[go: up one dir, main page]

JP2002029215A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JP2002029215A
JP2002029215A JP2000217607A JP2000217607A JP2002029215A JP 2002029215 A JP2002029215 A JP 2002029215A JP 2000217607 A JP2000217607 A JP 2000217607A JP 2000217607 A JP2000217607 A JP 2000217607A JP 2002029215 A JP2002029215 A JP 2002029215A
Authority
JP
Japan
Prior art keywords
tread
thickness
base layer
rubber
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000217607A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
崇 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2000217607A priority Critical patent/JP2002029215A/en
Publication of JP2002029215A publication Critical patent/JP2002029215A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic tire improved in rolling resistance and wet braking performance of the tire to be compatible with each other by designing the optimum grounding form and the material quality constitution of the tire. SOLUTION: A tread of the tire is formed by a two-layer structure of a cap layer and a base layer, a groove extending in the circumferential direction is disposed in the tread part of the tread, and the tire is characterized by setting the negative rate to 15 to 30%, setting the rubber thickness of the base layer to 10% or more of the tread thickness, lowering energy loss of the base layer rubber, and setting the rectangle rate 100×(La+Lb)/2/Lc of the grounding form of the tread surface of the tread to 65 to 95%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気入りタイヤに係
り、特に、タイヤの転がり抵抗を増加させることなく湿
潤路面での制動性能を改善させた空気入りタイヤに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire having improved braking performance on wet road surfaces without increasing the rolling resistance of the tire.

【0002】[0002]

【従来の技術】タイヤの転がり抵抗を低減させるために
は、トレッドゴムの材質を低エネルギー損失の配合にす
る必要があり、一方、制動性能特に湿潤(ウエット)路
面での制動性能を向上させるには、同じトレッドゴムの
材質を反対に高エネルギー損失の配合にする必要があ
り、互いに矛盾する二律背反の関係にある。この問題を
解決する手段として、従来から、制動性の良い高ロス配
合ゴム層を表層(キャップ層)に、転がり抵抗の小さい
低ロス配合ゴムを基層(ベース層)に構成する、所謂
(キャップ/ベース)2層構造から形成されるトレッド
が提案され実用に供されているが、未だ充分には満足の
いく状況には至ってない。
2. Description of the Related Art In order to reduce the rolling resistance of a tire, it is necessary to mix the tread rubber with a material having a low energy loss. On the other hand, in order to improve the braking performance, especially on a wet (wet) road surface. However, it is necessary to use the same material for the tread rubber in a high energy loss composition, which is inconsistent with each other. As means for solving this problem, conventionally, a so-called (cap / cap layer) in which a high-loss compounded rubber layer having good damping properties is formed as a surface layer (cap layer) and a low-loss compounded rubber having low rolling resistance is formed as a base layer (base layer). Base) A tread formed from a two-layer structure has been proposed and put to practical use, but has not yet reached a sufficiently satisfactory state.

【0003】即ち、転がり抵抗を小さくするためにキャ
ップ層に低ロスゴムを使用すると、湿潤路面での制動性
能は低下し、また、湿潤路面制動性能を向上させるため
に接地形状を矩形化すると、補強ベルト層の変形が大き
くなり、転がり抵抗が悪化するという不具合があった。
転がり抵抗と湿潤制動性能を両立させ、両方ともに満足
できる水準に達した空気入りタイヤを提供することは、
従来難しいとされていた。
[0003] That is, if low-loss rubber is used for the cap layer in order to reduce the rolling resistance, the braking performance on a wet road surface is reduced. There was a problem that the deformation of the belt layer was increased and the rolling resistance was deteriorated.
Providing pneumatic tires that achieve both rolling resistance and wet braking performance, and both have reached a satisfactory level,
Traditionally, it was considered difficult.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記事実を考
慮し、トレッドパターンの接地挙動とトレッド2層構造
との適合性を検討して、接地形状と材料構造特性を最適
に設計することで、タイヤの転がり抵抗と湿潤制動性能
とを両立させて改善した空気入りタイヤを、実用的かつ
経済的に提供することを課題とする。
SUMMARY OF THE INVENTION In consideration of the above facts, the present invention examines the contact behavior of the tread pattern and the compatibility between the tread two-layer structure and optimizes the contact shape and material structure characteristics. It is another object of the present invention to provide a pneumatic tire having improved tire rolling resistance and wet braking performance both practically and economically.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明
は、タイヤのトレッドがキャップ層/ベース層の2層構
造で形成され、該トレッドの踏面部に、周方向に沿って
延びる複数の周方向溝が配設されたリブパターンを有す
る空気入りタイヤにおいて、(1)前記トレッドの踏面パ
ターンのネガティブ率が15〜30%であり、(2)前記
トレッドのベース層ゴムの厚みが、該トレッドゴム全体
の厚みの10%以上であり、(3)前記トレッドのベース
層ゴムのエネルギー損失が、キャップ層ゴムのエネルギ
ー損失よりも低いゴム配合であり、(4)該タイヤを標準
リムに組み込み正規内圧を充填して100%荷重を負荷
して接地させた時の、タイヤ幅方向中心での接地長さを
Lc、中心から振り分けて最大接地幅の80%の位置に
おける左右の接地長さをLa、Lbとすると、前記トレ
ッドの踏面の接地形状の矩形率100×(La+Lb)
/2/Lcが65〜95%である、ことを特徴とする空
気入りタイヤである。
According to the first aspect of the present invention, a tread of a tire is formed with a two-layer structure of a cap layer / base layer, and a plurality of treads extending in a circumferential direction are provided on a tread portion of the tread. In a pneumatic tire having a rib pattern provided with circumferential grooves, (1) a negative rate of a tread surface pattern of the tread is 15 to 30%, and (2) a thickness of a base layer rubber of the tread is such that: (3) The rubber composition in which the energy loss of the base layer rubber of the tread is lower than the energy loss of the cap layer rubber, and (4) the tire is incorporated into a standard rim. Lc is the ground contact length at the center of the tire width direction when the tire is grounded by applying a normal internal pressure and applying a 100% load, and the right and left ground lengths at a position of 80% of the maximum ground width are distributed from the center. La, When Lb, rectangular ratio 100 × the contact shape of the tread surface of the tread (La + Lb)
/ 2 / Lc is 65 to 95%.

【0006】ここで、トレッドの踏面パターンのネガテ
ィブ率とは、踏面パターンの展開面積に占める全ての溝
面積の総和の割合(%)である。また、トレッド踏面の接
地形状の矩形率は、図2のフットプリントに示すよう
に、タイヤを標準リムに組み込み正規内圧を充填して1
00%荷重を負荷して接地させた時の、タイヤ幅方向中
心での接地長さをLc、中心から振り分けて最大接地幅
の80%の位置における左右の接地長さをLa、Lbと
すると、 接地形状の矩形率(%) = 100×(La+Lb)/
2/Lc で算出される。
Here, the negative ratio of the tread tread pattern is a ratio (%) of the sum of all groove areas to the developed area of the tread pattern. In addition, as shown in the footprint of FIG. 2, the rectangular ratio of the tread tread's ground contact shape is determined by incorporating a tire into a standard rim and filling the tire with a regular internal pressure.
Assuming that the contact length at the center of the tire width direction when a 00% load is applied and the contact is made is Lc, and the left and right contact lengths at a position 80% of the maximum contact width from the center are La and Lb, Rectangular ratio (%) of grounded shape = 100 × (La + Lb) /
It is calculated as 2 / Lc.

【0007】次に、請求項1に記載の空気入りタイヤの
作用を説明する。本項記載の空気入りタイヤは、タイヤ
のトレッドの踏面部に、周方向に沿って延びる複数の周
方向溝が配設されたリブパターンを有すると共に、踏面
のパターンのネガティブ率を15%以上としたので、湿
潤路面を走行する際に排水作用が良好に働いて、湿潤路
面での制動性能を優れたものにしている。ネガティブ率
が15%未満では、踏面パターン上で排水路として機能
する溝の割合が少な過ぎるので、湿潤制動性能を充分な
水準にまで改善する効果に欠ける。なお、ネガティブ率
が30%を越えると、耐(偏)磨耗性、操縦安定性、乗
り心地及び道路騒音等が悪化する。
Next, the operation of the pneumatic tire according to the first aspect will be described. The pneumatic tire according to this aspect has a rib pattern in which a plurality of circumferential grooves extending along a circumferential direction are provided on a tread portion of a tread of the tire, and a negative rate of the tread pattern is 15% or more. Therefore, when the vehicle travels on a wet road surface, the drainage function works well, and the braking performance on the wet road surface is improved. If the negative rate is less than 15%, the proportion of grooves functioning as drainage channels on the tread pattern is too small, and thus the effect of improving the wet braking performance to a sufficient level is lacking. If the negative rate exceeds 30%, the (uneven) abrasion resistance, steering stability, ride comfort, road noise, etc., deteriorate.

【0008】また、タイヤを標準リムに組み込み正規内
圧を充填して100%荷重を負荷して接地させた時の、
トレッドの踏面の接地形状の矩形率100×(La+L
b)/2/Lcが65%以上であるので、即ち、所謂フ
ットプリントと呼ばれる接地形状が楕円形ではなく矩形
に近いので、タイヤの踏面の中心部だけでなくショルダ
ー部を含めた全体で路面を広くがっちりと把握(グリッ
プ)しており、乾燥路面は勿論のこと湿潤路面において
も加速とブレーキの効きが良く制動性能に優れている。
トレッド踏面の接地形状の矩形率100×(La+L
b)/2/Lcが65%未満では上記の湿潤制動性能の
改善効果が少なく、一方、接地形状の矩形率が95%を
越えると、補強ベルト層の変形が大きくなり過ぎ、転が
り抵抗の悪化を来す。ここで、本項発明の上記リブパタ
ーンは、基本的な骨格を規定しているものであり、更に
適宜、横溝、斜溝、細溝、側溝、サイプ等を加えること
によって、湿潤制動性能の改善は勿論、耐(偏)磨耗性や
乗り心地、道路騒音、操縦安定性等を改善ないしは調整
することが出来る。
Further, when the tire is incorporated into a standard rim and filled with a regular internal pressure, a 100% load is applied and the tire is grounded,
The rectangular ratio of the ground contact shape of the tread tread 100 × (La + L
b) Since / 2 / Lc is 65% or more, that is, since the ground contact shape called a so-called footprint is not an elliptical shape but a rectangular shape, not only the center portion of the tread surface of the tire but also the entire road surface including the shoulder portion. The grip is wide and firm, and the acceleration and braking effects are good and the braking performance is excellent not only on a dry road surface but also on a wet road surface.
The rectangular ratio of the tread tread's ground contact shape is 100 × (La + L
b) If / Lc is less than 65%, the effect of improving the above-mentioned wet braking performance is small, while if the rectangularity of the ground contact shape exceeds 95%, the deformation of the reinforcing belt layer becomes too large, and the rolling resistance deteriorates. Come. Here, the rib pattern of the present invention defines a basic skeleton, and further improves the wet braking performance by appropriately adding lateral grooves, inclined grooves, narrow grooves, side grooves, sipes, and the like. Of course, it is possible to improve or adjust the (uneven) abrasion resistance, riding comfort, road noise, steering stability and the like.

【0009】また、本項記載タイヤは、トレッドがキャ
ップ層/ベース層の2層構造で形成され、ベース層のゴ
ム厚みが、トレッド全体のゴム厚みの10%以上あり、
ベース層のゴムが、エネルギー損失の低い配合ゴムであ
るので、タイヤが走行する際に受けるトレッド基層の繰
り返し変形サイクルでのエネルギー損失(発熱)が少な
く、転がり抵抗の小さい燃費の良いタイヤである。ベー
ス層のゴム厚みが、トレッド全体のゴム厚みの10%未
満では、上述の低エネルギー損失の効果が全体に寄与す
る割合が小さ過ぎる。トレッド全体に占めるベース層ゴ
ム厚みの上限は、タイヤの種類と用途により異なるが、
一般にはトレッド磨耗寿命を勘案して、80〜90%を
越えないことが望ましい。
In the tire according to the present invention, the tread has a two-layer structure of a cap layer and a base layer, and the rubber thickness of the base layer is at least 10% of the rubber thickness of the entire tread.
Since the rubber of the base layer is a compound rubber having a low energy loss, the tire has low energy loss (heat generation) in a repeated deformation cycle of the tread base layer when the tire runs, and has low rolling resistance and good fuel economy. If the rubber thickness of the base layer is less than 10% of the rubber thickness of the entire tread, the above-mentioned low energy loss effect contributes too little to the whole. The upper limit of the base layer rubber thickness in the entire tread varies depending on the type and use of the tire,
Generally, it is desirable that the ratio does not exceed 80 to 90% in consideration of the tread wear life.

【0010】なお、2層構造トレッドのキャップ層のゴ
ム材質は、乾燥及び湿潤路面との摩擦係数を確保するた
めに、エネルギー損失特性は比較的高めに設定される
が、その他に、路面による磨耗損傷を少なくし、道路騒
音を抑制する等を考慮して、適宜配合と材料物性が調整
される。
The rubber material of the cap layer of the tread having a two-layer structure has a relatively high energy loss characteristic in order to secure a coefficient of friction with a dry and wet road surface. The composition and material properties are appropriately adjusted in consideration of reducing damage and suppressing road noise.

【0011】請求項2に記載の発明は、請求項1の空気
入りタイヤにおいて、トレッド踏面のタイヤ幅方向中心
から幅方向に50%を越えて最初に位置する周方向溝に
より、トレッドを中央領域とショルダー領域に区分した
とき、ショルダー領域でのトレッド全体厚さDに対する
ベース層ゴム厚さdの比率d/Dの平均値が、中央領域
でのトレッド全体厚さDに対するベース層ゴム厚さdの
比率d/Dの平均値の1.5〜2.0倍であること特徴
としている。ここで、トレッド全体厚さD及びベース層
ゴム厚さdは、図2と3に示すように、いずれもトレッ
ドのクラウン曲面の法線方向に、トレッドの接地表面か
らベルト層の径方向最外層ベルトの被覆ゴム界面までの
距離を測ったものである。
According to a second aspect of the present invention, in the pneumatic tire according to the first aspect, the tread is positioned at a central region by a circumferential groove which is initially located more than 50% in the width direction from the center in the width direction of the tread tread surface. And the shoulder region, the average value of the ratio d / D of the base layer rubber thickness d to the total tread thickness D in the shoulder region is the base layer rubber thickness d to the total tread thickness D in the central region. Is 1.5 to 2.0 times the average value of the ratio d / D. Here, as shown in FIGS. 2 and 3, the total thickness D of the tread and the rubber thickness d of the base layer are all set in the normal direction of the crown curved surface of the tread and the radially outermost layer of the belt layer from the ground surface of the tread. It measures the distance of the belt to the coated rubber interface.

【0012】次に、請求項2に記載の空気入りタイヤの
作用を説明する。
Next, the operation of the pneumatic tire according to claim 2 will be described.

【0013】本発明タイヤのトレッド踏面の接地形状の
矩形率は65〜95%であるので、補強ベルト層の変形
は比較的に大きくなる。しかしながら、本項発明では、
トレッド踏面のショルダー領域で、トレッド全体厚さD
に対するベース層ゴム厚さdの比率d/Dの平均値を、
中央領域のd/Dの平均値よりも大きく(1.5〜2.
0倍)することにより、接地形状の矩形率が高い割りに
は、転がり抵抗を小さくすることができる。なお、ショ
ルダー領域でのd/Dが中央領域の1.5倍未満の場合
は、転がり抵抗を改善する効果が全体に及ぼす影響が小
さ過ぎ、2.0倍を越える場合は、補強ベルト層の変形
が大き過ぎて、転がり抵抗を増加させるだけでなく、操
縦安定性や道路騒音をも悪化させる懸念がある。
Since the rectangular ratio of the ground contact shape of the tread surface of the tire of the present invention is 65 to 95%, the deformation of the reinforcing belt layer is relatively large. However, in the present invention,
In the shoulder area of the tread tread, the overall tread thickness D
The average value of the ratio d / D of the base layer rubber thickness d to
It is larger than the average value of d / D in the central area (1.5 to 2.
By doing so, the rolling resistance can be reduced even though the rectangular ratio of the ground contact shape is high. When the d / D in the shoulder region is less than 1.5 times that of the central region, the effect of improving the rolling resistance has too little effect on the whole. There is a concern that the deformation is too large, which not only increases the rolling resistance but also deteriorates steering stability and road noise.

【0014】請求項3に記載の発明は、請求項1又は2
の空気入りタイヤにおいて、トレッドのベース層ゴムの
動的貯蔵弾性率(E′)が、キャップ層ゴムの動的貯蔵
弾性率(E′)よりも高く、ベース層ゴムの損失正接
(tanδ)が、キャップ層ゴムの損失正接(tan
δ)よりも小さいことを特徴としている。ここで、動的
貯蔵弾性率(E′)と損失正接(tanδ)とは、JI
SのK7198に規定される動的粘弾性試験法により測
定される粘弾性値で、ゴム材料の動的変形下における貯
蔵弾性率(実数部)とエネルギー損失(或は発熱特性)
を表すものである。
According to a third aspect of the present invention, there is provided the first or second aspect.
In the pneumatic tire of (1), the dynamic storage elastic modulus (E ′) of the tread base layer rubber is higher than the dynamic storage elastic modulus (E ′) of the cap layer rubber, and the loss tangent (tan δ) of the base layer rubber is Loss tangent (tan) of the cap layer rubber
δ). Here, the dynamic storage modulus (E ′) and the loss tangent (tan δ) are defined by JI
The viscoelasticity value measured by the dynamic viscoelasticity test method specified in K7198 of S. The storage elastic modulus (real part) and energy loss (or heat generation characteristics) of a rubber material under dynamic deformation
Is represented.

【0015】次に、請求項3に記載の空気入りタイヤの
作用を説明する。一般に、一定荷重下における粘弾性体
のエネルギー損失(発熱)は、材料定数の弾性項に反比
例し粘性項に比例する。従って、本項記載の空気入りタ
イヤは、トレッドのベース層ゴムの動的貯蔵弾性率
(E′)がキャップ層ゴムの動的貯蔵弾性率(E′)よ
りも高く、ベース層ゴムの損失正接(tanδ)がキャ
ップ層ゴムの損失正接(tanδ)よりも小さく設定さ
れているので、一定荷重下でのエネルギー損失(発熱)
が小さくなり、転がり抵抗の小さいタイヤとなる。
Next, the operation of the pneumatic tire according to the third aspect will be described. Generally, the energy loss (heat generation) of a viscoelastic body under a constant load is inversely proportional to the elasticity term of the material constant and proportional to the viscosity term. Therefore, in the pneumatic tire described in this section, the dynamic storage elastic modulus (E ') of the base layer rubber of the tread is higher than the dynamic storage elastic modulus (E') of the cap layer rubber, and the loss tangent of the base layer rubber is reduced. Since (tan δ) is set smaller than the loss tangent (tan δ) of the cap layer rubber, the energy loss under a constant load (heat generation)
Is small, and a tire having low rolling resistance is obtained.

【0016】請求項4に記載の発明は、請求項1から3
の空気入りタイヤにおいて、トレッドの踏面パターンの
ネガティブ率が20〜24%であることを特徴としてい
る。トレッドの踏面パターンのネガティブ率を、より好
ましい20〜24%の範囲に設定した本項の発明によ
り、排水性(湿潤制動)と耐磨耗性、操縦安定性、乗り
心地、道路騒音等のタイヤ諸性能を好適に両立させた高
性能タイヤを提供出来る。
[0016] The invention according to claim 4 is the invention according to claims 1 to 3.
Is characterized in that the negative rate of the tread tread pattern is 20 to 24%. According to the invention of this item in which the negative rate of the tread tread pattern is set in a more preferable range of 20 to 24%, tires such as drainage (wet braking) and abrasion resistance, handling stability, ride comfort, road noise, etc. It is possible to provide a high-performance tire having a good balance of various performances.

【0017】請求項5に記載の発明は、請求項1から3
の空気入りタイヤにおいて、トレッドのベース層ゴムの
厚さが、トレッドゴム全体の厚さの13%以上であるこ
とを特徴としている。発熱とエネルギー損失の小さいベ
ース層ゴムの厚みを、より好適な13%以上と規定した
本項の発明により、転がり抵抗の更に小さい高性能タイ
ヤを提供出来る。
[0017] The invention according to claim 5 is the invention according to claims 1 to 3.
Is characterized in that the thickness of the base layer rubber of the tread is 13% or more of the total thickness of the tread rubber. According to the invention of the present item in which the thickness of the base layer rubber having small heat generation and small energy loss is more preferably set to 13% or more, a high-performance tire having further reduced rolling resistance can be provided.

【0018】請求項6に記載の発明は、請求項1から3
の空気入りタイヤにおいて、トレッドのベース層ゴムの
厚みが、1.4〜2.0mmであることを特徴としてい
る。特に乗用車向けのラジアルタイヤ用とし、発熱とエ
ネルギー損失の小さいベース層ゴムのゲージを1.4〜
2.0mmの好ましい範囲に設定した本項の発明によ
り、転がり抵抗の特に小さい高性能ラジアルタイヤを提
供出来る。
The invention according to claim 6 is the invention according to claims 1 to 3
Is characterized in that the thickness of the base layer rubber of the tread is 1.4 to 2.0 mm. Especially for radial tires for passenger cars, the gauge of the base layer rubber with low heat generation and energy loss is 1.4 to
According to the invention of the present item set in a preferable range of 2.0 mm, a high-performance radial tire having particularly small rolling resistance can be provided.

【0019】請求項7に記載の発明は、請求項1から3
の空気入りタイヤにおいて、トレッドの踏面の接地形状
の矩形率100×(La+Lb)/2/Lcが70〜8
2%であることを特徴とする。トレッドの接地形状の矩
形率をより好適な70〜82%とした本項の発明によ
り、低転がり抵抗で路面の把握力の更に良い湿潤制動性
能に優れたタイヤを提供できる。
The invention according to claim 7 is the invention according to claims 1 to 3
In the pneumatic tire, the rectangular ratio of the ground contact shape of the tread surface of the tread is 100 × (La + Lb) / 2 / Lc of 70 to 8.
2%. According to the invention of this section in which the rectangular ratio of the tread contact shape is more preferably 70 to 82%, it is possible to provide a tire excellent in wet braking performance with low rolling resistance and better road surface grasping force.

【0020】[0020]

【発明の実施の形態】本発明の空気入りタイヤの1つの
実施形態を、図1〜2に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a pneumatic tire according to the present invention will be described with reference to FIGS.

【0021】図1に示すように、本発明の空気入りタイ
ヤのトレッド5は、キャップ層7とベース層8の2層構
造で形成され、トレッドの踏面部に、周方向に沿って延
びる複数の周方向溝(図では3本を例示する)が配設さ
れたリブパターンを有する空気入りタイヤであって、
(1)前記トレッドの踏面パターンのネガティブ率が15
〜30%であり、(2)前記トレッドのベース層のゴム厚
みdが、該トレッド全体のゴム厚みDの10%以上であ
り、(3)前記トレッドのベース層ゴム8のエネルギー損
失が、キャップ層ゴム7のエネルギー損失よりも低いゴ
ム配合であり、(4)図2のフットプリントに示すよう
に、タイヤを標準リムに組み込み正規内圧を充填して1
00%荷重を負荷して接地させた時の、タイヤ幅方向中
心での接地長さをLc、中心から振り分けて最大接地幅
Wmaxの80%の位置0.8Wmaxにおける左右の
接地長さをLa、Lbとすると、前記トレッドの踏面の
接地形状の矩形率100×(La+Lb)/2/Lcが
65〜95%である、ことを特徴とする空気入りタイヤ
である。
As shown in FIG. 1, the tread 5 of the pneumatic tire of the present invention is formed in a two-layer structure of a cap layer 7 and a base layer 8, and is provided on a tread surface portion of the tread along a circumferential direction. A pneumatic tire having a rib pattern in which circumferential grooves (three are illustrated in the figure) are provided,
(1) The negative rate of the tread tread pattern is 15
(2) the rubber thickness d of the base layer of the tread is 10% or more of the rubber thickness D of the entire tread; and (3) the energy loss of the base layer rubber 8 of the tread is a cap. The rubber composition is lower than the energy loss of the rubber layer 7, and (4) As shown in the footprint of FIG.
Lc is the contact length at the center of the tire width direction when a 00% load is applied, and La is the right and left contact length at a position 0.8 Wmax at 80% of the maximum contact width Wmax distributed from the center. The pneumatic tire is characterized in that a rectangular ratio 100 × (La + Lb) / 2 / Lc of the ground contact shape of the tread surface of the tread is 65 to 95%.

【0022】ここで、100%荷重とは、下記規格に記
載されている適用サイズ(プライレーティング)におけ
る単輪の最大荷重(最大負荷能力)のことであり、正規
内圧とは下記規格に記載されている適用サイズにおける
単輪の最大荷重(最大負荷能力)に対応する空気圧のこ
とであり、標準リムとは下記規格に記載されている適用
サイズにおける標準リムのことである。
Here, the 100% load is the maximum load (maximum load capacity) of a single wheel in the applicable size (ply rating) described in the following standard, and the normal internal pressure is described in the following standard. Is the air pressure corresponding to the maximum load (maximum load capacity) of a single wheel in the applicable size, and the standard rim is the standard rim in the applicable size described in the following standard.

【0023】規格とは、タイヤが生産又は使用される地
域に有効な産業規格によって決められている。例えば、
アメリカ合衆国では、“The Tire and Rim Association
Inc. のYear Book ”であり、欧州では、“European T
ire and Rim Technical OrganizationのStandards Manu
al”であり、日本では日本自動車タイヤ協会の“JATMA
のYear Book”に規定されている。
The standard is determined by an industrial standard effective in a region where the tire is manufactured or used. For example,
In the United States, the “The Tire and Rim Association
Inc.'s Year Book, and in Europe, "European T
Standards Manu of ire and Rim Technical Organization
al ”in Japan and the Japan Automobile Tire Association's“ JATMA
Year Book ”.

【0024】本発明の空気入りタイヤの好ましいもう1
つの実施形態を、図3に基づいて説明する。図3の右半
断面図から分かるように、本発明の空気入りタイヤのト
レッド踏面のタイヤ幅方向中心から幅方向に50%を越
えて最初に位置する周方向溝9により、トレッドを中央
領域とショルダー領域に区分したとき、ショルダー領域
でのトレッド全体厚さDに対するベース層ゴム厚さdの
比率d/Dの平均値が、中央領域でのトレッド全体厚さ
Dに対するベース層ゴム厚さdの比率d/Dの平均値の
1.5〜2.0倍であることを特徴とする空気入りタイ
ヤである。
Another preferred pneumatic tire of the present invention
One embodiment will be described with reference to FIG. As can be seen from the right half cross-sectional view of FIG. 3, the tread is defined as the central region by the circumferential groove 9 which is initially located more than 50% in the width direction from the center in the width direction of the tread tread of the pneumatic tire of the present invention. When divided into the shoulder region, the average value of the ratio d / D of the base layer rubber thickness d to the total tread thickness D in the shoulder region is the ratio of the base layer rubber thickness d to the total tread thickness D in the central region. A pneumatic tire characterized by being 1.5 to 2.0 times the average value of the ratio d / D.

【0025】なお、本発明の空気入りタイヤの内部(ケ
ース)構造は、特に制限はなく、サイズと用途に応じ
て、通常の一般ラジアルタイヤと同様の構成とすること
ができるので、内部構成に関しての説明は省略する。 (作用)本発明の実施形態の空気入りタイヤでは、トレ
ッド踏面の接地形状の矩形率100×(La+Lb)/
2/Lcを65〜95%の範囲、即ち矩形率を高く(矩
形に近いフットプリント)にすることにより、路面を全
体で把握する力が強く湿潤路面での制動性能に優れる。
同時に、補強ベルト層は比較的に大きな変形を受けるこ
とになるが、2層構造からなるトレッドでショルダー領
域のベース層ゴムにエネルギー損失の小さいゴムを厚く
配設することにより、転がり抵抗を低減している。
The internal (case) structure of the pneumatic tire of the present invention is not particularly limited, and may be the same as that of a normal general radial tire according to the size and use. Is omitted. (Operation) In the pneumatic tire according to the embodiment of the present invention, the rectangular ratio of the ground contact shape of the tread tread is 100 × (La + Lb) /
By setting 2 / Lc in the range of 65 to 95%, that is, by increasing the rectangular ratio (footprint close to a rectangle), the force for grasping the road surface as a whole is strong, and the braking performance on a wet road surface is excellent.
At the same time, the reinforcing belt layer undergoes relatively large deformation, but the rolling resistance is reduced by arranging thick rubber with low energy loss on the base layer rubber in the shoulder region with a tread having a two-layer structure. ing.

【0026】[0026]

【実施例】本発明の効果を確かめるために、サイズ17
5/80R14のラジアルタイヤにつき、本発明の適用
された実施例のタイヤ3種と比較例のタイヤを作製し、
転がり抵抗と湿潤路面制動の比較試験を実施した。踏面
パターンのネガティブ率、ベース層ゴムの厚み、ベース
層ゴムのエネルギー損失(tanδの相対値)は、実施
例タイヤも比較例タイヤも、同じく22%、1.6m
m、0.6とした。実施例のタイヤは、図3に例示した
実施形態の空気入りタイヤで、接地形状の矩形率は73
〜79%、ショルダー領域でのトレッド全体厚さDに対
するベース層ゴム厚さdの比率d/Dの平均値は0.1
8〜0.22、中央領域での同比率d/Dの平均値は
0.11、従って両者の比率は1.6〜2.0倍であ
る。比較例のタイヤは、ショルダー領域も中央領域も、
トレッド全体厚さDに対するベース層ゴム厚さdの比率
d/Dは0.11、従って両者の比率は1.0倍であ
る。これら4種のタイヤにつき、比較試験を実施して、
表1にその結果を示した。
EXAMPLE In order to confirm the effect of the present invention, a size 17
For 5 / 80R14 radial tires, three types of tires of the example to which the present invention was applied and a tire of a comparative example were produced.
A comparative test of rolling resistance and wet road braking was performed. The negative rate of the tread pattern, the thickness of the base layer rubber, and the energy loss (relative value of tan δ) of the base layer rubber were 22% and 1.6 m for both the example tire and the comparative example tire.
m and 0.6. The tire of the example is the pneumatic tire of the embodiment illustrated in FIG.
The average value of the ratio d / D of the base layer rubber thickness d to the total tread thickness D in the shoulder region is 0.1%.
The average value of the same ratio d / D in the central region is 0.11 and the ratio between the two is 1.6 to 2.0 times. In the tire of the comparative example, both the shoulder region and the central region,
The ratio d / D of the thickness d of the base layer rubber to the total thickness D of the tread is 0.11, and the ratio between the two is 1.0. A comparative test was conducted on these four tires,
Table 1 shows the results.

【0027】[0027]

【表1】 [Table 1]

【0028】試験の結果、本発明の適用された実施例の
タイヤ1〜3は、比較例1のタイヤに比べて、転がり抵
抗が小さく湿潤路面での制動距離が短い、即ち優れた制
動性能と転がり抵抗の改善された高性能空気入りタイヤ
であることが判った。
As a result of the test, the tires 1 to 3 of the embodiment to which the present invention is applied have lower rolling resistance and a shorter braking distance on a wet road surface than the tire of Comparative Example 1, that is, excellent braking performance. It turned out to be a high performance pneumatic tire with improved rolling resistance.

【0029】なお、本実施例にて行なわれた試験方法は
次の通りである。
The test method performed in the present embodiment is as follows.

【0030】<転がり抵抗係数>SAE J1269に
準拠して試験を行ない、転がり抵抗係数を算出した。
<Rolling Resistance Coefficient> A test was performed in accordance with SAE J1269 to calculate a rolling resistance coefficient.

【0031】<湿潤路面実車制動距離>供試タイヤを試
験用乗用車に装着して、湿潤路面のテストコースにて、
初速度100km/hで制動距離を測定した。
<Actual braking distance on wet road surface> The test tire was mounted on a test passenger car and tested on a wet road surface test course.
The braking distance was measured at an initial speed of 100 km / h.

【0032】[0032]

【発明の効果】本発明によると、従来の問題を解決する
ことができ、タイヤの転がり抵抗と湿潤路面での制動性
能を両立させて、大幅に改善せしめたトレッドの構成と
材料を提供することができ、もって転がり抵抗の低い制
動性能の良い経済的で安全な空気入りタイヤを提供する
ことが可能になった。
According to the present invention, it is possible to solve the conventional problems, and to provide a tread structure and material which have greatly improved tire rolling resistance and braking performance on a wet road surface, and are greatly improved. As a result, it has become possible to provide an economical and safe pneumatic tire with low rolling resistance and good braking performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る空気入りタイヤの断
面図である。
FIG. 1 is a sectional view of a pneumatic tire according to one embodiment of the present invention.

【図2】本発明の一実施形態に係る空気入りタイヤのト
レッド踏面の接地形状(フットプリント)図である。
FIG. 2 is a ground contact shape (footprint) diagram of a tread tread surface of a pneumatic tire according to an embodiment of the present invention.

【図3】本発明の一実施形態に係る空気入りタイヤの断
面図である。
FIG. 3 is a sectional view of a pneumatic tire according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ビードコア 2 カーカス 3 最外側ベルト 4 ベルト 5 トレッド 6 サイド 7 キャップ層 8 ベース層 9 周方向溝 D トレッド全体のゴム厚み d ベース層のゴム厚み Reference Signs List 1 bead core 2 carcass 3 outermost belt 4 belt 5 tread 6 side 7 cap layer 8 base layer 9 circumferential groove D rubber thickness of entire tread d rubber thickness of base layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 タイヤのトレッドがキャップ層/ベース
層の2層構造で形成され、該トレッドの踏面部に、周方
向に沿って延びる複数の周方向溝が配設されたリブパタ
ーンを有する空気入りタイヤにおいて、 (1)前記トレッドの踏面パターンのネガティブ率が15
〜30%であり、 (2)前記トレッドのベース層ゴムの厚みが、該トレッド
ゴム全体の厚みの10%以上であり、 (3)前記トレッドのベース層ゴムのエネルギー損失が、
キャップ層ゴムのエネルギー損失よりも低いゴム配合で
あり、 (4)該タイヤを標準リムに組み込み正規内圧を充填して
100%荷重を負荷して接地させた時の、タイヤ幅方向
中心での接地長さをLc、中心から振り分けて最大接地
幅の80%の位置における左右の接地長さをLa、Lb
とすると、前記トレッドの踏面の接地形状の矩形率10
0×(La+Lb)/2/Lcが65〜95%である、
ことを特徴とする空気入りタイヤ。
1. An air having a rib pattern in which a tread of a tire is formed in a two-layer structure of a cap layer / base layer, and a plurality of circumferential grooves extending in a circumferential direction are provided on a tread portion of the tread. (1) The negative rate of the tread tread pattern is 15
(2) the thickness of the base layer rubber of the tread is 10% or more of the total thickness of the tread rubber; and (3) the energy loss of the base layer rubber of the tread is:
The rubber compounding is lower than the energy loss of the cap layer rubber. (4) Grounding at the center in the tire width direction when the tire is built into a standard rim, filled with a normal internal pressure, and grounded by applying a 100% load. The length Lc is distributed from the center, and the right and left contact lengths at the position of 80% of the maximum contact width are La and Lb.
Then, the rectangular ratio of the ground contact shape of the tread tread is 10
0 × (La + Lb) / 2 / Lc is 65 to 95%,
A pneumatic tire, characterized in that:
【請求項2】 前記トレッド踏面のタイヤ幅方向中心か
ら幅方向に50%を越えて最初に位置する周方向溝によ
り、トレッドを中央領域とショルダー領域に区分したと
き、ショルダー領域でのトレッド全体厚さDに対するベ
ース層ゴム厚さdの比率d/Dの平均値が、中央領域で
のトレッド全体厚さDに対するベース層ゴム厚さdの比
率d/Dの平均値の1.5〜2.0倍であることを特徴
とする請求項1に記載の空気入りタイヤ。
2. When the tread is divided into a central region and a shoulder region by a circumferential groove that is initially located in the width direction exceeding 50% from the center of the tire tread surface in the width direction of the tire, the total thickness of the tread in the shoulder region is obtained. The average value of the ratio d / D of the base layer rubber thickness d to the thickness D is 1.5 to 2. the average value of the ratio d / D of the base layer rubber thickness d to the total tread thickness D in the central region. The pneumatic tire according to claim 1, wherein the pneumatic tire is 0 times.
【請求項3】 前記トレッドのベース層ゴムの動的貯蔵
弾性率(E′)が、キャップ層ゴムの動的貯蔵弾性率
(E′)よりも高く、ベース層ゴムの損失正接(tan
δ)が、キャップ層ゴムの損失正接(tanδ)よりも
小さいことを特徴とする請求項1又は2に記載の空気入
りタイヤ。
3. The dynamic storage elastic modulus (E ′) of the base layer rubber of the tread is higher than the dynamic storage elastic modulus (E ′) of the cap layer rubber, and the loss tangent (tan) of the base layer rubber is
The pneumatic tire according to claim 1 or 2, wherein δ) is smaller than a loss tangent (tan δ) of the cap layer rubber.
【請求項4】 前記トレッドの踏面パターンのネガティ
ブ率が、20〜24%であることを特徴とする請求項1
から3のいずれか1項に記載の空気入りタイヤ。
4. The negative ratio of the tread pattern of the tread is 20 to 24%.
4. The pneumatic tire according to any one of items 1 to 3.
【請求項5】 前記トレッドのベース層ゴムの厚さが、
トレッドゴムの厚さの13%以上であることを特徴とす
る請求項1から3のいずれか1項に記載の空気入りタイ
ヤ。
5. The thickness of the base layer rubber of the tread,
The pneumatic tire according to any one of claims 1 to 3, wherein the thickness is 13% or more of the thickness of the tread rubber.
【請求項6】 前記トレッドのベース層ゴムの厚みが、
1.4〜2.0mmであることを特徴とする請求項1か
ら3のいずれか1項に記載の空気入りタイヤ。
6. The thickness of the base layer rubber of the tread,
The pneumatic tire according to any one of claims 1 to 3, wherein the diameter is 1.4 to 2.0 mm.
【請求項7】 前記トレッドの踏面の接地形状の矩形率
100×(La+Lb)/2/Lcが70〜82%であ
ることを特徴とする請求項1から3のいずれか1項に記
載の空気入りタイヤ。
7. The air according to claim 1, wherein a rectangular ratio of a ground contact shape of the tread surface of the tread, 100 × (La + Lb) / 2 / Lc, is 70 to 82%. Containing tires.
JP2000217607A 2000-07-18 2000-07-18 Pneumatic tire Pending JP2002029215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217607A JP2002029215A (en) 2000-07-18 2000-07-18 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217607A JP2002029215A (en) 2000-07-18 2000-07-18 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2002029215A true JP2002029215A (en) 2002-01-29

Family

ID=18712688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217607A Pending JP2002029215A (en) 2000-07-18 2000-07-18 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2002029215A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301868C (en) * 2003-01-24 2007-02-28 住友橡胶工业株式会社 Pneumatic tire
JP2009137413A (en) * 2007-12-05 2009-06-25 Bridgestone Corp Tire
JP2009255867A (en) * 2008-04-21 2009-11-05 Yokohama Rubber Co Ltd:The Pneumatic tire with tread pattern
JP2009279951A (en) * 2008-05-19 2009-12-03 Bridgestone Corp Pneumatic tire
JP2010058554A (en) * 2008-09-01 2010-03-18 Bridgestone Corp Pneumatic tire
WO2012005247A1 (en) * 2010-07-05 2012-01-12 株式会社ブリヂストン Pneumatic tire for two-wheeled vehicle
JP2015160440A (en) * 2014-02-26 2015-09-07 住友ゴム工業株式会社 pneumatic tire
JP2021024306A (en) * 2019-07-31 2021-02-22 Toyo Tire株式会社 Pneumatic tire
CN113905901A (en) * 2019-06-20 2022-01-07 株式会社普利司通 Tyre for vehicle wheels

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113504A (en) * 1984-11-07 1986-05-31 Bridgestone Corp Pneumatic tire for car
JPS62103205A (en) * 1985-07-19 1987-05-13 Bridgestone Corp Heavy load pneumatic tyre
JPH02267003A (en) * 1989-04-07 1990-10-31 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH0382609A (en) * 1989-08-24 1991-04-08 Bridgestone Corp High-performance pneumatic tire
JPH03164305A (en) * 1989-11-24 1991-07-16 Bridgestone Corp Radial tire for automobile
JPH04278807A (en) * 1991-03-04 1992-10-05 Toyo Tire & Rubber Co Ltd Pneumatic tire
JPH068710A (en) * 1992-06-25 1994-01-18 Yokohama Rubber Co Ltd:The Pneumatic tire for ice and snow-covered road
JPH0655811U (en) * 1993-01-13 1994-08-02 株式会社ブリヂストン Pneumatic tire
JPH06297911A (en) * 1993-04-14 1994-10-25 Toyo Tire & Rubber Co Ltd Tire
JPH0781303A (en) * 1993-09-13 1995-03-28 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH08108710A (en) * 1994-10-07 1996-04-30 Bridgestone Corp Pneumatic tire
JPH0958219A (en) * 1995-06-16 1997-03-04 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH09309301A (en) * 1996-05-24 1997-12-02 Bridgestone Corp Radial tire
JPH10211803A (en) * 1996-11-29 1998-08-11 Bridgestone Corp Radial tire with partial wear preventing fine grooves
JP2001199205A (en) * 2000-01-17 2001-07-24 Sumitomo Rubber Ind Ltd Pneumatic tire

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113504A (en) * 1984-11-07 1986-05-31 Bridgestone Corp Pneumatic tire for car
JPS62103205A (en) * 1985-07-19 1987-05-13 Bridgestone Corp Heavy load pneumatic tyre
JPH02267003A (en) * 1989-04-07 1990-10-31 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH0382609A (en) * 1989-08-24 1991-04-08 Bridgestone Corp High-performance pneumatic tire
JPH03164305A (en) * 1989-11-24 1991-07-16 Bridgestone Corp Radial tire for automobile
JPH04278807A (en) * 1991-03-04 1992-10-05 Toyo Tire & Rubber Co Ltd Pneumatic tire
JPH068710A (en) * 1992-06-25 1994-01-18 Yokohama Rubber Co Ltd:The Pneumatic tire for ice and snow-covered road
JPH0655811U (en) * 1993-01-13 1994-08-02 株式会社ブリヂストン Pneumatic tire
JPH06297911A (en) * 1993-04-14 1994-10-25 Toyo Tire & Rubber Co Ltd Tire
JPH0781303A (en) * 1993-09-13 1995-03-28 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH08108710A (en) * 1994-10-07 1996-04-30 Bridgestone Corp Pneumatic tire
JPH0958219A (en) * 1995-06-16 1997-03-04 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH09309301A (en) * 1996-05-24 1997-12-02 Bridgestone Corp Radial tire
JPH10211803A (en) * 1996-11-29 1998-08-11 Bridgestone Corp Radial tire with partial wear preventing fine grooves
JP2001199205A (en) * 2000-01-17 2001-07-24 Sumitomo Rubber Ind Ltd Pneumatic tire

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301868C (en) * 2003-01-24 2007-02-28 住友橡胶工业株式会社 Pneumatic tire
JP2009137413A (en) * 2007-12-05 2009-06-25 Bridgestone Corp Tire
JP2009255867A (en) * 2008-04-21 2009-11-05 Yokohama Rubber Co Ltd:The Pneumatic tire with tread pattern
JP2009279951A (en) * 2008-05-19 2009-12-03 Bridgestone Corp Pneumatic tire
JP2010058554A (en) * 2008-09-01 2010-03-18 Bridgestone Corp Pneumatic tire
WO2012005247A1 (en) * 2010-07-05 2012-01-12 株式会社ブリヂストン Pneumatic tire for two-wheeled vehicle
JP2015160440A (en) * 2014-02-26 2015-09-07 住友ゴム工業株式会社 pneumatic tire
CN113905901A (en) * 2019-06-20 2022-01-07 株式会社普利司通 Tyre for vehicle wheels
CN113905901B (en) * 2019-06-20 2024-03-01 株式会社普利司通 Tire with a tire body
JP2021024306A (en) * 2019-07-31 2021-02-22 Toyo Tire株式会社 Pneumatic tire
JP7278899B2 (en) 2019-07-31 2023-05-22 Toyo Tire株式会社 pneumatic tire

Similar Documents

Publication Publication Date Title
JP6408520B2 (en) Pneumatic radial tire for passenger cars and method of using the same
JP4328371B2 (en) Pneumatic tires for motorcycles
JP5781610B2 (en) Pneumatic radial tire for passenger cars and method of using the same
JP3240118B2 (en) Pneumatic tire
JP5981108B2 (en) Pneumatic radial tire for passenger cars and method of using the same
JPH11321237A (en) Pneumatic radial tire
JPH02185802A (en) Pneumatic radial tire
JP2019137328A (en) Pneumatic tire
JP2002029215A (en) Pneumatic tire
JPH10100613A (en) Pneumatic radial tire
JP2006273240A (en) Pneumatic tire for motorcycle
JP3591991B2 (en) Flat pneumatic radial tire for light trucks
JP3875364B2 (en) Pneumatic radial tire
JP2899200B2 (en) Pneumatic radial tire
JPH05254308A (en) Pneumatic radial tire
JPH11334317A (en) Pneumatic radial tire
JP3952097B2 (en) Pneumatic tire
JP2003146015A (en) Pneumatic tire
JP4000276B2 (en) Pneumatic tire
JPH07237407A (en) Tire for all-landform vehicle
JP4634888B2 (en) Pneumatic tire
JP2008254596A (en) Pneumatic tire
JPS6120441B2 (en)
JP6291430B2 (en) studless tire
JP4141551B2 (en) Pneumatic tire with shallow narrow grooves in the buttress

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309