JP2002009316A - Solar battery and method for manufacturing the same - Google Patents
Solar battery and method for manufacturing the sameInfo
- Publication number
- JP2002009316A JP2002009316A JP2000190082A JP2000190082A JP2002009316A JP 2002009316 A JP2002009316 A JP 2002009316A JP 2000190082 A JP2000190082 A JP 2000190082A JP 2000190082 A JP2000190082 A JP 2000190082A JP 2002009316 A JP2002009316 A JP 2002009316A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- spherical
- type semiconductor
- cell
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 239000004065 semiconductor Substances 0.000 claims abstract description 72
- 239000000758 substrate Substances 0.000 claims abstract description 67
- 229920005989 resin Polymers 0.000 claims abstract description 33
- 239000011347 resin Substances 0.000 claims abstract description 33
- 238000005530 etching Methods 0.000 claims abstract description 19
- 238000003825 pressing Methods 0.000 claims description 8
- 230000002265 prevention Effects 0.000 claims description 8
- 238000004080 punching Methods 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 abstract description 6
- 230000013011 mating Effects 0.000 abstract 1
- 238000004806 packaging method and process Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 148
- 239000010408 film Substances 0.000 description 19
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000011888 foil Substances 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- 239000004642 Polyimide Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 101100121112 Oryza sativa subsp. indica 20ox2 gene Proteins 0.000 description 1
- 101100121113 Oryza sativa subsp. japonica GA20OX2 gene Proteins 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、太陽電池の製造方
法および太陽電池に係り、特に球体セルを用いた太陽電
池の製造方法および太陽電池に関する。The present invention relates to a method of manufacturing a solar cell and a solar cell, and more particularly to a method of manufacturing a solar cell using spherical cells and a solar cell.
【0002】[0002]
【従来の技術】半導体のpn接合部分には内部電界が生
じており、これに光を当て、電子正孔対を生成させる
と、生成した電子と正孔は内部電界により分離されて、
電子はn側に、正孔はp側に集められ、外部に負荷を接
続するとp側からn側に向けて電流が流れる。この効果
を利用し、光エネルギーを電気エネルギーに変換する素
子として太陽電池の実用化が進められている。2. Description of the Related Art An internal electric field is generated at a pn junction of a semiconductor. When light is applied to the pn junction to generate an electron-hole pair, the generated electrons and holes are separated by the internal electric field.
Electrons are collected on the n side and holes are collected on the p side. When a load is connected to the outside, a current flows from the p side to the n side. Utilizing this effect, solar cells have been put into practical use as elements for converting light energy into electric energy.
【0003】近年、単結晶、多結晶シリコンなどの直径
1mm以下の球状の半導体(Ball Semiconductor)上に
回路パターンを形成して半導体素子を製造する技術が開
発されている。In recent years, a technique has been developed in which a semiconductor element is manufactured by forming a circuit pattern on a spherical semiconductor (Ball Semiconductor) having a diameter of 1 mm or less, such as single crystal or polycrystalline silicon.
【0004】その1つとして、アルミ箔を用いて多数個
の半導体粒子を接続したソーラーアレーの製造方法が提
案されている(特開平6-13633号)。この方法で
は、図10に示すように、n型表皮部とp型内部を有す
る半導体粒子207をアルミ箔の開口にアルミ箔201
の両側から突出するように配置し、片側の表皮部209
を除去し、絶縁層221を形成する。次にp型内部21
1の一部およびその上の絶縁層221を除去し、その除
去された領域217に第2アルミ箔219を結合する。
その平坦な領域217が導電部としての第2アルミ箔2
19に対し良好なオーミック接触を提供するようにした
ものである。As one of the methods, there has been proposed a method of manufacturing a solar array in which a large number of semiconductor particles are connected by using an aluminum foil (JP-A-6-13633). In this method, as shown in FIG. 10, a semiconductor particle 207 having an n-type skin portion and a p-type interior is placed in an aluminum foil opening through an aluminum foil 201.
209 so that it protrudes from both sides of the
Is removed, and an insulating layer 221 is formed. Next, the p-type interior 21
1 and the insulating layer 221 thereon are removed, and a second aluminum foil 219 is bonded to the removed region 217.
The flat area 217 is the second aluminum foil 2 as a conductive part.
19 to provide a good ohmic contact.
【0005】[0005]
【発明が解決しようとする課題】上記のような従来の太
陽電池(ソーラーアレー)の製造方法では、球体セル
(半導体粒子)の内部コアがp型半導体層の場合には、
表面に形成されているn型半導体層の電極を取るため
に、アルミ箔をパンチ等で打ち抜き、球体セルを打ち抜
いた開口に埋め込むことで、アルミ箔をn型電極として
用いている。しかしながら、実際には打ち抜いた開口に
球体セルを埋め込んだ状態で固定するのは非常に困難で
ある。また、球体セルが真球でない(球形状や直径が一
定でない)場合、同一径の開口にこのような球体セルを
埋め込み固定することは非常に困難であり、開口のエッ
ジと球体セル間に隙間ができてしまう。このため、埋め
込み後のp型拡散層領域露出のためのエッチングの際、
開口の縁部と球体セル間の隙間があるとエッチング剤が
p型半導体層露出面の反対側に漏れだしてしまい、本来
エッチングすべきでない反対側の球体セル表面もエッチ
ングされてしまい、太陽電池の信頼性が損なわれてしま
う。In the conventional method of manufacturing a solar cell (solar array) as described above, when the internal core of a spherical cell (semiconductor particle) is a p-type semiconductor layer,
In order to take an electrode of an n-type semiconductor layer formed on the surface, an aluminum foil is used as an n-type electrode by punching an aluminum foil with a punch or the like and embedding the spherical cell in the punched opening. However, in practice, it is very difficult to fix the spherical cell embedded in the punched opening. In addition, when the spherical cell is not a true sphere (spherical shape or diameter is not constant), it is very difficult to embed and fix such a spherical cell in an opening of the same diameter, and a gap between the edge of the opening and the spherical cell Can be done. Therefore, at the time of etching for exposing the p-type diffusion layer region after the embedding,
If there is a gap between the edge of the opening and the spherical cell, the etching agent leaks to the opposite side of the exposed surface of the p-type semiconductor layer, and the surface of the opposite spherical cell, which should not be etched, is also etched. The reliability of the system will be impaired.
【0006】本発明は、上記問題点に鑑みて成されたも
のであり、球体セルが真球でない(球形状や直径が一定
でない)場合でも固定が確実にでき、エッチング時にエ
ッチング剤が漏れずにエッチングでき、高密度実装にお
いての内側電極と外側電極との導通の問題を解決し、信
頼性の向上をはかり、作業性が良く、高出力の太陽電池
の製造方法および太陽電池を提供することを目的とす
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and secures fixation even when a spherical cell is not a true sphere (spherical shape or diameter is not constant), so that an etching agent does not leak during etching. To provide a method of manufacturing a high-output solar cell and a solar cell, which can solve the problem of conduction between an inner electrode and an outer electrode in high-density mounting, improve reliability, workability is good, and have high output. With the goal.
【0007】[0007]
【課題を解決するための手段】本発明の第1の太陽電池
の製造方法は、第1導電型半導体層を有する球体基板表
面に、前記第1導電型半導体層の一部が露出したように
第2導電型半導体層を形成してなる球体セルを用意する
工程と、表面に突起部を有する導電性基板を形成する工
程と、該突起部上に絶縁性樹脂部材を形成する工程と、
前記球体セルの前記第1導電型半導体層の露出した部分
が前記絶縁性樹脂部材に当接するように球体セルを載置
して、加圧することにより、前記第1導電型半導体層の
露出した部分と、前記導電性基板とを電気的に接続させ
る工程と、前記球体セルの配置に合わせた開口部を具備
し、該開口部の縁部が鋸歯状に形成されてなる電極板を
用意し、該開口部を球体セルに嵌合して固定し、前記第
2導電型半導体層と電気的に接続させる工程と、を含む
ことを特徴とする。かかる方法によれば、開口部の縁部
が鋸歯状に形成されているので、真球でない(球形状や
直径が一定でない)球体セルであっても電極板に確実に
固定することができる。また、導電性基板と球体セルと
の固定を、絶縁性樹脂部材の加圧により接着することに
より確実に固定でき、同時に外部電極と内部電極との絶
縁分離のための絶縁層形成もできる。According to a first method of manufacturing a solar cell of the present invention, a part of the first conductive type semiconductor layer is exposed on the surface of a spherical substrate having the first conductive type semiconductor layer. A step of preparing a spherical cell formed by forming a second conductivity type semiconductor layer; a step of forming a conductive substrate having a projection on the surface; and a step of forming an insulating resin member on the projection.
The spherical cell is placed so that the exposed portion of the first conductive semiconductor layer of the spherical cell is in contact with the insulating resin member, and is pressed to thereby expose the exposed portion of the first conductive semiconductor layer. And a step of electrically connecting the conductive substrate, comprising an opening corresponding to the arrangement of the spherical cells, preparing an electrode plate having an edge of the opening formed in a saw-tooth shape, Fitting the opening to the spherical cell and fixing the opening, and electrically connecting the opening to the second conductive type semiconductor layer. According to this method, since the edge of the opening is formed in a saw-tooth shape, even a spherical cell that is not a true sphere (spherical shape and diameter is not constant) can be reliably fixed to the electrode plate. Further, the fixing between the conductive substrate and the spherical cell can be reliably performed by bonding the insulating resin member by pressing, and at the same time, an insulating layer for insulating and separating the external electrode and the internal electrode can be formed.
【0008】本発明の第2の太陽電池の製造方法は、第
1導電型半導体層を有する球体基板表面に、第2導電型
半導体層を形成してなる球体セルを用意する工程と、前
記球体セルの配置に合わせた開口部を具備し、該開口部
の縁部が鋸歯状に形成されてなる電極板を用意し、球体
セルを前記開口部に嵌合して固定する工程と、前記球体
セルの一部をエッチング防止膜で覆い、エッチングを施
すことにより、前記第1導電型半導体層の一部を露出さ
せる工程と、表面に突起部を有する導電性基板を形成す
る工程と、該突起部上に絶縁性樹脂部材を形成する工程
と、前記球体セルの前記第1導電型半導体層の露出した
部分が前記絶縁性樹脂部材に当接するように球体セルを
載置して、加圧することにより、前記第1導電型半導体
層の露出した部分と、前記導電性基板とを電気的に接続
させる工程と、を含むことを特徴とする。かかる方法に
よれば、電極板の開口部の縁部が鋸歯状に形成されてい
るので、真球でない(球形状や直径が一定でない)球体
セルであっても電極板に確実に固定することができる。
また、球体セルの一部をエッチング防止膜で覆い、エッ
チングを施すことにより、球体セル反対面へのエッチン
グ剤の漏れを防ぐことができる。また、導電性基板と球
体セルとの固定を、絶縁性樹脂部材の加圧により接着す
ることにより確実に固定でき、同時に外部電極と内部電
極との絶縁分離のための絶縁層形成もできる。さらに、
前記鋸歯状の開口部の縁部が絶縁性樹脂部材内部に浸入
して(食い込んで)固定されるので、電極板、球体セ
ル、導電性基板の強固な固定が実現できる。In a second method of manufacturing a solar cell according to the present invention, a step of preparing a spherical cell having a second conductive type semiconductor layer formed on a spherical substrate surface having a first conductive type semiconductor layer; A step of preparing an electrode plate having an opening corresponding to the arrangement of cells, an edge of the opening being formed in a sawtooth shape, and fitting and fixing a spherical cell to the opening; A step of exposing a part of the first conductivity type semiconductor layer by covering a part of the cell with an etching prevention film and performing etching, a step of forming a conductive substrate having a projection on the surface, Forming an insulating resin member on the portion, and placing and pressing the spherical cell such that the exposed portion of the first conductive semiconductor layer of the spherical cell contacts the insulating resin member. As a result, the exposed portion of the first conductivity type semiconductor layer , Characterized in that it comprises a and a step of electrically connecting the conductive substrate. According to this method, since the edge of the opening of the electrode plate is formed in a saw-tooth shape, even a spherical cell that is not a true sphere (spherical shape or diameter is not constant) can be securely fixed to the electrode plate. Can be.
In addition, by covering a part of the spherical cell with an etching prevention film and performing etching, leakage of the etching agent to the opposite surface of the spherical cell can be prevented. Further, the fixing between the conductive substrate and the spherical cell can be surely performed by bonding by pressing the insulating resin member, and at the same time, an insulating layer for insulating and separating the external electrode and the internal electrode can be formed. further,
Since the edge of the sawtooth-shaped opening penetrates (bites into) the inside of the insulating resin member and is fixed, the electrode plate, the spherical cell, and the conductive substrate can be firmly fixed.
【0009】本発明の第3の太陽電池の製造方法は、請
求項1または2に記載の太陽電池の製造方法において、
前記導電性基板を形成する工程は、導電性基板表面に絶
縁膜を形成する工程と、打ち抜き加工により突起部を形
成する工程とを含むことを特徴とする。かかる方法によ
れば、ポリイミドテープ等を導電性基板上に貼るなどし
て絶縁膜を形成することにより、内側電極(導電性基
板)と外側電極(電極板)とを電気的に絶縁することが
できる。A third method for manufacturing a solar cell according to the present invention is the method for manufacturing a solar cell according to claim 1 or 2,
The step of forming the conductive substrate includes a step of forming an insulating film on the surface of the conductive substrate and a step of forming a projection by punching. According to this method, the inner electrode (conductive substrate) and the outer electrode (electrode plate) can be electrically insulated by forming an insulating film by, for example, pasting a polyimide tape or the like on the conductive substrate. it can.
【0010】本発明の第4の太陽電池の製造方法は、請
求項3に記載の太陽電池の製造方法において、前記絶縁
膜は、前記導電性基板の全表面に形成することを特徴と
する。かかる方法によれば、より確実に内側電極(導電
性基板)と外側電極(電極板)とを電気的に絶縁するこ
とができる。A fourth method for manufacturing a solar cell according to the present invention is the method for manufacturing a solar cell according to claim 3, wherein the insulating film is formed on the entire surface of the conductive substrate. According to such a method, the inner electrode (conductive substrate) and the outer electrode (electrode plate) can be more reliably electrically insulated.
【0011】本発明の第5の太陽電池の製造方法は、請
求項3に記載の太陽電池の製造方法において、前記絶縁
膜は、前記導電性基板の突起部以外の表面に形成するこ
とを特徴とする。かかる方法によれば、より効率よく内
側電極(導電性基板)と外側電極(電極板)とを電気的
に絶縁することができる。A fifth method of manufacturing a solar cell according to the present invention is the method of manufacturing a solar cell according to claim 3, wherein the insulating film is formed on a surface of the conductive substrate other than the protrusion. And According to this method, the inner electrode (conductive substrate) and the outer electrode (electrode plate) can be electrically insulated more efficiently.
【0012】本発明の第6の太陽電池は、シート状の導
電性基板上に、内部が第1導電型半導体層、表面が第2
導電型半導体層からなる球体セルが敷き詰められた太陽
電池であって、前記球体セル内部の第1導電型半導体層
の一部が露出し、露出部分と前記導電性基板とが電気的
に接続されてなる内側電極と、前記第2導電型半導体層
と、前記球体セルの配置に合わせた開口部を具備し該開
口部の縁部が鋸歯状に形成された電極板とが、電気的に
接続されてなる外側電極と、を具備したことを特徴とす
る。かかる構成によれば、開口部の縁部が鋸歯状に形成
されているので、真球でない(球形状や直径が一定でな
い)球体セルであっても電極板に確実に固定された太陽
電池を実現できる。In a sixth solar cell according to the present invention, a first conductive type semiconductor layer is formed on a sheet-shaped conductive substrate, and
A solar cell in which spherical cells made of a conductive semiconductor layer are spread, wherein a part of the first conductive semiconductor layer inside the spherical cell is exposed, and the exposed portion and the conductive substrate are electrically connected. Electrically connected to the inner electrode, the second conductive semiconductor layer, and an electrode plate having an opening corresponding to the arrangement of the spherical cells and having an edge formed in a sawtooth shape. And an outer electrode formed. According to this configuration, since the edge of the opening is formed in a saw-tooth shape, a solar cell securely fixed to the electrode plate can be used even for a spherical cell that is not a true sphere (spherical shape or diameter is not constant). realizable.
【0013】本発明の第7の太陽電池は、請求項6に記
載の太陽電池であって、前記導電性基板と前記球体セル
と前記電極板とが絶縁性樹脂部材によって接着されてな
ることを特徴とする。かかる構成によれば、導電性基板
と球体セルとが、絶縁性樹脂部材により確実に接着固定
され、また、この絶縁性樹脂部材が外部電極と内部電極
との絶縁分離のための絶縁層とも機能する太陽電池を実
現できる。[0013] A seventh solar cell according to the present invention is the solar cell according to claim 6, wherein the conductive substrate, the spherical cell, and the electrode plate are bonded by an insulating resin member. Features. According to this configuration, the conductive substrate and the spherical cell are securely bonded and fixed by the insulating resin member, and the insulating resin member also functions as an insulating layer for insulating and separating the external electrode and the internal electrode. Solar cell can be realized.
【0014】本発明の第8の太陽電池は、請求項6また
は7に記載の太陽電池であって、前記開口部の縁部の鋸
歯状部が上向きに形成されてなることを特徴とする。か
かる構成によれば、開口部の縁部が鋸歯状に形成されて
いるので、真球でない(球形状や直径が一定でない)球
体セルであっても電極板に確実に固定された太陽電池を
実現できる。An eighth solar cell according to the present invention is the solar cell according to the sixth or seventh aspect, wherein the saw-toothed portion at the edge of the opening is formed upward. According to this configuration, since the edge of the opening is formed in a saw-tooth shape, a solar cell securely fixed to the electrode plate can be used even for a spherical cell that is not a true sphere (spherical shape or diameter is not constant). realizable.
【0015】本発明の第9の太陽電池は、請求項6また
は7に記載の太陽電池であって、前記開口部の縁部の鋸
歯状部が下向きに形成され、かつ、該鋸歯状部が絶縁性
樹脂部材内部に浸入して固定されてなることを特徴とす
る。かかる構成によれば、開口部の縁部が鋸歯状に形成
されているので、真球でない(球形状や直径が一定でな
い)球体セルであっても電極板に確実に固定され、か
つ、電極板、球体セル、導電性基板の強固な固定が実現
できる。A ninth solar cell according to the present invention is the solar cell according to claim 6 or 7, wherein the saw-toothed portion at the edge of the opening is formed downward, and the saw-toothed portion is formed. It is characterized by being penetrated and fixed inside the insulating resin member. According to this configuration, since the edge of the opening is formed in a saw-tooth shape, even a spherical cell that is not a true sphere (spherical shape and diameter is not fixed) is securely fixed to the electrode plate, and Strong fixation of a plate, a spherical cell, and a conductive substrate can be realized.
【0016】[0016]
【発明の実施の形態】以下、本発明に係る太陽電池およ
び太陽電池の製造方法について実施の形態を挙げ、図面
を参照して詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a solar cell and a method for manufacturing the solar cell according to the present invention will be described in detail with reference to the accompanying drawings.
【0017】(第1の実施の形態)図1は本発明の第1
の実施の形態に係る太陽電池の要部斜視図であり、図4
はその一部の断面概要図であり、図3は外部電極となる
電極板の要部斜視図およびA−A断面を模式的に示す図
である。本発明の第1の実施形態に係る太陽電池は、図
1および図4に示すように、シート状の導電性基板17
上に、太陽電池のセルとなる球体セル10が敷き詰めら
れ、球体セルの配置に合わせた開口部18を具備し、そ
の開口部18の縁部18aが鋸歯状に形成された電極板
16が、この鋸歯状の縁部18aが上向きになるように
球体セル10に嵌合して固定されている。(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
FIG. 4 is a perspective view of a main part of the solar cell according to the embodiment of FIG.
FIG. 3 is a schematic cross-sectional view of a part thereof, and FIG. 3 is a perspective view of a main part of an electrode plate serving as an external electrode and a diagram schematically showing an AA cross section. The solar cell according to the first embodiment of the present invention includes a sheet-shaped conductive substrate 17 as shown in FIGS.
An electrode plate 16 on which spherical cells 10 serving as solar cells are spread and provided with openings 18 corresponding to the arrangement of the spherical cells, and edges 18a of the openings 18 are formed in a sawtooth shape, The saw-toothed edge portion 18a is fitted and fixed to the spherical cell 10 so that it faces upward.
【0018】また、球体セル10内部のp型半導体層1
1(第1導電型半導体層)とpn接合を形成するn型半
導体層12(第2導電型半導体層)を有する球体セル1
0が、導電性基板17に圧着され、内部のp型半導体層
11と導電性基板17とが電気的に接続されている。こ
れにより、導電性基板17は、太陽電池の内側電極とな
っている。The p-type semiconductor layer 1 inside the spherical cell 10
Spherical cell 1 having n-type semiconductor layer 12 (second conductivity type semiconductor layer) forming a pn junction with 1 (first conductivity type semiconductor layer)
0 is pressure-bonded to the conductive substrate 17, and the internal p-type semiconductor layer 11 and the conductive substrate 17 are electrically connected. Thus, the conductive substrate 17 serves as an inner electrode of the solar cell.
【0019】また、開口部18の縁部18aが鋸歯状に
形成された電極板16(図3参照)は、n型半導体層1
2と電気的に接続され、太陽電池の外側電極となってい
る。また、導電性基板17と球体セル10とが絶縁性樹
脂部材14によって接着され、固定されている。The electrode plate 16 (see FIG. 3) in which the edge 18a of the opening 18 is formed in a saw-tooth shape is used for the n-type semiconductor layer 1
2 and is an outer electrode of the solar cell. In addition, the conductive substrate 17 and the spherical cell 10 are bonded and fixed by the insulating resin member 14.
【0020】さらに、球体セル10の周囲にある絶縁性
樹脂部材14と球体セル10の間の導電性基板17上に
貼られたポリイミドテープなどからなる絶縁膜15とに
より、導電性基板17(内側電極)と、開口部の縁部1
8aが鋸歯状に形成された電極板16(外側電極)とは
電気的に絶縁されている。Further, the insulating resin member 14 around the spherical cell 10 and the insulating film 15 made of a polyimide tape or the like affixed on the conductive substrate 17 between the spherical cells 10 form the conductive substrate 17 (inside). Electrode) and opening edge 1
8a is electrically insulated from the electrode plate 16 (outer electrode) formed in a sawtooth shape.
【0021】次に、本発明の実施形態に係る太陽電池の
具体的な製造方法の一例を以下、説明する。まず、本実
施の形態で用いる球体セル10の形成方法の一例につい
て説明する。直径1mmのp型多結晶シリコン粒を真空
中で加熱しつつ落下させ、結晶性の良好なp型多結晶シ
リコン球(p型半導体層)11を形成し、この表面に、
フォスフィンを含むシランなどの混合ガスを用いたCV
D法により、n型多結晶シリコン層(n型半導体層)1
2を形成する。ここでCVD工程は細いチューブ内でシ
リコン球を搬送しながら、所望の反応温度に加熱された
ガスを供給排出することにより、薄膜形成を行うもので
ある。Next, an example of a specific method for manufacturing a solar cell according to an embodiment of the present invention will be described below. First, an example of a method of forming the spherical cell 10 used in the present embodiment will be described. A p-type polycrystalline silicon particle having a diameter of 1 mm is dropped while being heated in a vacuum to form a p-type polycrystalline silicon sphere (p-type semiconductor layer) 11 having good crystallinity.
CV using mixed gas such as silane containing phosphine
According to Method D, n-type polycrystalline silicon layer (n-type semiconductor layer) 1
Form 2 Here, in the CVD process, a thin film is formed by supplying and discharging a gas heated to a desired reaction temperature while conveying a silicon ball in a thin tube.
【0022】なお、この工程は、p型多結晶シリコン粒
を真空中で加熱しつつ落下させながら球状化し、p型多
結晶シリコン球(p型半導体層)11を形成するととも
に、落下途上で所望のガスと接触させることにより、n
型多結晶シリコン層(n型半導体層)12を形成する様
にすることも可能である。In this step, the p-type polycrystalline silicon grains are heated in a vacuum and dropped to form a sphere to form a p-type polycrystalline silicon sphere (p-type semiconductor layer) 11. By contact with the gas of
It is also possible to form the type polycrystalline silicon layer (n-type semiconductor layer) 12.
【0023】次に、上述の球体セル10を用いた太陽電
池の製造方法を図6〜図8を用いて説明する。図6は球
体セルを加工する工程の概略断面図であり、図7は導電
性基板を加工する工程の概略断面図であり、図8は加工
した球体セルを加工した導電性基板に搭載し、太陽電池
を形成する工程の概略断面図である。Next, a method of manufacturing a solar cell using the above-described spherical cell 10 will be described with reference to FIGS. FIG. 6 is a schematic cross-sectional view of a step of processing a spherical cell, FIG. 7 is a schematic cross-sectional view of a step of processing a conductive substrate, and FIG. It is a schematic sectional drawing of the process of forming a solar cell.
【0024】球体セルを加工する工程を図6を用いて説
明する。まず、一定間隔を空けて縦横等間隔に球体セル
を並べるために設けられた窪みを有するトレイTを用意
する。図6の(a)にこのトレイTの概略断面図を示
す。The process of processing a spherical cell will be described with reference to FIG. First, a tray T having a depression provided for arranging spherical cells at equal intervals in the vertical and horizontal directions is prepared. FIG. 6A is a schematic sectional view of the tray T.
【0025】次に、図6の(b)に示すように、球体セ
ル10をトレイTの窪みに載置する。Next, as shown in FIG. 6B, the spherical cell 10 is placed in the recess of the tray T.
【0026】次に、図6の(c)に示すように、球体セ
ル10が埋まるように、ろう剤(例えば、パラフィン等
のエレクトロンワックス)からなる固定部材13を溶融
温度(パラフィンの場合は100℃〜200℃)に熱し
て溶融させて流し込み、温度を下げて硬化させる。Next, as shown in FIG. 6C, the fixing member 13 made of a brazing agent (for example, electron wax such as paraffin) is heated to a melting temperature (100 in case of paraffin) so that the spherical cell 10 is filled. (200 ° C. to 200 ° C.), melted and poured, and the temperature is lowered to cure.
【0027】次に、図6の(d)に示すように、トレイ
Tから固定部材13により固定された球体セル10を取
り出し、逆向きにする。Next, as shown in FIG. 6D, the spherical cell 10 fixed by the fixing member 13 is taken out of the tray T and turned upside down.
【0028】次に、図6の(e)に示すように、球体セ
ル10が固定部材13に覆われていない部分に対し、エ
ッチング等を施すことにより表面のn型半導体層12を
除去し、内部のp型半導体層11を露出させる。あるい
は、上記固定部材13に覆われていない部分をグライン
ディング等により研削することで、内部のp型半導体層
11を露出させても良い。Next, as shown in FIG. 6E, the portion of the spherical cell 10 not covered by the fixing member 13 is etched or the like to remove the n-type semiconductor layer 12 on the surface. The internal p-type semiconductor layer 11 is exposed. Alternatively, a portion not covered with the fixing member 13 may be ground by grinding or the like to expose the internal p-type semiconductor layer 11.
【0029】次に、基板を加工する工程を図7を用いて
説明する。まず、図7の(a)に示すように、アルミニ
ウムシート等からなる導電性基板17を用意する。Next, a process of processing a substrate will be described with reference to FIG. First, as shown in FIG. 7A, a conductive substrate 17 made of an aluminum sheet or the like is prepared.
【0030】次に、図7の(b)に示すように、導電性
基板17の上に絶縁膜15を形成する(例えば、ポリイ
ミドテープを貼る)。絶縁膜15は、図に示すように後
の工程で貫通孔を設ける部分を予めパンチ等で孔をあけ
ているが、孔をあけずに導電性基板17上の全面を覆う
ように貼り付けても良い。Next, as shown in FIG. 7B, an insulating film 15 is formed on the conductive substrate 17 (for example, a polyimide tape is applied). As shown in the figure, the insulating film 15 is formed by punching a portion where a through hole is to be provided in a later step with a punch or the like in advance, but is attached so as to cover the entire surface of the conductive substrate 17 without making a hole. Is also good.
【0031】次に、図7の(c)に示すように、導電性
基板17に対し、パンチ等を用いて、スパイク状の突起
部17bを有する貫通孔17aを形成する。Next, as shown in FIG. 7C, a through hole 17a having a spike-like projection 17b is formed in the conductive substrate 17 by using a punch or the like.
【0032】次に、図7の(d)に示すように、スパイ
ク状の突起部17b上に絶縁性樹脂部材14(例えば、
エポキシ樹脂)を適量塗布する。Next, as shown in FIG. 7D, the insulating resin member 14 (for example,
Epoxy resin).
【0033】また、上記図7の(c)の工程において、
必ずしも貫通孔17aが開かなくても良く、この場合は
突起部17cはスパイク状ではなく、図7の(e)に示
すような凸状になっても良い。そして、次にこの凸状の
突起部17c上に絶縁性樹脂部材14(例えば、エポキ
シ樹脂)を適量塗布し(図7の(f))、貫通孔17a
がある場合と同様に、以降の工程により製造できるもの
である。In the step of FIG. 7C,
The through hole 17a does not necessarily have to be opened. In this case, the projection 17c may not be in a spike shape but may be in a convex shape as shown in FIG. Then, an appropriate amount of the insulating resin member 14 (for example, epoxy resin) is applied onto the protruding protrusion 17c (FIG. 7F), and the through-hole 17a is formed.
As in the case where there is, it can be manufactured by the subsequent steps.
【0034】次に、加工した球体セルを加工した導電性
基板に搭載する工程を図8を用いて説明する。まず、図
8の(a)に示すように、前記のように加工した導電性
基板(図7の(d))の上に、前記のように加工した球
体セル(図6の(c))を露出したp型半導体層11が
絶縁性樹脂部材14に接し、球体セル10の中心が貫通
孔中心に合致するように位置合わせをして載置する。Next, a process of mounting the processed spherical cell on the processed conductive substrate will be described with reference to FIG. First, as shown in FIG. 8 (a), a spherical cell (FIG. 6 (c)) processed as described above is placed on a conductive substrate (FIG. 7 (d)) processed as described above. The exposed p-type semiconductor layer 11 is in contact with the insulating resin member 14 and is positioned and mounted so that the center of the spherical cell 10 matches the center of the through hole.
【0035】次に、図8の(a)の状態で約150℃に
加熱し、プレス装置等を用いて約1時間上部より加圧
し、図8の(b)の状態とする。そして、加圧した状態
のまま、絶縁性樹脂部材14の硬化を行う。このとき焼
結(シンタリング)の工程を併用して行うこともでき、
この場合の加熱温度は200℃〜300℃、加圧時間は
30分〜1時間で行うことが好ましい。Next, in the state of FIG. 8 (a), it is heated to about 150 ° C., and is pressurized from above using a press device or the like for about 1 hour to obtain the state of FIG. 8 (b). Then, the insulating resin member 14 is cured while being pressed. At this time, sintering (sintering) can be performed in combination.
In this case, the heating temperature is preferably 200 ° C. to 300 ° C., and the pressing time is preferably 30 minutes to 1 hour.
【0036】次に、加圧を解除し、固定部材13を熱ま
たは薬品(例えば、アセトン)を用いて除去し、図8の
(c)の状態となる。Next, the pressure is released, and the fixing member 13 is removed using heat or a chemical (for example, acetone), and the state shown in FIG. 8C is obtained.
【0037】次に、図3の(a)に示すような、球体セ
ル10の配置に合わせて開口部18が設けられた電極板
(例えば、アルミニウムなどの金属シート)16を用意
する。この電極板16は、開口部18をその縁部18a
が鋸歯状となるようにパンチ等で打ち抜いて形成された
ものである。図3の(b)にそのA−A断面を模式的に
示す。この電極板16の開口部18が球体セル10の上
に位置合わせをした後、電極板16の開口部18を球体
セル10の上方より嵌め込み固定する。このとき、鋸歯
状の縁部18aの突起が上向きになる。このようにし
て、図8の(d)に示す状態となる。Next, as shown in FIG. 3A, an electrode plate (for example, a metal sheet of aluminum or the like) 16 provided with an opening 18 in accordance with the arrangement of the spherical cells 10 is prepared. The electrode plate 16 has an opening 18 at its edge 18a.
Are formed by punching with a punch or the like so as to have a sawtooth shape. FIG. 3B schematically shows the AA cross section. After the opening 18 of the electrode plate 16 is positioned on the spherical cell 10, the opening 18 of the electrode plate 16 is fitted and fixed from above the spherical cell 10. At this time, the projection of the saw-toothed edge portion 18a faces upward. Thus, the state shown in FIG. 8D is obtained.
【0038】(第2の実施の形態)図2は本発明の第2
の実施の形態に係る太陽電池の要部斜視図であり、図5
はその一部の断面概要図であり、図3は外部電極となる
電極板の要部斜視図およびA−A断面を模式的に示す図
である。本発明の第2の実施形態に係る太陽電池は、図
2および図5に示すように、シート状の導電性基板17
上に、太陽電池のセルとなる球体セル10が敷き詰めら
れ、開口部18の縁部18aが鋸歯状に形成された電極
板16が、この鋸歯状の縁部18aが下向きになるよう
に球体セル10に嵌合して固定されている。(Second Embodiment) FIG. 2 shows a second embodiment of the present invention.
FIG. 5 is a perspective view of a main part of the solar cell according to the embodiment, and FIG.
FIG. 3 is a schematic cross-sectional view of a part thereof, and FIG. 3 is a perspective view of a main part of an electrode plate serving as an external electrode and a diagram schematically showing an AA cross section. The solar cell according to the second embodiment of the present invention has a sheet-like conductive substrate 17 as shown in FIGS.
A spherical cell 10 serving as a solar cell is spread over the electrode plate 16 in which an edge 18a of an opening 18 is formed in a sawtooth shape, and a spherical cell 10 is formed such that the sawtooth edge 18a faces downward. 10 and fixed.
【0039】また、球体セル10内部のp型半導体層1
1(第1導電型半導体層)とpn接合を形成するn型半
導体層12(第2導電型半導体層)を有する球体セル1
0が、導電性基板17に圧着され、内部のp型半導体層
11と導電性基板17とが電気的に接続されている。こ
れにより、導電性基板17は、太陽電池の内側電極とな
っている。The p-type semiconductor layer 1 inside the spherical cell 10
Spherical cell 1 having n-type semiconductor layer 12 (second conductivity type semiconductor layer) forming a pn junction with 1 (first conductivity type semiconductor layer)
0 is pressure-bonded to the conductive substrate 17, and the internal p-type semiconductor layer 11 and the conductive substrate 17 are electrically connected. Thus, the conductive substrate 17 serves as an inner electrode of the solar cell.
【0040】また、開口部18の縁部18aが鋸歯状に
形成された電極板16(図3参照)が、n型半導体層1
2と電気的に接続され、太陽電池の外側電極となってい
る。また、導電性基板17と球体セル10と電極板16
とが絶縁性樹脂部材14によって接着され、固定されて
いる。さらに、電極板16の鋸歯状の縁部18aが絶縁
性樹脂部材14内部に浸入して(食い込んで)固定され
ている。The electrode plate 16 (see FIG. 3) in which the edge 18a of the opening 18 is formed in a saw-tooth shape is used for the n-type semiconductor layer 1.
2 and is an outer electrode of the solar cell. Also, the conductive substrate 17, the spherical cell 10, and the electrode plate 16
Are bonded and fixed by the insulating resin member 14. Further, the saw-toothed edge portion 18 a of the electrode plate 16 penetrates (bits into) the inside of the insulating resin member 14 and is fixed.
【0041】さらに、球体セル10の周囲にある絶縁性
樹脂部材14と球体セル10の間の導電性基板17上に
貼られたポリイミドテープなどからなる絶縁膜15とに
より、導電性基板17(内側電極)と、開口部18の縁
部18aが鋸歯状に形成された電極板16(外側電極)
とは電気的に絶縁されている。Further, an insulating resin member 14 around the spherical cell 10 and an insulating film 15 made of polyimide tape or the like affixed on the conductive substrate 17 between the spherical cells 10 form the conductive substrate 17 (inside). Electrode) and an electrode plate 16 (outer electrode) in which the edge 18a of the opening 18 is formed in a saw-tooth shape.
And are electrically insulated.
【0042】次に、本発明の第2の実施の形態に係る太
陽電池の具体的な製造方法を以下、説明する。まず、本
実施の形態で用いる球体セル10を第1の実施の形態と
同様にして形成する。Next, a specific method for manufacturing a solar cell according to the second embodiment of the present invention will be described below. First, the spherical cell 10 used in the present embodiment is formed in the same manner as in the first embodiment.
【0043】次に、上述の球体セル10を用いた太陽電
池の製造方法を図9を用いて説明する。図9は、本発明
の第2の実施の形態に係る太陽電池の製造方法の工程を
説明する断面概要図である。Next, a method of manufacturing a solar cell using the above-described spherical cell 10 will be described with reference to FIG. FIG. 9 is a schematic cross-sectional view illustrating steps of a method for manufacturing a solar cell according to the second embodiment of the present invention.
【0044】次に、前記第1の実施の形態と同様に図3
の(a)に示すような、球体セルの配置に合わせて開口
部が設けられた電極板(例えば、アルミニウムなどの金
属シート)16を用意する。この電極板は、開口部18
をその縁部18aが鋸歯状となるようにパンチ等で打ち
抜いて形成されたものである。図3の(b)にそのA−
A断面を模式的に示す。この電極板16の開口部18が
球体セル10の上に位置合わせをした後、球体セル10
を電極板16の開口部18上方より嵌め込み固定する。
または、電極板1の開口部18の配置と合うように球体
セル10を予め配置して、その上方より電極板1を嵌め
込み球体セル10を固定しこれを反転させ上下を逆にす
る。このようにして、図9の(a)に示すように、鋸歯
状の縁部18aの突起が、下向きに突出した状態とな
る。Next, as in the first embodiment, FIG.
(A), an electrode plate (for example, a metal sheet of aluminum or the like) 16 provided with openings in accordance with the arrangement of the spherical cells is prepared. This electrode plate has an opening 18.
Is punched out with a punch or the like so that the edge 18a has a saw-tooth shape. FIG. 3B shows the A-
The A section is shown typically. After the opening 18 of the electrode plate 16 is positioned on the spherical cell 10, the spherical cell 10
Is fixed from above the opening 18 of the electrode plate 16.
Alternatively, the spherical cell 10 is previously arranged so as to match the arrangement of the opening 18 of the electrode plate 1, the electrode plate 1 is fitted from above, the spherical cell 10 is fixed, and the spherical cell 10 is turned upside down. In this way, as shown in FIG. 9A, the projection of the saw-toothed edge portion 18a is in a state of projecting downward.
【0045】次に、図9の(b)に示すように、嵌め込
んだ電極板の上面の球体セル表面に例えば、熱可塑性の
バックコートレジン等のエッチング防止膜19を塗布す
る。Next, as shown in FIG. 9B, an etching prevention film 19 such as a thermoplastic back coat resin is applied to the spherical cell surface on the upper surface of the fitted electrode plate.
【0046】次に、図9の(c)に示すように、エッチ
ングを施して、エッチング防止膜19に覆われていない
部分のn型半導体層12を除去し、内部のp型半導体層
11を露出させる。Next, as shown in FIG. 9C, etching is performed to remove the portion of the n-type semiconductor layer 12 that is not covered with the etching prevention film 19, and to remove the internal p-type semiconductor layer 11. Expose.
【0047】次に、図9の(d)に示すように、熱およ
び溶液等によりエッチング防止膜19を除去する。Next, as shown in FIG. 9D, the etching prevention film 19 is removed by heat and a solution.
【0048】次に、図9の(e)に示すように、第1の
実施の形態と同様にして加工した(図4の導電性基板を
加工する工程)導電性基板17の上に、前記のように加
工した球体セルを露出したp型半導体層11が絶縁性樹
脂部材14に接し、球体セル10の中心が貫通孔中心に
合致するように位置合わせをして載置する。Next, as shown in FIG. 9E, the conductive substrate 17 was processed in the same manner as in the first embodiment (the step of processing the conductive substrate of FIG. 4). The p-type semiconductor layer 11 exposing the spherical cell processed as described above is in contact with the insulating resin member 14, and is positioned and mounted so that the center of the spherical cell 10 matches the center of the through hole.
【0049】次に、図9の(e)の状態で約150℃に
加熱し、プレス装置等を用いて約1時間上部より加圧
し、図9の(f)の状態とする。そして、加圧した状態
のまま、絶縁性樹脂部材14の硬化を行う。このとき焼
結(シンタリング)の工程を併用して行うこともでき、
この場合の加熱温度は200℃〜300℃、加圧時間は
30分〜1時間で行うことが好ましい。Next, in the state of FIG. 9 (e), it is heated to about 150 ° C., and is pressed from above by using a press device or the like for about 1 hour to obtain the state of FIG. 9 (f). Then, the insulating resin member 14 is cured while being pressed. At this time, sintering (sintering) can be performed in combination.
In this case, the heating temperature is preferably 200 ° C. to 300 ° C., and the pressing time is preferably 30 minutes to 1 hour.
【0050】上述の各実施の形態において、第1導電型
をp型、第2導電型をn型として、説明を行ったが、第
1導電型をn型、第2導電型をp型としても同様に製造
できるものである。また、p型多結晶を球状基板とする
球体セルを用いたが、p型単結晶またはp型アモルファ
スシリコンなどを用いても良い。In each of the above embodiments, the first conductivity type has been described as p-type and the second conductivity type has been described as n-type. However, the first conductivity type has been described as n-type, and the second conductivity type has been described as p-type. Can be similarly manufactured. Although a spherical cell using a p-type polycrystal as a spherical substrate is used, a p-type single crystal or p-type amorphous silicon may be used.
【0051】さらに、上述の各実施の形態において、電
極板16の外側に、透明導電膜(例えば、ITO)をス
パッタリング法などにより、薄膜堆積しても良い。さら
に、透明導電膜の外側にスパッタリング法などにより、
反射防止膜を形成しても良い。Further, in each of the above-described embodiments, a thin transparent conductive film (for example, ITO) may be deposited on the outside of the electrode plate 16 by a sputtering method or the like. Furthermore, by a sputtering method or the like outside the transparent conductive film,
An anti-reflection film may be formed.
【0052】[0052]
【発明の効果】以上詳記したように、本発明に係る太陽
電池の製造方法および太陽電池によれば、開口部の縁部
が鋸歯状に形成されているので、真球でない(球形状や
直径が一定でない)球体セルであっても電極板に確実に
固定することができ、接合部の低抵抗化および安定化が
実現でき、高出力の太陽電池が製造できる。また、球体
セルの一部をエッチング防止膜で覆い、エッチングを施
すことにより、球体セル反対面へのエッチング剤の漏れ
を防ぐことができる。また、導電性基板と球体セルとの
固定を、絶縁性樹脂部材の加圧により接着することによ
り確実に固定でき、同時に外部電極と内部電極との絶縁
分離のための絶縁層形成もできるため、球体セルの確実
な高密度実装を実現でき、太陽電池の信頼性の向上をは
かることができる。また、球体セル部分を除いて全て薄
い部材で形成可能であるため、加工性の自由度が高いシ
ート状の太陽電池を製造できる。As described above in detail, according to the method for manufacturing a solar cell and the solar cell according to the present invention, since the edge of the opening is formed in a saw-tooth shape, the opening is not a true sphere (spherical or spherical). Even a spherical cell (of which the diameter is not constant) can be reliably fixed to the electrode plate, a low resistance and stabilization of the joint can be realized, and a high output solar cell can be manufactured. In addition, by covering a part of the spherical cell with an etching prevention film and performing etching, leakage of the etching agent to the opposite surface of the spherical cell can be prevented. Further, since the fixing between the conductive substrate and the spherical cell can be reliably fixed by bonding by pressing the insulating resin member, and at the same time, an insulating layer for insulating and separating the external electrode and the internal electrode can be formed. Stable high-density mounting of the spherical cells can be realized, and the reliability of the solar cell can be improved. In addition, since all members except for the spherical cell part can be formed of thin members, a sheet-shaped solar cell having a high degree of freedom in workability can be manufactured.
【図1】本発明の第1の実施の形態に係る太陽電池の要
部斜視図である。FIG. 1 is a perspective view of a main part of a solar cell according to a first embodiment of the present invention.
【図2】本発明の第2の実施の形態に係る太陽電池の要
部斜視図である。FIG. 2 is a perspective view of a main part of a solar cell according to a second embodiment of the present invention.
【図3】本発明の外部電極となる電極板の要部斜視図お
よびA−A断面を模式的に示す図である。FIG. 3 is a perspective view of a main part of an electrode plate serving as an external electrode according to the present invention and a view schematically showing a cross section taken along line AA.
【図4】本発明の第1の実施の形態に係る太陽電池を説
明する断面概要図である。FIG. 4 is a schematic cross-sectional view illustrating a solar cell according to the first embodiment of the present invention.
【図5】本発明の第2の実施の形態に係る太陽電池を説
明する断面概要図である。FIG. 5 is a schematic cross-sectional view illustrating a solar cell according to a second embodiment of the present invention.
【図6】本発明の第1の実施の形態に係る太陽電池の製
造方法の球体セルの加工工程を説明する断面概要図であ
る。FIG. 6 is a schematic cross-sectional view illustrating a processing step of a spherical cell in the method of manufacturing a solar cell according to the first embodiment of the present invention.
【図7】本発明の第1の実施の形態に係る太陽電池の製
造方法の導電性基板を加工する工程の概略断面図であ
る。FIG. 7 is a schematic cross-sectional view of a step of processing a conductive substrate in the method for manufacturing a solar cell according to the first embodiment of the present invention.
【図8】本発明の第1の実施の形態に係る太陽電池の製
造方法の加工した球体セルを加工した導電性基板に搭載
し、太陽電池を形成する工程の概略断面図である。FIG. 8 is a schematic cross-sectional view of a step of mounting a processed spherical cell on a processed conductive substrate and forming a solar cell in the method for manufacturing a solar cell according to the first embodiment of the present invention.
【図9】本発明の第2の実施の形態に係る太陽電池の製
造方法の工程を説明する断面概要図である。FIG. 9 is a schematic cross-sectional view illustrating steps of a method for manufacturing a solar cell according to the second embodiment of the present invention.
【図10】従来の太陽電池を説明する断面概要図であ
る。FIG. 10 is a schematic sectional view illustrating a conventional solar cell.
10 球体セル 11 第1導電型(p型)半導体層 12 第2導電型(n型)半導体層 13 固定部材 14 絶縁性樹脂部材 15 絶縁膜 16 電極板 17 導電性基板 17a 貫通孔 17b スパイク部 18 開口部 18a 縁部 19 エッチング防止膜 Reference Signs List 10 spherical cell 11 first conductivity type (p-type) semiconductor layer 12 second conductivity type (n-type) semiconductor layer 13 fixing member 14 insulating resin member 15 insulating film 16 electrode plate 17 conductive substrate 17a through hole 17b spike portion 18 Opening 18a Edge 19 Etch prevention film
───────────────────────────────────────────────────── フロントページの続き (72)発明者 木本 啓介 福岡県北九州市八幡西区小嶺二丁目10番1 号 株式会社三井ハイテック内 Fターム(参考) 5F051 AA02 AA03 BA11 CB21 FA13 FA15 FA16 FA17 FA30 GA01 GA20 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Keisuke Kimoto Inventor 2-10-1 Komine, Yawatanishi-ku, Kitakyushu-shi, Fukuoka F-term in Mitsui High-Tech Co., Ltd. 5F051 AA02 AA03 BA11 CB21 FA13 FA15 FA16 FA17 FA30 GA01 GA20
Claims (9)
面に、前記第1導電型半導体層の一部が露出したように
第2導電型半導体層を形成してなる球体セルを用意する
工程と、 表面に突起部を有する導電性基板を形成する工程と、 該突起部上に絶縁性樹脂部材を形成する工程と、 前記球体セルの前記第1導電型半導体層の露出した部分
が前記絶縁性樹脂部材に当接するように球体セルを載置
して、加圧することにより、前記第1導電型半導体層の
露出した部分と、前記導電性基板とを電気的に接続させ
る工程と、 前記球体セルの配置に合わせた開口部を具備し、該開口
部の縁部が鋸歯状に形成されてなる電極板を用意し、該
開口部を球体セルに嵌合して固定し、前記第2導電型半
導体層と電気的に接続させる工程と、を含むことを特徴
とする太陽電池の製造方法。1. A step of preparing a spherical cell in which a second conductive type semiconductor layer is formed on a surface of a spherical substrate having a first conductive type semiconductor layer such that a part of the first conductive type semiconductor layer is exposed. Forming a conductive substrate having a projection on the surface; forming an insulating resin member on the projection; and exposing the exposed portion of the first conductivity type semiconductor layer of the spherical cell to the insulation. Placing the spherical cell in contact with the conductive resin member and applying pressure to electrically connect the exposed portion of the first conductivity type semiconductor layer to the conductive substrate; and An electrode plate having an opening corresponding to the cell arrangement is provided, and an edge of the opening is formed in a saw-tooth shape, and the opening is fitted and fixed in a spherical cell, and the second conductive plate is fixed. Electrically connecting to the mold semiconductor layer. Method of manufacturing a solar cell.
面に、第2導電型半導体層を形成してなる球体セルを用
意する工程と、 前記球体セルの配置に合わせた開口部を具備し、該開口
部の縁部が鋸歯状に形成されてなる電極板を用意し、球
体セルを前記開口部に嵌合して固定する工程と、 前記球体セルの一部をエッチング防止膜で覆い、エッチ
ングを施すことにより、前記第1導電型半導体層の一部
を露出させる工程と、 表面に突起部を有する導電性基板を形成する工程と、 該突起部上に絶縁性樹脂部材を形成する工程と、 前記球体セルの前記第1導電型半導体層の露出した部分
が前記絶縁性樹脂部材に当接するように球体セルを載置
して、加圧することにより、前記第1導電型半導体層の
露出した部分と、前記導電性基板とを電気的に接続させ
る工程と、を含むことを特徴とする太陽電池の製造方
法。2. A process for preparing a spherical cell having a second conductive type semiconductor layer formed on a surface of a spherical substrate having a first conductive type semiconductor layer, and an opening adapted to the arrangement of the spherical cell. Preparing an electrode plate in which the edge of the opening is formed in a saw-tooth shape, fitting and fixing a spherical cell to the opening, and covering a part of the spherical cell with an etching prevention film; A step of exposing a portion of the first conductivity type semiconductor layer by performing etching; a step of forming a conductive substrate having a projection on the surface; and a step of forming an insulating resin member on the projection. And placing the spherical cell such that the exposed portion of the first conductive type semiconductor layer of the spherical cell is in contact with the insulating resin member and applying pressure to expose the first conductive type semiconductor layer. Electrical connection between the contacted portion and the conductive substrate. Method of manufacturing a solar cell which comprises a step of, the.
造方法において、 前記導電性基板を形成する工程は、導電性基板表面に絶
縁膜を形成する工程と、打ち抜き加工により突起部を形
成する工程とを含むことを特徴とする太陽電池の製造方
法。3. The method for manufacturing a solar cell according to claim 1, wherein the step of forming the conductive substrate includes forming an insulating film on a surface of the conductive substrate, and forming a protrusion by punching. And a method for producing a solar cell.
おいて、 前記絶縁膜は、前記導電性基板の全表面に形成すること
を特徴とする太陽電池の製造方法。4. The method for manufacturing a solar cell according to claim 3, wherein the insulating film is formed on the entire surface of the conductive substrate.
おいて、 前記絶縁膜は、前記導電性基板の突起部以外の表面に形
成することを特徴とする太陽電池の製造方法。5. The method for manufacturing a solar cell according to claim 3, wherein the insulating film is formed on a surface of the conductive substrate other than the protrusion.
導電型半導体層、表面が第2導電型半導体層からなる球
体セルが敷き詰められた太陽電池であって、 前記球体セル内部の第1導電型半導体層の一部が露出
し、露出部分と前記導電性基板とが電気的に接続されて
なる内側電極と、 前記第2導電型半導体層と、前記球体セルの配置に合わ
せた開口部を具備し該開口部の縁部が鋸歯状に形成され
た電極板とが、電気的に接続されてなる外側電極と、を
具備したことを特徴とする太陽電池。6. A sheet-like conductive substrate having a first inside.
A solar cell in which a spherical semiconductor cell having a conductive type semiconductor layer and a surface of a second conductive type semiconductor layer is spread, a part of the first conductive type semiconductor layer inside the spherical cell is exposed, and the exposed portion and the conductive layer are exposed. An inner electrode electrically connected to the conductive substrate, the second conductivity type semiconductor layer, and an opening corresponding to the arrangement of the spherical cells, and the edge of the opening is formed in a sawtooth shape. A solar cell, comprising: an electrode plate; and an outer electrode electrically connected.
記導電性基板と前記球体セルと前記電極板とが絶縁性樹
脂部材によって接着されてなることを特徴とする太陽電
池。7. The solar cell according to claim 6, wherein the conductive substrate, the spherical cell, and the electrode plate are bonded by an insulating resin member.
って、前記開口部の縁部の鋸歯状部が上向きに形成され
てなることを特徴とする太陽電池。8. The solar cell according to claim 6, wherein the saw-toothed portion at the edge of the opening is formed upward.
って、前記開口部の縁部の鋸歯状部が下向きに形成さ
れ、かつ、該鋸歯状部が絶縁性樹脂部材内部に浸入して
固定されてなることを特徴とする太陽電池。9. The solar cell according to claim 6, wherein a saw-tooth portion at an edge of the opening is formed downward, and the saw-tooth portion penetrates into the insulating resin member. A solar cell characterized in that it is fixed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000190082A JP3922868B2 (en) | 2000-06-23 | 2000-06-23 | Solar cell manufacturing method and solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000190082A JP3922868B2 (en) | 2000-06-23 | 2000-06-23 | Solar cell manufacturing method and solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002009316A true JP2002009316A (en) | 2002-01-11 |
JP3922868B2 JP3922868B2 (en) | 2007-05-30 |
Family
ID=18689610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000190082A Expired - Lifetime JP3922868B2 (en) | 2000-06-23 | 2000-06-23 | Solar cell manufacturing method and solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3922868B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008147486A3 (en) * | 2007-04-02 | 2009-07-09 | Univ Utah Res Found | Methods of fabricating nanostructured zno electrodes for efficient dye sensitized solar cells |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08298334A (en) * | 1995-04-26 | 1996-11-12 | Mitsubishi Electric Corp | Solar cell board |
JPH10503058A (en) * | 1994-07-22 | 1998-03-17 | オンタリオ ハイドロ | Method and apparatus for attaching spheres to foil matrix |
-
2000
- 2000-06-23 JP JP2000190082A patent/JP3922868B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10503058A (en) * | 1994-07-22 | 1998-03-17 | オンタリオ ハイドロ | Method and apparatus for attaching spheres to foil matrix |
JPH08298334A (en) * | 1995-04-26 | 1996-11-12 | Mitsubishi Electric Corp | Solar cell board |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008147486A3 (en) * | 2007-04-02 | 2009-07-09 | Univ Utah Res Found | Methods of fabricating nanostructured zno electrodes for efficient dye sensitized solar cells |
US7804149B2 (en) | 2007-04-02 | 2010-09-28 | The University Of Utah Research Foundation | Nanostructured ZnO electrodes for efficient dye sensitized solar cells |
US7972900B2 (en) | 2007-04-02 | 2011-07-05 | University Of Utah Research Foundation | Methods of fabricating nanostructured ZnO electrodes for efficient dye sensitized solar cells |
Also Published As
Publication number | Publication date |
---|---|
JP3922868B2 (en) | 2007-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2169725B1 (en) | Solar cell module manufacturing method | |
EP1081770B1 (en) | Thin-film solar cell module and method of manufacturing the same | |
US8258397B2 (en) | Solar cell and method of manufacturing the same | |
CN102027601A (en) | Leadframe receiver package for solar concentrator | |
CN101984772A (en) | Solar battery module and method for manufacturing solar battery module | |
CN102859719B (en) | Method and system for contacting an optoelectronic module with a connection housing | |
JP2001077385A (en) | Thin film solar cell module and method of manufacturing the same | |
US6471816B1 (en) | Method of solar battery output section fabrication | |
JP2004127987A (en) | Solar cell and method of manufacturing the same | |
CN101952976A (en) | solar cell module | |
JP3436723B2 (en) | Solar cell manufacturing method and solar cell | |
US6417442B1 (en) | Solar battery assembly and method of forming a solar battery assembly | |
JP3939082B2 (en) | Manufacturing method of solar cell | |
JPWO2009107804A1 (en) | Solar cell module | |
KR20210092092A (en) | Hybrid cell of self-charging using solar energy and method for the same | |
JP2004063564A (en) | Photoelectric conversion device and method of manufacturing the same | |
CN104145343B (en) | There is the semiconductor crystal wafer solaode of the double contact at the back side of surface passivation | |
JP3407131B2 (en) | Method for manufacturing semiconductor device | |
JP3964123B2 (en) | Manufacturing method of solar cell | |
JP2002009316A (en) | Solar battery and method for manufacturing the same | |
JP2001177132A (en) | Method of cutting globular body, and solar battery using the globular body and method of manufacturing the same | |
JP3995134B2 (en) | Solar cell manufacturing method and solar cell | |
JP3849907B2 (en) | Solar cell and method for manufacturing the same | |
JP2002111021A (en) | Manufacturing method of solar battery | |
JP3925770B2 (en) | Manufacturing method of solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070220 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100302 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120302 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120302 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130302 Year of fee payment: 6 |