[go: up one dir, main page]

JP2002029713A - Gallium nitride manufacturing method - Google Patents

Gallium nitride manufacturing method

Info

Publication number
JP2002029713A
JP2002029713A JP2000220937A JP2000220937A JP2002029713A JP 2002029713 A JP2002029713 A JP 2002029713A JP 2000220937 A JP2000220937 A JP 2000220937A JP 2000220937 A JP2000220937 A JP 2000220937A JP 2002029713 A JP2002029713 A JP 2002029713A
Authority
JP
Japan
Prior art keywords
gallium nitride
purity
gallium
trioxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000220937A
Other languages
Japanese (ja)
Inventor
Junichi Matsushita
純一 松下
Yoichi Ishimoto
陽一 石本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2000220937A priority Critical patent/JP2002029713A/en
Publication of JP2002029713A publication Critical patent/JP2002029713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】 【課題】本発明は、高純度の単層窒化ガリウムを得るこ
とを課題とする。 【解決手段】三酸化二ガリウムを、アンモニアガス雰囲
気下で窒化反応させることを特徴とする窒化ガリウムの
製造方法。
(57) Abstract: An object of the present invention is to obtain high-purity single-layer gallium nitride. A method for producing gallium nitride, characterized by performing a nitriding reaction of digallium trioxide in an ammonia gas atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は窒化ガリウムの製造
方法に関し、特に高純度単相からなる窒化ガリウムを製
造する方法に関する。
The present invention relates to a method for producing gallium nitride, and more particularly to a method for producing gallium nitride composed of a high-purity single phase.

【0002】[0002]

【従来の技術】近年、短波長レーザーとして窒化ガリウ
ム系発光ダイオードなどの実用化が目前となっている。
ところで、こうしたダイオードを得るためには、今後、
窒化ガリウムの大量生産技術が必要となる。
2. Description of the Related Art In recent years, practical use of a gallium nitride based light emitting diode or the like as a short wavelength laser has been imminent.
By the way, in order to obtain such a diode,
Mass production technology for gallium nitride is required.

【0003】従来、金属ガリウムをアンモニア気流中1
000〜1200℃に加熱して多結晶窒化ガリウムを得
る方法が知られている。この方法では、窒化ガリウムは
金属ガリウム表面に生成する。その際、金属ガリウム表
面に窒化ガリウムが被覆してしまい、内部の金属ガリウ
ムとアンモニアガスが接触しないため、それ以上反応が
進行しない欠点がある。また、高純度の単相窒化ガリウ
ムを得るためには、高純度の金属Gaが必要であるの
で、容易に準備することができず、コスト高になる。
[0003] Conventionally, metallic gallium has been used in an ammonia gas stream.
A method for obtaining polycrystalline gallium nitride by heating to 000 to 1200 ° C. is known. In this method, gallium nitride is formed on the metal gallium surface. At this time, the surface of the metal gallium is covered with gallium nitride, and the inside of the metal gallium does not come into contact with the ammonia gas. Further, in order to obtain high-purity single-phase gallium nitride, high-purity metal Ga is required, so that it is not easy to prepare and the cost increases.

【0004】[0004]

【発明が解決しようとする課題】本発明はこうした事情
を考慮してなされたもので、三酸化二ガリウムをアンモ
ニアガス雰囲気下で窒化反応させることにより、高純度
の単層窒化ガリウムを得ることができる窒化ガリウムの
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is possible to obtain a high-purity single-layer gallium nitride by nitriding gallium trioxide in an ammonia gas atmosphere. It is an object of the present invention to provide a method for producing gallium nitride that can be performed.

【0005】[0005]

【課題を解決するための手段】本発明は、三酸化二ガリ
ウムを、アンモニアガス雰囲気下で窒化反応させること
を特徴とする窒化ガリウムの製造方法である。
SUMMARY OF THE INVENTION The present invention is a method for producing gallium nitride, which comprises nitriding gallium trioxide in an ammonia gas atmosphere.

【0006】[0006]

【発明の実施の形態】以下、本発明について更に詳しく
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0007】本発明において、純度99%以上の三酸化
二ガリウムを650℃〜1050℃、好ましくは850
℃〜950℃の温度で且つ純度99%以上の高純度アン
モニア雰囲気で窒化させることが好ましい。ここで、純
度99%以上の三酸化二ガリウムを使用することによ
り、出発原料の純度を反映した高純度、高均一な単相窒
化ガリウムを合成することができる。また、三酸化ガリ
ウムの温度範囲を上記のように規定したのは、650℃
未満では一部未反応の二酸化ガリウムが残ったり、結晶
性が悪いからであり、1050℃を超えると窒化ガリウ
ムの粒成長が著しく起こり、一部異常粒成長を起こすか
らである。
In the present invention, digallium trioxide having a purity of 99% or more is used at 650 ° C. to 1050 ° C., preferably 850 ° C.
It is preferable to perform nitriding in a high-purity ammonia atmosphere having a purity of 99% or more at a temperature of 950C to 950C. Here, by using digallium trioxide having a purity of 99% or more, high-purity and highly uniform single-phase gallium nitride reflecting the purity of the starting material can be synthesized. The reason why the temperature range of gallium trioxide is defined as above is that it is 650 ° C.
If it is less than 10%, unreacted gallium dioxide remains or the crystallinity is poor. If it exceeds 1050 ° C., gallium nitride grains grow remarkably and partially cause abnormal grain growth.

【0008】本発明によれば、金属ガリウムを窒化反応
させることにより得られるような不均一で低純度な窒化
ガリウムではなく、高純度の単相窒化ガリウムを得るこ
とができる。
According to the present invention, high-purity single-phase gallium nitride can be obtained instead of nonuniform and low-purity gallium nitride obtained by nitriding metal gallium.

【0009】図1は、本発明に係る窒化ガリウム製造装
置の概略図を示す。図中の付番1は電気炉を示し、この
電気炉1の軸方向に沿う内部には石英炉心管2が設置さ
れている。前記石英炉心管2の上流側には、混合容器3
が連結されている。この混合容器3には、バルブ4aを
介装した配管5aを介してアンモニアガス6を収容した
タンク7、及びバルブ4bを介装した配管5bを介して
窒素ガス8を収用したタンク9が夫々連結されている。
FIG. 1 is a schematic view of a gallium nitride manufacturing apparatus according to the present invention. Reference numeral 1 in the figure indicates an electric furnace, and a quartz furnace tube 2 is installed inside the electric furnace 1 along the axial direction. A mixing vessel 3 is provided upstream of the quartz furnace core tube 2.
Are connected. A tank 7 containing ammonia gas 6 via a pipe 5a provided with a valve 4a and a tank 9 containing nitrogen gas 8 via a pipe 5b provided with a valve 4b are connected to the mixing vessel 3 respectively. Have been.

【0010】前記石英炉心管2の下流側には容器10が
配管5cを介して接続され、更に容器10には硝酸バブ
ラー11が配管5dを介して連結されている。なお、図
中の付番12は石英炉心管2に配置された三酸化二ガリ
ウムを示し、付番13は希硝酸水溶液及び希硝酸水溶液
によりトラップされたアンモニアガスを示す。
A vessel 10 is connected to the downstream side of the quartz furnace tube 2 via a pipe 5c, and a nitric acid bubbler 11 is connected to the vessel 10 via a pipe 5d. Reference numeral 12 in the figure indicates digallium trioxide disposed in the quartz furnace tube 2, and reference numeral 13 indicates a dilute nitric acid aqueous solution and an ammonia gas trapped by the dilute nitric acid aqueous solution.

【0011】こうした構成の装置では、まず、電気炉1
に設置された石英反応管2内に三酸化二ガリウム12を
セットし、昇温した後、タンク9から窒素ガスを導入
し、所定の温度・時間で乾燥させる。更に、昇温により
目的とする反応温度になったらタンク7からアンモニア
ガスを導入し、一定時間熱処理を行ってアンモニアガス
を三酸化ニガリウムと反応させる。このときの反応は、
Ga+2NH→2GaN+3HOとなる。な
お、過剰のアンモニアガス6は、石英反応管2に接続さ
れている硝酸バブラー11にて吸収後排出される。
In the apparatus having such a configuration, first, the electric furnace 1
After the gallium trioxide 12 is set in the quartz reaction tube 2 installed in the furnace and heated, nitrogen gas is introduced from the tank 9 and dried at a predetermined temperature and time. Further, when the reaction temperature reaches a target reaction temperature by heating, ammonia gas is introduced from the tank 7 and heat treatment is performed for a certain period of time to cause the ammonia gas to react with nigium trioxide. The reaction at this time is
Ga 2 O 3 + 2NH 3 → 2GaN + 3H 2 O The excess ammonia gas 6 is discharged after being absorbed by a nitric acid bubbler 11 connected to the quartz reaction tube 2.

【0012】[0012]

【実施例】以下、本発明の一実施例を図1を参照して説
明する。但し、次に述べる実施例は本発明の一例を示す
もので、本願発明の権利範囲を特定するものではない。
An embodiment of the present invention will be described below with reference to FIG. However, the following embodiments are merely examples of the present invention, and do not specify the scope of the present invention.

【0013】まず、三酸化ニガリウム12を設置した石
英反応管2を室温(25℃)から200℃まで昇温した
後、窒素気流下で200℃、0.5時間乾燥した。つづ
いて、窒素ガスの導入を止めた後、更に目的温度(例え
ば600℃、650℃、700℃、750℃、800
℃、850℃、900℃、950℃)まで昇温した後、
アンモニアガスに切りかえ、1時間熱処理を行った。次
に、再びアンモニアガスから窒素ガスに切り替え、室温
まで放冷して窒化ガリウムを製造した。本実施例による
時間(時)と温度(℃)との関係は、図2に示す通りで
ある。但し、図2は、窒化反応のための温度が900℃
の場合について示した。
First, the temperature of the quartz reaction tube 2 in which the nigium trioxide 12 was placed was raised from room temperature (25 ° C.) to 200 ° C., and then dried at 200 ° C. for 0.5 hour in a nitrogen stream. Subsequently, after the introduction of the nitrogen gas is stopped, the target temperature (for example, 600 ° C., 650 ° C., 700 ° C., 750 ° C., 800
° C, 850 ° C, 900 ° C, 950 ° C)
The heat treatment was performed for 1 hour after switching to ammonia gas. Next, the gas was switched again from ammonia gas to nitrogen gas, and allowed to cool to room temperature to produce gallium nitride. The relationship between the time (hour) and the temperature (° C.) according to the present embodiment is as shown in FIG. However, FIG. 2 shows that the temperature for the nitriding reaction is 900 ° C.
The case of is shown.

【0014】このようにして得られた窒化ガリウムの組
成分析をX線回折分析法により同定したところ、図3に
示す結果が得られた。但し、図3の縦軸は強度(Intens
ity)を示す。図3において、グラフAは、三酸化二ガ
リウムを700℃で窒化反応させた窒化ガリウムのX線
回折図形を示す。グラフBは、三酸化二ガリウムを75
0℃で窒化反応させた窒化ガリウムのX線回折図形を示
す。グラフCは、三酸化二ガリウムを800℃で窒化反
応させた窒化ガリウムのX線回折図形を示す。グラフD
は、三酸化二ガリウムを850℃で窒化反応させた窒化
ガリウムのX線回折図形を示す。グラフEは、三酸化二
ガリウムを900℃で窒化反応させた窒化ガリウムのX
線回折図形を示す。なお、図2中の黒丸印は、ICDD
(International Center for Diffraction Data)
カードの窒化ガリウムのピークと一致したピークを示
す。
The composition analysis of the gallium nitride thus obtained was identified by X-ray diffraction analysis, and the results shown in FIG. 3 were obtained. However, the vertical axis of FIG.
ity). In FIG. 3, a graph A shows an X-ray diffraction pattern of gallium nitride obtained by nitriding gallium trioxide at 700 ° C. Graph B shows 75 g of digallium trioxide.
1 shows an X-ray diffraction pattern of gallium nitride subjected to a nitriding reaction at 0 ° C. Graph C shows an X-ray diffraction pattern of gallium nitride obtained by nitriding gallium trioxide at 800 ° C. Graph D
Shows an X-ray diffraction pattern of gallium nitride obtained by nitriding gallium trioxide at 850 ° C. Graph E shows X of gallium nitride obtained by nitriding digallium trioxide at 900 ° C.
3 shows a line diffraction pattern. The black circles in FIG. 2 indicate ICDD.
(International Center for Diffraction Data)
The peak coincides with the gallium nitride peak of the card.

【0015】また、同窒化ガリウムを走査型電子顕微鏡
(SEM)にり観察したところ、図4、図5及び図6に
示すような結果が得られた。ここで、図4は、700℃
で反応させた窒化ガリウムの走査型顕微鏡による500
0倍で撮った微細構造を示す写真図を示す。図5は、8
00℃で反応させた窒化ガリウムの走査型顕微鏡による
5000倍で撮った微細構造を示す写真図を示す。図6
は、900℃で反応させた窒化ガリウムの走査型顕微鏡
による5000倍で撮った微細構造を示す写真図を示
す。
When the gallium nitride was observed with a scanning electron microscope (SEM), the results shown in FIGS. 4, 5 and 6 were obtained. Here, FIG.
Of gallium nitride reacted at 500 under a scanning microscope
A photographic diagram showing the microstructure taken at 0x is shown. FIG.
FIG. 2 shows a photographic diagram showing a microstructure of gallium nitride reacted at 00 ° C. taken at a magnification of 5000 with a scanning microscope. FIG.
Shows a photographic diagram showing the microstructure of gallium nitride reacted at 900 ° C. at 5000 × magnification with a scanning microscope.

【0016】図4〜図6より、温度変化による粒成長が
認められないことが確認された。ここで、粒成長が認め
られるか否かの判断は丸みを帯びているかどうかで決め
るので、丸みを帯びていれば粒成長が認められると判断
し、丸みを帯びていなければ粒成長が認められないと判
断した。また、いずれの温度の場合も、粒径が各場って
シャープであることが確認された。更に、図4〜図6の
場合はサンプルが異なるが、サンプルが同じ場合、温度
変化による粒径の違いが認められないことを確認した。
4 to 6, it was confirmed that no grain growth due to temperature change was observed. Here, whether or not grain growth is recognized is determined by whether or not it is rounded, so it is determined that grain growth is recognized if it is rounded, and grain growth is recognized if it is not rounded. I decided not to. It was also confirmed that the particle size was sharp in each case at any temperature. Furthermore, it was confirmed that, although the samples were different in FIGS. 4 to 6, when the samples were the same, no difference in particle size due to temperature change was observed.

【0017】また、前記窒化ガリウムについて蛍光X線
分析法及びEPAM(Electron Probe X−ray Micro
analyzer)による不純物の同定をしたところ、下記表1
に示す結果が得られた。
Further, the gallium nitride is subjected to X-ray fluorescence analysis and EPAM (Electron Probe X-ray Micro).
analyzer) to identify the impurities, Table 1 below
The result shown in FIG.

【0018】[0018]

【表1】 [Table 1]

【0019】表1より、反応温度が650℃〜1050
℃のいずれの温度でも、蛍光X線分析法、EPMAによ
る不純物の同定においてGaN以外検出できず、良好な
結果が得られることが確認できた。
According to Table 1, the reaction temperature was 650 ° C. to 1050 ° C.
At any temperature of ° C, it was confirmed that impurities other than GaN could not be detected in the fluorescent X-ray analysis method or the identification of impurities by EPMA, and good results were obtained.

【0020】[0020]

【発明の効果】以上詳述した如く本発明によれば、三酸
化二ガリウムをアンモニアガス雰囲気下で窒化反応させ
ることにより、高純度の単相窒化ガリウムを得ることが
できる窒化ガリウムの製造方法を提供できる。
As described above in detail, according to the present invention, there is provided a method for producing gallium nitride which can obtain high-purity single-phase gallium nitride by nitriding gallium trioxide in an ammonia gas atmosphere. Can be provided.

【0021】特に、高純度微粒子粉末の三酸化二ガリウ
ムに、650〜1050℃の温度条件下の電気炉内で高
純度アンモニアガスを流すことにより、高純度の単相窒
化ガリウムを効率よく得ることが可能になる。
In particular, high-purity single-phase gallium nitride can be efficiently obtained by flowing high-purity ammonia gas through high-purity fine-grained powder of digallium trioxide in an electric furnace at a temperature of 650 to 1050 ° C. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の窒化ガリウムの製造方法で使用される
製造装置の概略説明図。
FIG. 1 is a schematic explanatory view of a manufacturing apparatus used in a method for manufacturing gallium nitride according to the present invention.

【図2】本発明の実施例に係る時間と温度との関係を示
す特性図。
FIG. 2 is a characteristic diagram showing a relationship between time and temperature according to the embodiment of the present invention.

【図3】三酸化二ガリウムから合成した窒化ガリウムの
X線回折図。
FIG. 3 is an X-ray diffraction diagram of gallium nitride synthesized from digallium trioxide.

【図4】700℃で反応させた窒化ガリウムの走査型顕
微鏡による5000倍で撮った微細構造を示す写真。
FIG. 4 is a photograph showing a microstructure of a gallium nitride reacted at 700 ° C. taken at a magnification of 5000 with a scanning microscope.

【図5】800℃で反応させた窒化ガリウムの走査型顕
微鏡による5000倍で撮った微細構造を示す写真。
FIG. 5 is a photograph showing a microstructure of gallium nitride reacted at 800 ° C., taken at a magnification of 5000 with a scanning microscope.

【図6】900℃で反応させた窒化ガリウムの走査型顕
微鏡による5000倍で撮った微細構造を示す写真。
FIG. 6 is a photograph showing a microstructure of gallium nitride reacted at 900 ° C. taken at a magnification of 5000 with a scanning microscope.

【符号の説明】[Explanation of symbols]

1…電気炉、 2…石英炉心管、 3…混合容器、 4a,4b…バルブ、 5a,5b、5c、5d…配管、 6…アンモニアガス、 7…窒素ガス、 8,9…タンク、 12…三酸化二ガリウム。 DESCRIPTION OF SYMBOLS 1 ... Electric furnace, 2 ... Quartz furnace core tube, 3 ... Mixing container, 4a, 4b ... Valve, 5a, 5b, 5c, 5d ... Piping, 6 ... Ammonia gas, 7 ... Nitrogen gas, 8,9 ... Tank, 12 ... Digallium trioxide.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 三酸化二ガリウムを、アンモニアガス雰
囲気下で窒化反応させることを特徴とする窒化ガリウム
の製造方法。
1. A method for producing gallium nitride, wherein a nitriding reaction is performed on digallium trioxide in an ammonia gas atmosphere.
【請求項2】 純度99%以上の高純度三酸化二ガリウ
ムを、700℃〜1000℃の温度でかつ純度99%以
上の高純度アンモニア雰囲気下で窒化反応させることを
特徴とする請求項1記載の窒化ガリウムの製造方法。
2. The nitriding reaction of high-purity digallium trioxide having a purity of 99% or more at a temperature of 700 ° C. to 1000 ° C. and in a high-purity ammonia atmosphere having a purity of 99% or more. For producing gallium nitride.
JP2000220937A 2000-07-21 2000-07-21 Gallium nitride manufacturing method Pending JP2002029713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000220937A JP2002029713A (en) 2000-07-21 2000-07-21 Gallium nitride manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000220937A JP2002029713A (en) 2000-07-21 2000-07-21 Gallium nitride manufacturing method

Publications (1)

Publication Number Publication Date
JP2002029713A true JP2002029713A (en) 2002-01-29

Family

ID=18715451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000220937A Pending JP2002029713A (en) 2000-07-21 2000-07-21 Gallium nitride manufacturing method

Country Status (1)

Country Link
JP (1) JP2002029713A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064153A (en) * 2003-08-08 2005-03-10 Koha Co Ltd Semiconductor layer
JP2006135269A (en) * 2004-11-09 2006-05-25 Koha Co Ltd Semiconductor device
JP2013129568A (en) * 2011-12-21 2013-07-04 Tosoh Corp Gallium nitride powder and method for producing the same
CN106319557A (en) * 2015-07-07 2017-01-11 中国科学院大连化学物理研究所 Photoelectrochemistry water decomposition GaN:ZnO photo-anode preparing method
US10855087B1 (en) 2004-01-15 2020-12-01 Comarco Wireless Systems Llc Power supply systems
WO2021070753A1 (en) 2019-10-07 2021-04-15 東ソー株式会社 Gallium nitride particles and method for producing same
CN112694073A (en) * 2021-01-05 2021-04-23 段文轩 Preparation of high-purity gallium nitride powder material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472567A3 (en) * 2003-08-08 2012-08-15 Koha Co., Ltd. Semiconductor layer
EP1653502A1 (en) * 2003-08-08 2006-05-03 Koha Co., Ltd. Semiconductor layer
JP2005064153A (en) * 2003-08-08 2005-03-10 Koha Co Ltd Semiconductor layer
EP1653502A4 (en) * 2003-08-08 2009-12-16 Koha Co Ltd Semiconductor layer
US8674399B2 (en) 2003-08-08 2014-03-18 Koha Co., Ltd. Semiconductor layer
US7977673B2 (en) 2003-08-08 2011-07-12 Koha Co., Ltd. Semiconductor layer with a Ga2O3 system
US10951042B2 (en) 2004-01-15 2021-03-16 Comarco Wireless Systems Llc Power supply systems
US10855087B1 (en) 2004-01-15 2020-12-01 Comarco Wireless Systems Llc Power supply systems
US10855086B2 (en) 2004-01-15 2020-12-01 Comarco Wireless Systems Llc Power supply equipment utilizing interchangeable tips to provide power and a data signal to electronic devices
US11586233B2 (en) 2004-01-15 2023-02-21 Comarco Wireless Systems Llc Power supply systems
JP4647287B2 (en) * 2004-11-09 2011-03-09 株式会社光波 Semiconductor device
JP2006135269A (en) * 2004-11-09 2006-05-25 Koha Co Ltd Semiconductor device
JP2013129568A (en) * 2011-12-21 2013-07-04 Tosoh Corp Gallium nitride powder and method for producing the same
CN106319557A (en) * 2015-07-07 2017-01-11 中国科学院大连化学物理研究所 Photoelectrochemistry water decomposition GaN:ZnO photo-anode preparing method
WO2021070753A1 (en) 2019-10-07 2021-04-15 東ソー株式会社 Gallium nitride particles and method for producing same
CN112694073A (en) * 2021-01-05 2021-04-23 段文轩 Preparation of high-purity gallium nitride powder material

Similar Documents

Publication Publication Date Title
JP5721095B2 (en) Aluminum nitride crystal particle manufacturing apparatus and aluminum nitride crystal particle manufacturing method
JP2002029713A (en) Gallium nitride manufacturing method
Bartłomiej et al. Investigation of nitriding and reduction processes in a nanocrystalline iron–ammonia–hydrogen system at 350 C
Cheng et al. Low-temperature solution synthesis and characterization of Ce-doped YAG nanoparticles
WO1999055619A1 (en) Process for producing metal oxide, target comprising the metal oxide for forming thin metal oxide film, process for producing the same, and process for producing thin metal oxide film
JP2024072875A (en) Group III nitride substrate
US6406799B1 (en) Method of producing anti-corrosion member and anti-corrosion member
JP2008521745A (en) Improved system and method for the synthesis of gallium nitride powders
JP4477752B2 (en) Method for producing gallium nitride
CN104313632B (en) Cathode of electrolytic tank of solid oxide material and its preparation method and application
JP2000239019A (en) Production of rare earth compound
JPH0948669A (en) Aluminum nitride and device for producing semiconductor
Girish et al. Synthesis of cubic yttrium aluminum garnet (YAG) powders by co-precipitation and two-step calcinations
Ebrahimi et al. Optimization of the coercivity-modifying hydrogenation and re-calcination processes for strontium hexaferrite powder synthesized conventionally
SAITOH et al. Synthesis of blue phosphor by decomposition of metal complex powder
CN106495194A (en) A kind of method of low temperature preparation alpha-type aluminum oxide superfine powder
CN107628637A (en) A kind of method for preparing III oxide and nitride nano post
JPH05279714A (en) Production of alloy powder and alloy powder
US7638112B2 (en) Method of manufacturing zinc aluminate nano-material
JP5615225B2 (en) Method for producing lithium titanate nanoparticles using hydrothermal chemical reaction
Stafiniak et al. Synthesis and Characterization of Ga2O3 and In2O3 Nanowires
KR20250014726A (en) Manufacturing method of zirconium nitride nitrogen carrier for ammonia synthesis and zirconium nitride nitrogen carrier for ammonia synthesis manufactured thereby
JP4756239B2 (en) Hollow spherical particles made of gallium nitride and method for producing the same
JPH01275412A (en) Production of aluminum nitride fine powder
JP2003212520A (en) Method for producing gallium nitride thin film