−50℃/時
間の冷却速度で室温まで冷却して行った。加熱処理後
に、結晶を結晶成長容器の開口部から取り外し、直径約
80mm、長さ約200mmの円筒状のGaAs単結晶
を得た。得られたGaAs単結晶の転位密度を透過型電
子顕微鏡で測定したところ極めて低密度であった。Next, the quartz glass crystal growth vessel containing the crystal is taken out of the heating furnace and inserted into a quartz ampoule.
This quartz ampule was placed in a heating furnace such that the opening of the crystal growth vessel was downward, and nitrogen gas was supplied at a rate of 1 liter /
The heat treatment was performed at a flow rate of 1 minute. The heat treatment is performed while controlling the temperature of the entire furnace to be within ± 5 ° C.
The crystal growth vessel was heated at a heating rate of 0 ° C./hour until the temperature reached 600 ° C., heated at 600 ° C. for 2 hours, and then cooled to room temperature at a cooling rate of −50 ° C./hour. After the heat treatment, the crystal was removed from the opening of the crystal growth vessel to obtain a cylindrical GaAs single crystal having a diameter of about 80 mm and a length of about 200 mm. When the dislocation density of the obtained GaAs single crystal was measured with a transmission electron microscope, the dislocation density was extremely low.
【0030】実施例2 まず、窒化硼素製の結晶成長容器中に、GaAs種結晶
とGaAs6500gとSi(ドーパント)2.0gと
を順に投入後、結晶成長容器内にArガスを導入して、
結晶成長容器内を不活性ガス雰囲気とした。Example 2 First, after a GaAs seed crystal, 6500 g of GaAs, and 2.0 g of Si (dopant) were sequentially charged into a crystal growth vessel made of boron nitride, Ar gas was introduced into the crystal growth vessel.
The inside of the crystal growth vessel was set to an inert gas atmosphere.
【0031】次いで、窒化硼素製の結晶成長容器を加熱
炉内に設置後、加熱炉を昇温した。加熱炉の温度は、種
結晶のある下部を約1200℃とし、GaAs及びSi
がある上部を約1245℃とした。また、固液界面部の
温度勾配は、約10℃/cmに調整した。石英ガラス結
晶成長容器を、上部から3mm/時間の速度で下降さ
せ、上部で溶融したGaAs及びSiを順次結晶成長さ
せた。GaAs及びSiの融液がすべて固化して結晶成
長が終了した後、石英ガラス結晶成長容器を約−30℃
/時間の冷却速度で室温まで冷却した。Next, after setting the crystal growth vessel made of boron nitride in the heating furnace, the heating furnace was heated. The temperature of the heating furnace was set to about 1200 ° C. in the lower part having the seed crystal, and GaAs and Si were used.
The temperature at the top of the sample was about 1245 ° C. The temperature gradient at the solid-liquid interface was adjusted to about 10 ° C./cm. The quartz glass crystal growth vessel was lowered from the upper part at a speed of 3 mm / hour, and GaAs and Si melted at the upper part were grown sequentially. After all the melts of GaAs and Si are solidified and crystal growth is completed, the quartz glass crystal growth vessel is heated to about -30 ° C.
/ Hr at room temperature.
【0032】次ぎに、GaAs結晶が入った窒化硼素製
の結晶成長容器を加熱炉から取り出して、結晶成長容器
の開口部が下方向となるようにして再び加熱炉に設置
し、アルゴン(Ar)を加熱炉に導入して不活性ガス雰
囲気で、加熱処理を行った。Next, the crystal growth vessel made of boron nitride containing the GaAs crystal is taken out of the heating furnace, and set again in the heating furnace so that the opening of the crystal growth vessel is directed downward, and argon (Ar) is added. Was introduced into a heating furnace, and heat treatment was performed in an inert gas atmosphere.
【0033】加熱処理は、90℃/時間の加熱速度で1
100℃まで加熱し、1100℃で6時間加熱し、−3
00℃/時間の冷却速度で500℃まで冷却し、500
℃で4時間加熱し、110℃/時間の加熱速度で950
℃まで加熱し、950℃で6時間加熱し、−110℃/
時間の冷却速度で室温まで冷却して行った。この際、結
晶全体は±5℃以内に均熱された温度分布を取るように
温度制御した。The heat treatment is performed at a heating rate of 90 ° C./hour for 1 hour.
Heat to 100 ° C, heat at 1100 ° C for 6 hours, -3
Cool to 500 ° C at a cooling rate of 00 ° C / hour,
4 hours at 950 ° C. at a heating rate of 110 ° C./hour.
To 950 ° C for 6 hours, -110 ° C /
The cooling was performed at room temperature at a cooling rate of time. At this time, the temperature of the entire crystal was controlled so as to have a temperature distribution within ± 5 ° C.
【0034】加熱処理後に、GaAs結晶を結晶成長容
器の開口部から取り外し、直径約100mm、長さ約1
50mmの円筒状のGaAs単結晶を得た。得られたG
aAs単結晶の転位密度を透過型電子顕微鏡で測定した
ところ極めて低密度であった。また、この得られたGa
As単結晶をウエハ状に切断し、ウエハ面内のPL強度
分布を光度計で測定したところ、図3(b)に示すよう
に、バラツキが5%以下と非常に小さかった。また、比
抵抗を測定したところ、1E7Ω・cm以上と半絶縁性
であった。After the heat treatment, the GaAs crystal is removed from the opening of the crystal growth vessel, and has a diameter of about 100 mm and a length of about 1 mm.
A 50 mm cylindrical GaAs single crystal was obtained. G obtained
When the dislocation density of the aAs single crystal was measured with a transmission electron microscope, the density was extremely low. In addition, the obtained Ga
The As single crystal was cut into a wafer and the PL intensity distribution in the wafer plane was measured with a photometer. As shown in FIG. 3 (b), the variation was extremely small at 5% or less. Further, when the specific resistance was measured, it was a semi-insulating property of 1E7 Ω · cm or more.
【0035】比較例1 実施例2においてGaAs結晶成長終了後に加熱処理を
しなかったこと以外は、実施例2と同様にしてGaAs
の単結晶を製造した。Comparative Example 1 GaAs was produced in the same manner as in Example 2 except that the heat treatment was not performed after the completion of the GaAs crystal growth.
Was produced.
【0036】GaAs結晶をウエハ状に切断し、比抵抗
を測定したところ、1E7Ω・cm以上と半絶縁性であ
ったが、PL強度分布を光度計で測定したところ、図3
(a)に示すように、PL強度のバラツキが約20%と
大きなバラツキが認められた。また、転位密度を透過型
電子顕微鏡で測定したところ高密度であった。When the GaAs crystal was cut into a wafer and the specific resistance was measured, it was semi-insulating at 1E7 Ω · cm or more. When the PL intensity distribution was measured with a photometer,
As shown in (a), a large variation in PL intensity was observed at about 20%. Further, the dislocation density was measured by a transmission electron microscope, and was found to be high.
【0037】[0037]
【発明の効果】以上説明した通り、本発明の化合物半導
体単結晶の製造方法によると、量産性に優れるとともに
結晶中の転位が少なく均質な単結晶を低コストで得るこ
とができる化合物半導体単結晶の製造方法を提供するこ
とができる。As described above, according to the method for producing a compound semiconductor single crystal of the present invention, a compound semiconductor single crystal which is excellent in mass productivity and can obtain a homogeneous single crystal with few dislocations in the crystal at low cost. Can be provided.
【0038】[0038]
【図1】本発明の化合物半導体単結晶の製造方法を実施
するための装置の一例を模式的に示す説明図であり、
(a)は、結晶成長時の状態を示す断面図であり、
(b)は、結晶成長終了後の加熱処理時の状態を示す断
面図であり、(c)は、結晶が結晶成長容器内壁から解
離した状態を示す断面図である。FIG. 1 is an explanatory view schematically showing an example of an apparatus for carrying out a method for producing a compound semiconductor single crystal of the present invention;
(A) is sectional drawing which shows the state at the time of a crystal growth,
(B) is a cross-sectional view showing a state during a heat treatment after completion of the crystal growth, and (c) is a cross-sectional view showing a state where the crystal is dissociated from the inner wall of the crystal growth vessel.
【図2】本発明の一の実施の形態における単結晶成長終
了後の加熱処理条件の一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of heat treatment conditions after completion of single crystal growth in one embodiment of the present invention.
【図3】本発明の実施例により得られた化合物半導体単
結晶のPL強度分布を示す説明図である。FIG. 3 is an explanatory diagram showing a PL intensity distribution of a compound semiconductor single crystal obtained according to an example of the present invention.
【図4】従来の化合物半導体単結晶の製造方法の一例に
おいて、単結晶成長終了後に化合物半導体単結晶を結晶
成長容器内壁から解離する工程を模式的に示す断面図で
あるFIG. 4 is a cross-sectional view schematically showing a step of dissociating a compound semiconductor single crystal from an inner wall of a crystal growth vessel after completion of single crystal growth in an example of a conventional method for manufacturing a compound semiconductor single crystal.
1:結晶成長容器 1a:開口部 2:液体封止剤(B203) 4:緩衝材 5:化合物半導体単結晶 6:化合物半導体原料 7:加熱炉 8:液体封止剤受け 9:結晶受け台 11:ガス導入部 12:チャンバ 17:有機溶剤(メタノール) 18:有機溶剤入れ 21:結晶成長容器 22:液体封止剤(B2O3) 25:化合物半導体単結晶1: crystal-growth vessel 1a: opening 2: liquid sealant (B 2 0 3) 4: buffer 5: a compound semiconductor single crystal 6: a compound semiconductor material 7: oven 8: Liquid sealant receiving 9: crystalline Cradle 11: Gas introduction unit 12: Chamber 17: Organic solvent (methanol) 18: Organic solvent container 21: Crystal growth container 22: Liquid sealant (B 2 O 3 ) 25: Compound semiconductor single crystal
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々辺 博 茨城県日立市砂沢町880番地 日立電線株 式会社高砂工場内 Fターム(参考) 4G077 AA02 BE46 CD02 FE12 FE13 FE18 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroshi Sasabe 880 Sunazawa-cho, Hitachi City, Ibaraki Prefecture Inside the Takasago Plant of Hitachi Cable Co., Ltd. F-term (reference) 4G077 AA02 BE46 CD02 FE12 FE13 FE18 FE18
Claims (4)
料の表面と前記結晶成長容器の内面との間に液体封止剤
を介在させた状態で、前記結晶成長容器を、前記化合物
半導体原料の融点を含む範囲で温度勾配を設けた加熱炉
内で徐々に移動させて、前記加熱炉における前記化合物
半導体原料の融点以上の温度部分で前記化合物半導体原
料を溶融させた後、融点以下の温度部分で化合物半導体
単結晶を成長させ、 前記化合物半導体単結晶の成長終了後、前記液体封止剤
及び前記化合物半導体単結晶を200℃から前記化合物
半導体単結晶の融点までの温度で加熱処理することを特
徴とする化合物半導体単結晶の製造方法。1. A method according to claim 1, wherein a liquid sealing agent is interposed between a surface of the compound semiconductor raw material charged into the crystal growth container and an inner surface of the crystal growth container. After gradually moving in a heating furnace provided with a temperature gradient within a range including the melting point and melting the compound semiconductor material at a temperature portion equal to or higher than the melting point of the compound semiconductor material in the heating furnace, a temperature portion equal to or lower than the melting point After growing the compound semiconductor single crystal, heating the liquid sealant and the compound semiconductor single crystal at a temperature from 200 ° C. to the melting point of the compound semiconductor single crystal after the completion of the growth of the compound semiconductor single crystal. A method for producing a compound semiconductor single crystal, which is characterized in that:
晶の加熱処理を、500℃から前記化合物半導体単結晶
の融点までの温度で行う請求項1に記載の化合物半導体
単結晶の製造方法。2. The method for producing a compound semiconductor single crystal according to claim 1, wherein the heat treatment of the liquid sealant and the compound semiconductor single crystal is performed at a temperature from 500 ° C. to a melting point of the compound semiconductor single crystal.
晶の加熱処理を、1100℃から前記化合物半導体単結
晶の融点までの温度で1時間以上加熱し、80〜120
℃/時間の冷却速度で500℃まで冷却し、500〜6
00℃で3時間以上加熱し、40〜60℃/時間の加熱
速度で800℃まで加熱し、800℃〜950℃で3時
間以上加熱し、90〜110℃/時間の冷却速度で室温
まで冷却して行う請求項1又は2に記載の化合物半導体
単結晶の製造方法。3. The heat treatment of the liquid sealant and the compound semiconductor single crystal is performed by heating at a temperature from 1100 ° C. to the melting point of the compound semiconductor single crystal for 1 hour or more.
Cooling to 500 ° C at a cooling rate of 500 ° C / hour,
Heat at 00 ° C for 3 hours or more, heat to 800 ° C at a heating rate of 40 to 60 ° C / hour, heat at 800 ° C to 950 ° C for 3 hours or more, and cool to room temperature at a cooling rate of 90 to 110 ° C / hour. The method for producing a compound semiconductor single crystal according to claim 1, wherein the method is performed.
晶の加熱処理を、前記結晶成長容器をその開口部が横向
き又は下向きになるように設置して行う請求項1〜3の
いずれかに記載の化合物半導体単結晶の製造方法。4. The method according to claim 1, wherein the heat treatment of the liquid sealant and the compound semiconductor single crystal is performed by setting the crystal growth container so that an opening thereof is directed sideways or downward. The production method of the compound semiconductor single crystal according to the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000208899A JP2002029881A (en) | 2000-07-10 | 2000-07-10 | Method for manufacturing compound semiconductor single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000208899A JP2002029881A (en) | 2000-07-10 | 2000-07-10 | Method for manufacturing compound semiconductor single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002029881A true JP2002029881A (en) | 2002-01-29 |
Family
ID=18705396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000208899A Pending JP2002029881A (en) | 2000-07-10 | 2000-07-10 | Method for manufacturing compound semiconductor single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002029881A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010084878A1 (en) * | 2009-01-20 | 2010-07-29 | 住友電気工業株式会社 | Electrically conductive gaas crystal, electrically conductive gaas crystal substrate, and processes for producing those materials |
KR100980822B1 (en) | 2007-12-17 | 2010-09-10 | (주)아이블포토닉스 | Piezoelectric Single Crystal Growth Method |
-
2000
- 2000-07-10 JP JP2000208899A patent/JP2002029881A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100980822B1 (en) | 2007-12-17 | 2010-09-10 | (주)아이블포토닉스 | Piezoelectric Single Crystal Growth Method |
WO2010084878A1 (en) * | 2009-01-20 | 2010-07-29 | 住友電気工業株式会社 | Electrically conductive gaas crystal, electrically conductive gaas crystal substrate, and processes for producing those materials |
JP5664239B2 (en) * | 2009-01-20 | 2015-02-04 | 住友電気工業株式会社 | Conductive GaAs single crystal, conductive GaAs single crystal substrate, and method for producing them |
US11017913B2 (en) | 2009-01-20 | 2021-05-25 | Sumitomo Electric Industries, Ltd. | Crystal and substrate of conductive GaAs, and method for forming the same |
US11955251B2 (en) | 2009-01-20 | 2024-04-09 | Sumitomo Electric Industries, Ltd. | Crystal and substrate of conductive GaAs, and method for forming the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1634981B1 (en) | Indium phosphide substrate, indium phosphide single crystal and process for producing them | |
JP3016126B2 (en) | Single crystal pulling method | |
JP2002029881A (en) | Method for manufacturing compound semiconductor single crystal | |
CN114574949B (en) | Method for protecting quartz crucible in germanium single crystal pulling process | |
KR101574755B1 (en) | Method for Manufacturing Single Crystal | |
JPH10218699A (en) | Compound semiconductor single crystal growth method | |
JPH07206597A (en) | Method for producing znse bulk single crystal | |
JPH0244798B2 (en) | ||
EP0355833B1 (en) | Method of producing compound semiconductor single crystal | |
JP4273793B2 (en) | Single crystal manufacturing method | |
JPS6090897A (en) | Method and apparatus for manufacturing compound semiconductor single crystal | |
JP4200690B2 (en) | GaAs wafer manufacturing method | |
EP4130348A1 (en) | Device and method for producing a monocrystalline silicon rod | |
JP2531875B2 (en) | Method for producing compound semiconductor single crystal | |
JPH09309791A (en) | Method for producing semiconducting single crystal | |
JP2700145B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JP2781857B2 (en) | Single crystal manufacturing method | |
JPH0798715B2 (en) | Method for producing silicon single crystal | |
JPH0692781A (en) | Production of single crystal and apparatus therefor | |
JP3938674B2 (en) | Method for producing compound semiconductor single crystal | |
JPH0354185A (en) | Production of iii-v compound semiconductor single crystal | |
JP2005047797A (en) | InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM | |
JP3660604B2 (en) | Single crystal manufacturing method | |
JPS59131597A (en) | Production of high-quality gallium arsenide single crystal | |
JP3654314B2 (en) | Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor |