JP2002022774A - Magnetic-field-controlled balancing current sensor - Google Patents
Magnetic-field-controlled balancing current sensorInfo
- Publication number
- JP2002022774A JP2002022774A JP2000206522A JP2000206522A JP2002022774A JP 2002022774 A JP2002022774 A JP 2002022774A JP 2000206522 A JP2000206522 A JP 2000206522A JP 2000206522 A JP2000206522 A JP 2000206522A JP 2002022774 A JP2002022774 A JP 2002022774A
- Authority
- JP
- Japan
- Prior art keywords
- core
- magnetic field
- zero
- current
- cores
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 claims abstract description 27
- 239000004020 conductor Substances 0.000 claims abstract description 7
- 230000005284 excitation Effects 0.000 claims description 38
- 238000001514 detection method Methods 0.000 claims description 21
- 230000004907 flux Effects 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 abstract 1
- 229920006395 saturated elastomer Polymers 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 46
- 230000005415 magnetization Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、コアを用いた非接
触形の磁界制御バランス形電流センサに関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type magnetic field control balanced type current sensor using a core.
【0002】[0002]
【従来の技術】コアを用いた磁界制御バランス形電流セ
ンサは、制御方式からみると、開ループ形と閉ループ形
に大別される。開ループ形では回路構成は簡単になる
が、検出精度、直線性、検出範囲に改良の余地がある。
一方、閉ループ形は一般に高精度となるものが多い。例
えば、コアの一部にホール素子を挿入した回路で、磁束
レベルが零になるように制御して検出する交直両用のも
のなどがある。しかしながら、これらはいずれも漏洩イ
ンダクタンスの影響を受けたり、ホール素子の温度依存
性、あるいはコアのヒステリシス特性などのために、十
分な検出特性を得ることができない。2. Description of the Related Art A magnetic field control balanced current sensor using a core is roughly classified into an open loop type and a closed loop type in terms of a control method. Although the open loop type simplifies the circuit configuration, there is room for improvement in detection accuracy, linearity, and detection range.
On the other hand, many closed-loop types generally have high accuracy. For example, there is a circuit in which a Hall element is inserted into a part of a core, and which is used for both AC and DC which controls and detects a magnetic flux level to be zero. However, none of them can obtain sufficient detection characteristics due to the influence of leakage inductance, the temperature dependency of the Hall element, the hysteresis characteristics of the core, and the like.
【0003】そこで、このような影響を除去するため、
零磁界形の回路を利用した電流センサが提案されてい
る。零磁界とは外部印加磁界が零の場合、磁化特性が原
点対象になることを示し、零磁界形の回路はコアの磁界
レベルを等価的に零になるように制御して電流を検出す
る。零磁界形の回路は、例えば、図5に示すコア1に励
磁コイル2及び検出コイル3が巻回され、コア1に導線
4を配置し、励磁コイル2には正弦波電流源からの励振
周波数によりコア1を過励起にしておく。そして、導線
4に被検出電流を流したときに検出コイル3から出力さ
れるものである。なお、コア1はニッケル,鉄ベースの
アモルファスであり、ヒステリシス特性は図7のように
なる。ここでΔHは励磁電流によって印加される磁界で
あり、Hcはその中点である。[0003] In order to eliminate such effects,
A current sensor using a zero magnetic field type circuit has been proposed. The zero magnetic field indicates that when the externally applied magnetic field is zero, the magnetization characteristic is symmetric with respect to the origin, and the zero magnetic field type circuit detects the current by controlling the magnetic field level of the core to be equivalently zero. In the zero-magnetic-field type circuit, for example, an excitation coil 2 and a detection coil 3 are wound around a core 1 shown in FIG. 5, a conductor 4 is arranged on the core 1, and an excitation frequency from a sine-wave current source is placed on the excitation coil 2. To excite the core 1 in advance. The current is output from the detection coil 3 when a current to be detected flows through the conductor 4. The core 1 is an amorphous material based on nickel and iron, and the hysteresis characteristics are as shown in FIG. Here, ΔH is the magnetic field applied by the exciting current, and Hc is the midpoint.
【0004】コア1の被検出電流がゼロの場合、図6
(a)に示すように、図の上部に示した励起周波数に対
し、検出コイル3からは図の下部に示した磁化レベル
(図7のヒステリシス特性参照)が検出される。被検出
電流をコア1が検出すると、図6(b)に示すように図
の上部に示した励起周波数がバイアスされ、コア1にバ
イアス磁界を与えることになり、図の下部に示した磁化
レベルがこの場合矢印方向に変動する。この変動分を元
の状態(零磁界状態)になるように逆励磁し、その電流
から被検出電流の大きさと極性を求めることができるよ
うになっている。When the current to be detected in the core 1 is zero, FIG.
As shown in (a), the magnetization level shown in the lower part of the figure (see the hysteresis characteristic in FIG. 7) is detected from the detection coil 3 with respect to the excitation frequency shown in the upper part of the figure. When the core 1 detects the current to be detected, the excitation frequency shown in the upper part of the figure is biased as shown in FIG. 6B, and a bias magnetic field is applied to the core 1 so that the magnetization level shown in the lower part of the figure is obtained. Varies in the direction of the arrow in this case. This variation is reversely excited so as to be in the original state (zero magnetic field state), and the magnitude and polarity of the current to be detected can be obtained from the current.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、アモル
ファスコアの磁化特性には不安定性の要素が多く、この
ため、測定精度の高いものがなかなか得られず、また、
大容量を測定する場合はコイル形状等の外形も大きくな
る。ところで、上記回路を利用した装置において、リチ
ウムイオン電池の充放電検査機が挙げられる。その被検
査電池は携帯電話機に使用されている小型のものからハ
イブリッドカー用の大容量のものまである。また、その
測定電流の範囲もミリアンペアから数百アンペアの広範
囲に渉っている。そして、その測定精度も高精度のもの
が要求されている。現在では分解能10万分の1、応答
時間10μs程度のものが要求されているが、上記の回
路構成では、不安定性の要素が多く測定精度の高いもの
が得られないのが実状である。However, there are many instability factors in the magnetization characteristics of the amorphous core, so that it is difficult to obtain one having high measurement accuracy.
When measuring a large capacity, the outer shape such as the coil shape also becomes large. By the way, in an apparatus using the above-mentioned circuit, there is a charge / discharge inspection machine for a lithium ion battery. The batteries to be inspected range from small batteries used for mobile phones to large batteries for hybrid cars. Also, the range of the measured current extends over a wide range from milliamps to hundreds of amps. The measurement accuracy is also required to be high. At present, a device having a resolution of 1 / 100,000 and a response time of about 10 μs is required. However, in the above-described circuit configuration, a device having many instability elements and high measurement accuracy cannot be obtained.
【0006】本発明は、コアの持つ漏洩インダクタンス
やヒステリシスの影響を無くし、高精度、高分解能の磁
界制御バランス形電流センサを提供することを目的とす
る。SUMMARY OF THE INVENTION An object of the present invention is to provide a high-precision, high-resolution magnetic field control balanced current sensor which eliminates the influence of leakage inductance and hysteresis of a core.
【0007】[0007]
【課題を解決するための手段】本発明は上記目的を達成
するために、請求項1の発明は、ヒステリシスの磁束レ
ベルの勾配がほぼ90度に近く、かつ、飽和領域の磁束
密度が約20〜1000ガウスであるコアを使用したこ
とを特徴とする。例えば、一般的なアモルファスコアの
うち、ほぼ7千ガウスの特性に対し、その1/(14〜
25)程度に低い特性のコア(約260〜500ガウ
ス)を製作し、使用する。また、磁束密度を低く設定す
ることでコアの厚みを薄くすることができる。なお、2
0ガウス程度になると、特性の維持および製作限界付近
になる。また、1000ガウス程度になると、測定精度
が低くなるがコアの製品管理が容易である。SUMMARY OF THE INVENTION In order to achieve the above object, according to the present invention, the gradient of the magnetic flux level of hysteresis is almost 90 degrees, and the magnetic flux density in the saturation region is about 20 degrees. It is characterized by using a core of 10001000 gauss. For example, in a general amorphous core, for a characteristic of approximately 7,000 gauss, 1 / (14 to
25) Produce and use a core (about 260-500 gauss) with low characteristics. Also, by setting the magnetic flux density to be low, the thickness of the core can be reduced. In addition, 2
At about 0 Gauss, the characteristics are maintained and the manufacturing limit is approached. On the other hand, when it is about 1000 Gauss, the measurement accuracy is low, but the product management of the core is easy.
【0008】請求項2の発明は、請求項1記載のコアを
1対配置してそれぞれを測定用コアと基準用コアとに区
別し、1対の励磁コイルおよび1対の検出コイルを両コ
アにそれぞれ巻回し、1対の励磁コイルは高周波励振電
源に並列に接続し、1対の検出コイルは零磁界制御回路
に並列に接続し、前記測定用コアには測定用導線が挿通
されると共に逆励磁コイルを巻回し、該逆励磁コイルを
逆励磁回路に接続し、前記零磁界制御回路の出力信号で
前記逆励磁回路を作動させ、前記逆励磁回路の出力電流
を検出するようにしたことを特徴とする。According to a second aspect of the present invention, a pair of the cores according to the first aspect is arranged, each of which is divided into a measurement core and a reference core. And a pair of excitation coils are connected in parallel to a high frequency excitation power supply, a pair of detection coils are connected in parallel to a zero magnetic field control circuit, and a measurement conductor is inserted through the measurement core. A reverse excitation coil is wound, the reverse excitation coil is connected to a reverse excitation circuit, the reverse excitation circuit is operated by an output signal of the zero magnetic field control circuit, and an output current of the reverse excitation circuit is detected. It is characterized by.
【0009】[0009]
【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて説明する。図1に示すように、1対のコ
アは測定用コア5と基準用コア6とに区別され、測定用
コア5には励磁コイル、検出コイル(偏移磁界検出)及
び逆励磁コイルが巻回され、測定用導線7が挿通されて
いる。また、基準用コア6には励磁コイル及び検出コイ
ル(零磁界検出)が巻回されている。Embodiments of the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, the pair of cores is divided into a measurement core 5 and a reference core 6, and an excitation coil, a detection coil (shift magnetic field detection), and a reverse excitation coil are wound around the measurement core 5. The measuring conductor 7 is inserted. An excitation coil and a detection coil (zero magnetic field detection) are wound around the reference core 6.
【0010】2つの励磁コイルは高周波励振電源の出力
側に並列に接続され、2つの検出コイルは零磁界制御回
路の入力側に並列に接続され、逆励磁コイルは逆励磁回
路の出力側に抵抗と直列にして接続されている。零磁界
制御回路の出力側は逆励磁回路の入力側に接続され、逆
励磁回路の逆励磁コイルへの電流を制御するようになっ
ている。検出する出力信号は抵抗にかかる電圧を検出す
ることにより演算して電流を求める。The two exciting coils are connected in parallel to the output side of the high frequency excitation power supply, the two detection coils are connected in parallel to the input side of the zero magnetic field control circuit, and the reverse excitation coil is connected to the output side of the reverse excitation circuit. And are connected in series. The output side of the zero magnetic field control circuit is connected to the input side of the reverse excitation circuit to control the current flowing to the reverse excitation coil of the reverse excitation circuit. The output signal to be detected is calculated by detecting the voltage applied to the resistor to obtain the current.
【0011】ここで使用されるコア5,6は、ヒステリ
シスの磁束レベルの勾配がほぼ90度に近く、かつ、飽
和領域が一般的な一例のコア(図2のA1参照)のほぼ
7千ガウスに対し、その1/(20〜25)程度に低い
特性を有するものである(図2のA2参照)。すなわ
ち、飽和領域がほぼ260〜370ガウスのものであ
り、実際にはほぼ300ガウスのものを製作し使用す
る。また、磁束密度が低いほど磁束レベルの勾配も容易
に大きくすることができ、コアの厚みも薄くすることが
できる。The cores 5 and 6 used here have a gradient of the magnetic flux level of the hysteresis of approximately 90 degrees and a saturation region of approximately 7,000 gauss, which is a typical example of the core (see A1 in FIG. 2). On the other hand, it has characteristics as low as about 1 / (20 to 25) (see A2 in FIG. 2). That is, the saturation region is about 260 to 370 Gauss, and actually, about 300 Gauss is manufactured and used. Also, the lower the magnetic flux density, the more easily the gradient of the magnetic flux level can be increased, and the thickness of the core can be reduced.
【0012】次に、本発明による磁界制御バランス形電
流センサについて図3及び図4を参照して説明する。高
周波励振電源から同型のコイルに高周波(例えば、数十
KHz)(図3(a))を送ることにより2つのコア
5,6が励振される。被測定電流が零の場合は、2つの
検出コイルで検出された波形は同じになり、図4(a)
に示すように、飽和領域に達すると急激にゼロとなる波
形になる。したがって、この2つの波形を演算しても位
相差はゼロであり、逆励磁コイルに電流は流れない。な
お、電流ゼロのときの検出コイルの検出信号を零磁界制
御回路において磁化レベルのプラス側を整形したものが
図3(b)に示す波形である。Next, a magnetic field control balanced current sensor according to the present invention will be described with reference to FIGS. By transmitting a high frequency (for example, several tens KHz) (FIG. 3A) from a high frequency excitation power supply to a coil of the same type, the two cores 5 and 6 are excited. When the current to be measured is zero, the waveforms detected by the two detection coils are the same, and FIG.
As shown in Fig. 7, when the saturation region is reached, the waveform suddenly becomes zero. Therefore, even if these two waveforms are calculated, the phase difference is zero, and no current flows through the reverse excitation coil. FIG. 3B shows a waveform obtained by shaping the detection signal of the detection coil when the current is zero and the plus side of the magnetization level in the zero magnetic field control circuit.
【0013】検出コイルの出力波形は、図4(a)に示
すように、零磁界においては両側のトリガ間は1周期で
あり、マイナスのトリガは1/2周期のときである。図
4(b)のマイナスのトリガは電流が流れたときの磁界
レベルが偏移した分だけ位置が変動し(位相差)、上記
2つのマイナスのトリガにおいて、そのトリガの出現す
る時間差が電流の大きさになる。As shown in FIG. 4A, the output waveform of the detection coil is one cycle between triggers on both sides in a zero magnetic field, and a negative trigger is a half cycle in a zero magnetic field. The position of the negative trigger shown in FIG. 4B changes by an amount corresponding to the deviation of the magnetic field level when the current flows (phase difference). Size.
【0014】導線7に被測定電流がプラス側に流れた場
合、測定用コア5の磁化レベルが上側に偏移し、測定用
コア5の検出コイルの出力信号(図4(b))と基準用
コア6の検出コイルの出力信号(図4(a))が零磁界
制御回路に入力される。この2つの検出コイルからの出
力を零磁界制御回路に入力し、その磁化レベルで切り取
った波形が図3(b),(c)である。零磁界制御回路
内で2つの信号を減算することで図3(d)の波形が得
られる。この波形で逆励磁回路を作動させ、被測定電流
に依る磁界と同じ大きさの逆方向の磁界を発生させ、零
磁界になるように制御する。この値は被測定電流と等価
なのでこれを計測電流として出力する。このとき、逆励
磁コイルの巻き数に応じて測定レベルを変更することが
できる。また、導線7に被測定電流がマイナス側に流れ
た場合、測定用コア5の磁化レベルが下側に偏移し、零
磁界制御回路内でその磁化レベルで切り取り整形した波
形が図3(e)である。そしてこの波形を同様に零磁界
制御回路において減算した波形(図3(f)参照)によ
って逆励磁回路を作動させ、被測定電流に依る磁界と同
じ大きさの逆方向の磁界を発生させ、零磁界になるよう
に制御する。When the current to be measured flows to the positive side through the conducting wire 7, the magnetization level of the measuring core 5 shifts to the upper side, and the output signal of the detecting coil of the measuring core 5 (FIG. 4B) and the reference The output signal (FIG. 4A) of the detection coil of the application core 6 is input to the zero magnetic field control circuit. Outputs from these two detection coils are input to a zero magnetic field control circuit, and waveforms cut out at the magnetization levels are shown in FIGS. 3B and 3C. By subtracting the two signals in the zero magnetic field control circuit, the waveform shown in FIG. 3D is obtained. By operating the reverse excitation circuit with this waveform, a reverse magnetic field having the same magnitude as the magnetic field depending on the current to be measured is generated, and control is performed so that the magnetic field becomes zero. Since this value is equivalent to the current to be measured, this is output as the measurement current. At this time, the measurement level can be changed according to the number of turns of the reverse excitation coil. When the current to be measured flows through the conducting wire 7 on the negative side, the magnetization level of the measuring core 5 shifts to the lower side, and a waveform cut and shaped at the magnetization level in the zero magnetic field control circuit is shown in FIG. ). Then, the reverse excitation circuit is activated by a waveform (see FIG. 3 (f)) obtained by subtracting this waveform in the zero magnetic field control circuit in the same manner, and a reverse magnetic field having the same magnitude as the magnetic field depending on the current to be measured is generated. Control so that it becomes a magnetic field.
【0015】このように、2つのコアの零磁界を零磁界
制御回路において減算したものは、出力の波形が対称に
なり、電流値ゼロになる。また、導線7が通電したこと
により、2つの検出コイルのバランスを取ることで常
時、零磁界と等価するように作動させるので、被測定電
流の大きさに関係なく測定できることが利点の1つであ
る。また、このようにコアの動作点が動かないことは、
周辺回路の影響やコア材料の持つ特性の影響を除去する
ことが可能となる。As described above, when the zero magnetic field of the two cores is subtracted in the zero magnetic field control circuit, the output waveform becomes symmetric and the current value becomes zero. In addition, one of the advantages is that measurement can be performed irrespective of the magnitude of the current to be measured since the two detection coils are always balanced and actuated so as to be equivalent to the zero magnetic field when the conducting wire 7 is energized. is there. Also, that the operating point of the core does not move like this,
It is possible to remove the influence of the peripheral circuit and the influence of the characteristics of the core material.
【0016】また、零磁界制御回路では2つのコアにお
いて、零磁界と測定側磁界の差を計測するので、コアの
特性において、磁力レベルが変化すると磁界レベルも急
激に変化するものを使用することにより、励振周波数の
周期が安定に測定でき、また、飽和領域が顕著であるの
でトリガ波形が鋭くなり、測定ポイントの位置がはっき
りし、また、ずれも減少する。従来は細かく分周しても
誤差が出るため,あまり細かく分周することに意味がな
かったが、本案では、1周期をより細かく分周すること
ができ、精度の高い電流測定が行える。また、被測定電
流が一定でなく高速で変化しても、励振周波数より低い
変化であればそれに追従するので、交流電流の高精度計
測も可能である。In the zero-magnetic-field control circuit, the difference between the zero magnetic field and the magnetic field on the measurement side is measured in the two cores. Therefore, the core characteristics should be such that when the magnetic force level changes, the magnetic field level also changes rapidly. As a result, the period of the excitation frequency can be measured stably, and since the saturation region is remarkable, the trigger waveform becomes sharp, the position of the measurement point becomes clear, and the deviation decreases. In the past, even if the frequency was finely divided, an error appeared, so that it was meaningless to divide the frequency very finely. However, in the present invention, one cycle can be finely divided and current measurement with high accuracy can be performed. Further, even if the current to be measured is not constant and changes at a high speed, if the change is lower than the excitation frequency, the change follows the change, so that high-accuracy measurement of the AC current is possible.
【0017】[0017]
【発明の効果】本発明は以上述べた通りであり、請求項
1に記載の発明では、磁力の立上りレベルの変化が急激
で、飽和領域が小さいコアを使用することにより、分解
能の高い測定値を求めることができ、測定精度を上げる
ことが可能になる。請求項2に記載の発明では、コアを
2つ使用して零磁界においてバランスをとり、この状態
で計測するので、温度による不安定性、ヒステリシス特
性のばらつき等、種々の影響を除去し、測定値の安定性
が得られるので分解能を上げることができ、零磁界での
電流測定において測定精度の高い電流センサを得ること
ができる。The present invention is as described above. According to the first aspect of the present invention, a measured value having a high resolution can be obtained by using a core in which the rising level of the magnetic force changes rapidly and the saturation region is small. Can be obtained, and the measurement accuracy can be improved. According to the second aspect of the present invention, two cores are used to balance in a zero magnetic field and the measurement is performed in this state. , The resolution can be increased, and a current sensor with high measurement accuracy can be obtained in current measurement with zero magnetic field.
【図1】本発明による実施の形態の、磁界制御バランス
形電流センサの構成図である。FIG. 1 is a configuration diagram of a magnetic field control balanced current sensor according to an embodiment of the present invention.
【図2】本発明による実施の形態で使用されるコアのヒ
ステリシス特性を説明する図である。FIG. 2 is a diagram illustrating a hysteresis characteristic of a core used in the embodiment according to the present invention.
【図3】本発明による実施の形態で使用される励振周波
数の、電流センサ回路の各所における信号の波形を説明
する図である。FIG. 3 is a diagram illustrating signal waveforms at various points of a current sensor circuit at an excitation frequency used in the embodiment according to the present invention.
【図4】実施の形態における、(a)ゼロ電流の波形
と、(b)測定電流の波形を示す図である。FIG. 4 is a diagram showing a waveform of (a) a zero current and a waveform of a measured current in the embodiment.
【図5】従来の一般的な磁界センサの模式図である。FIG. 5 is a schematic view of a conventional general magnetic field sensor.
【図6】励振周波数に対する出力波形を、(a)ゼロ電
流の波形と、(b)測定電流の波形を説明する図であ
る。6A and 6B are diagrams illustrating output waveforms with respect to an excitation frequency, (a) a waveform of a zero current, and (b) a waveform of a measurement current.
【図7】図6に示す出力波形を説明するための、従来の
ヒステリシス特性の図である。7 is a diagram of a conventional hysteresis characteristic for explaining the output waveform shown in FIG.
5 測定用コア 6 基準用コア 5 Measurement core 6 Reference core
フロントページの続き (72)発明者 三浦 憲治 北九州市小倉北区片野新町2丁目13番10号 ジャパン システム エンジニアリング 株式会社内 Fターム(参考) 2G017 AA04 AB03 AC09 AD04 AD05 BA08 CA03 CB02 CC03 2G025 AA14 AB15 2G035 AA00 AB04 AC05 AC08 AD18 AD20 Continuation of the front page (72) Inventor Kenji Miura 2-13-10 Katanoshinmachi, Kokurakita-ku, Kitakyushu Japan System Engineering Co., Ltd. F term (reference) 2G017 AA04 AB03 AC09 AD04 AD05 BA08 CA03 CB02 CC03 2G025 AA14 AB15 2G035 AA00 AB04 AC05 AC08 AD18 AD20
Claims (2)
90度に近く、かつ、飽和領域の磁束密度が約20〜1
000ガウスであるコアを使用したことを特徴とする磁
界制御バランス形電流センサ。The gradient of the magnetic flux level of the hysteresis is almost 90 degrees, and the magnetic flux density in the saturation region is about 20 to 1
A magnetic field control balanced current sensor using a 000 gauss core.
ぞれを測定用コアと基準用コアとに区別し、1対の励磁
コイルおよび1対の検出コイルを両コアにそれぞれ巻回
し、1対の励磁コイルは高周波励振電源に並列に接続
し、1対の検出コイルは零磁界制御回路に並列に接続
し、前記測定用コアには測定用導線が挿通されると共に
逆励磁コイルを巻回し、該逆励磁コイルを逆励磁回路に
接続し、前記零磁界制御回路の出力信号で前記逆励磁回
路を作動させ、前記逆励磁回路の出力電流を検出するよ
うにしたことを特徴とする磁界制御バランス形電流セン
サ。2. A pair of cores according to claim 1 are arranged, each of which is divided into a measurement core and a reference core, and a pair of excitation coils and a pair of detection coils are wound around both cores, respectively. A pair of excitation coils are connected in parallel to the high frequency excitation power supply, a pair of detection coils are connected in parallel to the zero magnetic field control circuit, a measurement conductor is inserted through the measurement core, and a reverse excitation coil is wound. A magnetic field, wherein the reverse excitation coil is connected to a reverse excitation circuit, the reverse excitation circuit is operated by an output signal of the zero magnetic field control circuit, and an output current of the reverse excitation circuit is detected. Control balance type current sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000206522A JP3502982B2 (en) | 2000-07-07 | 2000-07-07 | Magnetic field control type current measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000206522A JP3502982B2 (en) | 2000-07-07 | 2000-07-07 | Magnetic field control type current measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002022774A true JP2002022774A (en) | 2002-01-23 |
JP3502982B2 JP3502982B2 (en) | 2004-03-02 |
Family
ID=18703435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000206522A Expired - Fee Related JP3502982B2 (en) | 2000-07-07 | 2000-07-07 | Magnetic field control type current measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3502982B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104808042A (en) * | 2015-05-22 | 2015-07-29 | 河北工业大学 | Magnetic-flux-gate current sensor |
CN105572456A (en) * | 2016-03-10 | 2016-05-11 | 河北工业大学 | AC/DC fluxgate current sensor |
KR102039268B1 (en) * | 2018-08-23 | 2019-10-31 | 주식회사 에프램 | An Alternating and Direct Current Detection Circuit |
KR102039269B1 (en) * | 2018-08-23 | 2019-10-31 | 주식회사 에프램 | A Residual Current Detection Circuit |
KR102039272B1 (en) * | 2018-08-23 | 2019-10-31 | 주식회사 에프램 | A DC Power Current Detection Circuit |
KR102039270B1 (en) * | 2018-08-23 | 2019-10-31 | 주식회사 에프램 | A Ground-Fault Current Detection Circuit |
KR102039271B1 (en) * | 2018-08-23 | 2019-10-31 | 주식회사 에프램 | A Earth Leakage Current Detection Circuit |
CN111398650A (en) * | 2020-06-04 | 2020-07-10 | 华中科技大学 | A Fast Response DC Comparator Based on Multi-sensor Fusion |
CN113484579A (en) * | 2021-06-16 | 2021-10-08 | 深圳供电局有限公司 | Magnetic saturation characteristic determination method, device, computer equipment and storage medium |
-
2000
- 2000-07-07 JP JP2000206522A patent/JP3502982B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104808042A (en) * | 2015-05-22 | 2015-07-29 | 河北工业大学 | Magnetic-flux-gate current sensor |
CN105572456A (en) * | 2016-03-10 | 2016-05-11 | 河北工业大学 | AC/DC fluxgate current sensor |
KR102039268B1 (en) * | 2018-08-23 | 2019-10-31 | 주식회사 에프램 | An Alternating and Direct Current Detection Circuit |
KR102039269B1 (en) * | 2018-08-23 | 2019-10-31 | 주식회사 에프램 | A Residual Current Detection Circuit |
KR102039272B1 (en) * | 2018-08-23 | 2019-10-31 | 주식회사 에프램 | A DC Power Current Detection Circuit |
KR102039270B1 (en) * | 2018-08-23 | 2019-10-31 | 주식회사 에프램 | A Ground-Fault Current Detection Circuit |
KR102039271B1 (en) * | 2018-08-23 | 2019-10-31 | 주식회사 에프램 | A Earth Leakage Current Detection Circuit |
CN111398650A (en) * | 2020-06-04 | 2020-07-10 | 华中科技大学 | A Fast Response DC Comparator Based on Multi-sensor Fusion |
CN111398650B (en) * | 2020-06-04 | 2020-10-09 | 华中科技大学 | A Fast Response DC Comparator Based on Multi-sensor Fusion |
WO2021243989A1 (en) * | 2020-06-04 | 2021-12-09 | 华中科技大学 | Fast-response direct-current comparator based on multi-sensor fusion |
CN113484579A (en) * | 2021-06-16 | 2021-10-08 | 深圳供电局有限公司 | Magnetic saturation characteristic determination method, device, computer equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP3502982B2 (en) | 2004-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100993928B1 (en) | Magnetic bridge type current sensor, magnetic bridge type current detection method, and magnetic bridge used in the sensor and detection method | |
US5523677A (en) | DC current sensor | |
US8797020B2 (en) | Closed-loop fluxgate current sensor | |
JP4816952B2 (en) | Current sensor | |
JPH10513549A (en) | DC and AC current sensors with sub-loop operated current transformers | |
WO2012092467A2 (en) | Sensor arrangements for measuring magnetic susceptibility | |
JP2011164027A (en) | Current sensor and battery with current sensor | |
CN106018915A (en) | Current detector | |
JP2002022774A (en) | Magnetic-field-controlled balancing current sensor | |
JP2019032216A (en) | Speed detection apparatus and speed detection method | |
US11181555B2 (en) | Current sensing method and current sensor | |
JP4716030B2 (en) | Current sensor | |
EP1591759A1 (en) | Electromagnetic flowmeter | |
JP2013015351A (en) | Magnetic field detecting device, and ambient magnetic field cancelling method | |
US6018238A (en) | Hybrid non-contact clamp-on current meter | |
US12313657B2 (en) | Method and system for improved current sensor | |
JPH0131591B2 (en) | ||
JP6162361B2 (en) | Orthogonal excitation type current sensor | |
JP2000266786A (en) | Current sensor | |
JPH0743389A (en) | Current detector for line current detection | |
JPH06201731A (en) | Magnetic balance type current measuring device | |
JP2002116242A (en) | Magnetic detecting device | |
JPH03296615A (en) | Detecting apparatus of position of moving body | |
JP2016194455A (en) | Device and method for measuring magnetic characteristics of magnetic body | |
JPS6241267Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031125 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071219 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091219 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101219 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101219 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |