JP2002003637A - Polyolefin-based in-mold foam molded article and method for producing the same - Google Patents
Polyolefin-based in-mold foam molded article and method for producing the sameInfo
- Publication number
- JP2002003637A JP2002003637A JP2000182843A JP2000182843A JP2002003637A JP 2002003637 A JP2002003637 A JP 2002003637A JP 2000182843 A JP2000182843 A JP 2000182843A JP 2000182843 A JP2000182843 A JP 2000182843A JP 2002003637 A JP2002003637 A JP 2002003637A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- expanded particles
- polyolefin
- particles
- granulated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/0026—Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- Molding Of Porous Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
(57)【要約】
【課題】 使用済みポリオレフィン系樹脂発泡体の再粒
化発泡粒子を再利用して、回復性、圧縮強度等の物性に
優れ、且つ改善された外観品位を有するポリオレフィン
系樹脂型内発泡成形体を提供すること。
【解決手段】 ポリオレフィン系樹脂発泡粒子の型内成
形体を粉砕して得た粒子を含むポリオレフィン系樹脂型
内発泡成形体において、発泡粒子相互の融着率が80%
以上であって、且つ回復率が75%以上であることを特
徴とするポリオレフィン系樹脂型内発泡成形体。PROBLEM TO BE SOLVED: To provide a polyolefin resin having excellent physical properties such as recoverability, compressive strength and the like and improved appearance quality by reusing regenerated granulated particles of a used polyolefin resin foam. To provide an in-mold foam molded article. SOLUTION: In a polyolefin resin in-mold molded article containing particles obtained by pulverizing an in-mold molded article of polyolefin-based resin expanded particles, the fusion ratio between expanded particles is 80%.
A polyolefin-based resin-molded in-mold molded product characterized by having a recovery rate of at least 75%.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、パーソナルコンピ
ューターやその周辺機器である記憶装置やプリンター等
の電子部品、或いはこれらの半完成品の輸送用緩衝材
料、包装材料等(以下、単に緩衝材料という。)として
広く用いられているポリオレフィン系樹脂型内発泡成形
体に関する。更に具体的には、輸送を終え開梱時に廃棄
処分されている緩衝材料を粉砕して得られる再粒化発泡
粒子を利用したポリオレフィン系樹脂型内発泡成形体、
及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cushioning material for transporting electronic parts such as a personal computer and its peripheral devices such as a storage device and a printer, or a semi-finished product thereof (hereinafter simply referred to as a cushioning material). The present invention relates to a polyolefin-based resin-molded in-mold foamed product widely used as (1). More specifically, a polyolefin-based resin molded foam molded article using re-granulated foam particles obtained by crushing a buffer material that has been disposed of at the time of unpacking after transportation,
And its manufacturing method.
【0002】[0002]
【従来の技術】近年、発泡体製の使用済み緩衝材料は熱
分解して油に変える、又は焼却処理する等の手段が講じ
られてきたが、これらの方法はエネルギー効率が極めて
悪い、或いはダイオキシン等の有害物質を発生させ環境
破壊を招来する等の問題があった。そこで、発泡体製の
使用済み緩衝材料を、熱分解や焼却処理せずに再生する
技術が開発されてきた。例えば、先ず発泡体製の使用済
み緩衝材料を減容機で一旦溶融しペレット状に再生した
後、未使用樹脂ペレットに適量混合して押出機で樹脂粒
子に成形し、次いでこれに発泡剤を含浸して加熱発泡し
予備発泡粒子に成形し、続いてこれを常法通りにビーズ
発泡して型内発泡成形体とすることが行われている。し
かしながら、この再生技術では予備発泡粒子とする迄に
度重なる熱履歴を受けることから樹脂自体が劣化し、得
られる型内発泡成形体の圧縮特性や引張特性等の機械的
強度が低下するため、緩衝材料として具備しなければな
らない緩衝性能を満たすことができなかったり、又予備
発泡粒子の気泡構造も不均一となるため型内成形時に充
分な発泡膨張能が発現せず、発泡粒子間の融着強度や外
観品位の低い型内発泡成形体しか得られないといった致
命的な問題点がある。さらに、この再生技術では無架橋
型のポリオレフィン系樹脂型内発泡成形体のみが利用可
能であって、架橋型の型内発泡成形体の場合は架橋に由
来する極度な溶融粘度の増加の問題があり利用不可能で
ある。以上のような理由から、この再生技術は未だ量産
技術として確立されていないのが現状である。2. Description of the Related Art In recent years, measures have been taken to convert spent buffer materials made of foam into oil by thermal decomposition or incinerating them. However, these methods are extremely inefficient in energy efficiency or dioxin. There is a problem that harmful substances such as the above are generated and environmental destruction is caused. Therefore, a technique has been developed for regenerating a used cushioning material made of a foam without thermal decomposition or incineration. For example, first, the used buffer material made of foam is once melted by a volume reducer and regenerated into pellets, then mixed with an unused resin pellet in an appropriate amount and formed into resin particles by an extruder, and then a foaming agent is added thereto. Impregnation, heating and foaming to form pre-expanded particles, followed by bead foaming in a conventional manner to obtain an in-mold foam molded article. However, in this regenerating technology, the resin itself deteriorates due to repeated thermal histories before being made into pre-expanded particles, and the mechanical strength such as compression characteristics and tensile characteristics of the obtained in-mold expanded molded article is reduced, The buffering performance that must be provided as a buffer material cannot be satisfied, and the foam structure of the pre-expanded particles also becomes non-uniform. There is a fatal problem that only an in-mold foam molded article having low adhesion strength and appearance quality can be obtained. Furthermore, in this recycling technique, only a non-crosslinked type polyolefin resin in-mold foam molded article can be used, and in the case of a cross-linked in-mold foam molded article, there is a problem of an excessive increase in melt viscosity due to crosslinking. Available and unusable. For the reasons described above, at present, this reproduction technique has not yet been established as a mass production technique.
【0003】他方、発泡体製の使用済み緩衝材料を粉砕
機で粉砕し、該粉砕片を単独、或いは未使用の予備発泡
粒子と混合して型内発泡成形体に再成形する技術があ
る。例えば、I)特許第2784528号公報、II)
特開平10−329222号公報等に開示された技術で
ある。具体的には、I)は、使用済み発泡スチロール型
内成形体を粉砕し微粉砕片を分級除去した後の短径長さ
が2〜7mmの粉砕片と、平均粒径が該粉砕片の最大短
径長さの1/2未満の未使用の発泡スチロール予備発泡
粒子とを混合し、これを型内成形して型内発泡成形体を
成形する技術を紹介するものであり、またII)は、発
泡ポリエチレン、発泡ポリプロピレン及び発泡ポリスチ
レン等からなる使用済み型内発泡成形体の1〜5mm径
の破砕粒子を成形型内に圧送して充填し、次いでこの成
形型内に水蒸気を導入して型内成形体を得る方法を提案
するものである。On the other hand, there is a technique in which a used buffer material made of a foam is pulverized by a pulverizer, and the pulverized pieces are used alone or mixed with unused pre-expanded particles to be re-formed into an in-mold foam molded article. For example, I) Japanese Patent No. 2784528, II)
This is a technique disclosed in Japanese Patent Application Laid-Open No. 10-329222. Specifically, I) is a pulverized piece having a minor axis length of 2 to 7 mm after pulverizing the used Styrofoam type molded article and classifying and removing the finely pulverized piece, and having an average particle size of the maximum of the pulverized piece. It introduces a technique of mixing unused styrofoam pre-expanded particles having a length of less than 1/2 of the minor axis length and molding the resulting mixture in a mold to form an in-mold foam molded article. II) 1-5 mm diameter crushed particles of a foamed molded article in a used mold made of expanded polyethylene, expanded polypropylene, expanded polystyrene, etc., are filled into the molding die by pressure feeding, and then steam is introduced into the molding die to form a mold. It is intended to propose a method for obtaining a molded body.
【0004】しかしながら、本発明者の実験によると、
上記I)、II)に記載される方法で得たポリオレフィ
ン系樹脂型内発泡成形体は、外観品位は勿論のこと緩衝
材料として実用できる水準の緩衝性能を到底有しないも
のである。即ち、前者の技術は、再粒化発泡粒子がスチ
ロール系である場合には適用できても、ポリオレフィン
系の場合には利用できないのである。というのは、常用
の発泡剤である炭素数が4〜5の脂肪族炭化水素やフロ
ン系発泡剤は、ポリオレフィン系に対しては極めて透過
速度が大きく、そのためポリオレフィン系の再粒化発泡
粒子には発泡剤が残留していないので、それ自身の発
泡、膨張性が期待出来ないことから、未使用の予備発泡
粒子(同様の理由により発泡剤が残留していない。)と
混合して型内発泡成形しても、発泡粒子間の空隙が埋め
られず、収縮現象や含水が顕著な成形体しか得られない
のである。However, according to experiments performed by the present inventors,
The polyolefin-based resin-molded foam obtained by the method described in the above I) or II) has not only the appearance quality but also the buffering performance of a level which can be practically used as a buffering material. That is, the former technique can be applied when the re-granulated expanded particles are of a styrene type, but cannot be used for a polyolefin type. The reason is that a conventional blowing agent such as an aliphatic hydrocarbon having 4 to 5 carbon atoms or a CFC-based blowing agent has a very high permeation rate with respect to a polyolefin-based material. Since no foaming agent remains, foaming and swelling properties cannot be expected of the foaming agent itself. Therefore, it is mixed with unused pre-expanded particles (the foaming agent does not remain for the same reason). Even when foaming is performed, the voids between the foamed particles are not filled, and only a compact having a remarkable shrinkage phenomenon and water content can be obtained.
【0005】一方、後者の技術は、II)の記載による
と、粉砕粒子単独でも未使用の予備発泡粒子を使用した
新品の成形品に対して遜色のない良好な外観及び品質を
有する再成形品が得られることになっているが、本発明
者の追試によると粒子間には空隙が存在し、然も粒子相
互の融着強度が低いといった重大な欠点が観測された。
そして、これを改善すべく圧縮充填率を強化する等して
成形条件の最適化を図ってみたが、粒子間の空隙は少し
は減少したが、発泡倍率は20倍以下と低く、寸法収縮
率や外観品の低下も著しくとても新品の成形品と同様の
型内成形体を得ることはできなかった。[0005] On the other hand, the latter technique, according to the description of II), is a remolded article having a good appearance and quality comparable to that of a new molded article using virgin pre-expanded particles even if the pulverized particles are used alone. However, according to a follow-up test conducted by the present inventor, a serious defect was observed in that voids existed between the particles and the fusion strength between the particles was low.
In order to improve this, we tried to optimize the molding conditions by strengthening the compression filling ratio, etc., but the voids between the particles were slightly reduced, but the expansion ratio was as low as 20 times or less. Also, the appearance of the molded article was remarkably reduced, and a molded article in a mold similar to a new molded article could not be obtained.
【0006】[0006]
【発明が解決しょうとする課題】本発明は、上記従来技
術の問題点に鑑み、長期に渡る研究、特に再粒化発泡粒
子の諸条件を検討することにより完成されたものであ
る。その課題は、使用済みのポリオレフィン系樹脂の再
粒化発泡粒子を再利用し、工業的に安定して量産でき、
然も融着性や回復性に優れ、改善された物性、外観を有
するポリオレフィン系樹脂型内発泡成形体、及びその製
造方法を提供することにある。SUMMARY OF THE INVENTION The present invention has been completed in view of the above-mentioned problems of the prior art by conducting a long-term study, in particular, examining various conditions for re-granulated expanded particles. The problem is to reuse the re-granulated expanded particles of the used polyolefin resin, and to mass-produce industrially stably,
An object of the present invention is to provide a polyolefin-based resin-in-foam molded article having excellent fusion properties and recoverability, improved physical properties and appearance, and a method for producing the same.
【0007】[0007]
【課題を解決するための手段】本発明のポリオレフィン
系樹脂型内発泡成形体は、ポリオレフィン系樹脂の再粒
化発泡粒子を含むポリオレフィン系樹脂型内発泡成形体
において、発泡粒子相互の融着率が80%以上であっ
て、且つ回復率が75%以上であることを特徴とするも
のである。そして、再粒化発泡粒子の混入率は該成形体
の体積比で5〜60%であることが好ましい。また、再
粒化発泡粒子の独立気泡率は30〜70%であることが
好ましい。更に、再粒化発泡粒子の発泡倍率/ポリオレ
フィン系樹脂予備発泡粒子の発泡倍率の比が0.6〜
1.3であり、且つ平均粒子径は4〜10mmであるこ
とが好ましい。その上、再粒化発泡粒子の融点はポリオ
レフィン系樹脂予備発泡粒子の融点の−5℃〜+7℃で
あることが好ましい。According to the present invention, there is provided a polyolefin-based resin-molded in-mold foamed article comprising a polyolefin-based resin-molded in-molded foam containing re-granulated foamed particles of a polyolefin-based resin. Is 80% or more, and the recovery rate is 75% or more. The mixing ratio of the re-granulated expanded particles is preferably 5 to 60% by volume of the molded body. Further, the closed cell rate of the re-granulated expanded particles is preferably 30 to 70%. Further, the ratio of the expansion ratio of the re-granulated expanded particles / the expansion ratio of the polyolefin resin pre-expanded particles is from 0.6 to 0.6.
1.3, and the average particle diameter is preferably 4 to 10 mm. In addition, the melting point of the re-granulated expanded particles is preferably -5 ° C to + 7 ° C. of the melting point of the polyolefin-based resin pre-expanded particles.
【0008】また、本発明のポリオレフィン系樹脂型内
発泡成形体の製造方法は、ポリオレフィン系樹脂の再粒
化発泡粒子とポリオレフィン系樹脂予備発泡粒子との混
合粒子を型内に充填し、加熱して発泡粒子相互を膨張、
融着させて成形するポリオレフィン系樹脂型内発泡成形
体の製造方法において、(1)上記混合粒子を型内に充
填する方法が、混合粒子を気泡内圧付加処理後、型内に
充填する、或いは混合粒子を加圧空気で型内に圧縮充填
する、もしくは型内に混合粒子を充填し型閉めして圧縮
する方法のいずれかであること、(2)再粒化発泡粒子
の混合率が該成形体の体積比で5〜60%であること、
(3)再粒化発泡粒子の独立気泡率が30〜70%であ
ること、(4)再粒化発泡粒子の発泡倍率/ポリオレフ
ィン系樹脂予備発泡粒子の発泡倍率の比が0.6〜1.
3であり、且つ再粒化発泡粒子の平均粒子径が4〜10
mmであること、(5)再粒化発泡粒子の融点がポリオ
レフィン系樹脂予備発泡粒子の融点の−5℃〜+7℃で
あることを特徴とするものである。この製造方法におい
て、型内で行う加熱は再粒化発泡粒子及び予備発泡粒子
の融点のいずれか高い値の+1℃〜+14℃の温度の水
蒸気加熱であることが好ましい。Further, in the method for producing a polyolefin resin in-mold molded article of the present invention, a mixed particle of a re-granulated polyolefin resin particle and a polyolefin resin pre-expanded particle is filled in a mold and heated. Expand the foam particles,
In the method for producing a foamed molded article in a polyolefin-based resin mold which is formed by fusing, the method of (1) filling the mixed particles into a mold is as follows. Compression-filling the mixed particles into a mold with pressurized air, or filling the mold with the mixed particles, closing the mold and compressing the mixture; 5 to 60% by volume of the molded body,
(3) The closed cell ratio of the re-granulated expanded particles is 30 to 70%, and (4) the ratio of the expansion ratio of the re-granulated expanded particles / the expansion ratio of the polyolefin resin pre-expanded particles is 0.6 to 1. .
3, and the average particle size of the re-granulated expanded particles is 4 to 10.
mm, and (5) the re-granulated expanded particles have a melting point of −5 ° C. to + 7 ° C. of the melting point of the polyolefin resin pre-expanded particles. In this production method, the heating performed in the mold is preferably steam heating at a temperature of + 1 ° C. to + 14 ° C., which is the higher of the melting points of the re-granulated expanded particles and the pre-expanded particles.
【0009】[0009]
【発明の実施の形態】以下、本発明の具体的態様を詳細
に説明する。 「ポリオレフィン系樹脂」について ポリオレフィン系樹脂は、低、中、高密度ポリエチレ
ン、直鎖状低密度ポリエチレン、メタロセン触媒のポリ
エチレン、エチレン−酢酸ビニル共重合体等で代表され
るエチレン系樹脂、ポリプロピレン、共重合成分がエチ
レン、ブテン−1、4−メチルペンテン−1等の1種以
上であるプロピレンとのランダム及びブロック共重合樹
脂、又はこれらの2種以上が配合された混合樹脂を基材
樹脂とするものであって良く、又架橋型、無架橋型を含
む。 「発泡粒子相互の融着率が80%以上」について ポリオレフィン系樹脂型内発泡成形体の発泡粒子相互の
融着率が80%以上でないと、圧縮強度、引張強度等の
機械的特性が発揮されず、緩衝材料の機能を満たさなく
なる。融着率の好ましい範囲は82%以上、さらに好ま
しくは85%以上である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described in detail. About "Polyolefin Resin" Polyolefin resins are low-, medium-, high-density polyethylene, linear low-density polyethylene, metallocene-catalyzed polyethylene, ethylene-based resins represented by ethylene-vinyl acetate copolymer, etc. The base resin is a random or block copolymer resin with propylene in which the polymerization component is one or more of ethylene, butene-1, 4-methylpentene-1, and the like, or a mixed resin in which two or more of these are blended. Which may be crosslinked or non-crosslinked. Regarding "the fusion rate between foamed particles is 80% or more" If the fusion rate between foamed particles of the polyolefin-based resin molded article is not 80% or more, mechanical properties such as compressive strength and tensile strength are exhibited. Therefore, the function of the buffer material is not satisfied. The preferred range of the fusion rate is 82% or more, more preferably 85% or more.
【0010】「回復率が75%以上」について ポリオレフィン系樹脂型内発泡成形体の回復率が75%
以上でないと、ポリオレフィン系樹脂型内成形体の特長
とされる繰返し耐久性(繰返し使用性)が充分でなくな
る。回復率は、好ましくは80%以上、さらに好ましく
は82%以上である。 「再粒化発泡粒子の混入率が5〜60%」について 再利用の観点から高混入率が望ましいが、基本的に再粒
化発泡粒子の混入率が増すと品質、性能等が次第に低下
するので、60%迄が実用に供する上で好ましい範囲で
ある。具体的には、60%を超えると、次第に型内成形
時に金型から取り出したときの含水率が大きくなり、ひ
いては乾燥時間が長くなり生産性が低下する。また、対
金型寸法収縮率も増大し、寸法精度(バラツキ)が悪く
なり、結果として外観品位の低下、物性の低下を招来す
る。従って、60%迄が好ましい範囲である。混入率
は、好ましくは5〜50%、さらに好ましくは5〜40
%である。Regarding "Recovery rate of 75% or more" The recovery rate of the polyolefin resin molded article in the foam is 75%.
Otherwise, the repetition durability (repeated useability), which is a feature of the polyolefin-based resin molded article, will not be sufficient. The recovery rate is preferably at least 80%, more preferably at least 82%. Regarding "mixing ratio of re-granulated expanded particles: 5 to 60%" A high mixing ratio is desirable from the viewpoint of reuse. However, basically, as the mixing ratio of re-granulated expanded particles increases, quality, performance, and the like gradually decrease. Therefore, up to 60% is a preferable range for practical use. More specifically, if it exceeds 60%, the moisture content when taken out of the mold during in-mold molding gradually increases, and as a result, the drying time becomes longer and the productivity is reduced. In addition, the dimensional shrinkage ratio with respect to the mold also increases, and the dimensional accuracy (variation) deteriorates. As a result, the appearance quality and physical properties decrease. Therefore, the preferred range is up to 60%. The mixing ratio is preferably 5 to 50%, more preferably 5 to 40%.
%.
【0011】「独立気泡率が30〜70%」について 再粒化発泡粒子の混入率が5〜60%であっても、その
独立気泡率が30%未満だと、品質、性能、特に緩衝性
能等に優れた型内成形体が得られない。一方、その独立
気泡率を70%超にすることは技術的に困難である。通
常の型内発泡成形体の粉砕装置を使用して得られる再粒
化発泡粒子の独立気泡率は約50%が上限といわれてい
る。再粒化粒子の表面部の気泡は、粉砕工程で破壊され
るため必然的にその独立気泡率は低くなつている。特に
平均粒子径が小さくなる程、粒子1個の体積当たりの表
面積比が高くなるので、破壊される独立気泡の割合が増
加し、その独立気泡率は低くなる。独立気泡率は、好ま
しくは35%以上、より好ましくは40%以上である。Regarding "closed cell ratio of 30 to 70%" Even if the mixing ratio of the re-granulated expanded particles is 5 to 60%, if the closed cell ratio is less than 30%, the quality, performance, especially the buffering performance An in-mold molded article having excellent properties cannot be obtained. On the other hand, it is technically difficult to increase the closed cell rate to more than 70%. It is said that the upper limit of the closed cell rate of the re-granulated expanded particles obtained by using a usual in-mold expanded molded article pulverizer is about 50%. Since the bubbles on the surface of the re-granulated particles are destroyed in the pulverizing step, the closed cell ratio is inevitably low. In particular, as the average particle diameter decreases, the surface area ratio per volume of one particle increases, so that the ratio of broken closed cells increases and the closed cell ratio decreases. The closed cell rate is preferably 35% or more, more preferably 40% or more.
【0012】ところで、本発明者は本発明を完成させる
過程で、別途この再粒化発泡粒子の独立気泡率を高める
技術を見出した。以下に、その詳細を説明する。 〈独立気泡率を高める技術〉再粒化発泡粒子を、その融
点近傍、好ましくはその融点の−7℃〜+2℃の熱風
で、該粒子表面を瞬間的に加熱処理することで大幅に独
立気泡率が改善される。例えば、架橋型ポリエチレン型
内発泡成形体(メフLD、商品名;旭化成工業(株)
製、融点117℃、倍率30cm3 /g)の再粒化発泡
粒子で、独立気泡率が27%であったものを、110℃
の熱風を使用して流動床乾燥装置で数秒処理した結果、
独立気泡率は60%迄大幅に向上した。このように加熱
処理して独立気泡率を高めた再粒化発泡粒子を使用する
ことが好ましい。この技術を用いると、粉砕装置を使用
して得られる再粒化発泡粒子の独立気泡率を約70%ま
で高めることができる。By the way, the present inventor has found a technique for separately increasing the closed cell rate of the re-granulated expanded particles in the process of completing the present invention. The details will be described below. <Technology for increasing the closed cell ratio> The re-granulated foamed particles are subjected to instantaneous heat treatment of the particle surface with hot air near its melting point, preferably at a melting point of −7 ° C. to + 2 ° C., so that substantially closed cells are obtained. The rate is improved. For example, a cross-linked polyethylene in-mold molded article (Mef LD, trade name; Asahi Kasei Corporation)
Of re-granulated foam particles having a closed cell ratio of 27% and a melting point of 117 ° C. and a magnification of 30 cm 3 / g) were converted to 110 ° C.
As a result of processing for several seconds in a fluidized bed dryer using hot air of
The closed cell rate was greatly improved up to 60%. It is preferable to use the re-granulated expanded particles which have been subjected to the heat treatment to increase the closed cell ratio. Using this technique, the closed cell rate of the re-granulated expanded particles obtained by using a pulverizer can be increased to about 70%.
【0013】「再粒化発泡粒子の発泡倍率/予備発泡
粒子の発泡倍率の比が0.6〜1.3であり、且つ再粒
化発泡粒子の平均粒子径が4〜10mmである」につい
て 再粒化発泡粒子と予備発泡粒子の発泡倍率(即ち、その
体積を重量で除した値( cm3 /g))が大幅に乖離し
ていると互いの比重差が大きくなるので、両者の混合粒
子を金型内にエアーで圧送充填すると、金型内で両者の
浮遊速度にズレが生じ不均一充填となり、均一な成形体
が得られなくなる。そして、両者の発泡倍率比が上記の
範囲であっても、再粒化発泡粒子の平均粒子径が4〜1
0mmであることが必要である。緩衝材料に用いられる
本発明の型内発泡成形体は、被包装物の外形状に沿った
複雑な形状をしていて肉厚が6mm〜50mmまで分布
しているのが一般的である。従って、平均粒子径が10
mmを超えると部分的に型キャビティへの充填不良が発
生して型内発泡成形体の型再現性が悪化する。一方、平
均粒子径が4mm未満になると再粒化加工時に微粒子や
粉の発生が増加し、使用済み緩衝材料の約30%以上が
再利用できなくなり経済性が悪いという問題が発生す
る。Regarding "the ratio of the expansion ratio of the re-granulated expanded particles / the expansion ratio of the pre-expanded particles is 0.6 to 1.3, and the average particle size of the re-granulated expanded particles is 4 to 10 mm" If the expansion ratio (ie, the value obtained by dividing the volume by the weight (cm 3 / g)) of the re-granulated expanded particles and the pre-expanded particles is largely different, the specific gravity difference between the expanded particles and the pre-expanded expanded particles increases. If the particles are pressure-fed and filled into the mold by air, the floating speed of the two will shift in the mold, resulting in non-uniform filling, making it impossible to obtain a uniform molded body. And even if the expansion ratio of both is in the above range, the average particle diameter of the re-granulated expanded particles is 4 to 1
It needs to be 0 mm. The in-mold foam molded article of the present invention used for the cushioning material generally has a complicated shape along the outer shape of the article to be packaged, and the thickness is generally distributed from 6 mm to 50 mm. Therefore, when the average particle size is 10
If it exceeds mm, defective filling in the mold cavity occurs partially, and the mold reproducibility of the in-mold foam molded article deteriorates. On the other hand, if the average particle diameter is less than 4 mm, the generation of fine particles and powder during re-granulation processing increases, and about 30% or more of the used buffer material cannot be reused, resulting in a problem of poor economic efficiency.
【0014】「再粒化発泡粒子の融点が、予備発泡粒
子の融点の−5℃〜+7℃である」について 現在、一般的に使用されているポリオレフィン系樹脂の
緩衝材料は、架橋型と無架橋型があり、そして樹脂の種
類も低密度ポリエチレン、高密度ポリエチレン、直鎖状
低密度ポリエチレン、エチレンとプロピレンとのランダ
ム共重合体等と多種使用されている。そして、これらの
再粒化発泡粒子の融点は互いに大きな差を有する場合が
少なくない。一方、使用済のポリオレフィン系樹脂緩衝
材料は、流通過程で、例えば卸問屋や家電量販店等で開
梱時に多種類ものが多量に発生し、しかもこの時に同種
のものだけを選別して回収することは商業レベルの採算
上不可能であるので、再粒化発泡粒子には必然的に異種
のものが混入する。そうすると、再粒化発泡粒子の融点
と予備発泡粒子の融点との間に差が生じるのは避けられ
ない。ところで、この異種ポリオレフィン系樹脂からな
る再粒化発泡粒子の融点が、予備発泡粒子の融点の−5
℃〜+7℃の範囲にないと、外観や性能に優れた型内発
泡体が得られなくなる。即ち、再粒化発泡粒子のあるも
のの融点が上記温度範囲から外れると、該粒子が発泡、
膨張不足となって、粒子間に大きな空隙が多数発生した
り、又は融着しなかったり、或いは過剰加熱となって最
悪の場合は樹脂化し金型に融着してしまう。Regarding "the melting point of the re-granulated expanded particles is from -5 ° C. to + 7 ° C. of the melting point of the pre-expanded particles" Currently, polyolefin resin buffer materials generally used are crosslinked and non-crosslinked. There are cross-linking types, and various types of resins are used, such as low-density polyethylene, high-density polyethylene, linear low-density polyethylene, and random copolymers of ethylene and propylene. The melting points of these re-granulated expanded particles often have a large difference from each other. On the other hand, used polyolefin resin buffer materials generate a large amount of various types at the time of unpacking at the distribution process, for example, at wholesalers and home electronics mass retailers, and at this time, only the same type is sorted out and collected. Since this is not commercially viable, the re-granulated expanded particles necessarily contain different types of materials. In this case, a difference between the melting point of the re-granulated expanded particles and the melting point of the pre-expanded particles cannot be avoided. By the way, the melting point of the re-granulated expanded particles made of the different polyolefin resin is -5 of the melting point of the pre-expanded particles.
If the temperature is not in the range of ° C to + 7 ° C, an in-mold foam excellent in appearance and performance cannot be obtained. That is, when the melting point of some of the re-granulated expanded particles is out of the above temperature range, the particles expand,
Insufficient expansion results in a large number of large voids between particles or no fusion, or excessive heating results in the worst case of resinification and fusion to the mold.
【0015】「ポリオレフィン系樹脂型内発泡成形体
の製造方法」について ポリオレフィン系樹脂は、既に述べたように、ブタン、
ペンタン等の脂肪族炭化水素系やフロン系等の揮発型発
泡剤の気体透過性が極めて大きく、そのため再粒化発泡
粒子はもとより、予備発泡粒子には発泡剤が残留してい
ないため、型内成形時の加熱工程では発泡、膨張性が期
待できない。そこで、型内成形での加熱工程により優れ
た物性と外観品位を有するポリオレフィン系樹脂型内発
泡成形体が得られるように、次の(イ)〜(ハ)のいず
れか1つの手段が用いられる。Regarding "Method of Manufacturing Polyolefin-Based Resin-In-Mold Foam Molded Body" As described above, polyolefin-based resins are
The gas permeability of volatile foaming agents such as aliphatic hydrocarbons such as pentane and fluorocarbons is extremely large, and therefore, the foaming agent does not remain in the pre-expanded particles as well as the re-expanded expanded particles. In the heating step during molding, foaming and expansion properties cannot be expected. Therefore, any one of the following (a) to (c) is used so that a polyolefin-based resin in-mold foam having excellent physical properties and appearance quality can be obtained by the heating step in the in-mold molding. .
【0016】(イ)気泡内圧付加処理 発泡剤と同様の加熱発泡、膨張作用を発現するように、
混合粒子を加圧容器に収納して、圧力0.3〜0.9M
Pa(ゲージ圧)の加圧空気下で1〜18時間保持し、
混合粒子気泡内に空気を含浸させて該気泡内の圧力を高
める。この場合、該処理時間を短縮するために40〜8
0℃の加温下で行うことも可能である。処理された混合
粒子の気泡内圧は、予備発泡粒子、再粒化発泡粒子の発
泡倍率や両者の混合割合等を考慮して0.02〜0.2
MPa(ゲージ圧)が好ましく、0.02MPa(ゲー
ジ圧)未満では、気泡内圧が不充分で、良好な外観品位
や実用に充分供しうるだけの圧縮強度や回復性能を有す
る成形体が得られない。又、0.2MPa(ゲージ圧)
を越えると加熱工程で過剰の発泡、膨張性が発現し、型
内中心部の発泡粒子間に加熱水蒸気が流入しなくなって
発泡粒子相互が融着しなくなる。(A) Intra-bubble pressure application treatment In order to exhibit the same heat-foaming and expanding action as the foaming agent,
The mixed particles are stored in a pressurized container, and the pressure is 0.3 to 0.9M.
Hold under pressurized air of Pa (gauge pressure) for 1 to 18 hours,
Air is impregnated in the mixed particle bubbles to increase the pressure in the bubbles. In this case, to reduce the processing time, 40 to 8
It is also possible to carry out under heating at 0 ° C. The internal bubble pressure of the treated mixed particles is 0.02 to 0.2 in consideration of the expansion ratio of the pre-expanded particles and the re-granulated expanded particles and the mixing ratio of the both.
MPa (gauge pressure) is preferable, and if it is less than 0.02 MPa (gauge pressure), the molded product having insufficient internal pressure of the cell and having sufficient appearance quality and compressive strength and recovery performance sufficient for practical use cannot be obtained. . 0.2MPa (gauge pressure)
Exceeding the temperature causes excessive foaming and expansion in the heating step, so that heated steam does not flow between the foamed particles at the center of the mold, and the foamed particles do not fuse with each other.
【0017】(ロ)加圧空気による型内圧縮充填 混合粒子を加圧空気で加圧圧縮し、圧縮状態の混合粒子
を加圧下の型内に充填した後、型内を大気放圧する方法
である。この方法は、上記(イ)の様な装置が不要で、
成形機の付帯設備(充填用加圧ホッパー)をそのまま利
用できることから実用的な方法で好ましい。混合粒子の
圧縮状態は、予備発泡粒子、再粒化発泡粒子の発泡倍率
や両者の混合割合等を考慮して、元の見掛けの嵩体積に
対して90〜60%になるように充填用加圧ホッパーの
圧力や型内圧を調整すれば良い。混合粒子の圧縮状態が
90%を越えると、圧縮充填の効果が得られず、得られ
る成形体は外観品位に欠けたものとなる。又、60%未
満の圧縮状態では、混合粒子が型内に過剰に充填され
る。その結果、発泡粒子間の空隙が殆どなくなって型内
中心部まで加熱水蒸気が流入せず、発泡粒子の加熱が不
充分となって発泡粒子相互の融着性が低下する。尚、充
填用加圧ホッパーの圧力と型内圧は同圧でもかまわない
が、寧ろ前者を0.01〜0.04MPa程度高くした
ほうが充填性の点から好ましい。(B) Compression filling in a mold with pressurized air A method of compressing mixed particles with pressurized air, filling the mixed particles in a compressed state into a mold under pressure, and then releasing the atmosphere to the atmosphere. is there. This method does not require the device described in (a) above.
A practical method is preferable because the auxiliary equipment (pressurizing hopper for filling) of the molding machine can be used as it is. In consideration of the expansion ratio of the pre-expanded particles and the re-granulated expanded particles, the mixing ratio of the both, and the like, the compression state of the mixed particles is set to 90 to 60% with respect to the original apparent bulk volume. What is necessary is just to adjust the pressure of a pressure hopper and the mold internal pressure. If the compression state of the mixed particles exceeds 90%, the effect of compression filling cannot be obtained, and the obtained molded article lacks the appearance quality. In a compressed state of less than 60%, the mixed particles are excessively filled in the mold. As a result, there is almost no void between the foamed particles, and the heated steam does not flow to the center of the mold, so that the heating of the foamed particles becomes insufficient and the fusion property between the foamed particles is reduced. The pressure of the filling hopper and the inner pressure of the mold may be the same, but it is more preferable to increase the former by about 0.01 to 0.04 MPa from the viewpoint of filling properties.
【0018】(ハ)型開き圧縮充填 発泡粒子間の空隙部体積に相当する量だけ型を開いた状
態で発泡粒子を型内充填し、充填完了後に正規の位置ま
で型閉めを行うものである。充填時の型開き量は下記式
で表される量であり、混合粒子中の予備発泡粒子、再粒
化発泡粒子の発泡倍率や両者の混合割合等を考慮して、
10〜50%の範囲が好ましい。(C) Compression filling with mold opening The foaming particles are filled in the mold while the mold is opened by an amount corresponding to the volume of the void between the foaming particles, and the mold is closed to a regular position after the filling is completed. . The mold opening amount at the time of filling is an amount represented by the following formula, in consideration of the expansion ratio of the pre-expanded particles in the mixed particles, the expansion ratio of the re-granulated expanded particles, and the mixing ratio thereof,
A range of 10 to 50% is preferred.
【式1】 尚、成形品に厚み分布がある場合は、最も厚い値を成形
品厚さとする。(Equation 1) When the molded product has a thickness distribution, the thickest value is defined as the molded product thickness.
【0019】「型内で行う加熱が再粒化発泡粒子及び
予備発泡粒子の融点のいずれか高い値の+1℃〜+10
℃の温度の水蒸気加熱」について 型内での加熱が上記範囲を越えると、即ち+1℃未満で
は、粒子の発泡、膨張が部分的に不充分になり、粒子間
に空隙が生じたり、粒子相互の融着が不充分となって型
内成形体としての必要特性が悪化してしまう。逆に+1
0℃を越えると、過剰加熱で成形体の寸法収縮やヒケが
顕著となったり、圧縮強度も極端に悪化してしまう。"The heating performed in the mold is performed at + 1 ° C. to + 10 ° C., which is the higher of the melting points of the re-granulated expanded particles and the pre-expanded particles.
If the heating in the mold exceeds the above range, that is, if it is less than + 1 ° C, the foaming and expansion of the particles will be partially insufficient, causing voids between the particles, Is insufficient, and the required properties of the molded article in the mold are deteriorated. Conversely, +1
If the temperature exceeds 0 ° C., the dimensional shrinkage and sink mark of the molded article become remarkable due to excessive heating, and the compressive strength is extremely deteriorated.
【0020】次に、本発明のポリオレフィン系樹脂型内
発泡成形体の特性の評価方法を説明する。 (発泡粒子の特性) 1)発泡倍率(倍率);重量(g)既知の発泡粒子の体
積(cm3 )を水没法(定義:・・・・・)で測定し、
その体積を重量で除した値を発泡倍率(cm3 /g)と
する。 2)独立気泡率;発泡倍率(cm3 /g)及び重量が既
知の発泡粒子約24cm3 の真の体積を東京サイエンス
社製空気比較式比重計1000型を用いて測定し、次式
(1)より独立気泡率S(%)を算出し評価する。Next, a method for evaluating the properties of the foamed molded article in a polyolefin resin mold of the present invention will be described. (Characteristics of expanded particles) 1) Expansion ratio (magnification): Weight (g) The volume (cm 3 ) of a known expanded particle is measured by a submersion method (definition:...)
The value obtained by dividing the volume by the weight is defined as the expansion ratio (cm 3 / g). 2) Closed cell ratio: The true volume of about 24 cm 3 of expanded particles of known expansion ratio (cm 3 / g) and weight was measured using an air comparison type hydrometer 1000 manufactured by Tokyo Science Co., Ltd. ) To calculate and evaluate the closed cell rate S (%).
【式2】 Vx:上記装置で測定した、真の発泡粒子の体積(cm
3 ) Va:発泡粒子の体積〔発泡倍率×重量〕(cm3 )(Equation 2) Vx: volume of the true foamed particles (cm
3 ) Va: Volume of expanded particles [expansion ratio × weight] (cm 3 )
【0021】3)融点;パーキンエルマー社製の示差走
査熱量計DSC7を用いて測定する。発泡粒子1〜6m
gを上記装置にて10℃/分の昇温速度で30℃から2
00℃迄昇温し、200℃に到達したら30秒間放置し
た後、10℃/分の降温速度で30℃まで降温する操作
を行った後、同様にして2回目の融解操作を行い、2回
目の最大融解ピークの温度を融点とする。 4)平均粒子径;拡大投影機を用いて30倍に拡大した
約30個の発泡粒子拡大像から各粒子の短径と長径の長
さを測定し、その平均値を拡大率30で除した値を平均
粒子径とする。3) Melting point: Measured using a differential scanning calorimeter DSC7 manufactured by PerkinElmer. Expanded particles 1-6m
g from 30 ° C. at a rate of 10 ° C./min.
The temperature was raised to 00 ° C., and when the temperature reached 200 ° C., it was left for 30 seconds. After the temperature was lowered at a rate of 10 ° C./min to 30 ° C., a second melting operation was performed in the same manner, and a second melting operation was performed. The temperature of the maximum melting peak of is defined as the melting point. 4) Average particle diameter: The lengths of the minor axis and major axis of each particle were measured from about 30 expanded images of the foamed particles magnified 30 times using a magnifying projector, and the average value was divided by a magnifying power of 30. The value is defined as the average particle size.
【0022】(型内成形体の特性) 5)融着率;型内成形体の厚さ方向に深さが約1mmの
切れ目を入れ、その切れ目を外側にして折り曲げ破断す
る。この破断面に於いて厚さ方向の全長と約75mmの
長さに渡った面積の全粒子個数に対して粒子破壊(材料
破壊)している発泡粒子の個数を百分率にて評価する。 6)回復率;型内成形体を島津製作所社製の圧縮試験装
置オートグラフAG−5000Dを用いて、10mm/
分の圧縮速度で型内成形体厚さ(約25mm)の75%
迄圧縮した後、直ちに同速度で荷重がゼロになるまで取
り除き、荷重がゼロになった瞬間の厚さを測定し、次式
(2)より回復率R(%)を算出し評価する。(Characteristics of In-Mold Mold) 5) Fusing Ratio: A cut having a depth of about 1 mm is made in the thickness direction of the in-mold molded body, and the cut is made outward to bend and break. With respect to the total length in the thickness direction and the total number of particles having an area over a length of about 75 mm in this fractured surface, the number of foamed particles that are broken (material is broken) is evaluated by percentage. 6) Recovery rate: The molded product in the mold was subjected to a compression tester Autograph AG-5000D manufactured by Shimadzu Corporation at 10 mm /
75% of the thickness (approx.
Immediately after compression, the load is removed at the same speed until the load becomes zero, the thickness at the moment when the load becomes zero is measured, and the recovery rate R (%) is calculated and evaluated from the following equation (2).
【式3】 T0 :試験前厚さ(mm) T1 :試験後厚さ(荷重がゼロ時)(mm) 7)発泡倍率;重量(g)既知の型内成形体の体積(c
m3 )を水没法で測定し、その体積を重量で除した値を
発泡倍率(cm3 /g)とする。(Equation 3) T 0 : Thickness before test (mm) T 1 : Thickness after test (when load is zero) (mm) 7) Expansion ratio; weight (g) Volume of known in-mold molded product (c)
m 3 ) is measured by the submersion method, and the value obtained by dividing the volume by the weight is defined as the expansion ratio (cm 3 / g).
【0023】8)発泡倍率のバラツキ 型内成形体より、幅、長さが50mmの試験片を25個
切り出して、7)と同様に発泡倍率(cm3 /g)を測
定し、次式(3)より発泡倍率のバラツキX(%)を算
出し評価する。8) Variation in Foaming Ratio Twenty-five test pieces having a width and length of 50 mm were cut out from the molded product in the mold, and the foaming ratio (cm 3 / g) was measured in the same manner as in 7). 3) Calculate and evaluate the variation X (%) of the expansion ratio from the above.
【式4】 EX :発泡倍率の平均値(cm3 /g) Emax :発泡倍率の最大値(cm3 /g) Emin :発泡倍率の最小値(cm3 /g)(Equation 4) E X: the average value of expansion ratio (cm 3 / g) E max : maximum value of the expansion ratio (cm 3 / g) E min : minimum value of expansion ratio (cm 3 / g)
【0024】[0024]
【表1】 [Table 1]
【0025】9)圧縮強度;型内成形体を島津製作所社
製の圧縮試験装置オートグラフAG−5000Dを用い
て、10mm/分の圧縮速度で圧縮したときの応力を示
すもので、25%歪下の応力を圧縮強度とし、JIS
Z−0235の試験方法により評価する。 10)含水率;型内成形機から脱型して得られた型内成
形体の表面に付着している水分を直ちに除去し、室温で
2分経過後に重量を測定してから80℃の熱風循環式恒
温槽に8時間放置し乾燥させた後、室温に取り出して2
4時間放置後に重量を測定し、次式(4)より含水率W
(Vol%)を算出し評価する。9) Compressive strength: a stress at the time of compressing an in-mold molded article at a compression speed of 10 mm / min using a compression tester Autograph AG-5000D manufactured by Shimadzu Corporation. The lower stress is defined as the compressive strength and JIS
It is evaluated by the test method of Z-0235. 10) Moisture content; immediately remove moisture adhering to the surface of the in-mold molded body obtained by demolding from the in-mold molding machine, measure the weight after 2 minutes at room temperature, and then measure the hot air at 80 ° C. After leaving it to dry for 8 hours in a circulating thermostat, take it out to room temperature and remove it for 2 hours.
After being left for 4 hours, the weight was measured, and the water content W was calculated from the following equation (4).
(Vol%) is calculated and evaluated.
【式5】 W0 :乾燥前重量(g) W1 :乾燥後重量(g) V:型内容積2250cm3 (型内寸法30cm×30
cm×2.5cm)(Equation 5) W 0 : weight before drying (g) W 1 : weight after drying (g) V: inner volume of the mold 2250 cm 3 (inner dimensions 30 cm × 30)
cm × 2.5cm)
【0026】[0026]
【表2】 11)外観品位;型内成形体表面部の発泡粒子間に生じ
る窪みの程度と皺発生状況を目視で観察し評価する。[Table 2] 11) Appearance quality: The degree of dents generated between the foamed particles on the surface of the molded article in the mold and the occurrence of wrinkles are visually observed and evaluated.
【0027】[0027]
【表3】 以下、本発明の内容を実施例を用いて詳述するが、これ
らは本発明の範囲を制限するものではない。[Table 3] Hereinafter, the content of the present invention will be described in detail with reference to Examples, but these do not limit the scope of the present invention.
【0028】[0028]
【実施例1〜5、比較例1〜2】厚さが40〜60mm
の板状の架橋型ポリエチレン型内発泡成形体(メフL
D、商品名;旭化成工業(株)製、融点117℃、発泡
倍率30cm3 /g)を種々の形状にプレス抜き加工や
切断加工した時に不必要となった廃棄端材を、図1に示
すクラッシャー(粗粉砕羽1)で粗粉砕し、次いでグラ
ニュレーター〔(ローター3/スクリーン4( スクリー
ン穴直径:11mm)〕で粉砕した後、目開き2.5m
mのフィルターで分級して微粒子を除去し、平均粒子径
が9.5mm、発泡倍率が26cm3 /g、独立気泡率
が52%の再粒化発泡粒子を作製した。Examples 1-5, Comparative Examples 1-2 Thickness is 40-60 mm
Plate-shaped cross-linked polyethylene-in-foam molded product (MEF L
D, trade name; manufactured by Asahi Kasei Kogyo Co., Ltd., melting point 117 ° C., foaming ratio 30 cm 3 / g). After coarsely pulverizing with a crusher (coarse pulverizing blade 1) and then pulverizing with a granulator [(rotor 3 / screen 4 (screen hole diameter: 11 mm)), the aperture is 2.5 m.
The particles were classified with a filter of m to remove fine particles, and re-granulated expanded particles having an average particle diameter of 9.5 mm, an expansion ratio of 26 cm 3 / g, and a closed cell ratio of 52% were produced.
【0029】次いで、この再粒化発泡粒子と未使用の架
橋型ポリエチレン予備発泡粒子(メフLD、商品名;旭
化成工業(株)製、融点117℃、発泡倍率32cm3
/g)とを、再粒化発泡粒子の混入率が成形品体積比で
5%、10%、30%、50%、60%(実施例1〜
5)、70%、100%(比較例1〜2)となるような
割合で混合装置に供給し、均一混合粒子を作製した。続
いて、この混合粒子を充填用ホッパーからエアーで水蒸
気孔を有する成形金型(キャビテイ寸法;30cm×3
0cm×2.5cmt)内に圧送し、上記した型開き圧
縮充填方法により型内充填(型開き幅:13.5mm)
し、その後成形金型に加熱水蒸気(圧力:0.128M
Pa(ゲージ圧),温度:発泡粒子融点プラス7.5℃
=124.5℃)を供給して加熱し、成形後水冷却して
型内成形体を得た。Next, the re-granulated expanded particles and unused cross-linked polyethylene pre-expanded particles (Mef LD, trade name; manufactured by Asahi Kasei Corporation), melting point 117 ° C., expansion ratio 32 cm 3
/ G), when the mixing ratio of the re-granulated expanded particles is 5%, 10%, 30%, 50%, and 60% by volume of the molded product (Examples 1 to 3).
5), 70% and 100% (Comparative Examples 1 and 2) were supplied to the mixing device at a ratio such that they became uniform mixed particles. Subsequently, the mixed particles were charged from a filling hopper with air into a molding die having a water vapor hole (cavity dimension: 30 cm × 3).
0 cm × 2.5 cmt) and filling in the mold by the above-mentioned mold opening compression filling method (mold opening width: 13.5 mm).
Then, heated steam (pressure: 0.128 M
Pa (gauge pressure), temperature: expanded particle melting point plus 7.5 ° C
= 124.5 ° C) and heated, and then cooled with water after molding to obtain an in-mold molded product.
【0030】[0030]
【参考例1】発泡粒子として、未使用の架橋型ポリエチ
レン予備発泡粒子(メフLD、商品名;旭化成工業
(株)製、融点117℃、発泡倍率32cm3 /g)単
独を用いる以外は実施例1と同様に成形し、型内成形体
を作製した。得られた型内成形体を先の評価方法で評価
し、その結果を表1に示した。表1の結果によると、実
施例1〜5の型内成形体は、比較例1〜2に対して、高
水準の融着率、回復性を維持し、外観品位にも優れ、
又、圧縮強度も高水準の値を保持しており、予備発泡粒
子単独を用いた参考例1とほぼ遜色がないことが判る。REFERENCE EXAMPLE 1 The same procedure as in Example 1 was carried out except that unused crosslinked polyethylene pre-expanded particles (Mef LD, trade name; manufactured by Asahi Kasei Kogyo Co., Ltd., melting point 117 ° C., expansion ratio 32 cm 3 / g) were used alone as the expanded particles. Molding was performed in the same manner as in Example 1 to produce an in-mold molded body. The obtained in-mold molded product was evaluated by the above evaluation method, and the results are shown in Table 1. According to the results in Table 1, the in-mold molded products of Examples 1 to 5 maintain a high level of fusion rate and recoverability with respect to Comparative Examples 1 and 2, and are excellent in appearance quality,
Further, the compressive strength also maintains a high level value, and it can be seen that there is almost no inferiority to Reference Example 1 using the pre-expanded particles alone.
【0031】[0031]
【実施例6〜7、比較例3〜4】デスクトップ型パーソ
ナルパソコンの緩衝材に使用された無架橋型ポリエチレ
ン型内発泡成形体(メフNX、商品名;旭化成工業
(株)製、融点126℃、発泡倍率45cm3 /g)を
回収して、図1に示すクラッシャー(粗粉砕部)/グラ
ニュレーター(再粒化部)(スクリーン穴直径:8m
m)で粉砕した後、目開き2.5mmのフィルターで分
級し微粒子を除去して、平均粒子径が6.8mm、発泡
倍率が39cm3 /g、独立気泡率が36%の再粒化発
泡粒子を作製した。この再粒化発泡粒子と未使用の無架
橋型ポリエチレン予備発泡粒子(メフNX、商品名;旭
化成工業(株)製、融点126℃、発泡倍率32cm3
/g)とを、再粒化発泡粒子の混入率が成形品体積比で
30%、60%(実施例6〜7)、70%、100%
(比較例3〜4)となるような割合で混合装置に供給
し、均一混合粒子を作製した。続いて、この混合粒子を
充填用ホッパーからエアーで水蒸気孔を有する成形金型
(キャビテイ寸法;30cm×30cm×2.5cm)
内に圧送、上記した型開き圧縮充填方法により型内充填
(型開き幅:5.5mm)し、その後成形金型に加熱水
蒸気(圧力:0.147MPa(ゲージ圧),温度:発
泡粒子融点プラス1℃=127℃)を供給して加熱し、
成形後水冷却して型内成形体を得た。Examples 6 and 7, Comparative Examples 3 and 4 Non-crosslinked polyethylene in-mold foam (Mef NX, trade name; manufactured by Asahi Kasei Kogyo Co., Ltd., melting point 126 ° C.) used as a cushioning material for desktop personal computers , A foaming ratio of 45 cm 3 / g), and a crusher (coarse crushing part) / granulator (re-granulation part) shown in FIG. 1 (screen hole diameter: 8 m)
m), crushed with a filter having an aperture of 2.5 mm to remove fine particles, and regranulated foaming having an average particle size of 6.8 mm, an expansion ratio of 39 cm 3 / g, and a closed cell ratio of 36%. Particles were made. The re-granulated expanded particles and unused non-crosslinked polyethylene pre-expanded particles (Mef NX, trade name; manufactured by Asahi Kasei Corporation, melting point 126 ° C., expansion ratio 32 cm 3)
/ G) is 30%, 60% (Examples 6 to 7), 70%, 100% in terms of the volume ratio of the re-granulated expanded particles.
(Comparative Examples 3 and 4) The mixture was supplied to the mixing device at a ratio such that the mixture became uniform mixed particles. Subsequently, a molding die (cavity dimension: 30 cm × 30 cm × 2.5 cm) having a water vapor hole with air from the filling hopper with the mixed particles.
Into the mold, and filled in the mold by the above-described mold opening compression filling method (mold opening width: 5.5 mm), and then heated steam (pressure: 0.147 MPa (gauge pressure), temperature: expanded melting point plus (1 ° C. = 127 ° C.)
After molding, the resultant was cooled with water to obtain a molded article in a mold.
【0032】[0032]
【参考例2】発泡粒子として、未使用の無架橋型ポリエ
チレン予備発泡粒子(メフNX、商品名;旭化成工業
(株)製、融点126℃、発泡倍率32cm3 /g)単
独を用いる以外は実施例2と同様に成形し、型内成形体
を作製した。得られた型内成形体を先の評価方法で評価
し、その結果を表2に示した。表2の結果によると、実
施例6〜7の型内成形体は、比較例3〜4に対して、高
い融着率、回復性を維持し、外観品位にも優れ、又、圧
縮強度も高水準の値を保持しており、予備発泡粒子単独
を用いた参考例2とほぼ遜色がないことが判る。Reference Example 2 The same procedure was carried out except that unused non-crosslinked polyethylene pre-expanded particles (Mef NX, trade name; manufactured by Asahi Kasei Kogyo Co., Ltd., melting point 126 ° C., expansion ratio 32 cm 3 / g) were used alone as the expanded particles. Molding was performed in the same manner as in Example 2 to produce an in-mold molded body. The obtained in-mold molded body was evaluated by the above evaluation method, and the results are shown in Table 2. According to the results in Table 2, the in-mold molded articles of Examples 6 to 7 maintain a high fusion rate and recoverability, are excellent in appearance quality, and have a high compressive strength as compared with Comparative Examples 3 and 4. It can be seen that it retains a high level value and is almost comparable to Reference Example 2 using pre-expanded particles alone.
【0033】[0033]
【実施例8〜11、比較例5】実施例1で用いた架橋型
ポリエチレン型内発泡成形体の廃棄端材を、図1に示す
クラッシャー(粗粉砕羽1)で粗粉砕し、その後スクリ
ーン穴直径が6mmのグラニュレーターで粉砕し、目開
き2.5mmのフィルターで分級して、平均粒子径が
4.8mm、発泡倍率が23cm3 /g、独立気泡率が
27%の再粒化発泡粒子を作製した。次いで、この再粒
化発泡粒子を熱風温度が110〜119℃の流動層乾燥
装置で5〜15秒間熱処理して、独立気泡率が30〜7
0%の発泡粒子を得た。続いて、この熱処理再粒化発泡
粒子と実施例1で用いた未使用の架橋型ポリエチレン予
備発泡粒子とを前者の混入率が35%(成形品体積比)
となるように混合し、実施例1と同様にして型内成形体
を作製した。(実施例8〜11)一方、上記熱処理再粒
化発泡粒子に代えて熱処理をしていない再粒化発泡粒子
(独立気泡率が27%)を用いる外は全く同様に成形し
て型内成形体を作製した。(比較例5)得られた型内成
形体を本文記載の評価方法で評価し、結果を表3に示し
た。表3によると、本発明の型内成形体は、再粒化発泡
粒子の独立気泡率が大きいことから含水率が少なく然も
優れた外観品位を有することが判る。Examples 8 to 11 and Comparative Example 5 Discarded scraps of the foamed cross-linked polyethylene mold used in Example 1 were coarsely pulverized by a crusher (coarse pulverizing blade 1) shown in FIG. Pulverized by a granulator having a diameter of 6 mm, and classified by a filter having an aperture of 2.5 mm to obtain re-granulated expanded particles having an average particle diameter of 4.8 mm, an expansion ratio of 23 cm 3 / g, and a closed cell ratio of 27%. Was prepared. Next, the re-granulated expanded particles are subjected to a heat treatment for 5 to 15 seconds in a fluidized-bed dryer having a hot air temperature of 110 to 119 ° C., so that the closed cell ratio is 30 to 7
0% of expanded particles were obtained. Subsequently, the mixture ratio of the heat-treated re-granulated expanded particles and the unused cross-linked polyethylene pre-expanded particles used in Example 1 was 35% (by volume of the molded article).
, And an in-mold molded product was produced in the same manner as in Example 1. (Examples 8 to 11) On the other hand, molding was carried out in exactly the same manner except that heat-treated re-granulated expanded particles (having a closed cell ratio of 27%) were not subjected to heat treatment instead of the heat-treated re-granulated expanded particles. The body was made. (Comparative Example 5) The obtained in-mold molded product was evaluated by the evaluation method described in the text, and the results are shown in Table 3. According to Table 3, the in-mold molded article of the present invention has a small closed cell rate of the re-granulated expanded particles, and therefore has a low water content and an excellent appearance quality.
【0034】[0034]
【実施例12〜15、比較例6〜7】発泡倍率が15、
20、25、30、40、50cm3 /gで厚さが50
mmの板状の架橋型ポリエチレン型内発泡成形体(メフ
LD、商品名;旭化成工業(株)製、融点117℃)の
廃棄端材を図1に示すクラッシャー(粗粉砕羽1)で粗
粉砕し、その後スクリーン穴直径が8mmのグラニュレ
ーターで粉砕し、目開き2.5mmのフィルターで分級
し微粒子を除去して、発泡倍率が14、18、22、2
4、33、42cm3 /gの再粒化発泡粒子を作製し
た。尚、独立気泡率は35〜65%であった。次いで、
各々の再粒化発泡粒子と未使用の架橋型ポリエチレン予
備発泡粒子(メフLD、商品名;旭化成工業(株)製、
融点117℃、倍率26cm3 /g)を前者の混入率
(成形品体積比)が30%となるように混合装置に供給
し混合した。Examples 12 to 15, Comparative Examples 6 and 7 The expansion ratio was 15,
20, 25, 30, 40, 50 cm 3 / g and a thickness of 50
mm of plate-shaped cross-linked polyethylene in-mold foamed molded product (Mef LD, trade name; manufactured by Asahi Kasei Kogyo Co., Ltd., melting point: 117 ° C) is roughly crushed by a crusher (coarse crushing blade 1) shown in FIG. Thereafter, the mixture was pulverized with a granulator having a screen hole diameter of 8 mm, and classified with a filter having an aperture of 2.5 mm to remove fine particles.
Re-granulated expanded particles of 4, 33, and 42 cm 3 / g were produced. The closed cell ratio was 35 to 65%. Then
Each of the re-granulated expanded particles and unused cross-linked polyethylene pre-expanded particles (Mef LD, trade name; manufactured by Asahi Kasei Corporation)
A melting point of 117 ° C. and a magnification of 26 cm 3 / g) were supplied to a mixing device and mixed so that the former mixing ratio (molded product volume ratio) was 30%.
【0035】続いて、この混合粒子を用いて実施例1と
同様にして型内成形体を作製した。尚、該予備発泡粒子
単独の型内成形体(参考例3)も同様に作製した。得ら
れた型内成形体を本文記載の評価方法で評価し、結果を
表4に示した。表4によると、本発明の型内成形体は、
予備発泡粒子単独(参考例3)の型内成形体とほぼ同等
の「発泡倍率バラツキ」を有していることがわかる。こ
のことにより、本発明の型内成形体は、均一性にすぐれ
型内成形体のどの部分をとってみてもほぼ同様の機能、
特に強度、緩衝作用を有していることが判る。Subsequently, an in-mold molded article was produced in the same manner as in Example 1 using the mixed particles. In addition, an in-mold molded article of the pre-expanded particles alone (Reference Example 3) was similarly produced. The obtained in-mold molded product was evaluated by the evaluation method described in the text, and the results are shown in Table 4. According to Table 4, the in-mold molded article of the present invention is:
It can be seen that the pre-expanded particles have substantially the same “expansion ratio variation” as the in-mold molded product of the pre-expanded particles alone (Reference Example 3). Thereby, the in-mold molded article of the present invention has excellent uniformity and almost the same function even when taking any part of the in-mold molded article,
In particular, it can be seen that it has a strength and a buffering action.
【0036】[0036]
【表4】 [Table 4]
【0037】[0037]
【表5】 [Table 5]
【0038】[0038]
【表6】 [Table 6]
【0039】[0039]
【表7】 [Table 7]
【0040】[0040]
【発明の効果】本発明によれば、使用済みポリオレフィ
ン系樹脂発泡体の再粒化発泡粒子を再利用して、回復
性、圧縮強度等の物性に優れ、且つ改善された外観品位
を有するポリオレフィン系樹脂型内発泡成形体が工業的
に安定して量産することができるので、資源の再利用、
環境保全等の観点から社会的意義は極めて大きい。According to the present invention, a polyolefin having excellent physical properties such as recoverability and compressive strength and having improved appearance quality is reused by recycling the re-granulated expanded particles of the used polyolefin resin foam. Because the resin molded in-mold mold can be mass-produced in an industrially stable manner,
The social significance is extremely large from the viewpoint of environmental conservation.
【図1】クラッシャー(粗粉砕羽1)とグラニュレータ
ー(ローター3/スクリーン4)とで構成される使用済
み緩衝材料の再粒化装置の側面図である。FIG. 1 is a side view of an apparatus for re-granulating a used buffer material, which includes a crusher (coarse crushing blade 1) and a granulator (rotor 3 / screen 4).
【図2】同再粒化装置の正面図である。FIG. 2 is a front view of the re-granulation apparatus.
1:粗粉砕羽 2:粗粉砕部 3:ローター 4:スクリーン 5:グラニュレーター(再粒化部) 6:再粒化発泡粒子取出し口 7:スクリーン穴 8:駆動装置 1: Coarse pulverizing blade 2: Coarse pulverizing part 3: Rotor 4: Screen 5: Granulator (re-granulation part) 6: Re-granulated expanded particle take-out port 7: Screen hole 8: Drive unit
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成12年6月20日(2000.6.2
0)[Submission date] June 20, 2000 (2006.2.
0)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0020[Correction target item name] 0020
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0020】次に、本発明のポリオレフィン系樹脂型内
発泡成形体の特性の評価方法を説明する。 (発泡粒子の特性) 1)発泡倍率(倍率);重量(g)既知の発泡粒子の体
積(cm3 )を水没法で測定し、その体積を重量で除し
た値を発泡倍率(cm3 /g)とする。 2)独立気泡率;発泡倍率(cm3 /g)及び重量が既
知の発泡粒子約24cm3 の真の体積を東京サイエンス
社製空気比較式比重計1000型を用いて測定し、次式
(1)より独立気泡率S(%)を算出し評価する。Next, a method for evaluating the properties of the foamed molded article in a polyolefin resin mold of the present invention will be described. (Characteristics of Expanded Particles) 1) Expansion ratio (magnification): Weight (g) The volume (cm 3 ) of a known expanded particle was measured by a submerged method, and the value obtained by dividing the volume by weight was used as the expansion ratio (cm 3 / cm). g). 2) Closed cell ratio: The true volume of about 24 cm 3 of expanded particles of known expansion ratio (cm 3 / g) and weight was measured using an air comparison type hydrometer 1000 manufactured by Tokyo Science Co., Ltd. ) To calculate and evaluate the closed cell rate S (%).
【式2】 Vx:上記装置で測定した、真の発泡粒子の体積(cm
3 ) Va:発泡粒子の体積〔発泡倍率×重量〕(cm3 )(Equation 2) Vx: volume of the true foamed particles (cm
3 ) Va: Volume of expanded particles [expansion ratio × weight] (cm 3 )
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F074 AA17A AA17B AA18 AA19 AA20 AA21 AA22A AA22B AA24A AA24B AA25A AA25B AB03 BA33 BA34 BA84 CA24 CA51 CC03X CC04X CC05Z CC12Y CC34X CC47 CC62 CD07 DA02 DA03 DA33 4F212 AA03 AA50 AG20 UA01 UA07 UB01 UE26 UF21 UW45 ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4F074 AA17A AA17B AA18 AA19 AA20 AA21 AA22A AA22B AA24A AA24B AA25A AA25B AB03 BA33 BA34 BA84 CA24 CA51 CC03X CC04X CC05Z CC12Y CC34XCC47 CC03 CD07 A02 DA03 A02 DA03 A UF21 UW45
Claims (7)
形体を粉砕して得た粒子(以下、再粒化発泡粒子とい
う。)を含むポリオレフィン系樹脂型内発泡成形体にお
いて、発泡粒子相互の融着率が80%以上であって、且
つ回復率が75%以上であることを特徴とするポリオレ
フィン系樹脂型内発泡成形体。1. A polyolefin-based resin molded article containing particles obtained by pulverizing an in-mold molded article of polyolefin-based resin expanded particles (hereinafter referred to as re-granulated expanded particles). A foamed molded article in a polyolefin-based resin mold having a deposition rate of 80% or more and a recovery rate of 75% or more.
は、再粒化発泡粒子とポリオレフィン系樹脂予備発泡粒
子とで構成されていて、再粒化発泡粒子の混入率が該成
形体の体積比で5〜60%であることを特徴とする請求
項1記載のポリオレフィン系樹脂型内発泡成形体。2. The expanded molded article in a polyolefin-based resin mold is composed of re-granulated expanded particles and polyolefin-based resin pre-expanded particles, and the mixing ratio of the re-granulated expanded particles is determined by the volume ratio of the molded article. The foamed molded article in a polyolefin resin mold according to claim 1, wherein the content is 5 to 60%.
70%であることを特徴とする請求項1又は請求項2記
載のポリオレフィン系樹脂型内発泡成形体。3. The closed cell rate of the re-granulated expanded particles is from 30 to 30.
The foamed molded article in a polyolefin-based resin mold according to claim 1 or 2, which is 70%.
ィン系樹脂予備発泡粒子の発泡倍率の比が0.6〜1.
3であり、且つ再粒化発泡粒子の平均粒子径が4〜10
mmであることを特徴とする請求項1〜3のいずれかに
記載のポリオレフィン系樹脂型内発泡成形体。4. The ratio of the expansion ratio of the re-granulated expanded particles / the expansion ratio of the polyolefin-based resin pre-expanded particles is from 0.6 to 1.
3, and the average particle size of the re-granulated expanded particles is 4 to 10.
The polyolefin-based resin-molded in-mold foamed product according to any one of claims 1 to 3, wherein
ン系樹脂予備発泡粒子の融点の−5℃〜+7℃であるこ
とを特徴とする請求項1〜4のいずれかに記載のポリオ
レフィン系樹脂型内発泡成形体。5. The polyolefin-based resin according to claim 1, wherein the re-granulated expanded particles have a melting point of −5 ° C. to + 7 ° C. of the melting point of the polyolefin-based resin pre-expanded particles. In-mold foam molding.
予備発泡粒子との混合粒子を型内に充填し、加熱して発
泡粒子相互を膨張、融着させて成形するポリオレフィン
系樹脂型内発泡成形体の製造方法において、(1)上記
混合粒子を型内に充填する方法が、混合粒子を気泡内圧
付加処理後型内に充填する、或いは混合粒子を加圧空気
で型内に圧縮充填する、もしくは混合粒子を型内に充填
し型閉めして圧縮する方法のいずれかであること、
(2)再粒化発泡粒子の混合率が該成形体の体積比で5
〜60%であること、(3)再粒化発泡粒子の独立気泡
率が30〜70%であること、(4)再粒化発泡粒子の
発泡倍率/ポリオレフィン系樹脂予備発泡粒子の発泡倍
率の比が0.6〜1.3であり、且つ再粒化発泡粒子の
平均粒子径が4〜10mmであること、(5)再粒化発
泡粒子の融点がポリオレフィン系樹脂予備発泡粒子の融
点の−5℃〜+7℃であることを特徴とするポリオレフ
ィン系樹脂型内発泡成形体の製造方法。6. A polyolefin-based resin in-mold foaming method in which mixed particles of re-granulated foamed particles and polyolefin-based resin pre-expanded particles are filled in a mold and heated to expand and fuse the foamed particles with each other. In the method for producing a body, (1) the method of filling the mixed particles into a mold includes filling the mixed particles into the mold after applying the internal pressure to the bubbles, or compressing and filling the mixed particles into the mold with pressurized air. Alternatively, it is either a method of filling the mixed particles in a mold, closing the mold and compressing,
(2) The mixing ratio of the re-granulated expanded particles is 5 by volume ratio of the molded body.
(3) the closed cell rate of the re-granulated expanded particles is 30 to 70%, and (4) the expansion ratio of the re-granulated expanded particles / the expansion ratio of the polyolefin resin pre-expanded particles. The ratio is 0.6 to 1.3, and the average particle size of the re-granulated expanded particles is 4 to 10 mm. (5) The melting point of the re-granulated expanded particles is the melting point of the polyolefin resin pre-expanded particles. A method for producing a polyolefin-based resin molded foam inside, which is at -5 ° C to + 7 ° C.
ポリオレフィン系樹脂予備発泡粒子の融点のいずれか高
い値の+1℃〜+10℃の温度の水蒸気加熱であること
を特徴とする請求項6記載のポリオレフィン系樹脂型内
発泡成形体の製造方法。7. The heating performed in the mold is steam heating at a temperature of + 1 ° C. to + 10 ° C., which is the higher value of the melting points of the re-granulated expanded particles and the polyolefin-based resin pre-expanded particles. Item 7. The method for producing a polyolefin resin in-mold foamed article according to Item 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000182843A JP2002003637A (en) | 2000-06-19 | 2000-06-19 | Polyolefin-based in-mold foam molded article and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000182843A JP2002003637A (en) | 2000-06-19 | 2000-06-19 | Polyolefin-based in-mold foam molded article and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002003637A true JP2002003637A (en) | 2002-01-09 |
Family
ID=18683522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000182843A Pending JP2002003637A (en) | 2000-06-19 | 2000-06-19 | Polyolefin-based in-mold foam molded article and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002003637A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006116818A (en) * | 2004-10-21 | 2006-05-11 | Kaneka Corp | Method for producing foamed polyolefin resin molding using waste foamed polyolefin resin molding and its molding |
JP7227526B1 (en) | 2021-10-21 | 2023-02-22 | 株式会社ジェイエスピー | Expanded polyethylene resin particles and method for producing the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5083472A (en) * | 1973-11-26 | 1975-07-05 | ||
JPS5361858A (en) * | 1976-11-12 | 1978-06-02 | Funai Electric Co | Apparatus for automatic conveyance |
JPH04108835A (en) * | 1990-08-29 | 1992-04-09 | Hitachi Chem Co Ltd | Method for preparing reclaimed foamed thermoplastic resin molded product |
JPH06182890A (en) * | 1992-12-18 | 1994-07-05 | Achilles Corp | Molded form containing foamed styrol pulverized piece and manufacture of same form |
JPH0788876A (en) * | 1993-09-28 | 1995-04-04 | Sekisui Plastics Co Ltd | Foam molding method |
JPH07148764A (en) * | 1993-11-30 | 1995-06-13 | Sekisui Plastics Co Ltd | Method for producing foamed thermoplastic resin molding |
JPH10147661A (en) * | 1996-11-19 | 1998-06-02 | Kanegafuchi Chem Ind Co Ltd | Preliminarily foamed granule of flame-retardant polyolefin and production of inmold foamed molded product using the same |
-
2000
- 2000-06-19 JP JP2000182843A patent/JP2002003637A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5083472A (en) * | 1973-11-26 | 1975-07-05 | ||
JPS5361858A (en) * | 1976-11-12 | 1978-06-02 | Funai Electric Co | Apparatus for automatic conveyance |
JPH04108835A (en) * | 1990-08-29 | 1992-04-09 | Hitachi Chem Co Ltd | Method for preparing reclaimed foamed thermoplastic resin molded product |
JPH06182890A (en) * | 1992-12-18 | 1994-07-05 | Achilles Corp | Molded form containing foamed styrol pulverized piece and manufacture of same form |
JPH0788876A (en) * | 1993-09-28 | 1995-04-04 | Sekisui Plastics Co Ltd | Foam molding method |
JPH07148764A (en) * | 1993-11-30 | 1995-06-13 | Sekisui Plastics Co Ltd | Method for producing foamed thermoplastic resin molding |
JPH10147661A (en) * | 1996-11-19 | 1998-06-02 | Kanegafuchi Chem Ind Co Ltd | Preliminarily foamed granule of flame-retardant polyolefin and production of inmold foamed molded product using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006116818A (en) * | 2004-10-21 | 2006-05-11 | Kaneka Corp | Method for producing foamed polyolefin resin molding using waste foamed polyolefin resin molding and its molding |
JP7227526B1 (en) | 2021-10-21 | 2023-02-22 | 株式会社ジェイエスピー | Expanded polyethylene resin particles and method for producing the same |
WO2023067954A1 (en) * | 2021-10-21 | 2023-04-27 | 株式会社ジェイエスピー | Polyethylene resin foam particles, and method for producing same |
JP2023062494A (en) * | 2021-10-21 | 2023-05-08 | 株式会社ジェイエスピー | Expanded polyethylene resin particles and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8961859B2 (en) | Expandable polystyrene resin particles, method for production thereof, and molded foam product | |
JP2007503324A (en) | Expandable polymer particles and method for processing the foamed article | |
CN104890209B (en) | Thermoplastic resin pre-expanded particles and its manufacture method, foaming of thermoplastic resin formed body and its manufacture method | |
JPH0313057B2 (en) | ||
CN104080847B (en) | Foaming polystyrene series resin particle and its manufacture method and expanded moldings | |
CN103140545B (en) | Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium | |
JP3692760B2 (en) | Method for producing foamed molded product in polypropylene resin mold | |
JP5603629B2 (en) | Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding | |
JP2002003637A (en) | Polyolefin-based in-mold foam molded article and method for producing the same | |
JP5603628B2 (en) | Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article | |
JP7223821B1 (en) | Method for producing expanded polypropylene resin particles | |
JP2023019516A (en) | Expanded polypropylene resin particles and method for producing the same | |
JP2709395B2 (en) | Non-crosslinked linear low-density polyethylene resin particles for foaming and method for producing non-crosslinked linear low-density polyethylene expanded particles | |
KR100730096B1 (en) | Manufacturing Method of Box Using Polypropylene Resin and Polyethylene Resin Material and Its Packaging Box | |
JPH0788876A (en) | Foam molding method | |
JP5425654B2 (en) | Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article | |
WO2024057883A1 (en) | Foamable particle production method | |
JP2002200635A (en) | Molded article of expanded polypropylene resin particles and method for producing the same | |
JPS5830134B2 (en) | High-quality polyethylene | |
JP2024061223A (en) | Method for producing polypropylene-based resin foamed particles | |
JPH07156181A (en) | Production of foamed polystyrene molded article | |
JPH0892407A (en) | Cross-linked polyethylene resin foamed particles, foamed molded product using the foamed particles, and bed core made of the foamed molded product | |
JP2023148536A (en) | Foamed particle and foamed particle molding | |
JP2007084666A (en) | Styrenic resin foamable particles, production method thereof, and styrene resin foamed molded article | |
JPS6020943A (en) | Non-crosslinked polyethylene resin expanded particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20031204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040219 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070531 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070618 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101207 |