JP2002014055A - Foreign object inspection apparatus and method - Google Patents
Foreign object inspection apparatus and methodInfo
- Publication number
- JP2002014055A JP2002014055A JP2000199446A JP2000199446A JP2002014055A JP 2002014055 A JP2002014055 A JP 2002014055A JP 2000199446 A JP2000199446 A JP 2000199446A JP 2000199446 A JP2000199446 A JP 2000199446A JP 2002014055 A JP2002014055 A JP 2002014055A
- Authority
- JP
- Japan
- Prior art keywords
- foreign matter
- group
- foreign
- pixels
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
(57)【要約】
【課題】 被検査物表面の異物検査にあたって異物のサ
イズ、形状を判定できる異物検査装置および方法を提供
すること。
【解決手段】 被検査物表面1の状態を検出する検出手
段6の複数画素からなる検出データに基づき異物判定手
段7が被検査物表面の異物を判定して異物抽出データを
出力する。演算手段8bではその異物抽出データを所定
画素数からなる単位領域毎にグループ分けし、各グルー
プ毎に該グループ内の異物とみなされる画素数を計数す
る。判定手段10では該演算手段8bで求めた各グルー
プ毎の異物画素数に基づき、当該グループに対応する単
位領域における異物のサイズを推定する判定処理を行
う。
(57) [Problem] To provide a foreign substance inspection apparatus and method capable of determining the size and shape of a foreign substance in the foreign substance inspection on the surface of an inspection object. SOLUTION: A foreign matter judging means 7 judges foreign matter on the surface of a test object based on detection data composed of a plurality of pixels of a detecting means 6 for detecting a state of the surface 1 of the test object, and outputs foreign matter extraction data. The computing means 8b divides the foreign substance extraction data into groups each having a predetermined number of pixels and counts the number of pixels regarded as foreign substances in the group for each group. The judging means 10 performs a judging process for estimating the size of the foreign matter in the unit area corresponding to the group based on the number of foreign matter pixels for each group obtained by the calculating means 8b.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、異物検査装置お
よび方法、特に、被検査面上の微小異物や凹凸傷やスク
ラッチなどの欠陥を高感度で検出する異物検査装置およ
び方法に関し、例えば、半導体ウェハ(以下、ウェハと
いう)、マスク、レチクル、ガラス基板などの表面に付
着した異物や凹凸傷やスクラッチなどの欠陥を検出し
て、その異物や欠陥のサイズ(粒径)、形状などを検査
する異物検査装置および方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foreign matter inspection apparatus and method, and more particularly to a foreign matter inspection apparatus and method for detecting a minute foreign matter on a surface to be inspected, a defect such as an uneven scratch or a scratch with high sensitivity, and for example, a semiconductor device. Detects foreign matter and defects such as uneven scratches and scratches attached to the surface of a wafer (hereinafter, referred to as a wafer), mask, reticle, glass substrate, etc., and inspects the size (particle size) and shape of the foreign matter and defect. The present invention relates to a foreign matter inspection device and method.
【0002】[0002]
【従来の技術】半導体集積回路(例えば、IC)などの
製造過程において、ウェハの表面、あるいは半導体領
域、絶縁領域、電極、配線などを形成する各種パターン
に異物が付着すると、ICの性能が劣化するため、パタ
ーン形成後に異物検査装置によってウェハ表面の異物有
無の検査がなされる。2. Description of the Related Art In the process of manufacturing a semiconductor integrated circuit (eg, IC), if foreign matter adheres to the surface of a wafer or various patterns for forming a semiconductor region, an insulating region, an electrode, a wiring, etc., the performance of the IC deteriorates. Therefore, after the pattern is formed, an inspection for the presence or absence of foreign matter on the wafer surface is performed by a foreign matter inspection device.
【0003】ところで、ICを高歩留りで製造するため
には、ウェハ表面に付着した異物を検出して、その異物
のサイズ(粒径)、形状などを検査し、各種半導体製造
装置や工程の清浄度を定量的に把握し、製造プロセスを
的確に管理する必要がある。従来、異物のサイズ、形状
などを検査する異物検査装置として、例えば、特開平1
1−51622号公報に示された装置がある。In order to manufacture an IC with a high yield, foreign substances adhering to the wafer surface are detected, the size (particle size) and shape of the foreign substances are inspected, and various semiconductor manufacturing apparatuses and processes are cleaned. It is necessary to grasp the degree quantitatively and manage the manufacturing process appropriately. 2. Description of the Related Art Conventionally, as a foreign substance inspection apparatus for inspecting the size and shape of a foreign substance, for example,
There is an apparatus disclosed in Japanese Patent Application Publication No. 1-51622.
【0004】上記の従来知られた異物検査装置は、ウェ
ハ表面にレーザ光を斜方照射し、該ウェハ表面の付着異
物の凹凸による散乱光を検出し、該散乱光の検出データ
に基づきウェハ上のパターンの同一性を判定して、該パ
ターン以外を異物として検出する。次に、異物を検出し
た部分を撮像装置により撮像し、該撮像装置による画像
データから異物画像を抽出し、該抽出異物画像に基づき
異物のサイズ、形状を測定する。しかしながら、上記の
異物検査装置においては、異物検査後に、異物部分を撮
像装置により撮像し、該撮像装置の画像データから抽出
した抽出異物画像に基づいて異物のサイズ、形状を測定
するため、撮像装置の動作時間分、ウェハの異物有無の
検査を行うことができなくなることから、スループット
が低下してしまう。The above-described conventionally known foreign matter inspection apparatus irradiates a laser beam obliquely to the wafer surface, detects scattered light due to unevenness of the foreign matter attached to the wafer surface, and detects the scattered light on the wafer based on the detected data of the scattered light. Is determined, and a pattern other than the pattern is detected as a foreign substance. Next, a portion where the foreign matter is detected is imaged by an imaging device, a foreign image is extracted from image data by the imaging device, and the size and shape of the foreign material are measured based on the extracted foreign image. However, in the above foreign substance inspection apparatus, after the foreign substance inspection, the foreign substance portion is imaged by the imaging apparatus, and the size and shape of the foreign substance are measured based on the extracted foreign substance image extracted from the image data of the imaging apparatus. Since the inspection for the presence or absence of foreign matter on the wafer cannot be performed for the operation time, the throughput is reduced.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記の点に
鑑みて為されたものであり、被検査物表面の異物検査に
あたって異物のサイズ(粒径)を判定もしくは推定でき
る異物検査装置および方法を提供することを目的とす
る。また、被検査物表面の異物検査にあたって異物の形
状を判定もしくは推定できる異物検査装置および方法を
提供することを目的とする。DISCLOSURE OF THE INVENTION The present invention has been made in view of the above points, and provides a foreign substance inspection apparatus and a foreign substance inspection apparatus capable of judging or estimating the size (particle size) of a foreign substance when inspecting a foreign substance on the surface of an inspection object. The aim is to provide a method. It is another object of the present invention to provide a foreign matter inspection apparatus and method capable of determining or estimating the shape of a foreign matter in inspecting foreign matter on the surface of an inspection object.
【0006】[0006]
【課題を解決するための手段】本発明に係る異物検査装
置は、被検査物表面の状態を光学的に検出し、複数画素
からなる検出データを出力する検出手段と、前記検出デ
ータに基づき前記被検査物表面の異物を判定し、異物抽
出データを出力する異物判定手段と、前記異物抽出デー
タを所定画素数からなる単位領域毎にグループ分けし、
各グループ毎に該グループ内の異物とみなされる画素数
を計数する演算手段と、前記演算手段で求めた各グルー
プ毎の異物画素数に基づき、当該グループに対応する単
位領域における異物のサイズを推定する判定処理を行う
判定手段とを具えることを特徴とする。これによれば、
1つの単位領域内に存在する異物を1つの異物とみなし
てそのサイズを推定することができるので、パターン認
識などの複雑な処理を行うことなく、極めて簡単な構成
で異物のサイズ(粒径)を判定もしくは推定できる。A foreign matter inspection apparatus according to the present invention optically detects the state of the surface of an object to be inspected, and outputs detection data composed of a plurality of pixels, based on the detection data. Foreign matter determination means for determining foreign matter on the surface of the inspection object and outputting foreign matter extraction data, and grouping the foreign matter extraction data into unit regions each having a predetermined number of pixels,
Calculating means for counting the number of pixels regarded as foreign in the group for each group, and estimating the size of foreign matter in a unit area corresponding to the group based on the number of foreign pixels for each group obtained by the calculating means Determination means for performing a determination process of performing the determination. According to this,
Since the size of foreign matter existing in one unit area can be estimated by regarding it as one foreign matter, the size (particle size) of the foreign matter can be estimated with a very simple configuration without performing complicated processing such as pattern recognition. Can be determined or estimated.
【0007】本発明は、上記のような装置の発明として
構成することができるのみならず、方法の発明として構
成することができる。すなわち、本発明に係る異物検査
方法は、被検査物表面の状態を光学的に検出し、複数画
素からなる検出データを出力する工程と、前記検出デー
タに基づき前記被検査物表面の異物を判定し、異物抽出
データを出力する工程と、前記異物抽出データを所定画
素数からなる単位領域毎にグループ分けし、各グループ
毎に該グループ内の異物とみなされる画素数を計数する
工程と、前記各グループ毎の異物画素数に基づき、当該
グループに対応する単位領域における異物のサイズを推
定する判定処理を行う工程とを含むことを特徴とする。
このような構成の異物検査方法においても、1つの単位
領域内に存在する異物を1つの異物とみなしてそのサイ
ズを推定することができるので、パターン認識などの複
雑な処理を行うことなく、異物のサイズ(粒径)を判定
もしくは推定できる。The present invention can be constituted not only as the invention of the apparatus as described above, but also as the invention of the method. That is, the foreign matter inspection method according to the present invention optically detects the state of the surface of the object to be inspected and outputs detection data including a plurality of pixels, and determines the foreign matter on the surface of the object to be inspected based on the detection data. Outputting foreign matter extraction data, dividing the foreign matter extraction data into unit regions each having a predetermined number of pixels, and counting the number of pixels regarded as foreign matter in the group for each group; Performing a determination process of estimating the size of a foreign substance in a unit area corresponding to the group based on the number of foreign substance pixels for each group.
Also in the foreign matter inspection method having such a configuration, since the foreign matter existing in one unit area can be regarded as one foreign matter and its size can be estimated, the foreign matter can be estimated without performing complicated processing such as pattern recognition. Can be determined or estimated.
【0008】また、本発明に係る異物検査装置は、被検
査物表面の状態を光学的に検出し、複数画素からなる検
出データを出力する検出手段と、前記検出データに基づ
き前記被検査物表面の異物を判定し、異物抽出データを
出力する異物判定手段と、前記異物抽出データを所定画
素数からなる単位領域毎にグループ分けし、各グループ
毎に該グループ内の異物とみなされる画素数を計数する
演算手段と、前記各グループ毎の前記異物抽出データの
前記各単位領域における各画素毎の異物検出レベルの和
を算出する手段と、前記異物検出レベルデータの和と前
記異物画素数の相関性に基づき、当該グループに対応す
る単位領域における異物の形状を推定する判定手段とを
具えることを特徴とする。これによれば、1つの単位領
域内に存在する異物を1つの異物とみなしてその形状を
推定することができるので、パターン認識などの複雑な
処理を行うことなく、極めて簡単な構成で異物の形状を
判定もしくは推定できる。Further, the foreign matter inspection apparatus according to the present invention optically detects the state of the surface of the object to be inspected, and outputs detection data composed of a plurality of pixels, and the surface of the object to be inspected based on the detected data. Foreign matter determining means for determining foreign matter and outputting foreign matter extraction data, and grouping the foreign matter extraction data into unit regions each having a predetermined number of pixels, and for each group, determining the number of pixels regarded as foreign matter within the group. Calculating means for counting; means for calculating the sum of the foreign substance detection levels for each pixel in the unit area of the foreign substance extracted data for each group; correlation between the sum of the foreign substance detection level data and the number of foreign pixel And determining means for estimating the shape of the foreign matter in the unit area corresponding to the group based on the property. According to this, the foreign matter existing in one unit area can be regarded as one foreign matter and its shape can be estimated, and therefore, the foreign matter can be estimated with an extremely simple configuration without performing complicated processing such as pattern recognition. The shape can be determined or estimated.
【0009】本発明は、上記のような装置の発明として
構成することができるのみならず、方法の発明として構
成することができる。すなわち、本発明に係る異物検査
方法は、被検査物表面の状態を光学的に検出し、複数画
素からなる検出データを出力する工程と、前記検出デー
タに基づき前記被検査物表面の異物を判定し、異物抽出
データを出力する工程と、前記異物抽出データを所定画
素数からなる単位領域毎にグループ分けし、各グループ
毎に該グループ内の異物とみなされる画素数を計数する
工程と、前記各グループ毎の前記異物抽出データの前記
各単位領域における各画素毎の異物検出レベルの和を算
出する工程と、前記異物検出レベルデータの和と前記異
物画素数の相関性に基づき、当該グループに対応する単
位領域における異物の形状を推定する工程とを含むこと
を特徴とする。このような構成の異物検査方法において
も、1つの単位領域内に存在する異物を1つの異物とみ
なしてその形状を推定することができるので、パターン
認識などの複雑な処理を行うことなく、異物の形状を判
定もしくは推定できる。The present invention can be constituted not only as an invention of the apparatus as described above, but also as an invention of a method. That is, the foreign matter inspection method according to the present invention optically detects the state of the surface of the object to be inspected and outputs detection data including a plurality of pixels, and determines the foreign matter on the surface of the object to be inspected based on the detection data. Outputting foreign matter extraction data, dividing the foreign matter extraction data into unit regions each having a predetermined number of pixels, and counting the number of pixels regarded as foreign matter in the group for each group; Calculating the sum of the foreign substance detection levels for each pixel in each unit area of the foreign substance extraction data for each group, based on the correlation between the sum of the foreign substance detection level data and the number of foreign pixels, Estimating the shape of the foreign matter in the corresponding unit area. Also in the foreign matter inspection method having such a configuration, since the foreign matter present in one unit area can be regarded as one foreign matter and its shape can be estimated, the foreign matter can be estimated without performing complicated processing such as pattern recognition. Can be determined or estimated.
【0010】[0010]
【発明の実施の形態】以下、添付図面に従って本発明に
係る異物検査装置および方法を説明する。図1におい
て、異物検査装置Aは、ウェハ1を載置するXY移動機
構2と、光ビーム照射手段3と、駆動制御手段4と、受
光光学系5と、散乱光検出センサ6と、異物判定部7
と、グルーピング処理部8と、メモリ9と、CPU10
とを有する。ウェハ1は、図1(a)に示すように、回
路パターンを形成したICチップ1aを表面に多数有す
るパターン付ウェハであり、XY移動機構2のXYテー
ブル2a上に固定されている。ウェハ1の表面には所定
の低角度で光ビーム照射手段3(例えばレーザ光照射手
段)からスポット状のレーザ光Lが斜方照射される。X
Y移動機構2は、XYテーブル2aが駆動制御手段4に
よりX方向およびY方向に移動されることによって、レ
ーザ光Lに対しICチップ1a領域全域を走査させる。
ウェハ1の表面にレーザ光Lが斜方照射されると、該ウ
ェハ1表面の図示しない付着異物および回路パターンか
ら暗視野下の散乱光が発生する。詳しくは、ウェハ1表
面の平滑面に付着異物や回路パターンがあると、その付
着異物や回路パターンの凹凸によってレーザ光Lが乱反
射して散乱する。付着異物や回路パターンで乱反射した
散乱光は受光光学系5の図示しない集光レンズによって
散乱光検出センサ6に集光される。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a foreign matter inspection apparatus and method according to the present invention. In FIG. 1, a foreign matter inspection apparatus A includes an XY moving mechanism 2 on which a wafer 1 is placed, a light beam irradiation means 3, a drive control means 4, a light receiving optical system 5, a scattered light detection sensor 6, a foreign matter determination sensor, Part 7
, Grouping processing unit 8, memory 9, CPU 10
And As shown in FIG. 1A, the wafer 1 is a patterned wafer having a large number of IC chips 1a on which a circuit pattern is formed, and is fixed on an XY table 2a of an XY moving mechanism 2. The surface of the wafer 1 is obliquely irradiated with a spot-shaped laser beam L from the light beam irradiation unit 3 (for example, a laser beam irradiation unit) at a predetermined low angle. X
The Y moving mechanism 2 causes the laser beam L to scan the entire area of the IC chip 1a by moving the XY table 2a in the X direction and the Y direction by the drive control means 4.
When the surface of the wafer 1 is obliquely irradiated with the laser beam L, scattered light in a dark field is generated from a not-shown attached foreign matter and a circuit pattern on the surface of the wafer 1. More specifically, if there is an attached foreign matter or a circuit pattern on the smooth surface of the wafer 1, the laser light L is irregularly reflected and scattered by the attached foreign matter or the unevenness of the circuit pattern. The scattered light irregularly reflected by the attached foreign matter or the circuit pattern is collected on the scattered light detection sensor 6 by a not-shown condenser lens of the light receiving optical system 5.
【0011】散乱光検出センサ6は、レーザ光Lの走査
方向(図示の例ではY方向)にライン状に配列した多数
の各画素(固体撮像光電変換素子)を有し、該各画素が
受光光学系5を介して散乱光を受光し、所定の複数画素
(例えば8画素)からなるデジタルの検出データD1を
異物判定部7に出力する。異物判定部7では、散乱光検
出センサ6からの検出データD1に基づいてウェハ1上
の異物を判定し、異物抽出データD2をグルーピング処
理部8に画素毎に出力する。すなわち、散乱光検出セン
サ6の各画素からの検出データD1と、先に取り込んだ
隣のICチップ1aの同一位置でのチップデータとを照
合し、不一致の場合に該検出データを異物抽出データD
2としてグルーピング処理部8に画素毎に出力する。す
なわち、回路パターンは隣合うチップで同一のため、検
出データD1の不一致部分が異物に相当し、回路パター
ンを排除した異物のみを示す異物抽出データD2を得
る。例えば、異物抽出データにおいて、異物とみなされ
ない画素のレベルは“0”であり、異物とみなされる画
素はその散乱光の検出レベルに応じたレベルを得る。グ
ルーピング処理部8では、検出画素計数部8bによって
異物判定部7からの異物抽出データD2を所定画素数
(例えば8×8画素)からなる単位領域毎にグループ分
けし(図1(c)参照)、各グループ毎に該グループ内
の検出画素数N(図示の例では黒塗り部分の都合6画
素)を1個の異物Pの面積とみなして計数する。レベル
最大値検出部8aでは、各グループ毎の異物抽出データ
D2の各画素毎の異物検出レベル(輝度レベル)を比較
し、異物検出レベルの最大値Mを検出することで、その
最大値Mを1個の異物Pの輝度情報としてみなす。図1
(c)の例では、異物Pとみなされる6個の各画素のレ
ベルが3,1,5,8,4,2であり、座標(4,4)
のレベル“8”が最大値Mである。グルーピング処理部
8は、上記の最大値検出処理および検出画素計数処理を
実行するために構成された所要のハードウェア回路から
なっており、これらの処理をリアルタイムに実行し、そ
の最大値M(図1(c)の例では“8”)と検出画素数
N(図1(c)の例では“6”)をメモリ9に格納す
る。CPU10は、グルーピング処理部8で求めた各グ
ループ毎の検出画素数Nに基づき、当該グループに対応
する単位領域における異物Pのサイズを推定する判定処
理を行う。すなわち、CPU10では、メモリ9から検
出画素数Nを取り込み、下記の(1)式で異物Pの面積
Sを求め、(2)式に示すように異物Pを1つの円とみ
なして、その半径rを求める。なお、uは1画素に相当
する面積である。 u(1画素の面積)×N(検出画素数)=S…(1) S=u×N≒πr2 …(2) ∴r=√〔(u×N)/π〕 を算出する。例えば、u=4平方ミクロンとすると、図
1(c)の場合、N=6であるから、上記の(2)式よ
りr=2.8ミクロンを算出する。このようにCPU1
0により推定された判定処理結果は例えば異物マップや
ヒストグラムなどの表示方法により図示しない表示手段
(例えばディスプレイユニットやプリンタなど)に表示
することができる。更に、必要に応じて、その算出結果
と検査条件(レーザ光Lのパワー、ND(Neutral Dens
ity )フィルタ、偏光板)および予め粒径がわかってい
る不図示のPLS標準粒子(校正用標準粒子)の結果と
を用いて、ウェハ1上に存在する異物Pの実際の粒径を
求める。詳しくは、粒径を異にする多種類のPLS標準
粒子について、レーザ光Lのパワー、NDフィルタおよ
び偏光板などの条件を変えて反射強度を測定したデータ
を記憶させておき、実際の異物検査で得られた算出結果
と比較して、異物Pの実際の粒径を求める。なお、ND
フィルタおよび偏光板は、例えば受光光学系5に設けら
れる。NDフィルタは、散乱光の透過率を適宜調整して
散乱光検出センサ6で受光する散乱光を適度に減衰させ
ることにより該散乱光検出センサ6の飽和を防止する。
偏光板は、散乱光に含まれる所定の偏向成分(例えばS
偏向成分)をカットし、他の偏向成分(例えばP偏向成
分)を散乱光検出センサ6で受光できるようにするため
に使用される。The scattered light detection sensor 6 has a large number of pixels (solid-state imaging photoelectric conversion elements) arranged in a line in the scanning direction (Y direction in the illustrated example) of the laser light L. The scattered light is received via the optical system 5, and digital detection data D 1 including a plurality of predetermined pixels (for example, eight pixels) is output to the foreign substance determination unit 7. The foreign matter determination unit 7 determines foreign matter on the wafer 1 based on the detection data D1 from the scattered light detection sensor 6, and outputs foreign matter extraction data D2 to the grouping processing unit 8 for each pixel. That is, the detection data D1 from each pixel of the scattered light detection sensor 6 is compared with the chip data at the same position of the adjacent IC chip 1a previously taken in, and if they do not match, the detection data is replaced with the foreign substance extraction data D
As 2 is output to the grouping processing unit 8 for each pixel. That is, since the circuit pattern is the same for the adjacent chips, the mismatched portion of the detection data D1 corresponds to the foreign matter, and foreign matter extraction data D2 indicating only the foreign matter excluding the circuit pattern is obtained. For example, in the foreign substance extraction data, the level of a pixel not regarded as a foreign substance is “0”, and a pixel regarded as a foreign substance obtains a level corresponding to the detection level of the scattered light. In the grouping processing unit 8, the detected pixel counting unit 8b divides the foreign substance extraction data D2 from the foreign substance determining unit 7 into unit regions each having a predetermined number of pixels (for example, 8 × 8 pixels) (see FIG. 1C). For each group, the number N of detected pixels in the group (six pixels in the example shown in the drawing) is counted as the area of one foreign matter P. The level maximum value detection unit 8a compares the foreign substance detection level (luminance level) of each pixel of the foreign substance extraction data D2 of each group, detects the maximum value M of the foreign substance detection level, and determines the maximum value M. It is regarded as luminance information of one foreign substance P. Figure 1
In the example of (c), the level of each of the six pixels regarded as the foreign matter P is 3,1,5,8,4,2, and the coordinates (4,4)
Is the maximum value M. The grouping processing section 8 is composed of required hardware circuits configured to execute the above-described maximum value detection processing and detection pixel counting processing, executes these processings in real time, and obtains the maximum value M (see FIG. In the example of 1 (c), “8”) and the number N of detected pixels (“6” in the example of FIG. 1C) are stored in the memory 9. The CPU 10 performs a determination process for estimating the size of the foreign matter P in a unit area corresponding to the group based on the number N of detected pixels for each group obtained by the grouping processing unit 8. That is, the CPU 10 fetches the number N of detected pixels from the memory 9, obtains the area S of the foreign matter P by the following equation (1), regards the foreign matter P as one circle as shown in the equation (2), Find r. Note that u is an area corresponding to one pixel. u (area of one pixel) × N (the number of detected pixels) = S (1) S = u × N ≒ πr 2 (2) ∴r = √ [(u × N) / π] is calculated. For example, assuming that u = 4 square microns, N = 6 in the case of FIG. 1C, so that r = 2.8 microns is calculated from the above equation (2). Thus, the CPU 1
The result of the determination process estimated based on 0 can be displayed on a display unit (not shown) (for example, a display unit or a printer) by a display method such as a foreign matter map or a histogram. Further, if necessary, the calculation results and inspection conditions (power of laser light L, ND (Neutral Density)
)) The actual particle size of the foreign matter P present on the wafer 1 is obtained using the results of the PLS standard particles (calibration standard particles) whose particle size is known in advance, and a filter and a polarizing plate). Specifically, for various types of PLS standard particles having different particle diameters, data obtained by measuring the reflection intensity by changing the conditions of the power of the laser beam L, the ND filter, the polarizing plate, and the like are stored, and the actual foreign substance inspection is performed. The actual particle size of the foreign matter P is determined by comparing with the calculation result obtained in (1). ND
The filter and the polarizing plate are provided in, for example, the light receiving optical system 5. The ND filter appropriately adjusts the transmittance of the scattered light to appropriately attenuate the scattered light received by the scattered light detection sensor 6, thereby preventing the scattered light detection sensor 6 from being saturated.
The polarizing plate has a predetermined deflection component (for example, S
The scattered light detection sensor 6 is used to cut off a deflection component) and receive another deflection component (for example, a P deflection component).
【0012】図2に本発明に係る異物検査装置および方
法の他の実施例を示す。なお、前述した異物検査装置と
共通する部分には同じ符号を付して、その説明を省略す
る。本実施例の異物検査装置Aは、図2(a)に示すよ
うに、グルーピング処理部8において、レベル最大値検
出部8aに代えて、異物レベル算出部8cが設けてあ
る。異物レベル算出部8cでは、各グループ毎の異物抽
出データD2の各画素毎の異物検出レベルの総和ΣQを
求める。図1(c)の例では、異物Pとみなされる6個
の各画素の異物検出レベルが3,1,5,8,4,2で
あり、それらの異物検出レベルの和“23”が総和ΣQ
である。グルーピング処理部8は、上記の異物レベル算
出処理および検出画素計数処理を実行するために構成さ
れた所要のハードウェア回路からなっており、これらの
処理をリアルタイムに実行し、その総和ΣQ(図1
(c)例では“23”)と検出画素数N(図1(c)の
例では“6”)をメモリ9に格納する。CPU10で
は、グルーピング処理部8で求めた各グループ毎の異物
検出レベルの総和ΣQと検出画素数Nの相関性に基づ
き、当該グループに対応する単位領域における異物Pの
形状を推定する判定処理を行う。散乱光測定方式の場
合、画素単位の異物の凹凸が大きいほど検出レベルが大
きく、異物が平坦なものほど検出レベルが小さい。この
ような画素単位の異物検出レベルの大小傾向から全体的
な異物の形状(塊状であるか、又は平坦状であるか)を
ある程度類推することができる。また、複数画素からな
る単位領域内における画素単位の異物の集まり具合や分
散具合もしくは隣接した画素単位の異物同士の凹凸関係
もしくは平坦さなどに応じて、該単位領域内の異物検出
レベルの合計レベルがその異物画素数に対して相関性を
もってくる。CPU10は、上記の散乱光測定方式にお
ける異物検出レベルの合計レベルと異物画素数の相関性
に基づいて異物の形状を設定した異物形状判定テーブル
10a(図2(b)参照)を用いて異物Pの形状を判定
する。すなわち、CPU10は、メモリ9から異物検出
レベルデータの総和ΣQと検出画素数Nを取り込み、異
物形状判定テーブル10aの所定の検出画素数Nに対応
する異物検出レベルの総和ΣQが所定のしきい値Rより
も小さい場合に平坦状異物と判定し、その異物検出レベ
ルの総和ΣQが該しきい値Rよりも大きい場合には塊状
異物と判定する。このようにCPU10により推定され
た判定処理結果は例えば異物マップやヒストグラムなど
の表示方法により図示しない表示手段(例えばディスプ
レイユニットやプリンタなど)に表示することができ
る。なお、異物形状判定テーブル10aの特性はこれに
限らない。また、異物レベル算出部8cでは、異物検出
レベルの総和を求めたが、これに限らず、異物検出レベ
ルの平均値を求めてもよい。その場合、異物形状判定テ
ーブルを設けることなく、異物検出レベルの平均値とメ
モリから得る異物検出レベルとを単に比較するだけで異
物の形状を推定もしくは判定することが可能となる。FIG. 2 shows another embodiment of the foreign matter inspection apparatus and method according to the present invention. Note that the same reference numerals are given to portions common to the above-described foreign substance inspection device, and description thereof will be omitted. As shown in FIG. 2A, the foreign substance inspection apparatus A of this embodiment is provided with a foreign substance level calculation unit 8c in the grouping processing unit 8 instead of the maximum level detection unit 8a. The foreign substance level calculation unit 8c calculates the sum ΣQ of the foreign substance detection levels for each pixel of the foreign substance extraction data D2 for each group. In the example shown in FIG. 1C, the foreign object detection levels of the six pixels regarded as foreign objects P are 3, 1, 5, 8, 4, 2, and the sum "23" of the foreign object detection levels is the total sum. ΣQ
It is. The grouping processing unit 8 is composed of required hardware circuits configured to execute the above-described foreign matter level calculation processing and detection pixel counting processing, and executes these processings in real time, and sums the sum ΣQ (FIG. 1).
(C) In the example, “23”) and the number N of detected pixels (“6” in the example of FIG. 1C) are stored in the memory 9. The CPU 10 performs a determination process for estimating the shape of the foreign matter P in the unit area corresponding to the group based on the correlation between the sum ΣQ of the foreign matter detection levels for each group obtained by the grouping processing unit 8 and the number N of detected pixels. . In the case of the scattered light measurement method, the detection level is higher as the unevenness of the foreign matter in pixel units is larger, and the detection level is lower as the foreign matter is flatter. It is possible to infer to some extent the overall shape of the foreign matter (whether it is lump or flat) from such a tendency of the foreign matter detection level in pixel units. Also, the total level of the foreign object detection levels in the unit area according to the degree of gathering and dispersion of the foreign matter in the pixel unit in the unit area composed of a plurality of pixels or the unevenness or flatness of the foreign objects in the adjacent pixel units. Has a correlation with the number of foreign matter pixels. The CPU 10 uses the foreign matter shape determination table 10a (see FIG. 2B) in which the shape of the foreign matter is set based on the correlation between the total level of the foreign matter detection levels and the number of foreign matter pixels in the scattered light measurement method. Is determined. That is, the CPU 10 fetches the sum ΣQ of the foreign substance detection level data and the number N of detected pixels from the memory 9 and sets the sum ΣQ of the foreign substance detection levels corresponding to the predetermined number N of detected pixels in the foreign substance shape determination table 10a to a predetermined threshold value. If it is smaller than R, it is determined to be a flat foreign substance, and if the sum ΣQ of the foreign substance detection levels is larger than the threshold value R, it is determined to be a blocky foreign substance. The result of the determination process estimated by the CPU 10 can be displayed on a display unit (not shown) (for example, a display unit or a printer) by a display method such as a foreign matter map or a histogram. Note that the characteristics of the foreign matter shape determination table 10a are not limited to this. In addition, the foreign substance level calculation unit 8c calculates the total sum of the foreign substance detection levels. However, the present invention is not limited thereto, and an average value of the foreign substance detection levels may be obtained. In this case, it is possible to estimate or determine the shape of the foreign matter by simply comparing the average value of the foreign matter detection level and the foreign matter detection level obtained from the memory without providing a foreign matter shape determination table.
【0013】上述の各実施例に示した異物検査装置A
は、異物判定部7において、散乱光検出センサ6の検出
データD1と比較されるチップデータに代えて、ICチ
ップの設計パターンデータや標準パターンデータを用い
てもよい。また、散乱光検出センサ6としては、ライン
センサに代えて、エリアセンサまたは撮像管などを用い
てもよい。また、上述の実施例ではパターン付ウェハに
ついて記述したが、パターンなしであってもよい。The foreign substance inspection apparatus A shown in each of the above embodiments
May use IC chip design pattern data or standard pattern data in place of the chip data compared with the detection data D1 of the scattered light detection sensor 6 in the foreign matter determination unit 7. As the scattered light detection sensor 6, an area sensor or an image pickup tube may be used instead of the line sensor. In the above-described embodiment, a wafer with a pattern has been described.
【0014】[0014]
【発明の効果】以上のとおり、本発明によれば、1つの
単位領域内に存在する異物を1つの異物とみなしてその
サイズを推定することができるので、パターン認識など
の複雑な処理を行うことなく、極めて簡単な構成で異物
のサイズ(粒径)を判定もしくは推定できるという優れ
た効果を奏する。また、1つの単位領域内に存在する異
物を1つの異物とみなしてその形状を推定することがで
きるので、パターン認識などの複雑な処理を行うことな
く、極めて簡単な構成で異物の形状を判定もしくは推定
できるという優れた効果を奏する。As described above, according to the present invention, a foreign substance present in one unit area can be regarded as one foreign substance and its size can be estimated, so that complicated processing such as pattern recognition is performed. Without this, there is an excellent effect that the size (particle size) of the foreign matter can be determined or estimated with a very simple configuration. In addition, since the foreign matter existing in one unit area can be regarded as one foreign matter and its shape can be estimated, the foreign matter shape can be determined with a very simple configuration without performing complicated processing such as pattern recognition. Alternatively, it has an excellent effect of being able to estimate.
【図1】 本発明に係る異物検査装置の一実施例を示
し、(a)は本例の異物検査装置の概要構成を示す概略
図、(b)は同装置のデータ処理部のブロック図、
(c)はデータ処理部での異物判定データの一例を示す
図。FIG. 1 shows an embodiment of a foreign substance inspection apparatus according to the present invention, (a) is a schematic diagram showing a schematic configuration of the foreign substance inspection apparatus of the present example, (b) is a block diagram of a data processing unit of the apparatus,
FIG. 3C is a diagram illustrating an example of foreign matter determination data in a data processing unit.
【図2】 本発明に係る異物検査装置の他の実施例を示
し、(a)は本例の異物検査装置のデータ処理部のブロ
ック図、(b)は異物形状判定テーブルの一例を示す
図。FIGS. 2A and 2B show another embodiment of the foreign matter inspection apparatus according to the present invention, wherein FIG. 2A is a block diagram of a data processing unit of the foreign matter inspection apparatus of the present embodiment, and FIG. .
A 異物検査装置 1 ウェハ 3 光ビーム照射手段 6 散乱光検出センサ 7 異物判定部 8 グルーピング処理部 8a レベル最大値検出部 8b 検出画素計数部 8c 異物レベル算出部 9 メモリ 10 CPU 10a 異物形状判定テーブル Reference Signs List A Foreign matter inspection device 1 Wafer 3 Light beam irradiation means 6 Scattered light detection sensor 7 Foreign matter determination unit 8 Grouping processing unit 8a Level maximum value detection unit 8b Detection pixel counting unit 8c Foreign matter level calculation unit 9 Memory 10 CPU 10a Foreign matter shape determination table
フロントページの続き Fターム(参考) 2F065 AA54 BB03 CC17 DD06 FF42 GG04 JJ25 LL21 LL31 MM03 MM14 QQ23 QQ42 QQ43 RR08 SS13 2G051 AA51 AA56 AB01 AB02 BA10 BA11 BB05 CA03 CA04 CB01 CB05 DA07 EA12 EA14 EB01 EB02 EC02 EC03 EC06 ED07 FA10 5B057 AA03 BA02 CA02 CA08 CA12 CA16 CB02 CB08 CB12 CB16 CE09 DA03 DA08 DB02 DB05 DB09 DC04 DC09 DC22 Continued on the front page F term (reference) 2F065 AA54 BB03 CC17 DD06 FF42 GG04 JJ25 LL21 LL31 MM03 MM14 QQ23 QQ42 QQ43 RR08 SS13 2G051 AA51 AA56 AB01 AB02 BA10 BA11 BB05 CA03 CA04 CB01 CB05 DA07 EB05 EB05 BA02 CA02 CA08 CA12 CA16 CB02 CB08 CB12 CB16 CE09 DA03 DA08 DB02 DB05 DB09 DC04 DC09 DC22
Claims (6)
複数画素からなる検出データを出力する検出手段と、 前記検出データに基づき前記被検査物表面の異物を判定
し、異物抽出データを出力する異物判定手段と、 前記異物抽出データを所定画素数からなる単位領域毎に
グループ分けし、各グループ毎に該グループ内の異物と
みなされる画素数を計数する演算手段と、 前記演算手段で求めた各グループ毎の異物画素数に基づ
き、当該グループに対応する単位領域における異物のサ
イズを推定する判定処理を行う判定手段とを具える異物
検査装置。1. The method according to claim 1, wherein the state of the surface of the inspection object is optically detected.
Detecting means for outputting detection data composed of a plurality of pixels; foreign matter determining means for determining foreign matter on the surface of the inspection object based on the detection data and outputting foreign matter extraction data; A calculating unit that divides each unit area into groups and counts, for each group, the number of pixels considered to be foreign in the group; and, based on the number of foreign pixels in each group obtained by the calculating unit, corresponds to the group. A foreign matter inspection device comprising: determination means for performing determination processing for estimating the size of a foreign matter in a unit area.
の各画素毎の異物検出レベルに基づき前記各単位領域に
おける代表的異物検出レベルデータを生成する手段を更
に具える請求項1に記載の異物検査装置。2. The foreign matter according to claim 1, further comprising means for generating representative foreign matter detection level data in each of the unit areas based on the foreign matter detection level of each pixel of the foreign matter extraction data of each of the groups. Inspection equipment.
複数画素からなる検出データを出力する検出手段と、 前記検出データに基づき前記被検査物表面の異物を判定
し、異物抽出データを出力する異物判定手段と、 前記異物抽出データを所定画素数からなる単位領域毎に
グループ分けし、各グループ毎に該グループ内の異物と
みなされる画素数を計数する演算手段と、 前記各グループ毎の前記異物抽出データの前記各単位領
域における各画素毎の異物検出レベルの和を算出する手
段と、 前記異物検出レベルデータの和と前記異物画素数の相関
性に基づき、当該グループに対応する単位領域における
異物の形状を推定する判定手段とを具える異物検査装
置。3. Optically detecting the state of the surface of the inspection object,
Detecting means for outputting detection data composed of a plurality of pixels; foreign matter determining means for determining foreign matter on the surface of the inspection object based on the detection data and outputting foreign matter extraction data; Calculating means for grouping each unit area and counting the number of pixels regarded as foreign matter in each group for each group; foreign matter detection for each pixel in each unit area of the foreign matter extraction data for each group A foreign matter inspection apparatus comprising: means for calculating a sum of levels; and determination means for estimating a shape of a foreign matter in a unit area corresponding to the group based on a correlation between the sum of the foreign matter detection level data and the number of foreign matter pixels. .
複数画素からなる検出データを出力する工程と、 前記検出データに基づき前記被検査物表面の異物を判定
し、異物抽出データを出力する工程と、 前記異物抽出データを所定画素数からなる単位領域毎に
グループ分けし、各グループ毎に該グループ内の異物と
みなされる画素数を計数する工程と、 前記各グループ毎の異物画素数に基づき、当該グループ
に対応する単位領域における異物のサイズを推定する判
定処理を行う工程とを含む異物検査方法。4. A method for optically detecting a state of a surface of an inspection object,
A step of outputting detection data composed of a plurality of pixels; a step of judging a foreign substance on the surface of the inspection object based on the detection data, and a step of outputting foreign substance extraction data; Counting the number of pixels regarded as foreign matter in each group, and estimating the size of foreign matter in a unit area corresponding to the group based on the number of foreign matter pixels in each group. Performing a determination process.
の各画素毎の異物検出レベルに基づき前記各単位領域に
おける代表的異物検出レベルデータを生成する工程を更
に含む請求項4に記載の異物検査方法。5. The foreign matter inspection according to claim 4, further comprising the step of generating representative foreign matter detection level data in each unit area based on the foreign matter detection level for each pixel of the foreign matter extraction data for each group. Method.
複数画素からなる検出データを出力する工程と、 前記検出データに基づき前記被検査物表面の異物を判定
し、異物抽出データを出力する工程と、 前記異物抽出データを所定画素数からなる単位領域毎に
グループ分けし、各グループ毎に該グループ内の異物と
みなされる画素数を計数する工程と、 前記各グループ毎の前記異物抽出データの前記各単位領
域における各画素毎の異物検出レベルの和を算出する工
程と、 前記異物検出レベルデータの和と前記異物画素数の相関
性に基づき、当該グループに対応する単位領域における
異物の形状を推定する工程とを含む異物検査方法。6. Optically detecting the state of the surface of the inspection object,
A step of outputting detection data composed of a plurality of pixels; a step of judging a foreign substance on the surface of the inspection object based on the detection data, and a step of outputting foreign substance extraction data; Counting the number of pixels regarded as foreign matter in the group for each group; and summing up the foreign matter detection level for each pixel in each unit area of the foreign matter extraction data for each group. A foreign matter inspection method, comprising: a calculating step; and a step of estimating a foreign matter shape in a unit area corresponding to the group based on a correlation between the sum of the foreign matter detection level data and the foreign matter pixel number.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000199446A JP3796101B2 (en) | 2000-06-30 | 2000-06-30 | Foreign object inspection apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000199446A JP3796101B2 (en) | 2000-06-30 | 2000-06-30 | Foreign object inspection apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002014055A true JP2002014055A (en) | 2002-01-18 |
JP3796101B2 JP3796101B2 (en) | 2006-07-12 |
Family
ID=18697462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000199446A Expired - Lifetime JP3796101B2 (en) | 2000-06-30 | 2000-06-30 | Foreign object inspection apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3796101B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014091928A1 (en) * | 2012-12-12 | 2014-06-19 | 東京エレクトロン株式会社 | Substrate defect inspection method, substrate defect inspection device, and computer storage medium |
KR20240151403A (en) * | 2023-04-11 | 2024-10-18 | 한국표준과학연구원 | Apparatus and Method for analyzing correlation between real-time particle measurement count and product defects |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111638226B (en) * | 2019-02-14 | 2021-08-31 | 深圳中科飞测科技股份有限公司 | Detection method, image processor and detection system |
-
2000
- 2000-06-30 JP JP2000199446A patent/JP3796101B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014091928A1 (en) * | 2012-12-12 | 2014-06-19 | 東京エレクトロン株式会社 | Substrate defect inspection method, substrate defect inspection device, and computer storage medium |
JP2014115245A (en) * | 2012-12-12 | 2014-06-26 | Tokyo Electron Ltd | Defect inspection method for substrate, defect inspection device for substrate, program, and computer storage medium |
KR20240151403A (en) * | 2023-04-11 | 2024-10-18 | 한국표준과학연구원 | Apparatus and Method for analyzing correlation between real-time particle measurement count and product defects |
KR102775013B1 (en) | 2023-04-11 | 2025-03-04 | 한국표준과학연구원 | Apparatus and Method for analyzing correlation between real-time particle measurement count and product defects |
Also Published As
Publication number | Publication date |
---|---|
JP3796101B2 (en) | 2006-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6944325B2 (en) | Inspecting method and apparatus for repeated micro-miniature patterns | |
US7792352B2 (en) | Method and apparatus for inspecting pattern defects | |
US20120294507A1 (en) | Defect inspection method and device thereof | |
WO2020105319A1 (en) | Defect inspection device and defect inspection method | |
EP2198279B1 (en) | Apparatus and method for detecting semiconductor substrate anomalies | |
JP2003035680A (en) | Inspection method of semiconductor device | |
CN1672038A (en) | Systems and methods for monitoring process variation | |
JP3938227B2 (en) | Foreign object inspection method and apparatus | |
JP3329805B2 (en) | Automatic visual inspection device and visual inspection method | |
JP2004177139A (en) | Support program for preparation of inspection condition data, inspection device, and method of preparing inspection condition data | |
JP2010181328A (en) | Device, program and method for inspecting surface of solar battery wafer | |
US6097428A (en) | Method and apparatus for inspecting a semiconductor wafer using a dynamic threshold | |
JP2001209798A (en) | Method and device for inspecting outward appearance | |
US9933370B2 (en) | Inspection apparatus | |
JP3904796B2 (en) | Foreign object or defect inspection apparatus, and foreign object or defect inspection method | |
JP2001060607A (en) | Foreign matter defect inspection equipment | |
JP2002014055A (en) | Foreign object inspection apparatus and method | |
CN117611568A (en) | Etched line visual detection method, device and storage medium | |
JP4052733B2 (en) | Foreign matter inspection method for patterned wafer | |
JP2001124538A (en) | Method and device for detecting defect in surface of object | |
JP3089079B2 (en) | Circuit pattern defect inspection method | |
JP2001281178A (en) | Defect detection method, semiconductor device manufacturing method, and defect detection device | |
JP4594833B2 (en) | Defect inspection equipment | |
JP2003057193A (en) | Foreign matter inspection device | |
JP4909215B2 (en) | Inspection method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050412 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050613 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050613 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060414 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3796101 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090421 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100421 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110421 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120421 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120421 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130421 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140421 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |