JP2002010535A - Non-contact power transmission device - Google Patents
Non-contact power transmission deviceInfo
- Publication number
- JP2002010535A JP2002010535A JP2000193404A JP2000193404A JP2002010535A JP 2002010535 A JP2002010535 A JP 2002010535A JP 2000193404 A JP2000193404 A JP 2000193404A JP 2000193404 A JP2000193404 A JP 2000193404A JP 2002010535 A JP2002010535 A JP 2002010535A
- Authority
- JP
- Japan
- Prior art keywords
- contact
- voltage
- power transmission
- coil
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 164
- 238000009499 grossing Methods 0.000 claims abstract description 23
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 15
- 230000004907 flux Effects 0.000 claims description 105
- 239000003990 capacitor Substances 0.000 claims description 39
- 238000001514 detection method Methods 0.000 claims description 24
- 239000000696 magnetic material Substances 0.000 claims description 16
- 230000008054 signal transmission Effects 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 238000005192 partition Methods 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 abstract description 24
- 238000010586 diagram Methods 0.000 description 30
- 230000000694 effects Effects 0.000 description 23
- 230000006641 stabilisation Effects 0.000 description 18
- 238000011105 stabilization Methods 0.000 description 18
- 230000007423 decrease Effects 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000009351 contact transmission Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Landscapes
- Direct Current Feeding And Distribution (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非接触電力伝達装
置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact power transmission device.
【0002】[0002]
【従来の技術】近年、電磁誘導を利用した非接触電力伝
達の実用化が盛んに行われている。これらは負荷が特定
されているものが大半であり、複数の負荷を対象とした
り、単独負荷であってもその負荷電流が大きく変わる場
合の実用化例は見当たらない。非接触電力伝達では電力
供給側となる1次側と負荷を持つ2次側との間に電気的
絶縁物があり、電力供給側の1次側コイルと負荷側の2
次側コイルとで分離着脱できる構造を有するトランスを
介して電力を伝達する。図27に前記トランスによる非
接触電力伝達装置の従来例1の概略構成図を示す。1次
側は、電力供給側の1次側コイルL1の両端に、インバ
ータ回路(本従来例では省略)で生成された可聴域周波
数以上である約20KHz以上の高周波電圧V1が印加
されて構成され、2次側は、1次側コイルL1との間に
磁気結合度Mを有する負荷側の2次側コイルL2と、2
次側コイルL2に誘起された電圧を整流する平滑整流回
路20と、平滑整流回路20の出力端に接続される負荷
である負荷3aとから構成され、1次側コイルL1と2
次側コイルL2とで分離着脱できる構造を有する電力送
受用トランスT1を構成している。図28は、電力送受
用トランスT1の構造を示す。電力を供給する1次側
は、磁性材料からなるE型コアA4に設けられた1次側
コイルL1を有し、1次側から電力を供給される2次側
も同様に磁性材料からなるE型コアA4に設けられた2
次側コイルL2を有し、互いに電気的絶縁GAP116
を介して対向設置されている。このような分離着脱でき
る電力送受用トランスT1においては、漏れ磁束F1が
生じ、1次側コイルL1と2次側コイルL2との磁気結
合度Mは低下する。ここで図29に、図27の回路を2
次側に換算した等価回路を示す。2次側コイルL2の誘
起電圧を有する電圧源E2の出力に直列に漏れインダク
タンスL4が接続され、平滑整流回路20を介して負荷
3aに接続される。前述のように磁気結合度Mが低下し
て1次コイルL1で生じる総磁束の内2次側コイルL2
の鎖交磁束F2が少なくなると、漏れ磁束F1による漏
れインダクタンスL4が生じる。また、1次側コイルL
1の両端に印可される電圧V1は可聴域周波数以上であ
る約20KHz以上の高周波で駆動されるため、磁気結
合度Mが低く漏れインダクタンスL4を有する電力送受
用トランスT1を介して負荷3aへ電力を伝達する場
合、2次コイルL2の誘起電圧即ち、電圧源E2の電圧
は低下し、漏れインダクタンスL4による誘導リアクタ
ンスのために電圧降下を起こし、結果として出力端子電
圧V3は低下する。図30は図29に示す負荷電流I3
に対する出力端子電圧V3の特性117a及び負荷電力
Pの特性118aを示した図である。出力端子電圧V3
は漏れインダクタンスL4による交流インピーダンスの
ために線形的に低下する。また、負荷電力Pは、負荷電
流I3が所定の電圧以下では負荷電流I3が増加するに
したがって負荷電力Pも増加するが、負荷電流I3が所
定の電圧以上になると負荷電流I3が増加するにしたが
って負荷電力Pは低下する。このような特性を持つ場合
には、一定電圧入力で動作する異なる負荷電流の機器を
負荷3aとして設けた場合、負荷電流I3が所定の電流
値以上では増加するほど、出力端子電圧V3は低下し、
負荷7の定電圧入力条件を外れてしまい、本来の性能を
発揮できなくなる。2. Description of the Related Art In recent years, practical use of non-contact power transmission using electromagnetic induction has been actively performed. Most of these have specified loads, and there is no practical example in which a plurality of loads are targeted, or the load current of a single load greatly changes. In non-contact power transmission, there is an electrical insulator between the primary side, which is the power supply side, and the secondary side having the load, and the primary coil on the power supply side and the secondary coil on the load side.
Power is transmitted through a transformer having a structure that can be separated and attached to the secondary coil. FIG. 27 shows a schematic configuration diagram of a first conventional example of a non-contact power transmission device using the transformer. The primary side is configured such that a high frequency voltage V1 of about 20 KHz or more, which is equal to or higher than an audible frequency generated by an inverter circuit (omitted in the conventional example), is applied to both ends of a primary coil L1 on the power supply side. The secondary side includes a secondary coil L2 on the load side having a degree of magnetic coupling M between the primary coil L1 and a secondary coil L2.
It comprises a smoothing rectifier circuit 20 for rectifying the voltage induced in the secondary coil L2, and a load 3a, which is a load connected to the output terminal of the smoothing rectifier circuit 20, and includes primary coils L1 and L2.
A power transmitting / receiving transformer T1 having a structure that can be separated and attached to the secondary coil L2 is configured. FIG. 28 shows the structure of the power transmitting / receiving transformer T1. The primary side for supplying electric power has a primary side coil L1 provided on an E-shaped core A4 made of a magnetic material, and the secondary side supplied with electric power from the primary side also has an E-shaped coil made of a magnetic material. 2 provided on the mold core A4
GAP 116 having a secondary coil L2 and electrically isolated from each other
Are installed facing each other. In such a detachable power transmitting and receiving transformer T1, a leakage magnetic flux F1 is generated, and the degree of magnetic coupling M between the primary coil L1 and the secondary coil L2 is reduced. Here, FIG. 29 shows the circuit of FIG.
The equivalent circuit converted to the secondary side is shown. The leakage inductance L4 is connected in series to the output of the voltage source E2 having the induced voltage of the secondary coil L2, and is connected to the load 3a via the smoothing rectifier circuit 20. As described above, the secondary coil L2 of the total magnetic flux generated in the primary coil L1 due to the decrease in the degree of magnetic coupling M
Decreases, the leakage inductance L4 due to the leakage magnetic flux F1 occurs. Also, the primary coil L
1 is driven at a high frequency of about 20 KHz or higher, which is higher than the audible frequency, so that the magnetic coupling degree M is low and the power is supplied to the load 3a via the power transmitting / receiving transformer T1 having the leakage inductance L4. Is transmitted, the induced voltage of the secondary coil L2, that is, the voltage of the voltage source E2 decreases, causing a voltage drop due to the inductive reactance due to the leakage inductance L4, and as a result, the output terminal voltage V3 decreases. FIG. 30 shows the load current I3 shown in FIG.
FIG. 11 is a diagram showing a characteristic 117a of an output terminal voltage V3 and a characteristic 118a of a load power P with respect to FIG. Output terminal voltage V3
Decreases linearly due to the AC impedance due to the leakage inductance L4. When the load current I3 is equal to or lower than a predetermined voltage, the load power P increases as the load current I3 increases. However, when the load current I3 is equal to or higher than the predetermined voltage, the load power P increases as the load current I3 increases. The load power P decreases. In the case of having such characteristics, when a device having a different load current that operates with a constant voltage input is provided as the load 3a, as the load current I3 increases above a predetermined current value, the output terminal voltage V3 decreases. ,
The constant voltage input condition of the load 7 is deviated, and the original performance cannot be exhibited.
【0003】また、非接触電力伝達において非接触充電
の場合には2次コイルL2に並列または直列にコンデン
サを接続して負荷整合による力率改善を行い、前記漏れ
インダクタンスL4の影響を補い2次側で取り出すこと
のできる有効電力を増加させる場合が多い。図31の回
路図は前記図27の2次側コイルL2に並列にコンデン
サC2を接続したもので、図32は図31の回路を2次
側に換算した等価回路を示し、2次側コイルL2の誘起
電圧を有する電圧源E2の出力に直列に漏れインダクタ
ンスL4が接続され、漏れインダクタンスL4を介して
電圧源E2に並列にコンデンサC2が接続され、コンデ
ンサC2の両端は整流平滑回路20を介して負荷3aに
接続される。前記コンデンサC2を接続することにより
電力伝送効率が大幅に向上し、小型化ができる。負荷3
aに充電を行う場合には出力端子電圧V3は例えば電池
電圧となりほぼ一定である。しかし、負荷3aが定電圧
負荷ではない例えば抵抗のような負荷に対しては、図3
3の負荷電流I3に対する出力端子電圧V3の特性11
7b及び負荷電力Pの特性118bに示すようにコンデ
ンサC2が接続されている場合には接続されていない場
合に比べて、負荷電流I3が増加すると出力端子電圧V
3の低下が顕著に見られる。また負荷電力Pがピークと
なる点K付近の出力端子電圧V3の時に最適な負荷整合
が行われ、負荷電流I3がこのK点での負荷電流より大
きい領域では、出力端子電圧V3が急速に低下する。負
荷電流I3がK点での負荷電流よりも小さい領域でも負
荷電流I3に反比例して出力端子電圧V3は低下してい
る。そして、負荷電流I3が非常に小さい領域では出力
端子電圧V3は急に大きくなっている。In the case of non-contact charging in non-contact power transmission, a capacitor is connected in parallel or in series to the secondary coil L2 to improve the power factor by load matching, thereby compensating for the influence of the leakage inductance L4 and compensating for the secondary. In many cases, the effective power that can be extracted by the side is increased. The circuit diagram of FIG. 31 is obtained by connecting a capacitor C2 in parallel to the secondary coil L2 of FIG. 27. FIG. 32 shows an equivalent circuit obtained by converting the circuit of FIG. The leakage inductance L4 is connected in series to the output of the voltage source E2 having an induced voltage of, and the capacitor C2 is connected in parallel to the voltage source E2 via the leakage inductance L4. Connected to load 3a. By connecting the capacitor C2, the power transmission efficiency is greatly improved and the size can be reduced. Load 3
When charging a, the output terminal voltage V3 becomes, for example, a battery voltage and is substantially constant. However, when the load 3a is not a constant voltage load, for example, a load such as a resistor, FIG.
3 is a characteristic 11 of the output terminal voltage V3 with respect to the load current I3.
7b and the characteristic 118b of the load power P, when the load current I3 increases as compared with the case where the capacitor C2 is not connected, the output terminal voltage V
3 is remarkably observed. Further, when the output terminal voltage V3 is near the point K where the load power P peaks, the optimum load matching is performed. In a region where the load current I3 is larger than the load current at the point K, the output terminal voltage V3 rapidly decreases. I do. Even in a region where the load current I3 is smaller than the load current at the point K, the output terminal voltage V3 decreases in inverse proportion to the load current I3. In a region where the load current I3 is extremely small, the output terminal voltage V3 suddenly increases.
【0004】前述のような特性や特徴を持つ非接触電力
伝送において図34の負荷電流I3に対する出力端子電
圧V3の特性117c及び負荷電力Pの特性118cに
示すように、出力端子電圧V3を、負荷電流I3の異な
る負荷に対して出力端子電圧V3を対象とする全ての負
荷領域で一定として安定化させる方法が望まれる。この
安定した特性を得るために通常のスイッチング電源の電
圧制御で行われるように、2次側の出力端子電圧V3を
検出し、基準電圧と比較、誤差増幅し、1次側に誤差増
幅した信号を非接触で伝送して1次側の駆動電圧振幅、
周波数、デューティ及び間引き率を制御するフィードバ
ック制御方法を検討したところ、いずれも従来技術では
不都合を生じることが判明した。In the non-contact power transmission having the above-described characteristics and characteristics, as shown in the characteristic 117c of the output terminal voltage V3 with respect to the load current I3 and the characteristic 118c of the load power P in FIG. It is desired to provide a method of stabilizing the output terminal voltage V3 at a constant level in all load regions for loads having different currents I3. In order to obtain this stable characteristic, the output terminal voltage V3 on the secondary side is detected, compared with a reference voltage, error-amplified, and error-amplified on the primary side, as performed by ordinary voltage control of a switching power supply. Is transmitted in a non-contact manner to drive the primary side drive voltage amplitude,
Examination of a feedback control method for controlling the frequency, the duty, and the thinning rate has revealed that any of the conventional techniques causes inconvenience.
【0005】[0005]
【発明が解決しようとする課題】非接触伝送では、通常
のスイッチング電源に比べて、漏れ磁束F1によるノイ
ズが少し多くなることと、負荷整合を施しても回路効率
が少し低下することから、1次コイルL1に印可される
高周波電圧V1を生成するためのインバータ回路は共振
型インバータを採用することが最適である。そして、安
定化したい電圧領域で、対象とする最大負荷電流時にお
いて最適負荷整合を行うこと、即ち2次側に接続される
コンデンサC2の静電容量を、負荷整合を行うのに最適
な値に設定することが最良である。In the non-contact transmission, compared to a normal switching power supply, noise due to the leakage magnetic flux F1 is slightly increased, and the circuit efficiency is slightly reduced even if load matching is performed. The inverter circuit for generating the high-frequency voltage V1 applied to the next coil L1 optimally employs a resonance type inverter. Then, in the voltage region to be stabilized, optimal load matching is performed at the time of the target maximum load current, that is, the capacitance of the capacitor C2 connected to the secondary side is set to an optimal value for performing load matching. It is best to set.
【0006】ところが、前述の回路方式において無負荷
時から全負荷時にわたって出力端子電圧V3を一定にす
る安定化を行う場合、不都合がある。2次側に接続した
負荷整合用のコンデンサC2は、全ての負荷電流領域に
おいて接続されているため1次コイルL1に印可される
高周波電圧V1を生成するためのインバータ回路が、P
WM方式及び周波数可変方式では、周波数やデューティ
比の変化幅が大きいと回路動作が不安定になる場合があ
る。これは図32に示す2次側等価回路に示すように2
次側コイルL2の誘起電圧を有する電圧源E2には、漏
れインダクタンスL4とコンデンサC2とが直列に接続
された直列共振回路が接続されているため、1次コイル
L1に印可される高周波電圧V1の周波数やデューティ
比が大きく変化して2次側コイルL2に誘起する電圧の
周波数やデューティ比が大きく変化すると、前記直列共
振回路の動作も大きく変化するためであると考えられ
る。もし、この影響が無視できたとしても、負荷電流I
3を非常に大きく変化させなければならない時(例えば
100倍の変化幅がある時)には、1次コイルL1に印
可される高周波電圧V1の周波数やデューティ比も非常
に大きく変化させなければならないため、特に軽負荷、
無負荷近辺での制御が回路動作の実用限界を超えて制御
不能になる場合がある。However, in the above-described circuit system, there is an inconvenience when stabilizing the output terminal voltage V3 to be constant from no load to full load. Since the load matching capacitor C2 connected to the secondary side is connected in all load current regions, the inverter circuit for generating the high-frequency voltage V1 applied to the primary coil L1 has P
In the WM method and the frequency variable method, if the change width of the frequency or the duty ratio is large, the circuit operation may be unstable. As shown in the secondary side equivalent circuit shown in FIG.
Since a series resonance circuit in which a leakage inductance L4 and a capacitor C2 are connected in series is connected to the voltage source E2 having an induced voltage of the secondary coil L2, the high frequency voltage V1 applied to the primary coil L1 is It is considered that when the frequency and the duty ratio change greatly and the frequency and the duty ratio of the voltage induced in the secondary coil L2 change greatly, the operation of the series resonance circuit also changes greatly. Even if this effect can be ignored, the load current I
When 3 has to be changed very large (for example, when there is a change width of 100 times), the frequency and duty ratio of the high-frequency voltage V1 applied to the primary coil L1 must also be changed very large. Especially for light loads,
In some cases, control near no load exceeds the practical limit of circuit operation and becomes impossible to control.
【0007】また1次コイルL1に印可される高周波電
圧V1を生成するためのインバータ回路が、従来の間引
き制御を行った場合には、従来の間引き制御は、「1次
コイルL1に印可される高周波電圧V1を固定周波数で
連続駆動させる中で、出力端子電圧の検出電圧が安定化
したい目標電圧を超えた場合にインバータを休止させる
制御方法」であり、この方法も軽負荷、無負荷近辺にお
いて、目標電圧付近で、駆動周波数の1周期にも満たな
いオン・オフ動作が頻繁に行われ、共振型インバータの
メリットである低損失のソフトスイッチングが行われ
ず、ハードスイッチングを行ってスイッチング損失が増
加すると共に、強いノイズ源となる。When the inverter circuit for generating the high-frequency voltage V1 applied to the primary coil L1 performs the conventional thinning control, the conventional thinning control is performed as follows. A control method for stopping the inverter when the detected voltage of the output terminal voltage exceeds the target voltage to be stabilized while continuously driving the high-frequency voltage V1 at a fixed frequency. This method is also used near light load and no load. In the vicinity of the target voltage, on / off operations less than one cycle of the drive frequency are frequently performed, and low-loss soft switching, which is a merit of the resonant inverter, is not performed, and hard switching is performed to increase switching loss. As well as a strong noise source.
【0008】そしてこれらの制御方式は、従来技術で
は、2次側の出力端子電圧V3などの情報は光信号を利
用したフォトカプラを介して、1次側のインバータ回路
の駆動電圧振幅、周波数、デューティ比及び間引き率を
制御するフィードバック制御であった。しかし、非接触
電力伝達装置においては、浴室や屋外などの水まわりや
汚れの多いところ悪環境で使われる場合にそのメリット
が出るため、まわりの明るさや、汚れ等の影響を受ける
光信号を利用する技術手段は採用が難しい。In these control systems, in the prior art, information such as the output terminal voltage V3 on the secondary side is transmitted via a photocoupler using an optical signal to the drive voltage amplitude, frequency, and frequency of the inverter circuit on the primary side. This is feedback control for controlling the duty ratio and the thinning rate. However, non-contact power transmission equipment has advantages when used in bad environments such as bathrooms and outdoors near water or in places with lots of dirt, so it uses optical signals that are affected by the surrounding brightness and dirt. It is difficult to adopt technical means.
【0009】本発明は、上記事由に鑑みてなされたもの
であり、その目的は、広い負荷範囲で出力端子電圧を一
定値に安定化できる非接触電力伝達装置を提供すること
にある。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-contact power transmission device capable of stabilizing an output terminal voltage at a constant value over a wide load range.
【0010】[0010]
【課題を解決するための手段】請求項1の発明は、直流
電圧を出力する電源回路と前記直流電圧を一定周波数の
高周波電圧に変換するインバータ回路と前記インバータ
回路から前記高周波電圧を供給される電力送電用1次コ
イルとから構成される非接触コンセントと、前記電力送
電用1次コイルと分離着脱自在なトランス構造を構成し
て高周波電圧を誘起される電力受電用2次コイルと前記
電力受電用2次コイルに誘起される高周波電圧を整流平
滑する整流平滑回路とから構成される非接触プラグと、
前記非接触プラグの出力端子に接続され負荷となる端末
機器とから構成される非接触電力伝達装置において、前
記非接触コンセントは、対象としている負荷領域に対す
る前記非接触プラグの出力端子電圧を、前記インバータ
回路より前記電力送電用1次コイルに供給される高周波
電圧を間引いて安定化させる間引き制御を行う制御手段
を備えることを特徴とし、広い負荷範囲で出力端子電圧
を一定値に安定化できる非接触電力伝達装置を提供する
ことができる。According to a first aspect of the present invention, there is provided a power supply circuit for outputting a DC voltage, an inverter circuit for converting the DC voltage into a high frequency voltage having a constant frequency, and the high frequency voltage being supplied from the inverter circuit. A non-contact outlet composed of a primary coil for power transmission, a secondary coil for power reception in which a high-frequency voltage is induced by forming a transformer structure detachable from the primary coil for power transmission and the power reception A non-contact plug composed of a rectifying / smoothing circuit for rectifying / smoothing a high-frequency voltage induced in the secondary coil for
In a non-contact power transmission device including a terminal device connected to an output terminal of the non-contact plug and serving as a load, the non-contact outlet includes an output terminal voltage of the non-contact plug with respect to a target load region, A control means for performing thinning control for thinning out and stabilizing a high-frequency voltage supplied to the power transmission primary coil from an inverter circuit is provided, and the output terminal voltage can be stabilized at a constant value over a wide load range. A contact power transmission device can be provided.
【0011】請求項2の発明は、請求項1の発明におい
て、前記制御手段は、非接触プラグの出力端子電圧が所
定の電圧を上回った場合には、インバータ回路から電力
送電用1次コイルへの高周波電圧の供給を一定時間間引
き、前記一定時間間引きを行った後非接触プラグの出力
端子電圧が前記所定の電圧を上回っていれば再び電力送
電用1次コイルへの前記高周波電圧の供給を一定時間間
引くことを繰り返し、前記各一定時間間引きを行った後
で非接触プラグの出力端子電圧が所定の電圧を下回った
場合には、非接触プラグの出力端子電圧が所定の電圧を
上回るまで電力送電用1次コイルへの前記高周波電圧の
供給を連続的に行う動作を継続させることを特徴とし、
広い負荷範囲で出力端子電圧を一定値に安定化できる非
接触電力伝達装置を提供することができる。According to a second aspect of the present invention, in the first aspect of the present invention, when the output terminal voltage of the non-contact plug exceeds a predetermined voltage, the control means transmits the power from the inverter circuit to the primary coil for power transmission. The supply of the high-frequency voltage is thinned out for a certain period of time, and if the output terminal voltage of the non-contact plug is higher than the predetermined voltage after the thinning out for the certain time, the supply of the high-frequency voltage to the power transmission primary coil is performed again. If the output terminal voltage of the non-contact plug falls below a predetermined voltage after performing the above-described decimation for a certain period of time, the power is output until the output terminal voltage of the non-contact plug exceeds the predetermined voltage. Characterized by continuing the operation of continuously supplying the high-frequency voltage to the power transmission primary coil,
It is possible to provide a non-contact power transmission device capable of stabilizing an output terminal voltage at a constant value over a wide load range.
【0012】請求項3の発明は、請求項1または2の発
明において、非接触プラグは、非接触プラグ内部の電気
状態を表す情報を磁気信号に変換して非接触コンセント
に伝送し、前記制御手段は、前記磁気信号に基づいて間
引き制御のための制御信号を形成し、前記制御信号によ
りインバータ回路を間引き制御することを特徴とし、電
圧安定化のためのフィードバック信号に磁気信号を使う
ため、まわりの明るさや汚れの影響を受けずに、広い負
荷範囲で出力端子電圧を一定値に安定化できる非接触電
力伝達装置を提供することができる。According to a third aspect of the present invention, in the first or second aspect, the non-contact plug converts information representing an electric state inside the non-contact plug into a magnetic signal, transmits the magnetic signal to the non-contact outlet, and controls the control. The means forms a control signal for thinning control based on the magnetic signal, and controls the thinning of the inverter circuit by the control signal.To use the magnetic signal as a feedback signal for voltage stabilization, It is possible to provide a non-contact power transmission device capable of stabilizing an output terminal voltage at a constant value over a wide load range without being affected by surrounding brightness or dirt.
【0013】請求項4の発明は、請求項1乃至3いずれ
かの発明において、インバータ回路は、ハーフブリッジ
型の部分共振インバータであることを特徴とし、故障時
の出力電圧の上昇を抑えることができる。According to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, the inverter circuit is a half-bridge type partial resonance inverter, which suppresses an increase in output voltage at the time of failure. it can.
【0014】請求項5の発明は、請求項4の発明におい
て、電力受電用2次コイルはセンタータップを備え、整
流平滑回路は、電力受電用2次コイルのセンタータップ
ではない両出力端に直列に且つ互いに逆方向に接続する
整流素子の電力受電用2次コイルに接続していない各他
端同士を接続した全波整流部を有し、前記整流素子の接
続中点にチョークコイルを接続することを特徴とし、整
流部を小型化することができる。According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the power receiving secondary coil has a center tap, and the rectifying and smoothing circuit is connected in series to both output terminals which are not center taps of the power receiving secondary coil. And a full-wave rectifying unit that connects the other ends of the rectifiers that are not connected to the power receiving secondary coils of the rectifiers connected in opposite directions to each other, and connects a choke coil to a connection midpoint of the rectifiers. The feature is that the rectifier can be downsized.
【0015】請求項6の発明は、請求項1乃至5いずれ
かの発明において、電力受電用2次コイルに並列にコン
デンサを接続することを特徴とし、負荷整合をとること
で1次側から2次側へ伝達できる有効電力を増加させる
ことができる。According to a sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, a capacitor is connected in parallel to the power receiving secondary coil. The active power that can be transmitted to the next side can be increased.
【0016】請求項7の発明は、請求項6の発明におい
て、前記コンデンサの静電容量値は、対象とする負荷領
域の最大負荷時において、電力送電用1次コイルに供給
される高周波電圧の極性反転時期と、前記コンデンサの
両端に発生する振動電圧が極大値または極小値となる時
期とが一致する静電容量値であることを特徴とし、最適
な負荷整合を行って回路効率を向上させることができ
る。According to a seventh aspect of the present invention, in the sixth aspect of the present invention, the capacitance value of the capacitor is the maximum value of the high-frequency voltage supplied to the power transmission primary coil at the time of the maximum load in the target load region. It is characterized in that the polarity reversal time is the capacitance value at which the oscillation voltage generated at both ends of the capacitor becomes the maximum value or the minimum value, and the optimum load matching is performed to improve the circuit efficiency. be able to.
【0017】請求項8の発明は、請求項3乃至7いずれ
かの発明において、非接触コンセントに1次側信号受信
コイルを設け、非接触プラグには前記1次側信号受信コ
イルに対向配置され前記1次側信号受信コイルと分離着
脱自在なトランス構造を構成する2次側信号送信コイル
を設け、前記2次側信号送信コイルは非接触プラグの内
部の電気状態を表す情報を交流電圧に変換した信号を入
力され、磁気信号として磁束信号を発生し、前記1次側
信号受信コイルは前記磁束信号により電圧を誘起され、
前記制御手段はインバータ回路を前記誘起された電圧に
基づいた制御信号により前記間引き制御することを特徴
とし、電圧安定化のためのフィードバック信号に磁束信
号を使うため、まわりの明るさや汚れの影響を受けず
に、広い負荷範囲で出力端子電圧を一定値に安定化でき
る非接触電力伝達装置を提供することができる。According to an eighth aspect of the present invention, in any one of the third to seventh aspects, the non-contact outlet is provided with a primary signal receiving coil, and the non-contact plug is disposed to face the primary signal receiving coil. A secondary signal transmitting coil which forms a transformer structure detachable from the primary signal receiving coil is provided, and the secondary signal transmitting coil converts information representing an electrical state inside the non-contact plug into an AC voltage. Is input, generates a magnetic flux signal as a magnetic signal, the primary side signal receiving coil is induced voltage by the magnetic flux signal,
The control means performs the thinning-out control on the inverter circuit by a control signal based on the induced voltage, and uses a magnetic flux signal as a feedback signal for voltage stabilization. It is possible to provide a non-contact power transmission device capable of stabilizing an output terminal voltage to a constant value over a wide load range without receiving the power.
【0018】請求項9の発明は、請求項8の発明におい
て、電力送電用1次コイルと1次側信号受信コイルとの
間、及び電力受電用2次コイルと2次側信号送信コイル
との間の少なくとも一方の間に磁性体からなる磁気シー
ルド用隔壁を設けたことを特徴とし、信号送受用トラン
スに鎖交する電流送授用トランスで発生する磁束を低減
させて、正確な電圧安定化のための磁束信号を送受信す
ることができる。A ninth aspect of the present invention is the invention according to the eighth aspect of the present invention, wherein the power transmitting primary coil and the primary signal receiving coil and the power receiving secondary coil and the secondary signal transmitting coil are connected to each other. A magnetic shield partition made of a magnetic material is provided between at least one of the gaps to reduce the magnetic flux generated by the current transmission / reception transformer linked to the signal transmission / reception transformer, thereby achieving accurate voltage stabilization. Can be transmitted and received.
【0019】請求項10の発明は、請求項9の発明にお
いて、電力送電用1次コイルと電力受電用2次コイルと
を、磁性体からなるコアに巻装し、前記コアを互いに前
記コアの軸方向に対向配置させたことを特徴とし、信号
送受用トランスに鎖交する電流送授用トランスで発生す
る磁束を低減させて、正確な電圧安定化のための磁束信
号を送受信することができる。According to a tenth aspect of the present invention, in the ninth aspect of the present invention, the primary coil for power transmission and the secondary coil for power reception are wound around a core made of a magnetic material, and the cores are connected to each other by the core of the core. It is characterized by being axially opposed to each other, reducing the magnetic flux generated by the current transmitting / receiving transformer interlinking with the signal transmitting / receiving transformer, enabling transmission and reception of magnetic flux signals for accurate voltage stabilization. .
【0020】請求項11の発明は、請求項9の発明にお
いて、電力送電用1次コイルと電力受電用2次コイルと
を、前記コイルの軸方向に垂直な方向に開口部を有する
有底筒型の磁性体からなるコアに巻装し、前記コアを互
いに前記コアの軸方向に対向配置させ、前記コアの非開
口部の近傍に1次側信号受信コイルと2次側信号送信コ
イルとを配置したことを特徴とし、信号送受用トランス
に鎖交する電流送授用トランスで発生する磁束を低減さ
せて、正確な電圧安定化のための磁束信号を送受信する
ことができる。According to an eleventh aspect of the present invention, in the ninth aspect of the present invention, the primary coil for power transmission and the secondary coil for power reception are provided with a bottomed cylinder having an opening in a direction perpendicular to the axial direction of the coil. Wound around a core made of a magnetic material of a mold, and the cores are arranged to face each other in the axial direction of the core. The arrangement is characterized in that the magnetic flux generated in the current transmitting / receiving transformer linked to the signal transmitting / receiving transformer is reduced, and the magnetic flux signal for accurate voltage stabilization can be transmitted / received.
【0021】請求項12の発明は、請求項8乃至11い
ずれかの発明において、2次側信号送信コイルは、非接
触プラグの内部の電気状態を表す情報を交流電圧に変換
した信号を入力されて、電力送電用1次コイルが発生さ
せる磁束とは逆位相の位相を有する磁束信号を発生する
ことを特徴とし、正確な電圧安定化のための束信号を送
受信することができる。According to a twelfth aspect of the present invention, in any one of the eighth to eleventh aspects, the secondary-side signal transmitting coil receives a signal obtained by converting information representing an electric state inside the non-contact plug into an AC voltage. Thus, a magnetic flux signal having a phase opposite to that of the magnetic flux generated by the power transmission primary coil is generated, and a flux signal for accurate voltage stabilization can be transmitted and received.
【0022】請求項13の発明は、請求項12記載の発
明において、2次側信号送信コイルの一方の端子は、電
力受電用2次コイルのどちらか一方の端子に接続してい
ることを特徴とし、正確な電圧安定化のための磁束信号
を送受信することができる。According to a thirteenth aspect, in the twelfth aspect, one terminal of the secondary-side signal transmitting coil is connected to one of the terminals of the power receiving secondary coil. As a result, a magnetic flux signal for accurate voltage stabilization can be transmitted and received.
【0023】請求項14の発明は、請求項3乃至7いず
れかの発明において、非接触コンセントは、電力送電用
1次コイルの近傍に電力送電用1次コイルと電力受電用
2次コイルとの間に発生する磁束を検出する磁束検出用
コイルを設け、前記磁束検出用コイルは、磁気信号とし
て電力送電用1次コイルで発生する磁束を検出し、前記
磁束検出用コイルから前記検出する磁束に応じて出力さ
れる電圧に基づいて前記制御手段は、インバータ回路を
間引き制御することを特徴とし、正確な電圧安定化のた
めの磁束信号を受信することができる。According to a fourteenth aspect of the present invention, in any one of the third to seventh aspects of the present invention, the non-contact outlet includes a power transmitting primary coil and a power receiving secondary coil near the power transmitting primary coil. A magnetic flux detection coil for detecting a magnetic flux generated therebetween, wherein the magnetic flux detection coil detects a magnetic flux generated in the power transmission primary coil as a magnetic signal, and converts the magnetic flux to the detected magnetic flux from the magnetic flux detection coil. The control means performs thinning control of the inverter circuit based on the voltage output in response thereto, and can receive a magnetic flux signal for accurate voltage stabilization.
【0024】請求項15の発明は、請求項14の発明に
おいて、電力送電用1次コイルと電力受電用2次コイル
とを、前記コイルの軸方向に垂直な方向に開口部を有す
る有底筒型の磁性体からなるコアに設けて前記コアを互
いに前記コアの軸方向に対向配置させ、前記電力送電用
1次コイルのコアの開口部の近傍に前記磁束検出用コイ
ルを配置したことを特徴とし、正確な電圧安定化のため
の磁束信号を受信することができる。According to a fifteenth aspect, in the fourteenth aspect, the primary coil for power transmission and the secondary coil for power reception are each provided with a bottomed cylinder having an opening in a direction perpendicular to the axial direction of the coil. And a magnetic flux detecting coil disposed near an opening of the core of the power transmission primary coil. The magnetic flux detecting coil is disposed near the core of the primary coil for power transmission. Then, a magnetic flux signal for accurate voltage stabilization can be received.
【0025】請求項16の発明は、請求項1乃至15い
ずれかの発明において、一つの非接触コンセントは、出
力電圧の異なる複数の非接触プラグに適合し、各非接触
プラグが対象としている負荷領域を含む全領域において
前記各非接触プラグの出力電圧を所定の電圧範囲内に収
める前記制御手段を有することを特徴とし、経済的であ
る。According to a sixteenth aspect of the present invention, in any one of the first to fifteenth aspects, one non-contact outlet is adapted to a plurality of non-contact plugs having different output voltages, and each non-contact plug is a target load. It is economical to have the control means for keeping the output voltage of each of the non-contact plugs within a predetermined voltage range in the entire region including the region.
【0026】請求項17の発明は、請求項1乃至16い
ずれかの発明において、非接触プラグの出力端子に並列
に抵抗を接続することを特徴とし、広い負荷範囲で出力
端子電圧を一定値に安定化できる非接触電力伝達装置を
提供することができる。The invention of claim 17 is characterized in that, in any one of the inventions of claims 1 to 16, a resistor is connected in parallel to the output terminal of the non-contact plug, and the output terminal voltage is kept constant over a wide load range. It is possible to provide a non-contact power transmission device that can be stabilized.
【0027】請求項18の発明は、請求項1乃至17い
ずれかの発明において、非接触プラグが非接触コンセン
トの所定の位置に結合していない場合は、前記制御手段
は、インバータ回路から電力送電用1次コイルへ供給す
る出力を制限することを特徴徴とし、高い安全性と信頼
性とを備えることができる。The invention according to claim 18 is the invention according to any one of claims 1 to 17, wherein when the non-contact plug is not connected to a predetermined position of the non-contact outlet, the control means transmits power from the inverter circuit. It is characterized by limiting the output supplied to the primary coil for use, and can provide high safety and reliability.
【0028】請求項19の発明は、請求項18の発明に
おいて、非接触コンセントはインバータ回路から電力送
電用1次コイルへの高周波電圧の供給の制限を制御する
スイッチ機能を備え、非接触プラグは前記スイッチ機能
のオン・オフ状態を制御する駆動体を備え、非接触プラ
グが非接触コンセントの所定の位置に結合すると前記ス
イッチ機能を動作させることで前記制御手段はインバー
タ回路から電力送電用1次コイルへの高周波電圧の供給
を可能にすることを特徴とし、高い安全性と信頼性とを
備えることができる。According to a nineteenth aspect of the present invention, in the invention of the eighteenth aspect, the non-contact outlet has a switch function for controlling the restriction of the supply of the high-frequency voltage from the inverter circuit to the power transmission primary coil. A driver for controlling the on / off state of the switch function, and when the non-contact plug is connected to a predetermined position of the non-contact outlet, the switch function is operated so that the control means can control the primary power transmission from the inverter circuit. It is characterized in that high-frequency voltage can be supplied to the coil, and high safety and reliability can be provided.
【0029】請求項20の発明は、請求項19の発明に
おいて、非接触コンセントの前記スイッチ機能が機械接
点からなり、非接触プラグが備える駆動体は磁石からな
り、非接触プラグが非接触コンセントの所定の位置に結
合すると前記磁石の磁力によって前記機械接点が動作し
て、前記制御手段はインバータ回路から電力送電用1次
コイルへの高周波電圧の供給を可能にすることを特徴と
し、高い安全性と信頼性とを備えることができる。According to a twentieth aspect of the present invention, in the nineteenth aspect, the switch function of the non-contact outlet comprises a mechanical contact, a driving body provided in the non-contact plug comprises a magnet, and the non-contact plug is a non-contact outlet. When coupled to a predetermined position, the mechanical contact operates by the magnetic force of the magnet, and the control means enables supply of a high-frequency voltage from the inverter circuit to the primary coil for power transmission, thereby providing high safety. And reliability.
【0030】請求項21の発明は、請求項1乃至20い
ずれかの発明において、非接触プラグが非接触コンセン
トの所定の位置に結合すると、非接触プラグ及び非接触
コンセントの少なくともどちらか一方に使用可能を報知
する表示を行うことを特徴とし、システムや機器の使用
可否の判断をおこなうことができる。According to a twenty-first aspect of the present invention, in any one of the first to twentieth aspects, when the non-contact plug is connected to a predetermined position of the non-contact outlet, it is used for at least one of the non-contact plug and the non-contact outlet. It is characterized in that a display for notifying the possibility is performed, and it is possible to determine whether the system or the device can be used.
【0031】請求項22の発明は、請求項1乃至21い
ずれかの発明において、非接触コンセント及び非接触プ
ラグの少なくともどちらか一方は、非接触プラグの出力
端子に接続された端末機器の負荷電力、及び非接触プラ
グの出力電圧の少なくともどちらか一方を表示する表示
部を付加したことを特徴とし、システムや機器の使用可
否の判断をおこなうことができる。According to a twenty-second aspect of the present invention, in any one of the first to twenty-first aspects, at least one of the non-contact outlet and the non-contact plug is connected to an output terminal of the non-contact plug. And a display unit for displaying at least one of the output voltage of the non-contact plug is added, so that it is possible to determine whether the system or the device can be used.
【0032】請求項23の発明は、請求項1乃至22い
ずれかの発明において、非接触プラグの出力端子に接続
される端末機器は前記非接触プラグに対して、分離着脱
自在なことを特徴とし、不特定の端末機器を使用するこ
とができる。According to a twenty-third aspect of the present invention, in any one of the first to twenty-second aspects, a terminal device connected to an output terminal of the non-contact plug is detachably attachable to and detachable from the non-contact plug. , Unspecified terminal equipment can be used.
【0033】請求項24の発明は、請求項23の発明に
おいて、非接触プラグの出力端子から端末機器への電力
の供給は、磁気結合によって供給されることを特徴と
し、不特定の端末機器を使用することができる。According to a twenty-fourth aspect of the present invention, in the twenty-third aspect, the power supply from the output terminal of the non-contact plug to the terminal device is supplied by magnetic coupling. Can be used.
【0034】請求項25の発明は、請求項1乃至24い
ずれかの発明において、非接触プラグの出力端子間に、
電圧クランプ素子を接続することを特徴とし、高い安全
性と信頼性とを備えることができる。According to a twenty-fifth aspect of the present invention, in any one of the first to twenty-fourth aspects, between the output terminals of the non-contact plug,
It is characterized by connecting a voltage clamp element, and can provide high safety and reliability.
【0035】[0035]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0036】図1は、磁気信号を用いて間引き制御を行
う非接触電力伝達装置の回路構成を示す。非接触電力伝
達装置5は、電力供給側となる1次側を構成する非接触
コンセント1と負荷を持つ2次側を構成する非接触プラ
グ2とからなり、非接触コンセント1は、交流電源4か
らの交流入力を、直流電圧Eを出力する直流に変換する
電源回路10と、半導体スイッチを有し、半導体スイッ
チをスイッチングさせることで電源回路10からの直流
電圧Eを一定周波数の高周波電圧V1に変換するインバ
ータ回路11と、インバータ回路11から前記高周波電
圧V1を供給される電力送電用1次コイルL1と、非接
触プラグ2からフィードバックされた磁気信号に応じて
インバータ回路11の半導体スイッチのスイッチングを
制御する制御信号を出力する制御部であるスイッチング
制御回路12とから構成され、非接触プラグ2は、電力
送電用1次コイルL1に印加された高周波電圧により発
生した漏れ磁束F1と鎖交磁束F2との内、鎖交磁束F
2と鎖交することで高周波電圧を誘起される電力受電用
2次コイルL2と、電力受電用2次コイルL2から出力
される高周波電圧を整流平滑する整流平滑回路20と、
非接触プラグ2の出力電圧である出力端子電圧V3を検
出し、検出結果に応じて非接触コンセント1のスイッチ
ング制御回路12に磁気信号を出力する出力端子電圧検
出回路21とから構成され、出力端子電圧V3は負荷で
ある端末機器3に出力される。電力送電用1次コイルL
1と電力受電用2次コイルL2とは、分離着脱できる電
力送受用トランスT1を構成する。FIG. 1 shows a circuit configuration of a contactless power transmission device that performs thinning control using a magnetic signal. The non-contact power transmission device 5 includes a non-contact outlet 1 constituting a primary side serving as a power supply side and a non-contact plug 2 constituting a secondary side having a load. A power supply circuit 10 for converting an AC input from the DC power supply into a DC voltage for outputting a DC voltage E, and a semiconductor switch. The DC voltage E from the power supply circuit 10 is turned into a high-frequency voltage V1 having a constant frequency by switching the semiconductor switch. The switching of the semiconductor switch of the inverter circuit 11 according to the inverter circuit 11 for conversion, the primary coil L1 for power transmission supplied with the high frequency voltage V1 from the inverter circuit 11, and the magnetic signal fed back from the non-contact plug 2. And a switching control circuit 12 that outputs a control signal to be controlled. Among the leakage flux F1 and flux linkage F2 generated by applying high frequency voltage to the primary coil L1, the interlinkage magnetic flux F
2, a power receiving secondary coil L2 in which a high frequency voltage is induced by interlinking with 2, a rectifying / smoothing circuit 20 for rectifying and smoothing a high frequency voltage output from the power receiving secondary coil L2,
An output terminal voltage detection circuit 21 for detecting an output terminal voltage V3 which is an output voltage of the non-contact plug 2, and outputting a magnetic signal to the switching control circuit 12 of the non-contact outlet 1 according to the detection result; The voltage V3 is output to the terminal device 3, which is a load. Primary coil L for power transmission
1 and the power receiving secondary coil L2 constitute a power transmitting and receiving transformer T1 that can be separated and attached.
【0037】本実施例では、出力端子電圧V3を検出し
た出力端子電圧検出回路21は、その検出結果に応じた
磁気信号を発生させ、その磁気信号を受信したスイッチ
ング制御回路12は磁気信号に基づいて、出力端子電圧
V3が所定の電圧を上回った場合には、インバータ回路
11から電力送電用1次コイルL1への一定周波数の高
周波電圧V1の供給を一定時間間引き、一定時間間引き
を行った後出力端子電圧V3が所定の電圧をまだ上回っ
ていれば再び電力送電用1次コイルL1への高周波電圧
V1の供給を一定時間間引くことを繰り返し、各一定時
間間引きを行った後で出力端子電圧V3が所定の電圧を
下回った場合には、出力端子電圧V3が所定の電圧を上
回るまで電力送電用1次コイルL1への高周波電圧V1
の供給を行う動作を継続させる間引き制御を行う制御信
号をインバータ回路11に出力し、インバータ回路11
の半導体スイッチは制御信号に応じて、スイッチング動
作を行い、出力端子電圧V3を一定電圧に安定化させ
る。In the present embodiment, the output terminal voltage detection circuit 21 which has detected the output terminal voltage V3 generates a magnetic signal according to the detection result, and the switching control circuit 12 which has received the magnetic signal generates a magnetic signal based on the magnetic signal. When the output terminal voltage V3 exceeds a predetermined voltage, the supply of the high-frequency voltage V1 having a constant frequency from the inverter circuit 11 to the power transmission primary coil L1 is thinned out for a certain period of time, and after a certain period of time. If the output terminal voltage V3 is still higher than the predetermined voltage, the supply of the high-frequency voltage V1 to the power transmission primary coil L1 is repeated for a certain period of time again. Is lower than the predetermined voltage, the high-frequency voltage V1 applied to the power transmission primary coil L1 until the output terminal voltage V3 exceeds the predetermined voltage.
A control signal for performing thinning control for continuing the operation of supplying the power to the inverter circuit 11 is output to the inverter circuit 11.
Performs a switching operation in response to the control signal to stabilize the output terminal voltage V3 to a constant voltage.
【0038】図2は、本実施例の具体的な回路構成を示
す。図2において、電源回路10は直流電圧Eを出力す
る直流電圧源10aで表し、出力端子電圧検出回路21
及びスイッチング制御回路12は省略する。非接触コン
セント1は、直流電圧源10aと、直流電圧源10aに
並列に接続されたコンデンサC3、C4の直列回路及び
半導体スイッチQ1、Q2の直列回路と、コンデンサC
1とコンデンサC2との接続中点と半導体スイッチQ1
と半導体スイッチQ2との接続中点との間に接続された
コンデンサC1とからなるインバータ回路11と、コン
デンサC1に並列に接続された電力送電用1次コイルL
1とから構成され、ハーフブリッジ型の部分共振インバ
ータ回路となる。非接触プラグ2は、センタータップを
備えた電力受電用2次コイルL2と、電力受電用2次コ
イルL2に並列に接続されたコンデンサC2、電力受電
用2次コイルL2のセンタータップではない両出力端に
直列且つ互いに逆方向に接続されたダイオードD3、D
4、ダイオードD3、D4の接続中点に一端を接続され
たチョークコイルL3、チョークコイルL3の他端と電
力受電用2次コイルL2のセンタータップとの間に接続
される平滑コンデンサC5からなる整流平滑回路20と
から構成され、端末機器3は平滑コンデンサC5に並列
に接続される。電力送電用1次コイルL1と電力受電用
2次コイルL2とは、分離着脱できる電力送受用トラン
スT1を構成する。電力受電用2次コイルL2にはセン
タータップを備えているものを使用し、2つのダイオー
ドD3、D4で整流しているので装置の小型化を図るこ
とができる。FIG. 2 shows a specific circuit configuration of this embodiment. 2, a power supply circuit 10 is represented by a DC voltage source 10a that outputs a DC voltage E, and an output terminal voltage detection circuit 21
The switching control circuit 12 is omitted. The non-contact outlet 1 includes a DC voltage source 10a, a series circuit of capacitors C3 and C4 and a series circuit of semiconductor switches Q1 and Q2 connected in parallel to the DC voltage source 10a, and a capacitor C
1 and the capacitor C2 and the semiconductor switch Q1
Circuit 11 comprising a capacitor C1 connected between the capacitor C1 and a midpoint of connection with the semiconductor switch Q2, and a power transmission primary coil L connected in parallel with the capacitor C1.
1 to form a half-bridge type partial resonance inverter circuit. The non-contact plug 2 includes a power receiving secondary coil L2 having a center tap, a capacitor C2 connected in parallel to the power receiving secondary coil L2, and both outputs that are not center taps of the power receiving secondary coil L2. Diodes D3, D connected in series and opposite to each other at the ends
4. A rectifier composed of a choke coil L3 having one end connected to a connection midpoint between the diodes D3 and D4, and a smoothing capacitor C5 connected between the other end of the choke coil L3 and the center tap of the power receiving secondary coil L2. The terminal device 3 includes a smoothing circuit 20 and is connected to the smoothing capacitor C5 in parallel. The power transmission primary coil L1 and the power reception secondary coil L2 constitute a power transmission / reception transformer T1 that can be separated and attached. The power receiving secondary coil L2 is provided with a center tap and is rectified by the two diodes D3 and D4, so that the size of the device can be reduced.
【0039】次に図3に、図2における電力送電用1次
コイルL1の両端電圧V1と、電力送電用1次コイルL
1を流れる電流I1と、半導体スイッチQ1の両端電圧
V4aと、半導体スイッチQ1を流れる電流I4aと、
半導体スイッチQ2の両端電圧V4bと、半導体スイッ
チQ2を流れる電流I4bとの各波形を示す。半導体ス
イッチQ1、Q2は交互にオン・オフを繰り返すが、こ
の時一方の半導体スイッチがオンからオフした後、両方
の半導体スイッチがオフになる一定期間を経てから他方
の半導体スイッチがオンするように制御しているので、
電力送電用1次コイルL1の両端電圧V1は、台形上の
波形となる。部分共振区間100は半導体スイッチQ
1、Q2ともにオフしている区間であり、電力送電用1
次コイルL1から2次側を見たインダクタンスと、コン
デンサC1との共振動作による電圧振動が行われる期間
である。半導体スイッチにMOSFETを用いると、図
2に示すように寄生ダイオードD1、D2が半導体スイ
ッチQ1、Q2に並列に接続されるため、電力送電用1
次コイルL1の両端電圧V1の振動電圧が大きくなり、
電圧E/2または電圧E/2にでクランプされると、半
導体スイッチQ1の両端電圧V4aと半導体スイッチQ
2の両端電圧V4bとは直流電源10aの電圧Eまたは
グラウンドレベルにクランプされた台形波となる。また
半導体スイッチQ1、Q2にMOSFETを用いた場合
は、MOSFETの寄生容量を利用しても部分共振動作
ができる。この部分共振により半導体スイッチQ1、Q
2はソフトスイッチングを行うことができ、ターンオン
及びターンオフ時の損失が大幅に低減できる。Next, FIG. 3 shows the voltage V1 across the power transmission primary coil L1 and the power transmission primary coil L1 in FIG.
1, a voltage V4a across the semiconductor switch Q1, a current I4a flowing through the semiconductor switch Q1,
5 shows respective waveforms of a voltage V4b across the semiconductor switch Q2 and a current I4b flowing through the semiconductor switch Q2. The semiconductor switches Q1 and Q2 are alternately turned on and off alternately. At this time, after one semiconductor switch is turned off from on, a certain period of time when both semiconductor switches are turned off, and then the other semiconductor switch is turned on. Control,
The voltage V1 across the primary coil L1 for power transmission has a trapezoidal waveform. The partial resonance section 100 is a semiconductor switch Q
1 and Q2 are both turned off, and the power transmission 1
This is a period during which voltage oscillation due to the resonance operation between the inductance viewed from the secondary coil L1 and the secondary side and the capacitor C1 is performed. When a MOSFET is used for the semiconductor switch, the parasitic diodes D1 and D2 are connected in parallel to the semiconductor switches Q1 and Q2 as shown in FIG.
The oscillation voltage of the voltage V1 across the secondary coil L1 increases,
When the voltage is clamped at the voltage E / 2 or the voltage E / 2, the voltage V4a across the semiconductor switch Q1 and the voltage of the semiconductor switch Q
2 is a trapezoidal wave clamped to the voltage E of the DC power supply 10a or the ground level. When MOSFETs are used for the semiconductor switches Q1 and Q2, a partial resonance operation can be performed even by utilizing the parasitic capacitance of the MOSFETs. Due to this partial resonance, the semiconductor switches Q1, Q
2 can perform soft switching, and can greatly reduce the loss at the time of turn-on and turn-off.
【0040】図4は、負荷状態が無負荷、軽負荷近辺に
おいて従来技術の間引き制御を行った時の出力端子電圧
V3と電力送電用1次コイルL1の両端電圧V1とを示
す。従来技術の間引き制御は、出力端子電圧V3を検出
し、その検出結果が目標電圧101を超えた時のみイン
バータ回路11の固定周波数駆動を休止させて、一定周
波数の高周波電圧V1の出力を停止させる。このような
制御では、図4に示すように軽負荷、無負荷近辺におい
て、目標電圧101の付近で駆動周波数の1周期にも満
たない半導体スイッチQ1、Q2のオン・オフが頻繁に
行われ、共振型インバータのメリットである低損失のソ
フトスイッチングが行われず、ハードスイッチングにな
るとともに、強いノイズ源になることは前記従来の技術
でも述べたとおりである。特に、非接触電力伝達では、
漏れ磁束や磁束の広がりによる磁界の影響で、出力端子
にノイズが乗りやすいためこの傾向は顕著に現れやす
い。FIG. 4 shows the output terminal voltage V3 and the voltage V1 across the primary coil L1 for power transmission when the thinning control of the prior art is performed in the vicinity of no load and light load. In the conventional thinning control, the output terminal voltage V3 is detected, the fixed frequency driving of the inverter circuit 11 is stopped only when the detection result exceeds the target voltage 101, and the output of the fixed frequency high frequency voltage V1 is stopped. . In such control, as shown in FIG. 4, near light load and no load, the semiconductor switches Q1 and Q2 that are less than one cycle of the drive frequency near the target voltage 101 are frequently turned on and off. As described in the above-mentioned prior art, the resonance type inverter does not perform low-loss soft switching, which is an advantage of the resonance type inverter, and performs hard switching and becomes a strong noise source. In particular, in wireless power transfer,
This tendency is apt to appear remarkably because noise is apt to be applied to the output terminal due to the influence of the magnetic field due to the leakage magnetic flux and the spread of the magnetic flux.
【0041】前記従来技術の間引き制御に対し、図5
に、負荷状態が無負荷、軽負荷近辺において、出力端子
電圧V3の目標電圧として2つの目標電圧102、10
3を設け、出力端子電圧V3が目標電圧102を超える
とインバータ回路11の固定周波数駆動を停止させ、出
力端子電圧V3が目標電圧103より下回るとインバー
タ回路11の固定周波数駆動を行う制御を行った時の出
力端子電圧V3と電力送電用1次コイルL1の両端電圧
V1とを示す。2つの目標電圧102、103によって
ヒステリシスをつくることでインバータ回路11の固定
周波数駆動の動作と停止が図4に示す従来の方式に比べ
て良好に行われる。実用的にはこの方式で使用可能なも
のもあるが、ノイズが大きく重畳される場合にはヒステ
リシス幅を大きくしなければならず、出力端子電圧V3
のリプル電圧増大の原因となる。FIG. 5 shows the conventional thinning control.
In addition, when the load state is near no load and light load, the two target voltages 102 and 10 are set as the target voltages of the output terminal voltage V3.
3, the fixed frequency driving of the inverter circuit 11 is stopped when the output terminal voltage V3 exceeds the target voltage 102, and the fixed frequency driving of the inverter circuit 11 is stopped when the output terminal voltage V3 becomes lower than the target voltage 103. The output terminal voltage V3 at the time and the voltage V1 across the primary coil L1 for power transmission are shown. By forming a hysteresis using the two target voltages 102 and 103, the operation and the stop of the fixed frequency driving of the inverter circuit 11 are performed more favorably than the conventional method shown in FIG. Practically, this method can be used, but when noise is superimposed greatly, the hysteresis width must be increased, and the output terminal voltage V3
Causes an increase in ripple voltage.
【0042】そこで発明では図6に示すように、出力端
子電圧V3が目標電圧108を上回った場合には、イン
バータ回路11から電力送電用1次コイルL1への一定
周波数の高周波電圧V1の供給を一定時間106間引
き、一定時間106の間引きを行った後出力端子電圧V
3が目標電圧108をまだ上回っていれば再び電力送電
用1次コイルL1への高周波電圧V1の供給を一定時間
106間引くことを繰り返し、各一定時間106の間引
きを行った後で出力端子電圧V3が目標電圧108を下
回った場合には、出力端子電圧V3が目標電圧108を
上回るまで電力送電用1次コイルL1への高周波電圧V
1の供給を行う動作を継続させる間引き制御を行い、こ
の一連の動作を継続させて出力端子電圧V3を一定にす
る安定化を行う。この方式では、軽負荷から全負荷まで
の範囲において、一定時間106の休止期間の終了時に
は出力端子電圧V3は目標電圧108を確実にある程度
下回り、インバータ回路11の固定周波数駆動も連続1
周期以上は確保できる。そして、完全な無負荷の場合に
はインバータ回路11の固定周波数駆動が1周期未満に
なることもありうるが、この場合にでもインバータ回路
11の固定周波数駆動動作の期間と停止の期間とは一定
の周期で規則的に繰り返されるため、インバータ回路1
1の固定周波数駆動の期間と停止の期間とが不規則に繰
り返される図4の場合に比べて高調波ノイズは低減でき
る。また、本実施例のもう一つのメリットは、負荷状態
が無負荷に近い時も全負荷に近い時も、出力端子電圧V
3の最大電圧107をほぼ同程度にできるため、とくに
浴室などの水まわりで使う低い電圧を安定化させる場合
に、その電圧規格の上限値に対し少しのマージン分だけ
低い電圧に目標電圧108を設定すれば、確実に電圧規
格の上限値以内に出力端子電圧V3を制御できるため、
安全安心に配慮した出力端子電圧V3の電圧安定化を行
うことができる。Therefore, in the present invention, as shown in FIG. 6, when the output terminal voltage V3 exceeds the target voltage 108, the supply of the high frequency voltage V1 of a constant frequency from the inverter circuit 11 to the primary coil L1 for power transmission is performed. The output terminal voltage V after thinning out the fixed time 106 and thinning out the fixed time 106
3 is still higher than the target voltage 108, the supply of the high-frequency voltage V1 to the primary coil L1 for power transmission is repeatedly thinned out for a certain period of time 106. After the thinning-out of each fixed time 106, the output terminal voltage V3 Is lower than the target voltage 108, the high-frequency voltage V applied to the power transmission primary coil L1 until the output terminal voltage V3 exceeds the target voltage 108.
The thinning control for continuing the operation of supplying 1 is performed, and the series of operations is continued to stabilize the output terminal voltage V3. In this method, in the range from light load to full load, at the end of the idle period of the fixed time 106, the output terminal voltage V3 surely falls below the target voltage 108 to a certain extent, and the fixed frequency drive of the inverter circuit 11 is also continuously performed.
More than a cycle can be secured. In the case of a complete no-load operation, the fixed frequency driving of the inverter circuit 11 may be shorter than one cycle. Even in this case, the period of the fixed frequency driving operation and the period of the stop of the inverter circuit 11 are constant. Is repeated regularly in the cycle of
The harmonic noise can be reduced as compared with the case of FIG. 4 in which the fixed frequency driving period and the stop period are irregularly repeated. Further, another advantage of this embodiment is that the output terminal voltage V
3, the maximum voltage 107 can be made almost the same. Therefore, in particular, when stabilizing a low voltage used around water in a bathroom or the like, the target voltage 108 is set to a voltage lower than the upper limit of the voltage standard by a small margin. If set, the output terminal voltage V3 can be reliably controlled within the upper limit value of the voltage standard.
It is possible to stabilize the output terminal voltage V3 in consideration of safety and security.
【0043】次に図7に、電力送電用1次コイルL1の
両端電圧V1と、コンデンサC2の両端電圧V2と、コ
ンデンサC2を流れる電流I2と、端末機器3を流れる
負荷電流I3との各波形を示す。コンデンサC2を電力
受電用2次コイルL2に並列に接続して最適な負荷整合
を行うことができる条件は、図7にタイミング109に
示すように電力送電用1次コイルL1の両端電圧V1の
極性反転時と、コンデンサC2の両端電圧V2の振動電
圧が極大値に達する時とが一致すること及びタイミング
110のように電力送電用1次コイルL1の両端電圧V
1の極性反転時と、コンデンサC2の両端電圧V2の振
動電圧が極小値に達する時とが一致することと等価であ
る。図7のように最適な負荷整合を行うためのコンデン
サC2の静電容量値は、インバータ回路11の駆動周波
数や、電力送電用1次コイルL1と電力受電用2次コイ
ルL2間の漏れインダクタンスL4以外に出力端子電圧
V3や整流平滑回路20の整流方式にも影響を受ける。Next, FIG. 7 shows waveforms of the voltage V1 across the primary coil L1 for power transmission, the voltage V2 across the capacitor C2, the current I2 flowing through the capacitor C2, and the load current I3 flowing through the terminal equipment 3. Is shown. The condition under which the capacitor C2 can be connected in parallel to the power receiving secondary coil L2 to perform optimum load matching is as shown in the timing 109 in FIG. 7 as the polarity of the voltage V1 across the power transmitting primary coil L1. The time of inversion coincides with the time when the oscillating voltage of the voltage V2 across the capacitor C2 reaches the maximum value, and the voltage V across the power transmission primary coil L1 as shown at a timing 110.
This is equivalent to the time when the polarity of 1 is inverted and the time when the oscillation voltage of the voltage V2 across the capacitor C2 reaches the minimum value. As shown in FIG. 7, the capacitance value of the capacitor C2 for performing optimum load matching depends on the driving frequency of the inverter circuit 11, the leakage inductance L4 between the power transmission primary coil L1 and the power reception secondary coil L2. In addition, it is affected by the output terminal voltage V3 and the rectifying method of the rectifying / smoothing circuit 20.
【0044】図8、9は本実施例における負荷電流I3
に対する出力端子電圧V3の特性117d、117eを
示す。最大負荷電力がとれる点K、即ち負荷整合が最適
にとれている点Kより負荷電流I3が小さい領域111
及び113では出力端子電圧V3は、点Kにおける出力
端子電圧V3より高くなっているため、本実施例の間引
き制御による電圧低減動作により出力端子電圧V3の安
定化を行うことができる。一方負荷電流I3が点Kを超
える領域112、114では、出力端子電圧V3は急激
に電圧降下を起こし利用できない。このようにコンデン
サC2により最適な負荷整合を行うことで、本発明の無
接触電力伝達装置5を最も効率の高い状態で動作させる
ことができる。また、適用負荷範囲を超えた場合、例え
ば端末機器3の故障により内部短絡が起こっても、点K
よりも負荷電流I3が大きくなると出力端子電圧V3の
電圧降下が急激に起こり、出力端子電圧V3は低電圧に
なるとともに負荷電流I3は電流制限がかかり安全であ
り、安全安心に配慮したシステムとなっている。FIGS. 8 and 9 show the load current I3 in this embodiment.
6 shows the characteristics 117d and 117e of the output terminal voltage V3 with respect to. A region 111 where the load current I3 is smaller than the point K where the maximum load power can be obtained, that is, the point K where the load matching is optimally obtained.
In 113 and 113, the output terminal voltage V3 is higher than the output terminal voltage V3 at the point K. Therefore, the output terminal voltage V3 can be stabilized by the voltage reduction operation by the thinning control in the present embodiment. On the other hand, in the regions 112 and 114 where the load current I3 exceeds the point K, the output terminal voltage V3 rapidly drops and cannot be used. By performing the optimum load matching with the capacitor C2 in this manner, the non-contact power transmission device 5 of the present invention can be operated in the most efficient state. Further, when the load exceeds the applicable load range, for example, even if an internal short circuit occurs due to a failure of the terminal device 3, the point K
When the load current I3 becomes larger than the above, the voltage drop of the output terminal voltage V3 occurs sharply, and the output terminal voltage V3 becomes low, and the load current I3 is current-limited so that the system is safe and secure. ing.
【0045】図10乃至23は本発明の実施形態の具体
例を示し、基本的な構成は図1及び図2とほぼ同様であ
り、同一の構成要素には同一の符号を付して説明は省略
する。図10において、電力供給側となる1次側を構成
する非接触コンセント1は、直流電源を入力されて一定
周波数の高周波電圧を出力するインバータ回路11と
(図10乃至16では直流電源を出力する電源回路は省
略)、インバータ回路11から前記高周波電圧を供給さ
れる電力送電用1次コイルL1と、非接触プラグ2の2
次側信号送信コイル23からフィードバックされた磁気
信号により電圧を誘起される1次側信号受信コイル14
と、前記誘起電圧に基づいた信号を出力する信号変換回
路13と、信号変換回路13の出力信号に応じてインバ
ータ回路11の半導体スイッチのスイッチングを間引き
制御する制御信号を出力するスイッチング制御回路12
とから構成され、負荷を持つ2次側を構成する非接触プ
ラグ2は、電力送電用1次コイルL1に印加された高周
波電圧により発生した磁束F3と鎖交することで高周波
電圧を誘起される電力受電用2次コイルL2と、電力受
電用2次コイルL2の高周波出力を整流平滑する整流平
滑回路20と、非接触プラグ2の出力端子電圧V3を検
出し、検出信号を出力する出力端子電圧検出回路21
と、前記検出信号に応じた交流信号を出力する信号変換
回路22と、信号変換回路22から出力される交流信号
を入力されて、磁気信号としての磁束信号を発生する2
次側信号送信コイル23とから構成され、非接触プラグ
2の出力は端末機器3に接続される。電力送電用1次コ
イルL1と電力受電用2次コイルL2とは、分離着脱で
きる電力送受用トランスT1を構成し、1次側信号受信
コイル14と2次側信号送信コイル23とは、分離着脱
できる信号授受用トランスT2を構成する。FIGS. 10 to 23 show specific examples of the embodiment of the present invention. The basic structure is almost the same as that of FIGS. 1 and 2, and the same components are denoted by the same reference characters and will not be described. Omitted. In FIG. 10, a non-contact outlet 1 constituting a primary side serving as a power supply side includes an inverter circuit 11 which receives a DC power supply and outputs a high-frequency voltage having a constant frequency (in FIGS. 10 to 16, outputs a DC power supply). The power supply circuit is omitted), the power transmission primary coil L1 supplied with the high frequency voltage from the inverter circuit 11, and the non-contact plug 2
Primary-side signal receiving coil 14 whose voltage is induced by a magnetic signal fed back from secondary-side signal transmitting coil 23
A signal conversion circuit 13 for outputting a signal based on the induced voltage, and a switching control circuit 12 for outputting a control signal for thinning out switching of a semiconductor switch of the inverter circuit 11 in accordance with an output signal of the signal conversion circuit 13
The non-contact plug 2 constituting the secondary side having the load is linked with the magnetic flux F3 generated by the high-frequency voltage applied to the power transmission primary coil L1 to induce the high-frequency voltage. Power receiving secondary coil L2, rectifying / smoothing circuit 20 for rectifying and smoothing the high frequency output of power receiving secondary coil L2, and output terminal voltage for detecting output terminal voltage V3 of non-contact plug 2 and outputting a detection signal. Detection circuit 21
A signal conversion circuit 22 for outputting an AC signal corresponding to the detection signal, and an AC signal output from the signal conversion circuit 22 to generate a magnetic flux signal as a magnetic signal.
The output of the non-contact plug 2 is connected to the terminal device 3. The power transmitting primary coil L1 and the power receiving secondary coil L2 constitute a power transmitting / receiving transformer T1 which can be detached and attached. The primary signal receiving coil 14 and the secondary signal transmitting coil 23 are detached and attached. A possible signal transfer transformer T2 is configured.
【0046】しかし、図10に示す回路構成のように電
力送受用トランスT1と信号授受用トランスT2とが互
いに近傍に配置されると磁束F3の広がりによって、磁
束F3の一部は1次側信号受信コイル14と2次側信号
送信コイル23とに鎖交しており、信号授受用トランス
T2にはノイズが入ることになり正確な非接触プラグ2
の出力端子電圧V3の情報を非接触コンセント1にフィ
ードバックできない。そこで、前述の問題を改善する実
施例を図11〜図14に示す。However, when the power transmitting / receiving transformer T1 and the signal transmitting / receiving transformer T2 are arranged close to each other as in the circuit configuration shown in FIG. 10, a part of the magnetic flux F3 is partially dispersed due to the spread of the magnetic flux F3. Since the receiving coil 14 and the secondary side signal transmitting coil 23 are linked, noise enters the signal transmitting / receiving transformer T2 and the accurate non-contact plug 2
Of the output terminal voltage V3 cannot be fed back to the non-contact outlet 1. Therefore, an embodiment for improving the above-described problem is shown in FIGS.
【0047】図11は、非接触コンセント1、非接触プ
ラグ2と、信号授受用トランスT2との間に磁気を通し
やすい磁性体からなる隔壁A1を設け、電力送電用1次
コイルL1により発生する磁束F3を障壁A1に集中さ
せることで、磁束F3の内、信号授受用トランスT2に
鎖交する磁束を低減させたものである。FIG. 11 shows that a partition wall A1 made of a magnetic material that easily conducts magnetism is provided between the non-contact outlet 1, the non-contact plug 2, and the signal transfer transformer T2, and is generated by the power transmission primary coil L1. By concentrating the magnetic flux F3 on the barrier A1, the magnetic flux linked to the signal transmitting / receiving transformer T2 among the magnetic flux F3 is reduced.
【0048】図12は、電力送電用1次コイルL1と電
力受電用2次コイルL2とを磁性体からなるコアA2に
巻装し、電力送電用1次コイルL1と電力受電用2次コ
イルL2との軸方向に互いに対向配置させており、電力
送電用1次コイルL1により発生する磁束F3をコアA
2に集中させることで、磁束F3の広がり度合いを低減
させて、磁束F3の内、信号授受用トランスT2に鎖交
する磁束を低減させたものである。FIG. 12 shows a power transmission primary coil L1 and a power reception secondary coil L2 wound around a core A2 made of a magnetic material, and a power transmission primary coil L1 and a power reception secondary coil L2. And a magnetic flux F3 generated by the primary coil L1 for power transmission
2, the degree of spread of the magnetic flux F3 is reduced, and of the magnetic flux F3, the magnetic flux linked to the signal transmitting / receiving transformer T2 is reduced.
【0049】図13は、電力送電用1次コイルL1と電
力受電用2次コイルL2とを、磁性体からなり開口部を
有する一般によく使われているトランス用のコアA3に
巻装し、電力送電用1次コイルL1と電力受電用2次コ
イルL2との軸方向に互いに対向配置させており、電力
送電用1次コイルL1により発生する磁束F3をコアA
3に集中させることで、磁束F3の広がり度合いを低減
させて、磁束F3の内、信号授受用トランスT2に鎖交
する磁束を低減させたものである。また、図13におい
てはコアA3の開口部122から磁束F3の一部が漏れ
るので、信号授受用トランスT2は、その磁束が鎖交し
ないようにコアA3の非開口部123側に設置してお
く。FIG. 13 shows a power transmission primary coil L1 and a power reception secondary coil L2 which are wound around a generally used transformer core A3 made of a magnetic material and having an opening. The primary coil L1 for power transmission and the secondary coil L2 for power reception are arranged to face each other in the axial direction, and the magnetic flux F3 generated by the primary coil L1 for power transmission is used for the core A.
3, the degree of spread of the magnetic flux F3 is reduced, and of the magnetic flux F3, the magnetic flux linked to the signal transmitting / receiving transformer T2 is reduced. In FIG. 13, since a part of the magnetic flux F3 leaks from the opening 122 of the core A3, the signal transfer transformer T2 is installed on the non-opening 123 side of the core A3 so that the magnetic flux does not interlink. .
【0050】図14に示す実施例においては、出力端子
電圧V3を信号変換回路24に入力して、信号変換回路
24は出力端子電圧V3に応じた信号を出力し、2次側
信号送信コイル23の一端は前記信号が出力される信号
変換回路24の出力に接続され、他端は電力受電用2次
コイルの一端に接続されている。また、電力送電用1次
コイルL1で発生し電力受電用2次コイルL2と鎖交す
る磁束F3a及び電力送電用1次コイルL1で発生し1
次側信号受信コイル14と鎖交する磁束F3bとの方向
と、2次側信号送信コイル23で発生する磁束信号F4
の方向とが互いに反対方向になるように、電力送電用1
次コイルL1と1次側信号受信コイル14との巻線の方
向と、電力受電用2次コイルL2と2次側信号送信コイ
ル23との巻線の方向とを互いに反対方向にすること
で、2次側信号送信コイル23で発生する磁束信号F4
の位相は、電力送電用1次コイルL1で発生する磁束F
3a、F3bの位相とは逆位相となり、信号授受用トラ
ンスT2は電力送電用1次コイルL1で発生する磁束F
3a、F3bの影響を受けにくくなる。In the embodiment shown in FIG. 14, the output terminal voltage V3 is input to the signal conversion circuit 24, and the signal conversion circuit 24 outputs a signal corresponding to the output terminal voltage V3. Is connected to the output of the signal conversion circuit 24 from which the signal is output, and the other end is connected to one end of a power receiving secondary coil. The magnetic flux F3a generated in the power transmission primary coil L1 and interlinking with the power reception secondary coil L2 and the power generation primary coil L1
The direction of the magnetic flux F3b interlinking with the secondary signal receiving coil 14 and the magnetic flux signal F4 generated by the secondary signal transmitting coil 23
Power transmission 1 so that the directions of
By making the directions of the windings of the secondary coil L1 and the primary signal receiving coil 14 and the windings of the power receiving secondary coil L2 and the secondary signal transmitting coil 23 opposite to each other, Magnetic flux signal F4 generated in the secondary signal transmission coil 23
Is the magnetic flux F generated in the power transmission primary coil L1.
3a and F3b, and the signal transmitting / receiving transformer T2 has a magnetic flux F generated by the power transmission primary coil L1.
3a and F3b are less likely to be affected.
【0051】また、前記図33の負荷電流I3に対する
出力端子電圧V3の特性117bに示すように、無負荷
状態に近くなると出力端子電圧V3は高くなる傾向があ
り、負荷が軽くなるほど出力端子電圧V3の安定化は難
しくなる。間引き制御によって全負荷領域をカバーする
ようにフィードバック制御系を設計できるが、制御信号
の分解能向上、応答速度向上、対ノイズ性強化などで制
御回路の部品も増えコスト、サイズで不利となる。しか
し、図14に示すように非接触プラグ2の出力端子間に
抵抗R1を並列に接続することで、図24の負荷電流I
3に対する出力端子電圧V3の特性117fに示すよう
に、抵抗R1に電流115を常に流しておき、領域11
1において出力端子電圧V3の安定化を行うことができ
る。さらに、負荷の急変時には過渡的な出力端子電圧V
3の上昇もありうるため、図14に示すように非接触プ
ラグ2の出力端子間に定電圧ダイオードZD1を並列に
接続することで、出力端子電圧V3を常に安定化させる
ことができる。前述のような負荷急変時の出力端子電圧
V3の上昇頻度は少なく、また上昇電圧も小さいため定
電圧ダイオードZD1の損失は小さい。本実施例では定
電圧ダイオードを使っているが電圧クランプ素子であれ
ばよい。Further, as shown in the characteristic 117b of the output terminal voltage V3 with respect to the load current I3 in FIG. 33, the output terminal voltage V3 tends to increase as the load becomes closer, and the output terminal voltage V3 increases as the load decreases. Is difficult to stabilize. Although the feedback control system can be designed to cover the entire load region by the thinning control, the control circuit components are increased due to the improvement of the resolution of the control signal, the improvement of the response speed, and the enhancement of the noise resistance, which is disadvantageous in cost and size. However, by connecting the resistor R1 in parallel between the output terminals of the non-contact plug 2 as shown in FIG.
As shown in the characteristic 117f of the output terminal voltage V3 with respect to No. 3, the current 115 is always passed through the resistor R1 and the region 11
1, the output terminal voltage V3 can be stabilized. Further, when the load changes suddenly, the transient output terminal voltage V
3, the constant voltage diode ZD1 is connected in parallel between the output terminals of the non-contact plug 2 as shown in FIG. 14, so that the output terminal voltage V3 can always be stabilized. The output terminal voltage V3 at the time of sudden load change as described above is less frequently increased, and the increased voltage is also small, so that the loss of the constant voltage diode ZD1 is small. In this embodiment, a constant voltage diode is used, but any voltage clamp element may be used.
【0052】次に図15は、間引き制御に必要な非接触
プラグ2の電気情報を電力送電用1次コイルL1で発生
する磁束F3の変化から得るもので、電力送電用1次コ
イルL1で発生する磁束F3の変化を磁束検出コイル1
4aで検出して、その検出結果に基づいてインバータ回
路11を間引き制御するものである。非接触伝送におい
ては、伝送する電力が増加すれば、電力送電用1次コイ
ルL1で発生する磁束F3も電力に比例して増加し、出
力端子電圧は電力に反比例して低下する。前述の特性
は、一つのシステムにおいては同一な特性であるので、
電力送電用1次コイルL1で発生する磁束F3の変化を
磁束検出コイル14aで検出すれば、間接的に非接触プ
ラグ2の出力端子電圧の情報を得ることができ、インバ
ータ回路11を間引き制御することができる。図15に
示す回路は、電力送電用1次コイルL1と電力受電用2
次コイルL2とを空芯とし、磁束F3の広がりや漏れを
大きくして磁束F3を磁束検出コイル14aに鎖交させ
るものである。Next, FIG. 15 shows that the electrical information of the non-contact plug 2 necessary for the thinning control is obtained from the change in the magnetic flux F3 generated in the power transmission primary coil L1, and is generated in the power transmission primary coil L1. The change in the magnetic flux F3 is detected by the magnetic flux detection coil 1.
The detection is performed at 4a, and thinning control of the inverter circuit 11 is performed based on the detection result. In non-contact transmission, if the transmitted power increases, the magnetic flux F3 generated in the power transmission primary coil L1 also increases in proportion to the power, and the output terminal voltage decreases in inverse proportion to the power. The above characteristics are the same characteristics in one system,
If the change in the magnetic flux F3 generated in the power transmission primary coil L1 is detected by the magnetic flux detection coil 14a, information on the output terminal voltage of the non-contact plug 2 can be obtained indirectly, and the inverter circuit 11 is thinned out. be able to. The circuit shown in FIG. 15 includes a power transmission primary coil L1 and a power reception 2
The magnetic flux F3 is linked to the magnetic flux detecting coil 14a by increasing the spread and leakage of the magnetic flux F3 by using the next coil L2 as an air core.
【0053】図16に示す回路は、前記図15に示した
回路の電力送電用1次コイルL1と電力受電用2次コイ
ルL2とを、磁性体からなり開口部122を有する一般
によく使われているトランス用のコアA3に設けて互い
に対向配置させており、開口部122近傍に磁束検出コ
イル14aを配置することで、磁束F3の内、開口部1
22から漏れる磁束を磁束検出コイル14aに鎖交させ
るものである。The circuit shown in FIG. 16 is a commonly used circuit in which the primary coil L1 for power transmission and the secondary coil L2 for power reception of the circuit shown in FIG. And the magnetic flux detecting coil 14a is arranged near the opening 122, so that the opening 1 of the magnetic flux F3 is provided.
The magnetic flux leaking from 22 is linked to the magnetic flux detection coil 14a.
【0054】以上に示したように、本発明は広い負荷領
域に対して、必要な電圧への安定化を行うことができ
る。As described above, the present invention can stabilize a required voltage in a wide load region.
【0055】図17に、浴室内で使う本発明の非接触電
力伝達システム例の外観を示す。壁200に埋設された
非接触コンセント1は、壁200の表面と接する外周部
にシール15を設けて防水性を高めている。非接触コン
セント1の内部には、前記の電源回路10、インバータ
回路11、スイッチング制御回路12及び信号変換回路
13が内蔵され、交流電源4と接続された回路ブロック
X1と、凹部19に対して配置された電力送電用1次コ
イルL1と、同様に凹部19に対して配置された1次側
信号受信コイル14とが設けられ、非接触プラグ2側の
面には非接触コンセント1が使用可能状態である時点灯
するコンセント通電表示LED16が設けられている。
非接触プラグ2は、通電時は、非接触コンセント1の凹
部19に嵌合させて、内部には、嵌合時に電力送電用1
次コイルL1に対向配置するように設けられた電力受電
用2次コイルL2と、1次側信号受信コイル14に対向
配置するように設けられた2次側信号送信コイル23
と、前記整流平滑回路20、出力端子電圧検出回路21
及び信号変換回路22が内蔵された回路ブロックX2
と、機器3に電力を伝達するケーブルコード26とから
構成され、端末機器3は、ケーブルコード26を接続さ
れて電力を伝達され、表面に非接触プラグ2が使用可能
状態である時点灯するプラグ通電表示LED25が設け
られている。FIG. 17 shows the appearance of an example of the non-contact power transmission system of the present invention used in a bathroom. The non-contact outlet 1 embedded in the wall 200 is provided with a seal 15 on an outer peripheral portion in contact with the surface of the wall 200 to enhance waterproofness. The power supply circuit 10, the inverter circuit 11, the switching control circuit 12, and the signal conversion circuit 13 are built in the non-contact outlet 1, and are disposed in the circuit block X 1 connected to the AC power supply 4 and the recess 19. The primary coil L1 for power transmission provided and the primary signal receiving coil 14 similarly arranged with respect to the concave portion 19 are provided, and the non-contact outlet 1 can be used on the surface on the non-contact plug 2 side. , An outlet power indicator LED 16 that is lit when the power is on.
The non-contact plug 2 is fitted into the recess 19 of the non-contact outlet 1 when energized, and has a power transmission 1
A power receiving secondary coil L2 provided to face the primary coil L1, and a secondary signal transmitting coil 23 provided to face the primary signal receiving coil 14.
Rectifying / smoothing circuit 20, output terminal voltage detecting circuit 21
And a circuit block X2 incorporating the signal conversion circuit 22
And a cable cord 26 for transmitting electric power to the device 3. The terminal device 3 is connected to the cable cord 26 and transmitted with electric power, and is turned on when the non-contact plug 2 is in a usable state on the surface. An energization display LED 25 is provided.
【0056】図18は、図17を非接触プラグ2側から
見た図を示す。非接触コンセント1及び非接触プラグ2
が使用可能かどうかを表示することはユーザにとって必
要であり、非接触コンセント1の非接触プラグ2側表面
には、非接触コンセント1が使用可能状態である時点灯
するコンセント通電表示LED16を設け、非接触プラ
グ2表面には非接触プラグ2が使用可能状態である時点
灯するコンセント通電表示LED16を設けている。ま
た、広い負荷領域を対象としているため、現在使ってい
る端末機器3がどの程度の負荷なのか、使用限界を超え
ていないのかなどの情報は重要である。この情報は間引
き制御の間引き率より得ることができる。即ち間引き率
が大きいと負荷は小さく、間引き率が小さいほど負荷は
大きいことに相当する。さらに予め最低間引き率を設定
しておき、間引き率が最低間引き率を下回り、対象負荷
領域を越えると出力端子電圧V3は急激に低下するの
で、出力端子電圧V3が所定の電圧値以下になったこと
で過負荷状態を判定できる。この使用負荷量を表示する
のが非接触コンセント1の非接触プラグ2側表面に設け
られた負荷量表示インジケータ17である。FIG. 18 is a view of FIG. 17 as viewed from the non-contact plug 2 side. Non-contact outlet 1 and non-contact plug 2
It is necessary for the user to indicate whether the non-contact outlet 1 is usable, and an outlet power-on display LED 16 that is lit when the non-contact outlet 1 is in the usable state is provided on the surface of the non-contact plug 2 of the non-contact outlet 1, On the surface of the non-contact plug 2, there is provided an outlet energization display LED 16 which is turned on when the non-contact plug 2 is in a usable state. In addition, since it is intended for a wide load area, information such as how much load the terminal device 3 currently using does not exceed the usage limit is important. This information can be obtained from the thinning rate of the thinning control. That is, when the thinning rate is large, the load is small, and when the thinning rate is small, the load is large. Further, the minimum thinning rate is set in advance, and when the thinning rate falls below the minimum thinning rate and goes beyond the target load region, the output terminal voltage V3 drops sharply, so that the output terminal voltage V3 becomes equal to or lower than the predetermined voltage value. Thus, the overload state can be determined. The load amount indicator 17 provided on the surface of the non-contact plug 2 of the non-contact outlet 1 displays the amount of the used load.
【0057】図19は、12V用端末機器3aに接続さ
れた12V機器用非接触プラグ2aと、24V用端末機
器3bに接続された24V機器用非接触プラグ2bと
を、1台の非接触コンセント1で電力伝達可能なことを
示している。前記のように本発明の非接触電力伝達シス
テムの間引き制御は、負荷領域が広くても制御可能なの
で、非接触コンセント1の電力送電用1次コイルL1の
巻数が一定でも、12V機器用非接触プラグ2aと24
V機器用非接触プラグ2bとの電力受電用2次コイルL
2aと電力受電用2次コイルL2bとの巻数を変えるこ
とで各々の出力端子電圧V3を安定化させることがで
き、また任意の電圧に安定化させることもできる。FIG. 19 shows that a non-contact plug 2a for a 12V device connected to the terminal device 3a for 12V and a non-contact plug 2b for the 24V device connected to the terminal device 3b for 24V are connected to one non-contact outlet. 1 indicates that power can be transmitted. As described above, since the thinning control of the non-contact power transmission system of the present invention can be performed even when the load area is wide, even if the number of turns of the power transmission primary coil L1 of the non-contact outlet 1 is constant, the non-contact power supply for Plugs 2a and 24
Secondary coil L for power reception with non-contact plug 2b for V equipment
By changing the number of turns of the secondary coil 2a and the secondary coil L2b for power reception, each output terminal voltage V3 can be stabilized, or can be stabilized to an arbitrary voltage.
【0058】また、非接触電力伝達システムでは、電力
送電用1次コイルL1と電力受電用2次コイルL2との
距離が長くなるほど伝達できる電力は減少するため、非
接触コンセント1と非接触プラグ2との相対的位置関係
を所定の位置関係に保つ必要がある。図20は、非接触
プラグ2を非接触コンセント1の凹部19に完全に嵌合
させていない状態を示しており、このような場合には非
接触コンセント1から非接触プラグ2への電力伝達を停
止させる必要がある。そこで、非接触コンセント1は凹
部19に対して配置された機械接点18を設け、機械接
点18がオンした時のみ、、非接触コンセント1の回路
ブロックX1に内蔵されたインバータ回路11が動作
し、非接触コンセント1から非接触プラグ2への電力伝
達を行い、非接触プラグ2は嵌合時に機械接点18に対
向配置するように永久磁石30を設ける。機械接点18
は、永久磁石30の磁力によって動作するスイッチで、
図20においては非接触プラグ2は非接触コンセント1
の凹部19に完全に嵌合していないので、永久磁石30
と機械接点18とは離れすぎており、永久磁石30の磁
力は機械接点18を動作させることはできない。図21
は非接触プラグ2を非接触コンセント1の凹部19に完
全に嵌合させている状態を示しており、永久磁石30の
磁力は機械接点18を動作させることができ、非接触コ
ンセント1の回路ブロックX1に内蔵されたインバータ
回路11が動作し、非接触コンセント1から非接触プラ
グ2への電力伝達を行うことができる。なお、永久磁石
30は永久磁石なので、1次側信号受信コイル14、2
次側信号送信コイル23、磁束検出用コイル14aの磁
束信号に悪影響を与えない。また、コンセント通電表示
LED16は、機械接点18がオンすることで点灯させ
ることができ、プラグ通電表示LED25は出力端子電
圧V3を監視することで点灯させることができる。In the non-contact power transmission system, the power that can be transmitted decreases as the distance between the power transmission primary coil L1 and the power reception secondary coil L2 increases, so that the non-contact outlet 1 and the non-contact plug 2 It is necessary to keep the relative positional relationship with the predetermined positional relationship. FIG. 20 shows a state in which the non-contact plug 2 is not completely fitted in the concave portion 19 of the non-contact outlet 1. In such a case, the power transmission from the non-contact outlet 1 to the non-contact plug 2 is performed. Need to stop. Therefore, the non-contact outlet 1 is provided with the mechanical contact 18 arranged with respect to the recess 19, and only when the mechanical contact 18 is turned on, the inverter circuit 11 built in the circuit block X1 of the non-contact outlet 1 operates. Electric power is transmitted from the non-contact outlet 1 to the non-contact plug 2, and the non-contact plug 2 is provided with a permanent magnet 30 so as to face the mechanical contact 18 when fitted. Mechanical contact 18
Is a switch operated by the magnetic force of the permanent magnet 30,
In FIG. 20, the non-contact plug 2 is the non-contact outlet 1
Of the permanent magnet 30
And the mechanical contact 18 are too far apart, and the magnetic force of the permanent magnet 30 cannot operate the mechanical contact 18. FIG.
Shows a state in which the non-contact plug 2 is completely fitted into the concave portion 19 of the non-contact outlet 1, the magnetic force of the permanent magnet 30 can operate the mechanical contact 18, and the circuit block of the non-contact outlet 1 The inverter circuit 11 built in the X1 operates to transmit power from the non-contact outlet 1 to the non-contact plug 2. Since the permanent magnet 30 is a permanent magnet, the primary signal receiving coils 14, 2
It does not adversely affect the magnetic flux signals of the secondary signal transmission coil 23 and the magnetic flux detection coil 14a. Further, the outlet energization display LED 16 can be turned on when the mechanical contact 18 is turned on, and the plug energization display LED 25 can be turned on by monitoring the output terminal voltage V3.
【0059】次に、非接触プラグ2と端末機器3との接
続は、水まわりで使用するときは一体型とするほうが望
ましいが、水まわりで使用しないとき、及び水まわりで
使用するときでも水中につけるような使い方をしないと
きであれば簡易防水でもよいため、非接触プラグ2と端
末機器3との接続を脱着可能な構造にしてもよい。この
ようにすれば、非接触コンセント1と非接触プラグ2と
は各1つずつあれば、端末機器3のみ用途に応じて揃え
ればよいため経済的である。図22において、端末機器
3c、3dはケーブルコード26c、26dを備え、ケ
ーブルコード26c、26dの端末には各々コネクタ2
7c、27dが接続されており、非接触プラグ2の表面
に設けられ非接触プラグ2の出力端と接続しているソケ
ット28c、28dと分離着脱可能になっており、1つ
の非接触プラグ2に複数の端末機器3c、3dを接続で
きるようになっている。図23においては、端末機器3
eはケーブルコード26eを備え、ケーブルコード26
eの端末には電力受電コイルL5が接続され、非接触プ
ラグ2の表面近傍には非接触プラグ2の出力端と接続し
ている電力送電コイルL4を備え、電力受電コイルL5
は非接触プラグ2表面の凹部29と嵌合して電力送信コ
イルL4から電磁誘導により電力伝達される。図23に
おいては、電力送信コイルL4に印可される回路ブロッ
クX2の出力電圧は高周波電圧である。Next, it is desirable that the connection between the non-contact plug 2 and the terminal device 3 be integrated when used around water. However, even when not used around water or when used around water, Since the simple waterproofing may be used when the terminal device 3 is not used, the connection between the non-contact plug 2 and the terminal device 3 may be detachable. In this way, if only one non-contact outlet 1 and one non-contact plug 2 are provided, it is economical since only the terminal device 3 needs to be prepared according to the intended use. In FIG. 22, the terminal devices 3c and 3d include cable cords 26c and 26d, and the terminals of the cable cords 26c and 26d have connectors 2 respectively.
7c and 27d are connected to each other, and are detachable from sockets 28c and 28d provided on the surface of the non-contact plug 2 and connected to the output end of the non-contact plug 2, so that one non-contact plug 2 A plurality of terminal devices 3c and 3d can be connected. In FIG. 23, the terminal device 3
e has a cable cord 26e, and the cable cord 26e
e, a power receiving coil L5 is connected to the terminal, and a power transmitting coil L4 connected to the output end of the non-contact plug 2 is provided near the surface of the non-contact plug 2;
Are fitted into the recesses 29 on the surface of the non-contact plug 2 and power is transmitted from the power transmission coil L4 by electromagnetic induction. In FIG. 23, the output voltage of the circuit block X2 applied to the power transmission coil L4 is a high-frequency voltage.
【0060】また、浴室内のように水まわりで使用し、
感電対策のために低電圧出力が必要な場合には、非接触
コンセント2の故障時においても非接触プラグ2及び端
末機器3での電圧上昇をできる限り抑えなければならな
い。本発明においては、分離着脱できる電力伝送用トラ
ンスT1を使って電力伝達を行うため、非接触コンセン
ト1の1次側電力送電コイルL1に印可される高周波電
圧V1の振幅に比例した電圧が、非接触プラグ2の2次
側電力受電コイルL2に誘起される。そのため非接触コ
ンセント1側のインバータ回路や、制御回路の故障で1
次側電力送電コイルL1に高い電圧が印加された場合に
は2次側電力受電コイルL2に誘起される電圧V2も上
昇し、制御可能な領域を越えて非接触プラグ2の出力端
子電圧V3に高い電圧がかかる可能性がある。そこで本
発明では、図2に示すようにインバータ回路11はハー
フブリッジ回路を用いているので、1次側電力送電コイ
ルL1の両端電圧V1は、直流電源10aの電圧Eに対
して電圧−E/2と電圧E/2とで確実にクランプさ
れ、2次側電力受電コイルL2に誘起される電圧V2の
上昇は一定電圧以上上昇せず、安全なシステムとなって
いる。Also, use around water like in a bathroom,
When a low-voltage output is required to prevent electric shock, voltage rise in the non-contact plug 2 and the terminal device 3 must be suppressed as much as possible even when the non-contact outlet 2 fails. In the present invention, since power is transmitted using the power transmission transformer T1 which can be detached and attached, a voltage proportional to the amplitude of the high-frequency voltage V1 applied to the primary-side power transmission coil L1 of the non-contact outlet 1 becomes non-voltage. It is induced in the secondary side power receiving coil L2 of the contact plug 2. Therefore, if the inverter circuit on the non-contact outlet 1 side or the control circuit fails,
When a high voltage is applied to the secondary-side power transmitting coil L1, the voltage V2 induced in the secondary-side power receiving coil L2 also increases, and exceeds the controllable region to the output terminal voltage V3 of the non-contact plug 2. High voltage may be applied. Therefore, in the present invention, as shown in FIG. 2, the inverter circuit 11 uses a half-bridge circuit, so that the voltage V1 across the primary-side power transmission coil L1 is equal to the voltage -E / 2 and the voltage E / 2, and the voltage V2 induced in the secondary-side power receiving coil L2 does not increase more than a certain voltage, thus providing a safe system.
【0061】なお図2のコンデンサC2は、図25に示
すように電力受電用2次コイルL2のセンタータップと
他の端子間にコンデンサC21、C22を接続してもよ
いし、図26に示すようにダイオードD3、D4に並列
にコンデンサC21、C22を各々接続しても同様の効
果を得ることができる。これは、コンデンサC2は高周
波交流に作用するコンデンサであり、図2、図25及び
図26の交流的な等価回路は同等になるためであり、い
ずれも図7に示す電力受電用2次コイルL2の両端電圧
V2の波形条件を得ることができる。このように本発明
の各波形条件を満たしておればそれらは本発明に含まれ
ることはもちろん、このことは電力受電用2次コイルL
2がセンタータップを備えていない場合も同様である。As shown in FIG. 25, the capacitor C2 in FIG. 2 may have capacitors C21 and C22 connected between the center tap of the power receiving secondary coil L2 and the other terminals, or as shown in FIG. The same effect can be obtained by connecting capacitors C21 and C22 in parallel with the diodes D3 and D4. This is because the capacitor C2 is a capacitor that acts on high-frequency AC, and the equivalent circuits of AC in FIGS. 2, 25, and 26 are equivalent. Can be obtained. As long as the waveform conditions of the present invention are satisfied, they are included in the present invention.
The same applies to the case where 2 does not have a center tap.
【0062】[0062]
【発明の効果】請求項1の発明は、直流電圧を出力する
電源回路と前記直流電圧を一定周波数の高周波電圧に変
換するインバータ回路と前記インバータ回路から前記高
周波電圧を供給される電力送電用1次コイルとから構成
される非接触コンセントと、前記電力送電用1次コイル
と分離着脱自在なトランス構造を構成して高周波電圧を
誘起される電力受電用2次コイルと前記電力受電用2次
コイルに誘起される高周波電圧を整流平滑する整流平滑
回路とから構成される非接触プラグと、前記非接触プラ
グの出力端子に接続され負荷となる端末機器とから構成
される非接触電力伝達装置において、前記非接触コンセ
ントは、対象としている負荷領域に対する前記非接触プ
ラグの出力端子電圧を、前記インバータ回路より前記電
力送電用1次コイルに供給される高周波電圧を間引いて
安定化させる間引き制御を行う制御手段を備えることを
特徴とし、広い負荷範囲で出力端子電圧を一定値に安定
化できる非接触電力伝達装置を提供することができると
いう効果がある。According to the first aspect of the present invention, there is provided a power supply circuit for outputting a DC voltage, an inverter circuit for converting the DC voltage to a high-frequency voltage having a constant frequency, and a power transmission device for receiving the high-frequency voltage from the inverter circuit. Non-contact outlet composed of a secondary coil, a secondary coil for receiving power, and a secondary coil for generating high-frequency voltage by forming a detachable transformer structure from the primary coil for transmitting power and the secondary coil for receiving power A non-contact plug composed of a rectifying and smoothing circuit that rectifies and smoothes the high-frequency voltage induced in the non-contact power transmission device composed of a terminal device serving as a load connected to the output terminal of the non-contact plug; The non-contact outlet transmits the output terminal voltage of the non-contact plug to a target load area from the inverter circuit to the power transmission primary coil. A non-contact power transmission device capable of stabilizing the output terminal voltage to a constant value over a wide load range by providing control means for performing thinning control for thinning and stabilizing a high-frequency voltage supplied to the power supply device. This has the effect.
【0063】請求項2の発明は、請求項1の発明におい
て、前記制御手段は、非接触プラグの出力端子電圧が所
定の電圧を上回った場合には、インバータ回路から電力
送電用1次コイルへの高周波電圧の供給を一定時間間引
き、前記一定時間間引きを行った後非接触プラグの出力
端子電圧が前記所定の電圧を上回っていれば再び電力送
電用1次コイルへの前記高周波電圧の供給を一定時間間
引くことを繰り返し、前記各一定時間間引きを行った後
で非接触プラグの出力端子電圧が所定の電圧を下回った
場合には、非接触プラグの出力端子電圧が所定の電圧を
上回るまで電力送電用1次コイルへの前記高周波電圧の
供給を連続的に行う動作を継続させることを特徴とし、
広い負荷範囲で出力端子電圧を一定値に安定化できる非
接触電力伝達装置を提供することができるという効果が
ある。According to a second aspect of the present invention, in the first aspect of the invention, when the output terminal voltage of the non-contact plug exceeds a predetermined voltage, the control means transmits the signal from the inverter circuit to the primary coil for power transmission. The supply of the high-frequency voltage is thinned out for a certain period of time, and if the output terminal voltage of the non-contact plug is higher than the predetermined voltage after the thinning out for the certain time, the supply of the high-frequency voltage to the power transmission primary coil is performed again. If the output terminal voltage of the non-contact plug falls below a predetermined voltage after performing the above-described decimation for a certain period of time, the power is output until the output terminal voltage of the non-contact plug exceeds the predetermined voltage. Characterized by continuing the operation of continuously supplying the high-frequency voltage to the power transmission primary coil,
There is an effect that a non-contact power transmission device capable of stabilizing an output terminal voltage to a constant value in a wide load range can be provided.
【0064】請求項3の発明は、請求項1または2の発
明において、非接触プラグは、非接触プラグ内部の電気
状態を表す情報を磁気信号に変換して非接触コンセント
に伝送し、前記制御手段は、前記磁気信号に基づいて間
引き制御のための制御信号を形成し、前記制御信号によ
りインバータ回路を間引き制御することを特徴とし、電
圧安定化のためのフィードバック信号に磁気信号を使う
ため、まわりの明るさや汚れの影響を受けずに、広い負
荷範囲で出力端子電圧を一定値に安定化できる非接触電
力伝達装置を提供することができるという効果がある。According to a third aspect of the present invention, in the first or second aspect, the non-contact plug converts information representing an electric state inside the non-contact plug into a magnetic signal, transmits the magnetic signal to the non-contact outlet, and performs the control. The means forms a control signal for thinning control based on the magnetic signal, and controls the thinning of the inverter circuit by the control signal.To use the magnetic signal as a feedback signal for voltage stabilization, There is an effect that it is possible to provide a non-contact power transmission device capable of stabilizing an output terminal voltage to a constant value over a wide load range without being affected by surrounding brightness and dirt.
【0065】請求項4の発明は、請求項1乃至3いずれ
かの発明において、インバータ回路は、ハーフブリッジ
型の部分共振インバータであることを特徴とし、故障時
の出力電圧の上昇を抑えることができるという効果があ
る。According to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, the inverter circuit is a half-bridge type partial resonance inverter, and can suppress an increase in output voltage at the time of failure. There is an effect that can be.
【0066】請求項5の発明は、請求項4の発明におい
て、電力受電用2次コイルはセンタータップを備え、整
流平滑回路は、電力受電用2次コイルのセンタータップ
ではない両出力端に直列に且つ互いに逆方向に接続する
整流素子の電力受電用2次コイルに接続していない各他
端同士を接続した全波整流部を有し、前記整流素子の接
続中点にチョークコイルを接続することを特徴とし、整
流部を小型化することができるという効果がある。According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the power receiving secondary coil has a center tap, and the rectifying and smoothing circuit is connected in series to both output terminals other than the center tap of the power receiving secondary coil. And a full-wave rectifying unit that connects the other ends of the rectifiers that are not connected to the power receiving secondary coils of the rectifiers connected in opposite directions to each other, and connects a choke coil to a connection midpoint of the rectifiers. This is advantageous in that the rectifier can be reduced in size.
【0067】請求項6の発明は、請求項1乃至5いずれ
かの発明において、電力受電用2次コイルに並列にコン
デンサを接続することを特徴とし、負荷整合をとること
で1次側から2次側へ伝達できる有効電力を増加させる
ことができるという効果がある。According to a sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, a capacitor is connected in parallel to the power receiving secondary coil, and the secondary coil is connected from the primary side by load matching. There is an effect that the active power that can be transmitted to the next side can be increased.
【0068】請求項7の発明は、請求項6の発明におい
て、前記コンデンサの静電容量値は、対象とする負荷領
域の最大負荷時において、電力送電用1次コイルに供給
される高周波電圧の極性反転時期と、前記コンデンサの
両端に発生する振動電圧が極大値または極小値となる時
期とが一致する静電容量値であることを特徴とし、最適
な負荷整合を行って回路効率を向上させることができる
という効果がある。According to a seventh aspect of the present invention, in the sixth aspect of the present invention, the capacitance value of the capacitor is the maximum value of the high-frequency voltage supplied to the power transmission primary coil at the time of the maximum load in the target load region. It is characterized in that the polarity reversal time is the capacitance value at which the oscillation voltage generated at both ends of the capacitor becomes the maximum value or the minimum value, and the optimum load matching is performed to improve the circuit efficiency. There is an effect that can be.
【0069】請求項8の発明は、請求項3乃至7いずれ
かの発明において、非接触コンセントに1次側信号受信
コイルを設け、非接触プラグには前記1次側信号受信コ
イルに対向配置され前記1次側信号受信コイルと分離着
脱自在なトランス構造を構成する2次側信号送信コイル
を設け、前記2次側信号送信コイルは非接触プラグの内
部の電気状態を表す情報を交流電圧に変換した信号を入
力され、磁気信号として磁束信号を発生し、前記1次側
信号受信コイルは前記磁束信号により電圧を誘起され、
前記制御手段はインバータ回路を前記誘起された電圧に
基づいた制御信号により前記間引き制御することを特徴
とし、電圧安定化のためのフィードバック信号に磁束信
号を使うため、まわりの明るさや汚れの影響を受けず
に、広い負荷範囲で出力端子電圧を一定値に安定化でき
る非接触電力伝達装置を提供することができるという効
果がある。According to an eighth aspect of the present invention, in any one of the third to seventh aspects of the present invention, the non-contact outlet is provided with a primary signal receiving coil, and the non-contact plug is disposed to face the primary signal receiving coil. A secondary signal transmitting coil which forms a transformer structure detachable from the primary signal receiving coil is provided, and the secondary signal transmitting coil converts information representing an electrical state inside the non-contact plug into an AC voltage. Is input, generates a magnetic flux signal as a magnetic signal, the primary side signal receiving coil is induced voltage by the magnetic flux signal,
The control means performs the thinning-out control on the inverter circuit by a control signal based on the induced voltage, and uses a magnetic flux signal as a feedback signal for voltage stabilization. There is an effect that it is possible to provide a non-contact power transmission device capable of stabilizing an output terminal voltage to a constant value over a wide load range without receiving the power.
【0070】請求項9の発明は、請求項8の発明におい
て、電力送電用1次コイルと1次側信号受信コイルとの
間、及び電力受電用2次コイルと2次側信号送信コイル
との間の少なくとも一方の間に磁性体からなる磁気シー
ルド用隔壁を設けたことを特徴とし、信号送受用トラン
スに鎖交する電流送授用トランスで発生する磁束を低減
させて、正確な電圧安定化のための磁束信号を送受信す
ることができるという効果がある。According to a ninth aspect of the present invention, in accordance with the eighth aspect of the present invention, there is provided a method according to any one of the preceding claims, wherein the power transmitting primary coil and the primary signal receiving coil and the power receiving secondary coil and the secondary signal transmitting coil are connected to each other. A magnetic shield partition made of a magnetic material is provided between at least one of the gaps to reduce the magnetic flux generated by the current transmission / reception transformer linked to the signal transmission / reception transformer, thereby achieving accurate voltage stabilization. There is an effect that a magnetic flux signal can be transmitted and received.
【0071】請求項10の発明は、請求項9の発明にお
いて、電力送電用1次コイルと電力受電用2次コイルと
を、磁性体からなるコアに巻装し、前記コアを互いに前
記コアの軸方向に対向配置させたことを特徴とし、信号
送受用トランスに鎖交する電流送授用トランスで発生す
る磁束を低減させて、正確な電圧安定化のための磁束信
号を送受信することができるという効果がある。According to a tenth aspect of the present invention, in the ninth aspect of the present invention, the primary coil for power transmission and the secondary coil for power reception are wound around a core made of a magnetic material, and the cores are mutually attached to the core. It is characterized by being axially opposed to each other, reducing the magnetic flux generated by the current transmitting / receiving transformer interlinking with the signal transmitting / receiving transformer, enabling transmission and reception of magnetic flux signals for accurate voltage stabilization. This has the effect.
【0072】請求項11の発明は、請求項9の発明にお
いて、電力送電用1次コイルと電力受電用2次コイルと
を、前記コイルの軸方向に垂直な方向に開口部を有する
有底筒型の磁性体からなるコアに巻装し、前記コアを互
いに前記コアの軸方向に対向配置させ、前記コアの非開
口部の近傍に1次側信号受信コイルと2次側信号送信コ
イルとを配置したことを特徴とし、信号送受用トランス
に鎖交する電流送授用トランスで発生する磁束を低減さ
せて、正確な電圧安定化のための磁束信号を送受信する
ことができるという効果がある。According to an eleventh aspect of the present invention, in the ninth aspect of the present invention, the primary coil for power transmission and the secondary coil for power reception are each a bottomed cylinder having an opening in a direction perpendicular to the axial direction of the coil. Wound around a core made of a magnetic material of a mold, and the cores are arranged to face each other in the axial direction of the core. The arrangement is characterized in that the magnetic flux generated in the current transmission / reception transformer linked to the signal transmission / reception transformer is reduced, so that a magnetic flux signal for accurate voltage stabilization can be transmitted and received.
【0073】請求項12の発明は、請求項8乃至11い
ずれかの発明において、2次側信号送信コイルは、非接
触プラグの内部の電気状態を表す情報を交流電圧に変換
した信号を入力されて、電力送電用1次コイルが発生さ
せる磁束とは逆位相の位相を有する磁束信号を発生する
ことを特徴とし、正確な電圧安定化のための束信号を送
受信することができるという効果がある。According to a twelfth aspect of the present invention, in any one of the eighth to eleventh aspects, the secondary-side signal transmitting coil receives a signal obtained by converting information representing an electric state inside the non-contact plug into an AC voltage. And generating a magnetic flux signal having a phase opposite to that of the magnetic flux generated by the power transmission primary coil, and has an effect that a flux signal for accurate voltage stabilization can be transmitted and received. .
【0074】請求項13の発明は、請求項12記載の発
明において、2次側信号送信コイルの一方の端子は、電
力受電用2次コイルのどちらか一方の端子に接続してい
ることを特徴とし、正確な電圧安定化のための磁束信号
を送受信することができるという効果がある。According to a thirteenth aspect, in the twelfth aspect, one terminal of the secondary signal transmission coil is connected to one of the terminals of the power receiving secondary coil. Thus, there is an effect that a magnetic flux signal for accurate voltage stabilization can be transmitted and received.
【0075】請求項14の発明は、請求項3乃至7いず
れかの発明において、非接触コンセントは、電力送電用
1次コイルの近傍に電力送電用1次コイルと電力受電用
2次コイルとの間に発生する磁束を検出する磁束検出用
コイルを設け、前記磁束検出用コイルは、磁気信号とし
て電力送電用1次コイルで発生する磁束を検出し、前記
磁束検出用コイルから前記検出する磁束に応じて出力さ
れる電圧に基づいて前記制御手段は、インバータ回路を
間引き制御することを特徴とし、正確な電圧安定化のた
めの磁束信号を受信することができるという効果があ
る。According to a fourteenth aspect of the present invention, in any one of the third to seventh aspects of the present invention, the non-contact outlet includes a power transmitting primary coil and a power receiving secondary coil near the power transmitting primary coil. A magnetic flux detection coil for detecting a magnetic flux generated therebetween, wherein the magnetic flux detection coil detects a magnetic flux generated in the power transmission primary coil as a magnetic signal, and converts the magnetic flux to the detected magnetic flux from the magnetic flux detection coil. The control means performs thinning-out control of the inverter circuit based on the voltage output in response thereto, and has an effect that a magnetic flux signal for accurate voltage stabilization can be received.
【0076】請求項15の発明は、請求項14の発明に
おいて、電力送電用1次コイルと電力受電用2次コイル
とを、前記コイルの軸方向に垂直な方向に開口部を有す
る有底筒型の磁性体からなるコアに設けて前記コアを互
いに前記コアの軸方向に対向配置させ、前記電力送電用
1次コイルのコアの開口部の近傍に前記磁束検出用コイ
ルを配置したことを特徴とし、正確な電圧安定化のため
の磁束信号を受信することができるという効果がある。According to a fifteenth aspect, in the fourteenth aspect, the primary coil for power transmission and the secondary coil for power reception are each a bottomed cylinder having an opening in a direction perpendicular to an axial direction of the coil. And a magnetic flux detecting coil disposed near an opening of the core of the power transmission primary coil. The magnetic flux detecting coil is disposed near the core of the primary coil for power transmission. Thus, there is an effect that a magnetic flux signal for accurate voltage stabilization can be received.
【0077】請求項16の発明は、請求項1乃至15い
ずれかの発明において、一つの非接触コンセントは、出
力電圧の異なる複数の非接触プラグに適合し、各非接触
プラグが対象としている負荷領域を含む全領域において
前記各非接触プラグの出力電圧を所定の電圧範囲内に収
める前記制御手段を有することを特徴とし、経済的であ
るという効果がある。According to a sixteenth aspect of the present invention, in any one of the first to fifteenth aspects, one non-contact outlet is adapted to a plurality of non-contact plugs having different output voltages, and each non-contact plug is a target load. It is characterized by having the control means for keeping the output voltage of each of the non-contact plugs within a predetermined voltage range in the entire region including the region, and has an effect of being economical.
【0078】請求項17の発明は、請求項1乃至16い
ずれかの発明において、非接触プラグの出力端子に並列
に抵抗を接続することを特徴とし、広い負荷範囲で出力
端子電圧を一定値に安定化できる非接触電力伝達装置を
提供することができるという効果がある。A seventeenth aspect of the present invention is characterized in that, in any one of the first to sixteenth aspects, a resistor is connected in parallel to the output terminal of the non-contact plug, and the output terminal voltage is kept constant over a wide load range. There is an effect that a contactless power transmission device that can be stabilized can be provided.
【0079】請求項18の発明は、請求項1乃至17い
ずれかの発明において、非接触プラグが非接触コンセン
トの所定の位置に結合していない場合は、前記制御手段
は、インバータ回路から電力送電用1次コイルへ供給す
る出力を制限することを特徴徴とし、高い安全性と信頼
性とを備えることができるという効果がある。According to the eighteenth aspect of the present invention, in any one of the first to seventeenth aspects, when the non-contact plug is not connected to a predetermined position of the non-contact outlet, the control means transmits power from the inverter circuit. It is characterized by limiting the output supplied to the primary coil for use, and has an effect that high safety and reliability can be provided.
【0080】請求項19の発明は、請求項18の発明に
おいて、非接触コンセントはインバータ回路から電力送
電用1次コイルへの高周波電圧の供給の制限を制御する
スイッチ機能を備え、非接触プラグは前記スイッチ機能
のオン・オフ状態を制御する駆動体を備え、非接触プラ
グが非接触コンセントの所定の位置に結合すると前記ス
イッチ機能を動作させることで前記制御手段はインバー
タ回路から電力送電用1次コイルへの高周波電圧の供給
を可能にすることを特徴とし、高い安全性と信頼性とを
備えることができるという効果がある。According to a nineteenth aspect of the present invention, in the eighteenth aspect of the invention, the non-contact outlet has a switch function of controlling the supply of the high-frequency voltage from the inverter circuit to the power transmission primary coil. A driver for controlling the on / off state of the switch function, and when the non-contact plug is connected to a predetermined position of the non-contact outlet, the switch function is operated so that the control means can control the primary power transmission from the inverter circuit. It is characterized in that high-frequency voltage can be supplied to the coil, and there is an effect that high security and reliability can be provided.
【0081】請求項20の発明は、請求項19の発明に
おいて、非接触コンセントの前記スイッチ機能が機械接
点からなり、非接触プラグが備える駆動体は磁石からな
り、非接触プラグが非接触コンセントの所定の位置に結
合すると前記磁石の磁力によって前記機械接点が動作し
て、前記制御手段はインバータ回路から電力送電用1次
コイルへの高周波電圧の供給を可能にすることを特徴と
し、高い安全性と信頼性とを備えることができるという
効果がある。According to a twentieth aspect of the present invention, in the nineteenth aspect, the switch function of the non-contact outlet comprises a mechanical contact, a driving body provided in the non-contact plug comprises a magnet, and the non-contact plug is a non-contact outlet. When coupled to a predetermined position, the mechanical contact operates by the magnetic force of the magnet, and the control means enables supply of a high-frequency voltage from the inverter circuit to the primary coil for power transmission, thereby providing high safety. And reliability can be provided.
【0082】請求項21の発明は、請求項1乃至20い
ずれかの発明において、非接触プラグが非接触コンセン
トの所定の位置に結合すると、非接触プラグ及び非接触
コンセントの少なくともどちらか一方に使用可能を報知
する表示を行うことを特徴とし、システムや機器の使用
可否の判断をおこなうことができるという効果がある。According to a twenty-first aspect of the present invention, in any one of the first to twentieth aspects, when the non-contact plug is connected to a predetermined position of the non-contact outlet, the non-contact plug is used for at least one of the non-contact plug and the non-contact outlet. It is characterized in that display for notifying the possibility is performed, and there is an effect that it is possible to determine whether or not the system or the device can be used.
【0083】請求項22の発明は、請求項1乃至21い
ずれかの発明において、非接触コンセント及び非接触プ
ラグの少なくともどちらか一方は、非接触プラグの出力
端子に接続された端末機器の負荷電力、及び非接触プラ
グの出力電圧の少なくともどちらか一方を表示する表示
部を付加したことを特徴とし、システムや機器の使用可
否の判断をおこなうことができるという効果がある。According to a twenty-second aspect of the present invention, in any one of the first to twenty-first aspects, at least one of the non-contact outlet and the non-contact plug is connected to an output terminal of the non-contact plug. And a display unit for displaying at least one of the output voltage of the non-contact plug is added, and it is possible to determine whether or not the system or the device can be used.
【0084】請求項23の発明は、請求項1乃至22い
ずれかの発明において、非接触プラグの出力端子に接続
される端末機器は前記非接触プラグに対して、分離着脱
自在なことを特徴とし、不特定の端末機器を使用するこ
とができるという効果がある。According to a twenty-third aspect of the present invention, in any one of the first to twenty-second aspects, the terminal device connected to the output terminal of the non-contact plug is detachably attachable to and detachable from the non-contact plug. There is an effect that an unspecified terminal device can be used.
【0085】請求項24の発明は、請求項23の発明に
おいて、非接触プラグの出力端子から端末機器への電力
の供給は、磁気結合によって供給されることを特徴と
し、不特定の端末機器を使用することができるという効
果がある。According to a twenty-fourth aspect of the present invention, in the twenty-third aspect, the power supply from the output terminal of the non-contact plug to the terminal device is supplied by magnetic coupling. There is an effect that it can be used.
【0086】請求項25の発明は、請求項1乃至24い
ずれかの発明において、非接触プラグの出力端子間に、
電圧クランプ素子を接続することを特徴とし、高い安全
性と信頼性とを備えることができるという効果がある。According to a twenty-fifth aspect of the present invention, in any one of the first to twenty-fourth aspects, between the output terminals of the non-contact plug,
The invention is characterized in that a voltage clamp element is connected, and there is an effect that high safety and reliability can be provided.
【0087】このように本発明で構成される非接触電力
伝達システムは、安全や安心と、高い信頼性を背景に、
浴室などの水まわり環境を電化し、様々な電気機器によ
り多様なユーザニーズに応えることができるものであ
る。As described above, the non-contact power transmission system constituted by the present invention is based on the background of safety and security and high reliability.
The water surrounding environment such as a bathroom is electrified, and various electric devices can meet various user needs.
【図1】本発明の実施例を示す回路構成図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.
【図2】本発明の実施例を示す具体的な回路構成図であ
る。FIG. 2 is a specific circuit configuration diagram showing an embodiment of the present invention.
【図3】本発明の実施例の特性を示す図である。FIG. 3 is a diagram illustrating characteristics of an example of the present invention.
【図4】本発明の実施例の特性を示す図である。FIG. 4 is a diagram showing characteristics of the embodiment of the present invention.
【図5】本発明の実施例の特性を示す図である。FIG. 5 is a diagram showing characteristics of the example of the present invention.
【図6】本発明の実施例の特性を示す図である。FIG. 6 is a diagram showing characteristics of the example of the present invention.
【図7】本発明の実施例の特性を示す図である。FIG. 7 is a diagram showing characteristics of the example of the present invention.
【図8】本発明の実施例の特性を示す図である。FIG. 8 is a diagram showing characteristics of the example of the present invention.
【図9】本発明の実施例の特性を示す図である。FIG. 9 is a diagram showing characteristics of the example of the present invention.
【図10】本発明の実施例を示す回路構成図である。FIG. 10 is a circuit configuration diagram showing an embodiment of the present invention.
【図11】本発明の実施例を示す回路構成図である。FIG. 11 is a circuit configuration diagram showing an embodiment of the present invention.
【図12】本発明の実施例を示す回路構成図である。FIG. 12 is a circuit configuration diagram showing an embodiment of the present invention.
【図13】本発明の実施例を示す回路構成図である。FIG. 13 is a circuit diagram showing an embodiment of the present invention.
【図14】本発明の実施例を示す回路構成図である。FIG. 14 is a circuit configuration diagram showing an embodiment of the present invention.
【図15】本発明の実施例を示す回路構成図である。FIG. 15 is a circuit diagram showing an embodiment of the present invention.
【図16】本発明の実施例を示す回路構成図である。FIG. 16 is a circuit configuration diagram showing an embodiment of the present invention.
【図17】本発明の実施例を示す外観図である。FIG. 17 is an external view showing an embodiment of the present invention.
【図18】本発明の実施例を示す外観図である。FIG. 18 is an external view showing an embodiment of the present invention.
【図19】本発明の実施例を示す外観図である。FIG. 19 is an external view showing an embodiment of the present invention.
【図20】本発明の実施例を示す外観図である。FIG. 20 is an external view showing an embodiment of the present invention.
【図21】本発明の実施例を示す外観図である。FIG. 21 is an external view showing an embodiment of the present invention.
【図22】本発明の実施例を示す外観図である。FIG. 22 is an external view showing an embodiment of the present invention.
【図23】本発明の実施例を示す外観図である。FIG. 23 is an external view showing an embodiment of the present invention.
【図24】本発明の実施例の特性を示す図である。FIG. 24 is a diagram showing characteristics of the example of the present invention.
【図25】本発明の実施例を示す回路構成図である。FIG. 25 is a circuit diagram showing an embodiment of the present invention.
【図26】本発明の実施例を示す回路構成図である。FIG. 26 is a circuit diagram showing an embodiment of the present invention.
【図27】本発明の従来例を示す回路構成図である。FIG. 27 is a circuit configuration diagram showing a conventional example of the present invention.
【図28】本発明の従来例の電力授受用トランスを示す
構成図である。FIG. 28 is a configuration diagram showing a power transfer transformer according to a conventional example of the present invention.
【図29】本発明の従来例を示す回路構成図である。FIG. 29 is a circuit configuration diagram showing a conventional example of the present invention.
【図30】本発明の従来例の特性を示す図である。FIG. 30 is a diagram showing characteristics of a conventional example of the present invention.
【図31】本発明の従来例を示す回路構成図である。FIG. 31 is a circuit configuration diagram showing a conventional example of the present invention.
【図32】本発明の従来例を示す回路構成図である。FIG. 32 is a circuit configuration diagram showing a conventional example of the present invention.
【図33】本発明の従来例の特性を示す図である。FIG. 33 is a diagram showing characteristics of a conventional example of the present invention.
【図34】本発明の従来例の特性を示す図である。FIG. 34 is a diagram showing characteristics of a conventional example of the present invention.
1 非接触コンセント 2 非接触プラグ 3 端末機器 10 電源回路 11 インバータ回路 20 整流平滑回路 E 直流電圧 V1 高周波電圧 V2 高周波電圧 L1 電力送電用1次コイル L2 電力受電用2次コイル DESCRIPTION OF SYMBOLS 1 Non-contact outlet 2 Non-contact plug 3 Terminal equipment 10 Power supply circuit 11 Inverter circuit 20 Rectifier smoothing circuit E DC voltage V1 High frequency voltage V2 High frequency voltage L1 Primary coil for power transmission L2 Secondary coil for power reception
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02M 3/335 H01F 23/00 B (72)発明者 武藤 元治 大阪府門真市大字門真1048番地松下電工株 式会社内 Fターム(参考) 5G065 AA00 DA06 DA07 EA06 HA04 JA01 LA01 MA01 MA02 MA03 MA09 MA10 NA01 NA02 NA03 NA09 5H730 AA17 AS01 BB25 BB26 BB57 BB75 CC01 EE03 EE08 EE59 FD01 FF18 FG07 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H02M 3/335 H01F 23/00 B (72) Inventor Motoharu Muto 1048 Odakadoma, Kadoma-shi, Osaka Matsushita Electric Works Co., Ltd. F term (reference) 5G065 AA00 DA06 DA07 EA06 HA04 JA01 LA01 MA01 MA02 MA03 MA09 MA10 NA01 NA02 NA03 NA09 5H730 AA17 AS01 BB25 BB26 BB57 BB75 CC01 EE03 EE08 EE59 FD01 FF18 FG07
Claims (25)
電圧を一定周波数の高周波電圧に変換するインバータ回
路と前記インバータ回路から前記高周波電圧を供給され
る電力送電用1次コイルとから構成される非接触コンセ
ントと、前記電力送電用1次コイルと分離着脱自在なト
ランス構造を構成して高周波電圧を誘起される電力受電
用2次コイルと前記電力受電用2次コイルに誘起される
高周波電圧を整流平滑する整流平滑回路とから構成され
る非接触プラグと、前記非接触プラグの出力端子に接続
され負荷となる端末機器とから構成される非接触電力伝
達装置において、前記非接触コンセントは、対象として
いる負荷領域に対する前記非接触プラグの出力端子電圧
を、前記インバータ回路より前記電力送電用1次コイル
に供給される高周波電圧を間引いて安定化させる間引き
制御を行う制御手段を備えることを特徴とする非接触電
力伝達装置。1. A power supply circuit for outputting a DC voltage, an inverter circuit for converting the DC voltage into a high-frequency voltage having a constant frequency, and a power transmission primary coil supplied with the high-frequency voltage from the inverter circuit. A non-contact outlet, a power receiving secondary coil configured to be detachable from and detachable from the power transmitting primary coil to generate a high-frequency voltage, and a high-frequency voltage induced to the power receiving secondary coil. In a non-contact power transmission device including a non-contact plug including a rectifying and smoothing circuit for performing rectification and smoothing, and a terminal device serving as a load connected to an output terminal of the non-contact plug, the non-contact outlet is a target. The output terminal voltage of the non-contact plug with respect to the load area is set to a high frequency supplied to the power transmission primary coil from the inverter circuit. A non-contact power transmission device comprising control means for performing thinning control for stabilizing by thinning a voltage.
子電圧が所定の電圧を上回った場合には、インバータ回
路から電力送電用1次コイルへの高周波電圧の供給を一
定時間間引き、前記一定時間間引きを行った後非接触プ
ラグの出力端子電圧が前記所定の電圧を上回っていれば
再び電力送電用1次コイルへの前記高周波電圧の供給を
一定時間間引くことを繰り返し、前記各一定時間間引き
を行った後で非接触プラグの出力端子電圧が所定の電圧
を下回った場合には、非接触プラグの出力端子電圧が所
定の電圧を上回るまで電力送電用1次コイルへの前記高
周波電圧の供給を連続的に行う動作を継続させることを
特徴とする請求項1記載の非接触電力伝達装置。2. The control device according to claim 1, wherein when the output terminal voltage of the non-contact plug exceeds a predetermined voltage, the supply of the high-frequency voltage from the inverter circuit to the primary coil for power transmission is reduced for a certain period of time. If the output terminal voltage of the non-contact plug exceeds the predetermined voltage after performing the time culling, the supply of the high-frequency voltage to the power transmission primary coil is repeated for a certain time again, and the constant time culling is repeated. If the output terminal voltage of the non-contact plug falls below the predetermined voltage after performing the above, the supply of the high-frequency voltage to the power transmission primary coil until the output terminal voltage of the non-contact plug exceeds the predetermined voltage 2. The non-contact power transmission device according to claim 1, wherein an operation of continuously performing the operation is continued.
気状態を表す情報を磁気信号に変換して非接触コンセン
トに伝送し、前記制御手段は、前記磁気信号に基づいて
間引き制御のための制御信号を形成し、前記制御信号に
よりインバータ回路を間引き制御することを特徴とする
請求項1または2記載の非接触電力伝達装置。3. The non-contact plug converts information representing an electric state inside the non-contact plug into a magnetic signal and transmits the magnetic signal to a non-contact outlet, and the control means performs thinning control based on the magnetic signal. 3. The non-contact power transmission device according to claim 1, wherein a control signal is formed, and the inverter circuit is thinned out by the control signal.
部分共振インバータであることを特徴とする請求項1乃
至3いずれか記載の非接触電力伝達装置。4. The non-contact power transmission device according to claim 1, wherein the inverter circuit is a half-bridge type partial resonance inverter.
を備え、整流平滑回路は、電力受電用2次コイルのセン
タータップではない両出力端に直列に且つ互いに逆方向
に接続する整流素子の電力受電用2次コイルに接続して
いない各他端同士を接続した全波整流部を有し、前記整
流素子の接続中点にチョークコイルを接続することを特
徴とする請求項4記載の非接触電力伝達装置。5. The power receiving secondary coil includes a center tap, and the rectifying / smoothing circuit includes a rectifying element power connected in series and in opposite directions to both output terminals of the power receiving secondary coil that are not center taps. The non-contact device according to claim 4, further comprising a full-wave rectifier that connects the other ends of the rectifiers that are not connected to the power receiving secondary coil, and that connects a choke coil to a connection midpoint of the rectifier. Power transmission device.
サを接続することを特徴とする請求項1乃至5いずれか
記載の非接触電力伝達装置。6. The non-contact power transmission device according to claim 1, wherein a capacitor is connected in parallel to the power receiving secondary coil.
する負荷領域の最大負荷時において、電力送電用1次コ
イルに供給される高周波電圧の極性反転時期と、前記コ
ンデンサの両端に発生する振動電圧が極大値または極小
値となる時期とが一致する静電容量値であることを特徴
とする請求項6記載の非接触電力伝達装置。7. A capacitance value of the capacitor is generated at both ends of the capacitor when the polarity of the high-frequency voltage supplied to the primary coil for power transmission is inverted at the time of maximum load in a target load region. 7. The non-contact power transmission device according to claim 6, wherein the capacitance value coincides with the time when the oscillating voltage reaches a maximum value or a minimum value.
ルを設け、非接触プラグには前記1次側信号受信コイル
に対向配置され前記1次側信号受信コイルと分離着脱自
在なトランス構造を構成する2次側信号送信コイルを設
け、前記2次側信号送信コイルは非接触プラグの内部の
電気状態を表す情報を交流電圧に変換した信号を入力さ
れ、磁気信号として磁束信号を発生し、前記1次側信号
受信コイルは前記磁束信号により電圧を誘起され、前記
制御手段はインバータ回路を前記誘起された電圧に基づ
いた制御信号により前記間引き制御することを特徴とす
る請求項3乃至7いずれか記載の非接触電力伝達装置。8. A non-contact outlet is provided with a primary side signal receiving coil, and a non-contact plug is arranged opposite to the primary side signal receiving coil to form a transformer structure detachable from and detachable from the primary side signal receiving coil. A secondary-side signal transmission coil is provided, the secondary-side signal transmission coil receives a signal obtained by converting information representing an electrical state inside the non-contact plug into an AC voltage, and generates a magnetic flux signal as a magnetic signal; 8. A primary-side signal receiving coil in which a voltage is induced by the magnetic flux signal, and wherein the control means performs the thinning-out control of an inverter circuit by a control signal based on the induced voltage. A non-contact power transmission device according to claim 1.
コイルとの間、及び電力受電用2次コイルと2次側信号
送信コイルとの間の少なくとも一方の間に磁性体からな
る磁気シールド用隔壁を設けたことを特徴とする請求項
8記載の非接触電力伝達装置。9. A magnetic material comprising a magnetic material between at least one of a power transmitting primary coil and a primary signal receiving coil and at least one of a power receiving secondary coil and a secondary signal transmitting coil. 9. The non-contact power transmission device according to claim 8, further comprising a shielding partition.
次コイルとを、磁性体からなるコアに巻装し、前記コア
を互いに前記コアの軸方向に対向配置させたことを特徴
とする請求項9記載の非接触電力伝達装置。10. A primary coil for power transmission and a secondary coil for power reception.
The non-contact power transmission device according to claim 9, wherein the next coil is wound around a core made of a magnetic material, and the cores are arranged to face each other in the axial direction of the core.
次コイルとを、前記コイルの軸方向に垂直な方向に開口
部を有する有底筒型の磁性体からなるコアに巻装し、前
記コアを互いに前記コアの軸方向に対向配置させ、前記
コアの非開口部の近傍に1次側信号受信コイルと2次側
信号送信コイルとを配置したことを特徴とする請求項9
記載の非接触電力伝達装置。11. A power transmission primary coil and a power reception 2
And a next coil wound around a core made of a bottomed cylindrical magnetic material having an opening in a direction perpendicular to the axial direction of the coil, and the cores are arranged so as to face each other in the axial direction of the core. 10. A primary side signal receiving coil and a secondary side signal transmitting coil are arranged in the vicinity of the non-opening portion of the above.
A non-contact power transmission device according to claim 1.
グの内部の電気状態を表す情報を交流電圧に変換した信
号を入力されて、電力送電用1次コイルが発生させる磁
束とは逆位相の位相を有する磁束信号を発生することを
特徴とする請求項8乃至11いずれか記載の非接触電力
伝達装置。12. A secondary signal transmission coil receives a signal obtained by converting information representing an electric state inside a non-contact plug into an AC voltage, and has a phase opposite to that of a magnetic flux generated by a power transmission primary coil. The non-contact power transmission device according to any one of claims 8 to 11, wherein a magnetic flux signal having a phase of:
は、電力受電用2次コイルのどちらか一方の端子に接続
していることを特徴とする請求項12記載の非接触電力
伝達装置。13. The non-contact power transmission device according to claim 12, wherein one terminal of the secondary-side signal transmission coil is connected to one of terminals of the power reception secondary coil.
コイルの近傍に電力送電用1次コイルと電力受電用2次
コイルとの間に発生する磁束を検出する磁束検出用コイ
ルを設け、前記磁束検出用コイルは、磁気信号として電
力送電用1次コイルで発生する磁束を検出し、前記磁束
検出用コイルから前記検出する磁束に応じて出力される
電圧に基づいて前記制御手段は、インバータ回路を間引
き制御することを特徴とする請求項3乃至7いずれか記
載の非接触電力伝達装置。14. A non-contact outlet, comprising: a magnetic flux detecting coil for detecting a magnetic flux generated between the power transmitting primary coil and the power receiving secondary coil in the vicinity of the power transmitting primary coil; The magnetic flux detection coil detects a magnetic flux generated in the power transmission primary coil as a magnetic signal, and based on a voltage output from the magnetic flux detection coil in accordance with the detected magnetic flux, the control means includes an inverter circuit. The non-contact power transmission device according to any one of claims 3 to 7, wherein thinning control is performed.
次コイルとを、前記コイルの軸方向に垂直な方向に開口
部を有する有底筒型の磁性体からなるコアに設けて前記
コアを互いに前記コアの軸方向に対向配置させ、前記電
力送電用1次コイルのコアの開口部の近傍に前記磁束検
出用コイルを配置したことを特徴とする請求項14記載
の非接触電力伝達装置。15. A primary coil for power transmission and a secondary coil for power reception.
A secondary coil is provided on a core made of a bottomed cylindrical magnetic material having an opening in a direction perpendicular to the axial direction of the coil, and the cores are arranged to face each other in the axial direction of the core, and the power transmission The non-contact power transmission device according to claim 14, wherein the magnetic flux detection coil is arranged near an opening of a core of the primary coil.
の異なる複数の非接触プラグに適合し、各非接触プラグ
が対象としている負荷領域を含む全領域において前記各
非接触プラグの出力電圧を所定の電圧範囲内に収める前
記制御手段を有することを特徴とする請求項1乃至15
いずれか記載の非接触電力伝達装置。16. One non-contact outlet is adapted to a plurality of non-contact plugs having different output voltages, and controls the output voltage of each of the non-contact plugs in an entire region including a load region targeted by each of the non-contact plugs. 16. The control device according to claim 1, wherein said control means is controlled to fall within a voltage range.
The wireless power transmission device according to any one of the above.
を接続することを特徴とする請求項1乃至16いずれか
記載の非接触電力伝達装置。17. The non-contact power transmission device according to claim 1, wherein a resistor is connected in parallel to an output terminal of the non-contact plug.
定の位置に結合していない場合は、前記制御手段は、イ
ンバータ回路から電力送電用1次コイルへ供給する出力
を制限することを特徴とする請求項1乃至17いずれか
記載の非接触電力伝達装置。18. When the non-contact plug is not connected to a predetermined position of the non-contact outlet, the control means limits an output supplied from the inverter circuit to the primary coil for power transmission. The non-contact power transmission device according to claim 1.
ら電力送電用1次コイルへの高周波電圧の供給の制限を
制御するスイッチ機能を備え、非接触プラグは前記スイ
ッチ機能のオン・オフ状態を制御する駆動体を備え、非
接触プラグが非接触コンセントの所定の位置に結合する
と前記スイッチ機能を動作させることで前記制御手段は
インバータ回路から電力送電用1次コイルへの高周波電
圧の供給を可能にすることを特徴とする請求項18記載
の非接触電力伝達装置。19. The non-contact outlet has a switch function for controlling the supply of a high-frequency voltage from the inverter circuit to the power transmission primary coil, and the non-contact plug is a drive for controlling the on / off state of the switch function. The control means enables the supply of a high-frequency voltage from the inverter circuit to the primary coil for power transmission by operating the switch function when the non-contact plug is coupled to a predetermined position of the non-contact outlet. The wireless power transmission device according to claim 18, wherein:
が機械接点からなり、非接触プラグが備える駆動体は磁
石からなり、非接触プラグが非接触コンセントの所定の
位置に結合すると前記磁石の磁力によって前記機械接点
が動作して、前記制御手段はインバータ回路から電力送
電用1次コイルへの高周波電圧の供給を可能にすること
を特徴とする請求項19記載の非接触電力伝達装置。20. The switch function of the non-contact outlet comprises a mechanical contact, and a driving body provided in the non-contact plug comprises a magnet, and when the non-contact plug is coupled to a predetermined position of the non-contact outlet, the magnetic force of the magnet causes the driving force. 20. The non-contact power transmission device according to claim 19, wherein a mechanical contact is operated, and the control unit enables supply of a high-frequency voltage from the inverter circuit to the power transmission primary coil.
定の位置に結合すると、非接触プラグ及び非接触コンセ
ントの少なくともどちらか一方に使用可能を報知する表
示を行うことを特徴とする請求項1乃至20いずれか記
載の非接触電力伝達装置。21. When the non-contact plug is connected to a predetermined position of the non-contact outlet, a display for informing that at least one of the non-contact plug and the non-contact outlet can be used is displayed. 20. The non-contact power transmission device according to any one of 20.
少なくともどちらか一方は、非接触プラグの出力端子に
接続された端末機器の負荷電力、及び非接触プラグの出
力電圧の少なくともどちらか一方を表示する表示部を付
加したことを特徴とする請求項1乃至21いずれか記載
の非接触電力伝達装置。22. At least one of a non-contact outlet and a non-contact plug displays at least one of a load power of a terminal device connected to an output terminal of the non-contact plug and an output voltage of the non-contact plug. 22. The non-contact power transmission device according to claim 1, further comprising a display unit.
端末機器は前記非接触プラグに対して、分離着脱自在な
ことを特徴とする請求項1乃至22いずれか記載の非接
触電力伝達装置。23. The non-contact power transmission device according to claim 1, wherein a terminal device connected to an output terminal of the non-contact plug is detachably detachable from the non-contact plug.
への電力の供給は、磁気結合によって供給されることを
特徴とする請求項23記載の非接触電力伝達装置。24. The wireless power transmission device according to claim 23, wherein power is supplied from the output terminal of the wireless plug to the terminal device by magnetic coupling.
ランプ素子を接続することを特徴とする請求項1乃至2
4いずれか記載の非接触電力伝達装置。25. A voltage-clamping element is connected between output terminals of a non-contact plug.
5. The non-contact power transmission device according to any one of the above items 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000193404A JP4135299B2 (en) | 2000-06-27 | 2000-06-27 | Non-contact power transmission device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000193404A JP4135299B2 (en) | 2000-06-27 | 2000-06-27 | Non-contact power transmission device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002010535A true JP2002010535A (en) | 2002-01-11 |
JP4135299B2 JP4135299B2 (en) | 2008-08-20 |
Family
ID=18692403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000193404A Expired - Lifetime JP4135299B2 (en) | 2000-06-27 | 2000-06-27 | Non-contact power transmission device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4135299B2 (en) |
Cited By (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040049501A (en) * | 2002-12-06 | 2004-06-12 | 학교법인 청석학원 | Contactless power transfer device |
KR100446930B1 (en) * | 2001-12-04 | 2004-09-01 | 대한민국 (군산대학교 총장) | A Non-Contact Outlet and Plug Apparatus for Electric Shock Prevention Using Magnetic Induction |
GB2414607A (en) * | 2004-05-24 | 2005-11-30 | George Alan Limpkin | Power supply with inductive coupling |
JP2007330404A (en) * | 2006-06-13 | 2007-12-27 | Olympus Corp | Wireless power supply system and capsule endoscope equipped with the same |
JP2009189197A (en) * | 2008-02-08 | 2009-08-20 | Mitsubishi Electric Corp | Noncontact electric power transmission device |
WO2010087317A1 (en) * | 2009-01-30 | 2010-08-05 | 株式会社村田製作所 | Contactless power receiving device |
KR100998392B1 (en) | 2002-07-26 | 2010-12-03 | 시프라 페턴트엔트위크렁스-운트 베테일리강스게젤샤프트 엠베하 | Devices with simultaneous transmission of power and information between two mobile components |
JP2010284995A (en) * | 2009-06-09 | 2010-12-24 | Sharp Corp | Noncontact power supply apparatus |
JP2011514137A (en) * | 2008-03-10 | 2011-04-28 | テクティウム リミテッド | Eco-friendly power supply device |
CN102255400A (en) * | 2011-07-15 | 2011-11-23 | 华北电力大学(保定) | Wireless power supply device and use method thereof |
CN102377251A (en) * | 2010-08-10 | 2012-03-14 | 株式会社村田制作所 | Power transmission system |
JP2012165602A (en) * | 2011-02-08 | 2012-08-30 | Renesas Electronics Corp | Power transmission apparatus |
JP2013511161A (en) * | 2009-11-16 | 2013-03-28 | 300ケイ エンタープライズ ピーティーワイ リミテッド | Non-contact coupler and method for use with electrical equipment |
WO2013020138A3 (en) * | 2011-08-04 | 2013-04-04 | Witricity Corporation | Tunable wireless power architectures |
US8461719B2 (en) | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer systems |
US8497601B2 (en) | 2008-09-27 | 2013-07-30 | Witricity Corporation | Wireless energy transfer converters |
US8587153B2 (en) | 2008-09-27 | 2013-11-19 | Witricity Corporation | Wireless energy transfer using high Q resonators for lighting applications |
US8618696B2 (en) | 2008-09-27 | 2013-12-31 | Witricity Corporation | Wireless energy transfer systems |
US8629578B2 (en) | 2008-09-27 | 2014-01-14 | Witricity Corporation | Wireless energy transfer systems |
US8643326B2 (en) | 2008-09-27 | 2014-02-04 | Witricity Corporation | Tunable wireless energy transfer systems |
US8667452B2 (en) | 2011-11-04 | 2014-03-04 | Witricity Corporation | Wireless energy transfer modeling tool |
US8669676B2 (en) | 2008-09-27 | 2014-03-11 | Witricity Corporation | Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor |
JP2014057511A (en) * | 2008-12-12 | 2014-03-27 | Chun-Kil Jung | Non-contact power charging station with planar spiral core structure, non-contact power receiving device, and method of controlling the same |
US8692412B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Temperature compensation in a wireless transfer system |
US8716903B2 (en) | 2008-09-27 | 2014-05-06 | Witricity Corporation | Low AC resistance conductor designs |
US8723366B2 (en) | 2008-09-27 | 2014-05-13 | Witricity Corporation | Wireless energy transfer resonator enclosures |
FR2998104A1 (en) * | 2012-11-12 | 2014-05-16 | Bright In Res & Dev | Method for installing electromagnetic connection of e.g. electric cleaner in bath-tub, involves fitting plug in base plate to concentrically place windings and to transfer energy by magnetic coupling between plug and plate |
US8729737B2 (en) | 2008-09-27 | 2014-05-20 | Witricity Corporation | Wireless energy transfer using repeater resonators |
KR20140067443A (en) * | 2012-11-26 | 2014-06-05 | 삼성전자주식회사 | Wireless power receiver |
US8772973B2 (en) | 2008-09-27 | 2014-07-08 | Witricity Corporation | Integrated resonator-shield structures |
US8805530B2 (en) | 2007-06-01 | 2014-08-12 | Witricity Corporation | Power generation for implantable devices |
US8847548B2 (en) | 2008-09-27 | 2014-09-30 | Witricity Corporation | Wireless energy transfer for implantable devices |
JP5622013B1 (en) * | 2013-11-27 | 2014-11-12 | 悠一 桐生 | Collective tidal current power generation facility |
US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
US8947186B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US8957549B2 (en) | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
US9065286B2 (en) | 2005-07-12 | 2015-06-23 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
US9106088B2 (en) | 2011-03-09 | 2015-08-11 | Kabushiki Kaisha Toyota Jidoshokki | Non-contact power transmission apparatus |
US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
US9124113B2 (en) | 2008-07-07 | 2015-09-01 | Powerbyproxi Limited | Inductively coupled power receiver and method of operation |
US9130395B2 (en) | 2008-12-12 | 2015-09-08 | Hanrim Postech Co., Ltd. | Non-contact charging station with planar spiral power transmission coil and method for controlling the same |
US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
CN105047388A (en) * | 2015-07-20 | 2015-11-11 | 河南理工大学 | Induction socket, plug and power utilization control method |
US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
US9306635B2 (en) | 2012-01-26 | 2016-04-05 | Witricity Corporation | Wireless energy transfer with reduced fields |
US9318922B2 (en) | 2008-09-27 | 2016-04-19 | Witricity Corporation | Mechanically removable wireless power vehicle seat assembly |
US9318780B2 (en) | 2010-11-16 | 2016-04-19 | Powerbyproxi Limited | Wirelessly rechargeable battery and power transmitter |
US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US9369182B2 (en) | 2008-09-27 | 2016-06-14 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
US9404954B2 (en) | 2012-10-19 | 2016-08-02 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
US9444265B2 (en) | 2005-07-12 | 2016-09-13 | Massachusetts Institute Of Technology | Wireless energy transfer |
US9442172B2 (en) | 2011-09-09 | 2016-09-13 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9449757B2 (en) | 2012-11-16 | 2016-09-20 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
JP2017046578A (en) * | 2015-08-28 | 2017-03-02 | 長崎県 | Non-contact power transmission device |
US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
US9754718B2 (en) | 2008-09-27 | 2017-09-05 | Witricity Corporation | Resonator arrays for wireless energy transfer |
US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
US9831682B2 (en) | 2008-10-01 | 2017-11-28 | Massachusetts Institute Of Technology | Efficient near-field wireless energy transfer using adiabatic system variations |
US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
US9842688B2 (en) | 2014-07-08 | 2017-12-12 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
US9857821B2 (en) | 2013-08-14 | 2018-01-02 | Witricity Corporation | Wireless power transfer frequency adjustment |
US9892849B2 (en) | 2014-04-17 | 2018-02-13 | Witricity Corporation | Wireless power transfer systems with shield openings |
US9929721B2 (en) | 2015-10-14 | 2018-03-27 | Witricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
US9954375B2 (en) | 2014-06-20 | 2018-04-24 | Witricity Corporation | Wireless power transfer systems for surfaces |
US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
US10018744B2 (en) | 2014-05-07 | 2018-07-10 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10063104B2 (en) | 2016-02-08 | 2018-08-28 | Witricity Corporation | PWM capacitor control |
US10063110B2 (en) | 2015-10-19 | 2018-08-28 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
US10141788B2 (en) | 2015-10-22 | 2018-11-27 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
US10263473B2 (en) | 2016-02-02 | 2019-04-16 | Witricity Corporation | Controlling wireless power transfer systems |
CN109904663A (en) * | 2019-02-13 | 2019-06-18 | 浙江理工大学上虞工业技术研究院有限公司 | A non-hole socket based on electromagnetic induction and its matching conversion plug |
US10424976B2 (en) | 2011-09-12 | 2019-09-24 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
EP3657906A1 (en) * | 2018-11-21 | 2020-05-27 | Illinois Tool Works Inc. | Modular transformers and induction heating systems having modular transformers |
JP2020516229A (en) * | 2017-03-13 | 2020-05-28 | アーン ベイデュング イノベーション アーエスArne Veidung Innovasjon As | Adapter assembly for contactless power transmission |
US11031818B2 (en) | 2017-06-29 | 2021-06-08 | Witricity Corporation | Protection and control of wireless power systems |
JPWO2022130439A1 (en) * | 2020-12-14 | 2022-06-23 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014038148A1 (en) | 2012-09-06 | 2016-08-08 | パナソニックIpマネジメント株式会社 | Contactless power supply system and contactless extension plug |
-
2000
- 2000-06-27 JP JP2000193404A patent/JP4135299B2/en not_active Expired - Lifetime
Cited By (192)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100446930B1 (en) * | 2001-12-04 | 2004-09-01 | 대한민국 (군산대학교 총장) | A Non-Contact Outlet and Plug Apparatus for Electric Shock Prevention Using Magnetic Induction |
KR100998392B1 (en) | 2002-07-26 | 2010-12-03 | 시프라 페턴트엔트위크렁스-운트 베테일리강스게젤샤프트 엠베하 | Devices with simultaneous transmission of power and information between two mobile components |
KR20040049501A (en) * | 2002-12-06 | 2004-06-12 | 학교법인 청석학원 | Contactless power transfer device |
GB2414607A (en) * | 2004-05-24 | 2005-11-30 | George Alan Limpkin | Power supply with inductive coupling |
US10097044B2 (en) | 2005-07-12 | 2018-10-09 | Massachusetts Institute Of Technology | Wireless energy transfer |
US9831722B2 (en) | 2005-07-12 | 2017-11-28 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9065286B2 (en) | 2005-07-12 | 2015-06-23 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US11685271B2 (en) | 2005-07-12 | 2023-06-27 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9444265B2 (en) | 2005-07-12 | 2016-09-13 | Massachusetts Institute Of Technology | Wireless energy transfer |
US10666091B2 (en) | 2005-07-12 | 2020-05-26 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9450422B2 (en) | 2005-07-12 | 2016-09-20 | Massachusetts Institute Of Technology | Wireless energy transfer |
US11685270B2 (en) | 2005-07-12 | 2023-06-27 | Mit | Wireless energy transfer |
US9450421B2 (en) | 2005-07-12 | 2016-09-20 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US10141790B2 (en) | 2005-07-12 | 2018-11-27 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9509147B2 (en) | 2005-07-12 | 2016-11-29 | Massachusetts Institute Of Technology | Wireless energy transfer |
US8203434B2 (en) | 2006-06-13 | 2012-06-19 | Olympus Corporation | Wireless power feeding system and capsule endoscope system applied with the same |
JP2007330404A (en) * | 2006-06-13 | 2007-12-27 | Olympus Corp | Wireless power supply system and capsule endoscope equipped with the same |
US9095729B2 (en) | 2007-06-01 | 2015-08-04 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9943697B2 (en) | 2007-06-01 | 2018-04-17 | Witricity Corporation | Power generation for implantable devices |
US8805530B2 (en) | 2007-06-01 | 2014-08-12 | Witricity Corporation | Power generation for implantable devices |
US10348136B2 (en) | 2007-06-01 | 2019-07-09 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US10420951B2 (en) | 2007-06-01 | 2019-09-24 | Witricity Corporation | Power generation for implantable devices |
US9843230B2 (en) | 2007-06-01 | 2017-12-12 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
US9318898B2 (en) | 2007-06-01 | 2016-04-19 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9101777B2 (en) | 2007-06-01 | 2015-08-11 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
JP2009189197A (en) * | 2008-02-08 | 2009-08-20 | Mitsubishi Electric Corp | Noncontact electric power transmission device |
JP2011514137A (en) * | 2008-03-10 | 2011-04-28 | テクティウム リミテッド | Eco-friendly power supply device |
US9124113B2 (en) | 2008-07-07 | 2015-09-01 | Powerbyproxi Limited | Inductively coupled power receiver and method of operation |
US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
US8692412B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Temperature compensation in a wireless transfer system |
US8772973B2 (en) | 2008-09-27 | 2014-07-08 | Witricity Corporation | Integrated resonator-shield structures |
US8729737B2 (en) | 2008-09-27 | 2014-05-20 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US8847548B2 (en) | 2008-09-27 | 2014-09-30 | Witricity Corporation | Wireless energy transfer for implantable devices |
US12263743B2 (en) | 2008-09-27 | 2025-04-01 | Witricity Corporation | Wireless power system modules |
US11958370B2 (en) | 2008-09-27 | 2024-04-16 | Witricity Corporation | Wireless power system modules |
US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
US8947186B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US8957549B2 (en) | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
US8497601B2 (en) | 2008-09-27 | 2013-07-30 | Witricity Corporation | Wireless energy transfer converters |
US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US8587153B2 (en) | 2008-09-27 | 2013-11-19 | Witricity Corporation | Wireless energy transfer using high Q resonators for lighting applications |
US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
US9806541B2 (en) | 2008-09-27 | 2017-10-31 | Witricity Corporation | Flexible resonator attachment |
US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
US8723366B2 (en) | 2008-09-27 | 2014-05-13 | Witricity Corporation | Wireless energy transfer resonator enclosures |
US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
US8461719B2 (en) | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer systems |
US10084348B2 (en) | 2008-09-27 | 2018-09-25 | Witricity Corporation | Wireless energy transfer for implantable devices |
US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
US8716903B2 (en) | 2008-09-27 | 2014-05-06 | Witricity Corporation | Low AC resistance conductor designs |
US9780605B2 (en) | 2008-09-27 | 2017-10-03 | Witricity Corporation | Wireless power system with associated impedance matching network |
US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
US9754718B2 (en) | 2008-09-27 | 2017-09-05 | Witricity Corporation | Resonator arrays for wireless energy transfer |
US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
US11479132B2 (en) | 2008-09-27 | 2022-10-25 | Witricity Corporation | Wireless power transmission system enabling bidirectional energy flow |
US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
US11114896B2 (en) | 2008-09-27 | 2021-09-07 | Witricity Corporation | Wireless power system modules |
US11114897B2 (en) | 2008-09-27 | 2021-09-07 | Witricity Corporation | Wireless power transmission system enabling bidirectional energy flow |
US9318922B2 (en) | 2008-09-27 | 2016-04-19 | Witricity Corporation | Mechanically removable wireless power vehicle seat assembly |
US10673282B2 (en) | 2008-09-27 | 2020-06-02 | Witricity Corporation | Tunable wireless energy transfer systems |
US9843228B2 (en) | 2008-09-27 | 2017-12-12 | Witricity Corporation | Impedance matching in wireless power systems |
US10559980B2 (en) | 2008-09-27 | 2020-02-11 | Witricity Corporation | Signaling in wireless power systems |
US10536034B2 (en) | 2008-09-27 | 2020-01-14 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US9369182B2 (en) | 2008-09-27 | 2016-06-14 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US10446317B2 (en) | 2008-09-27 | 2019-10-15 | Witricity Corporation | Object and motion detection in wireless power transfer systems |
US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
US10410789B2 (en) | 2008-09-27 | 2019-09-10 | Witricity Corporation | Integrated resonator-shield structures |
US9748039B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US8669676B2 (en) | 2008-09-27 | 2014-03-11 | Witricity Corporation | Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor |
US10340745B2 (en) | 2008-09-27 | 2019-07-02 | Witricity Corporation | Wireless power sources and devices |
US9444520B2 (en) | 2008-09-27 | 2016-09-13 | Witricity Corporation | Wireless energy transfer converters |
US10300800B2 (en) | 2008-09-27 | 2019-05-28 | Witricity Corporation | Shielding in vehicle wireless power systems |
US8643326B2 (en) | 2008-09-27 | 2014-02-04 | Witricity Corporation | Tunable wireless energy transfer systems |
US10264352B2 (en) | 2008-09-27 | 2019-04-16 | Witricity Corporation | Wirelessly powered audio devices |
US10230243B2 (en) | 2008-09-27 | 2019-03-12 | Witricity Corporation | Flexible resonator attachment |
US9496719B2 (en) | 2008-09-27 | 2016-11-15 | Witricity Corporation | Wireless energy transfer for implantable devices |
US8629578B2 (en) | 2008-09-27 | 2014-01-14 | Witricity Corporation | Wireless energy transfer systems |
US9515495B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless energy transfer in lossy environments |
US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
US9577436B2 (en) | 2008-09-27 | 2017-02-21 | Witricity Corporation | Wireless energy transfer for implantable devices |
US9584189B2 (en) | 2008-09-27 | 2017-02-28 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US10218224B2 (en) | 2008-09-27 | 2019-02-26 | Witricity Corporation | Tunable wireless energy transfer systems |
US9596005B2 (en) | 2008-09-27 | 2017-03-14 | Witricity Corporation | Wireless energy transfer using variable size resonators and systems monitoring |
US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
US8618696B2 (en) | 2008-09-27 | 2013-12-31 | Witricity Corporation | Wireless energy transfer systems |
US10097011B2 (en) | 2008-09-27 | 2018-10-09 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US9662161B2 (en) | 2008-09-27 | 2017-05-30 | Witricity Corporation | Wireless energy transfer for medical applications |
US9698607B2 (en) | 2008-09-27 | 2017-07-04 | Witricity Corporation | Secure wireless energy transfer |
US9711991B2 (en) | 2008-09-27 | 2017-07-18 | Witricity Corporation | Wireless energy transfer converters |
US9742204B2 (en) | 2008-09-27 | 2017-08-22 | Witricity Corporation | Wireless energy transfer in lossy environments |
US9831682B2 (en) | 2008-10-01 | 2017-11-28 | Massachusetts Institute Of Technology | Efficient near-field wireless energy transfer using adiabatic system variations |
JP2014057511A (en) * | 2008-12-12 | 2014-03-27 | Chun-Kil Jung | Non-contact power charging station with planar spiral core structure, non-contact power receiving device, and method of controlling the same |
US9178376B2 (en) | 2008-12-12 | 2015-11-03 | Hanrim Postech Co., Ltd. | Non-contact charging station with power transmission planar spiral core, non-contact power-receiving apparatus, and method for controlling the same |
US9130395B2 (en) | 2008-12-12 | 2015-09-08 | Hanrim Postech Co., Ltd. | Non-contact charging station with planar spiral power transmission coil and method for controlling the same |
USRE49300E1 (en) | 2008-12-12 | 2022-11-15 | Ge Hybrid Technologies, Llc | Non-contact charging station with power transmission planar spiral core, non-contact power-receiving apparatus, and method for controlling the same |
US8723374B2 (en) | 2009-01-30 | 2014-05-13 | Murata Manufacturing Co., Ltd. | Non-contact power receiving apparatus |
WO2010087317A1 (en) * | 2009-01-30 | 2010-08-05 | 株式会社村田製作所 | Contactless power receiving device |
JP2010284995A (en) * | 2009-06-09 | 2010-12-24 | Sharp Corp | Noncontact power supply apparatus |
JP2013511161A (en) * | 2009-11-16 | 2013-03-28 | 300ケイ エンタープライズ ピーティーワイ リミテッド | Non-contact coupler and method for use with electrical equipment |
US9040947B2 (en) | 2009-11-16 | 2015-05-26 | 300K Enterprises Pty Ltd | Contactless coupling and method for use with an electrical appliance |
CN102377251A (en) * | 2010-08-10 | 2012-03-14 | 株式会社村田制作所 | Power transmission system |
US8987941B2 (en) | 2010-08-10 | 2015-03-24 | Murata Manufacturing Co., Ltd. | Power transmission system |
US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
US9318780B2 (en) | 2010-11-16 | 2016-04-19 | Powerbyproxi Limited | Wirelessly rechargeable battery and power transmitter |
JP2012165602A (en) * | 2011-02-08 | 2012-08-30 | Renesas Electronics Corp | Power transmission apparatus |
US9106088B2 (en) | 2011-03-09 | 2015-08-11 | Kabushiki Kaisha Toyota Jidoshokki | Non-contact power transmission apparatus |
US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
CN102255400A (en) * | 2011-07-15 | 2011-11-23 | 华北电力大学(保定) | Wireless power supply device and use method thereof |
US10734842B2 (en) | 2011-08-04 | 2020-08-04 | Witricity Corporation | Tunable wireless power architectures |
US9787141B2 (en) | 2011-08-04 | 2017-10-10 | Witricity Corporation | Tunable wireless power architectures |
US9384885B2 (en) | 2011-08-04 | 2016-07-05 | Witricity Corporation | Tunable wireless power architectures |
WO2013020138A3 (en) * | 2011-08-04 | 2013-04-04 | Witricity Corporation | Tunable wireless power architectures |
US11621585B2 (en) | 2011-08-04 | 2023-04-04 | Witricity Corporation | Tunable wireless power architectures |
US10778047B2 (en) | 2011-09-09 | 2020-09-15 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9442172B2 (en) | 2011-09-09 | 2016-09-13 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10027184B2 (en) | 2011-09-09 | 2018-07-17 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10424976B2 (en) | 2011-09-12 | 2019-09-24 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
US11097618B2 (en) | 2011-09-12 | 2021-08-24 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
US8667452B2 (en) | 2011-11-04 | 2014-03-04 | Witricity Corporation | Wireless energy transfer modeling tool |
US8875086B2 (en) | 2011-11-04 | 2014-10-28 | Witricity Corporation | Wireless energy transfer modeling tool |
US9306635B2 (en) | 2012-01-26 | 2016-04-05 | Witricity Corporation | Wireless energy transfer with reduced fields |
US10158251B2 (en) | 2012-06-27 | 2018-12-18 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
US10686337B2 (en) | 2012-10-19 | 2020-06-16 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10211681B2 (en) | 2012-10-19 | 2019-02-19 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9465064B2 (en) | 2012-10-19 | 2016-10-11 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9404954B2 (en) | 2012-10-19 | 2016-08-02 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
FR2998104A1 (en) * | 2012-11-12 | 2014-05-16 | Bright In Res & Dev | Method for installing electromagnetic connection of e.g. electric cleaner in bath-tub, involves fitting plug in base plate to concentrically place windings and to transfer energy by magnetic coupling between plug and plate |
US9842684B2 (en) | 2012-11-16 | 2017-12-12 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
US9449757B2 (en) | 2012-11-16 | 2016-09-20 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
US10186372B2 (en) | 2012-11-16 | 2019-01-22 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
KR102042020B1 (en) * | 2012-11-26 | 2019-11-07 | 삼성전자주식회사 | Wireless power receiver |
KR20140067443A (en) * | 2012-11-26 | 2014-06-05 | 삼성전자주식회사 | Wireless power receiver |
US9857821B2 (en) | 2013-08-14 | 2018-01-02 | Witricity Corporation | Wireless power transfer frequency adjustment |
US11112814B2 (en) | 2013-08-14 | 2021-09-07 | Witricity Corporation | Impedance adjustment in wireless power transmission systems and methods |
US11720133B2 (en) | 2013-08-14 | 2023-08-08 | Witricity Corporation | Impedance adjustment in wireless power transmission systems and methods |
JP5622013B1 (en) * | 2013-11-27 | 2014-11-12 | 悠一 桐生 | Collective tidal current power generation facility |
US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
US9892849B2 (en) | 2014-04-17 | 2018-02-13 | Witricity Corporation | Wireless power transfer systems with shield openings |
US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
US10186373B2 (en) | 2014-04-17 | 2019-01-22 | Witricity Corporation | Wireless power transfer systems with shield openings |
US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
US10371848B2 (en) | 2014-05-07 | 2019-08-06 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10018744B2 (en) | 2014-05-07 | 2018-07-10 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US11637458B2 (en) | 2014-06-20 | 2023-04-25 | Witricity Corporation | Wireless power transfer systems for surfaces |
US10923921B2 (en) | 2014-06-20 | 2021-02-16 | Witricity Corporation | Wireless power transfer systems for surfaces |
US9954375B2 (en) | 2014-06-20 | 2018-04-24 | Witricity Corporation | Wireless power transfer systems for surfaces |
US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
US9842688B2 (en) | 2014-07-08 | 2017-12-12 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
CN105047388A (en) * | 2015-07-20 | 2015-11-11 | 河南理工大学 | Induction socket, plug and power utilization control method |
JP2017046578A (en) * | 2015-08-28 | 2017-03-02 | 長崎県 | Non-contact power transmission device |
US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
US9929721B2 (en) | 2015-10-14 | 2018-03-27 | Witricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
US10063110B2 (en) | 2015-10-19 | 2018-08-28 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10651689B2 (en) | 2015-10-22 | 2020-05-12 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US10651688B2 (en) | 2015-10-22 | 2020-05-12 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US10141788B2 (en) | 2015-10-22 | 2018-11-27 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
US10263473B2 (en) | 2016-02-02 | 2019-04-16 | Witricity Corporation | Controlling wireless power transfer systems |
US10637292B2 (en) | 2016-02-02 | 2020-04-28 | Witricity Corporation | Controlling wireless power transfer systems |
US11807115B2 (en) | 2016-02-08 | 2023-11-07 | Witricity Corporation | PWM capacitor control |
US10063104B2 (en) | 2016-02-08 | 2018-08-28 | Witricity Corporation | PWM capacitor control |
US10913368B2 (en) | 2016-02-08 | 2021-02-09 | Witricity Corporation | PWM capacitor control |
JP7093373B2 (en) | 2017-03-13 | 2022-06-29 | アーン ベイデュング イノベーション アーエス | Adapter assembly for non-contact transmission of electric power |
JP2020516229A (en) * | 2017-03-13 | 2020-05-28 | アーン ベイデュング イノベーション アーエスArne Veidung Innovasjon As | Adapter assembly for contactless power transmission |
US11588351B2 (en) | 2017-06-29 | 2023-02-21 | Witricity Corporation | Protection and control of wireless power systems |
US11043848B2 (en) | 2017-06-29 | 2021-06-22 | Witricity Corporation | Protection and control of wireless power systems |
US11637452B2 (en) | 2017-06-29 | 2023-04-25 | Witricity Corporation | Protection and control of wireless power systems |
US11031818B2 (en) | 2017-06-29 | 2021-06-08 | Witricity Corporation | Protection and control of wireless power systems |
US11160144B2 (en) | 2018-11-21 | 2021-10-26 | Illinois Tool Works Inc. | Modular transformers and induction heating systems having modular transformers |
EP3657906A1 (en) * | 2018-11-21 | 2020-05-27 | Illinois Tool Works Inc. | Modular transformers and induction heating systems having modular transformers |
CN109904663A (en) * | 2019-02-13 | 2019-06-18 | 浙江理工大学上虞工业技术研究院有限公司 | A non-hole socket based on electromagnetic induction and its matching conversion plug |
CN109904663B (en) * | 2019-02-13 | 2023-12-19 | 浙江理工大学上虞工业技术研究院有限公司 | A socket component based on electromagnetic induction |
WO2022130439A1 (en) * | 2020-12-14 | 2022-06-23 | 三菱電機株式会社 | Power transmission device and contactless power feeding system |
JPWO2022130439A1 (en) * | 2020-12-14 | 2022-06-23 |
Also Published As
Publication number | Publication date |
---|---|
JP4135299B2 (en) | 2008-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4135299B2 (en) | Non-contact power transmission device | |
US6430062B1 (en) | Power supply apparatus for the reduction of power consumption | |
TW512583B (en) | Start-up circuit for flyback converter having secondary pulse width modulation control | |
US6687137B1 (en) | Resonant switching power supply circuit with voltage doubler output | |
JP4774217B2 (en) | Power transmission device and power transmission method | |
JP4676409B2 (en) | Non-contact power transmission device | |
CN100418293C (en) | Capacitively coupled power supply | |
JP2004274262A (en) | Electrically insulated switch element driving circuit | |
WO1998050993A1 (en) | Inductive power transfer across an extended gap | |
US9312778B2 (en) | Power supply device | |
JP2005137040A (en) | Noncontact power supply | |
US5317496A (en) | DC/DC-converter with a primary circuit and at least one secondary circuit tuned as individually oscillatory circuits | |
US6909617B1 (en) | Zero-voltage-switched, full-bridge, phase-shifted DC-DC converter with improved light/no-load operation | |
JP2002078248A (en) | Non-contact power transmission apparatus | |
US11340267B2 (en) | Current detection device having a current transformer with a common coil section | |
JP3346543B2 (en) | Switching power supply | |
CN107276240B (en) | Power transmission device | |
KR20050059842A (en) | Switching mode power supply | |
TW438952B (en) | Microwave oven | |
EP1249067B1 (en) | Portable device with reduced power dissipation | |
CN100397764C (en) | Voltage converter | |
KR20210107432A (en) | Capacitor isolated balanced converter | |
KR19990028416U (en) | DC adapter output selection inverter | |
JP2791353B2 (en) | Power circuit | |
JP3326655B2 (en) | Current resonant switching power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080513 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080526 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4135299 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |