JP2002001652A - Polishing pad and apparatus, and manufacturing device - Google Patents
Polishing pad and apparatus, and manufacturing deviceInfo
- Publication number
- JP2002001652A JP2002001652A JP2000187731A JP2000187731A JP2002001652A JP 2002001652 A JP2002001652 A JP 2002001652A JP 2000187731 A JP2000187731 A JP 2000187731A JP 2000187731 A JP2000187731 A JP 2000187731A JP 2002001652 A JP2002001652 A JP 2002001652A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- light
- polishing pad
- window
- transmitting window
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 183
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000005259 measurement Methods 0.000 claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims abstract description 14
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 12
- 230000001737 promoting effect Effects 0.000 claims abstract description 3
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 abstract description 22
- 239000002002 slurry Substances 0.000 description 65
- 239000010410 layer Substances 0.000 description 24
- 239000010408 film Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、基板、例えばUL
SI等の半導体デバイスを製造するプロセスで実施され
る半導体デバイス基板の平坦化研磨(CMP)に好適に
用いられる研磨パッド及び本研磨パッドを具えた研磨装
置及び本研磨装置を用いた半導体デバイス等の素子製造
方法に関する。The present invention relates to a substrate, for example, a UL
Polishing pad suitably used for planarization polishing (CMP) of a semiconductor device substrate performed in a process of manufacturing a semiconductor device such as SI, a polishing apparatus having the main polishing pad, and a semiconductor device using the main polishing apparatus. The present invention relates to a device manufacturing method.
【0002】[0002]
【従来の技術】半導体デバイスが高密度化するにつれ、
多層配線と、これに伴う層間絶縁膜形成や、プラグ、ダ
マシンなどの電極形成の技術の重要度は増加している。
これに伴い、これら層間絶縁膜や電極の金属膜の平坦化
プロセスの重要度が増しており、この平坦化プロセスの
ための効率的な技術として、CMPと呼ばれる研磨工程
がある。2. Description of the Related Art As the density of semiconductor devices increases,
The importance of the technology of multilayer wiring and the accompanying formation of interlayer insulating films and the formation of electrodes such as plugs and damascenes is increasing.
Accordingly, the importance of the planarization process of the interlayer insulating film and the metal film of the electrode is increasing, and a polishing process called CMP is an efficient technique for the planarization process.
【0003】CMP(Chemical Mechanical Polishingま
たはPlanarization)は、物理的研磨に、化学的な作用(
研磨剤溶液による溶かし出し) とを併用して、ウェハ表
面の薄膜の凹凸を除いていく工程である。ウェハ全面に
おいて、加圧と相対運動速度を一様とすることでウェハ
面内が一様に研磨される。[0003] CMP (Chemical Mechanical Polishing or Planarization) has a chemical action (
This is a step of removing irregularities of the thin film on the wafer surface by using in combination with (dissolution by an abrasive solution). By uniformizing the pressure and the relative movement speed over the entire surface of the wafer, the inside of the wafer is uniformly polished.
【0004】ここで、プラグやダマシン等を正しく埋め
込むために、研磨終了点の正確な検知の重要度が増して
おり、この検知のために、光学的な測定方法が、その高
精度性のために注目されている。例えば特開平11−3
3901号に開示されている技術によると、ブランク膜
だけでなく、デバイスパターン( 下地パターン) が存在
するウェハであって、2次元的に一様でないパターンを
有するウェハであっても、光学的にその場で膜厚または
研磨終了点を測定することができる。Here, in order to correctly embed a plug, a damascene or the like, the importance of accurate detection of the polishing end point is increasing, and for this detection, an optical measuring method is required due to its high accuracy. Has been noted. For example, JP-A-11-3
According to the technology disclosed in Japanese Patent No. 3901, not only a blank film but also a wafer having a device pattern (base pattern) and a wafer having a two-dimensionally non-uniform pattern, The film thickness or polishing end point can be measured on the spot.
【0005】図5に従来の光学的測定方法を説明するた
めの研磨装置を示す。図5に於いて、101は研磨ヘッ
ド、102は被研磨部材のウェハ、103は研磨パッ
ド、104は定盤、105は透光窓であり、透明部材が
研磨パッド103に嵌め込まれている。106は光源及
び光検出部、107は信号処理部、108は表示部、1
09は研磨剤供給装置、110は研磨剤、115は定盤
に穿たれた孔部である。研磨パッド103としては発泡
樹脂を用いたものや無発泡樹脂を用いたものがあり、加
工面全面に研磨剤を供給し、更に研磨によって生じる研
磨カスを研磨パッドの外に排出するために、通常は溝を
具える。ウェハ102を研磨ヘッド101に取り付け、
回転(WH )させながらウェハ102の被研磨面を研磨
パッド103の加工面に押しつける。同時に、定盤10
4に固定された研磨パッド103を回転(WT )させ、
ウェハ102との間に相対運動を与え、この状態で、研
磨剤110を研磨剤供給機構109から被研磨面と加工
面との間に供給することにより研磨を行う。FIG. 5 shows a polishing apparatus for explaining a conventional optical measuring method. In FIG. 5, 101 is a polishing head, 102 is a wafer to be polished, 103 is a polishing pad, 104 is a surface plate, 105 is a light transmitting window, and a transparent member is fitted into the polishing pad 103. 106 is a light source and light detection unit, 107 is a signal processing unit, 108 is a display unit,
09 is an abrasive supply device, 110 is an abrasive, and 115 is a hole formed in the surface plate. As the polishing pad 103, there are one using a foamed resin and one using a non-foamed resin. In order to supply an abrasive to the entire processing surface and further discharge polishing scum generated by polishing out of the polishing pad, Has a groove. Attach the wafer 102 to the polishing head 101,
The surface to be polished of the wafer 102 is pressed against the processing surface of the polishing pad 103 while rotating (W H ). At the same time, the surface plate 10
The polishing pad 103 fixed to 4 is rotated (W T ),
Polishing is performed by supplying a relative motion between the wafer 102 and the polishing agent 110 in this state by supplying the polishing agent 110 from the polishing agent supply mechanism 109 between the surface to be polished and the processing surface.
【0006】この間、研磨状態の測定のために、光源及
び光検出部106から発する光116を孔部115、透
光窓105を通してウェハ102の被研磨面に照射し、
そこからの反射光を再び透光窓105、孔部115を通
して光源及び光検出部106により受光する。この受光
された光信号の変化により研磨終了点、または残膜厚等
の研磨状態を測定する。During this time, in order to measure a polishing state, light 116 emitted from a light source and a light detecting unit 106 is irradiated on a surface to be polished of the wafer 102 through a hole 115 and a light transmitting window 105.
The reflected light therefrom is again received by the light source and the light detection unit 106 through the light transmitting window 105 and the hole 115. Based on the change in the received light signal, the polishing state such as the polishing end point or the remaining film thickness is measured.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、従来の
終点測定においては、研磨状態の測定精度が低いことが
あった。発明者等はこの原因を調査したところ、この原
因は、受光される光信号が不安定なことがあることにあ
ることが判明した。即ち、光信号の大きさまたは形状
が、研磨の進行と無関係に変化することがあるのであ
る。この変化は、特に光信号にノイズとして働くので、
測定精度を悪化させていた。However, in the conventional end point measurement, the measurement accuracy of the polished state may be low. The present inventors have investigated the cause and found that the cause is that the received optical signal may be unstable. That is, the magnitude or shape of the optical signal may change independently of the progress of polishing. Since this change acts as noise especially on the optical signal,
The measurement accuracy was deteriorated.
【0008】発明者等は以上の不安定性の原因を調査し
た結果、この主な原因は、光が無視できない層厚を有す
る研磨剤の層を透過することにあることを見つけた。図
5の透光窓105付近の拡大断面図である図6に示すよ
うに、透光窓105として嵌め込まれた透明部材105
の上面とウェハ102の被研磨面との間には透明部材1
05とウェハとで囲まれた空間(以下単に空間と呼ぶ)
111がある。ウェハ102への照射光とウェハ102
からの反射光は、この空間111を透過する。空間11
1にはスラリ110が充満してスラリ層を成し、このス
ラリ層の層厚は、空間111の間隔112の大きさに依
存する。ウェハ102の透明部材105への接触により
ウェハの被研磨面または透明部材105の上面に傷が生
じることを防ぐために、この間隔112は所要値以上に
保たれている。しかしながら、この間隙112に依存し
て空間111にスラリ110が充満し、このスラリの層
は光(照射光や反射光)を吸収するのみならず散乱す
る。スラリ層の層厚が大きい程、この吸収光量と散乱光
量は大きく、反射信号光は減少する。また、散乱光は反
射信号光にノイズ光としての影響を与える。以上のよう
に、スラリ層が厚い程、ノイズ光が増えて、信号光が減
るので、一般に反射信号光のS/N比は低下する。The present inventors have investigated the causes of the above instability and found that the main cause is that light penetrates through a layer of abrasive having a non-negligible layer thickness. As shown in FIG. 6 which is an enlarged cross-sectional view near the light transmitting window 105 in FIG. 5, the transparent member 105 fitted as the light transmitting window 105 is provided.
Between the upper surface of the wafer and the surface to be polished of the wafer 102
05 and the space surrounded by the wafer (hereinafter simply called space)
There are 111. Irradiation light to wafer 102 and wafer 102
Is transmitted through the space 111. Space 11
1 is filled with a slurry 110 to form a slurry layer, and the thickness of the slurry layer depends on the size of the interval 112 of the space 111. In order to prevent the surface of the polished surface of the wafer or the upper surface of the transparent member 105 from being damaged by the contact of the wafer 102 with the transparent member 105, the distance 112 is kept to a required value or more. However, the space 111 is filled with the slurry 110 depending on the gap 112, and the layer of the slurry not only absorbs light (irradiation light or reflected light) but also scatters. The larger the thickness of the slurry layer, the larger the amount of absorbed light and the amount of scattered light, and the amount of reflected signal light decreases. Further, the scattered light affects the reflected signal light as noise light. As described above, as the slurry layer becomes thicker, noise light increases and signal light decreases, so that the S / N ratio of reflected signal light generally decreases.
【0009】更に、このスラリ層の厚みは、研磨パッド
の回転速度WT の大きさの変動による遠心力の変動やス
ラリの供給量の変動等に伴い変動する。また、研磨の進
行に伴い、膜の溶け出し等によりスラリの成分が変動
し、スラリの光学特性等が変動する。更にまた、研磨パ
ッドやウェハの弾性的振動や、研磨パッドの減耗、等に
より、透明部材とウェハとの間隙112が変動し、これ
に伴いスラリの層厚が変動する。以上の変動等により、
反射信号光のS/N比は変動し、このS/N比の変動巾
はスラリ層厚が厚い程大きい。S/N比の変動は結局は
反射信号光のS/N比を低下させる。Further, the thickness of the slurry layer fluctuates with fluctuations in centrifugal force due to fluctuations in the rotational speed W T of the polishing pad, fluctuations in the amount of slurry supplied, and the like. Further, as the polishing proceeds, the components of the slurry fluctuate due to the dissolution of the film and the like, and the optical characteristics and the like of the slurry fluctuate. Furthermore, the gap 112 between the transparent member and the wafer fluctuates due to the elastic vibration of the polishing pad or the wafer, the wear of the polishing pad, or the like, and the layer thickness of the slurry fluctuates accordingly. Due to the above fluctuations,
The S / N ratio of the reflected signal light fluctuates, and the fluctuation width of the S / N ratio increases as the thickness of the slurry layer increases. The change in the S / N ratio eventually lowers the S / N ratio of the reflected signal light.
【0010】以上のべたスラリ層によるS/N比の低下
は研磨終了点の測定精度を低下させる。以上の議論によ
り、スラリ層の層厚が大きいほど、この測定精度の悪化
の程度が大きいことが分かる。The decrease in the S / N ratio due to the solid slurry layer described above lowers the measurement accuracy of the polishing end point. From the above discussion, it can be seen that the greater the thickness of the slurry layer, the greater the degree of deterioration of the measurement accuracy.
【0011】従って、高精度に研磨終了点を測定するた
めには、透光窓の照射光と反射光が透過する部分に於け
るスラリ層の層厚を極力薄くすることが好ましいことが
分かる。Therefore, in order to measure the polishing end point with high accuracy, it is understood that it is preferable to minimize the thickness of the slurry layer in a portion where the irradiation light and the reflected light of the light transmitting window are transmitted.
【0012】以上のように、本発明の目的は、透光窓の
照射光と反射信号光が透過する部分のスラリ層の層厚を
極めて薄くでき、その結果、高精度に研磨終了点を測定
することを可能とする研磨パッド、及びこの研磨パッド
を具え、研磨状態を高精度に研磨可能な研磨装置、及び
この研磨装置で半導体デバイスウェハ表面を研磨する段
階を具えた半導体デバイス等の素子の製造方法を提供す
ることを課題とする。As described above, an object of the present invention is to make it possible to extremely reduce the thickness of a slurry layer in a portion where irradiation light and reflected signal light of a light transmitting window are transmitted, and as a result, a polishing end point can be measured with high accuracy. Polishing pad, and a polishing apparatus comprising the polishing pad, capable of polishing the polishing state with high precision, and a step of polishing a semiconductor device wafer surface with the polishing apparatus. It is an object to provide a manufacturing method.
【0013】[0013]
【課題を解決するための手段】以上の課題を解決するた
めに本発明では第一に、基板との間に研磨剤を介在させ
た状態で荷重を加え、前記基板を相対移動させることに
より前記基板を研磨するための研磨パッドであって、前
記研磨パッドが、研磨状態を光学的に測定するための光
を透過させるための一つ以上の透光窓と、前記透光窓の
近傍の窓溝部と、前記研磨パッド表面の領域から前記透
光窓と前記窓溝部との領域を除く領域の全体または一部
に溝部とを具え、前記透光窓と前記窓溝部と前記溝部と
が、研磨剤が前記透光窓上面に到ることを防止する機能
または前記透光窓上面の研磨剤の排出を促す機能を有す
るように構成されていることを特徴とする研磨パッドを
提供する。In order to solve the above-mentioned problems, in the present invention, first, a load is applied in a state where an abrasive is interposed between the substrate and the substrate, and the substrate is relatively moved. A polishing pad for polishing a substrate, wherein the polishing pad has at least one light-transmitting window for transmitting light for optically measuring a polishing state, and a window near the light-transmitting window. A groove, and a groove in the whole or a part of a region excluding a region of the light transmitting window and the window groove from a region of the polishing pad surface, and the light transmitting window, the window groove and the groove are polished. A polishing pad is provided which has a function of preventing an agent from reaching the upper surface of the light transmitting window or a function of promoting discharge of the abrasive from the upper surface of the light transmitting window.
【0014】本発明の研磨パッドの透光窓と窓溝部と溝
部とは、共同して研磨剤が前記透光窓上に到ることを防
止する機能(第一の機能)または前記透光窓上の研磨剤
を排出することを促す機能(第二の機能)を有するよう
構成されるので、透光窓上の研磨剤の平均層厚が薄くな
るために、高精度に研磨終了点の測定ができる。The light transmitting window, the window groove and the groove of the polishing pad of the present invention work together to prevent the abrasive from reaching the light transmitting window (first function) or the light transmitting window. It is configured to have a function (second function) to promote the discharge of the above abrasive, so that the average layer thickness of the abrasive on the light-transmitting window becomes thin, so that the polishing end point can be measured with high accuracy. Can be.
【0015】また第二に、前記窓溝部が、前記透光窓の
回りに近接して形成されることを特徴とする請求項1記
載の研磨パッドを提供する。本発明の窓溝部は透光窓の
回りに近接して形成されているので、以下のようにして
第一の機能が働く。即ち、一方の溝部を透光窓に向かっ
て流れる研磨剤が、窓溝部に流れ込み、窓溝部を流れな
がら、次には窓溝部の他方の溝部へ流れ出る。研磨剤が
以上のように流れることにより、窓部上を流れる研磨剤
の量が減少するので、窓部上に存在する研磨剤の量が減
少する。第二の機能は以下のように働く。即ち、もしも
研磨剤が流れ込んで透光窓上面に到ったとしても、透光
窓上面と基板の下面(研磨パッドの加工面)との間隙が
適当に保たれているために、その研磨剤に働く遠心力等
の力により、速やかに回りの窓溝部に向かって移動し、
窓溝部に落ち込み、この窓溝部を流れて排出され、また
透光窓上面が浸水することがない。[0015] Secondly, the polishing pad according to claim 1, wherein the window groove portion is formed close to the periphery of the light transmitting window. Since the window groove portion of the present invention is formed close to the light transmitting window, the first function works as follows. That is, the abrasive flowing toward the light-transmitting window through one groove flows into the window groove, flows through the window groove, and then flows out to the other groove of the window groove. As the abrasive flows as described above, the amount of the abrasive flowing on the window decreases, and the amount of the abrasive existing on the window decreases. The second function works as follows. That is, even if the abrasive flows into the upper surface of the light-transmitting window, since the gap between the upper surface of the light-transmitting window and the lower surface of the substrate (processed surface of the polishing pad) is appropriately maintained, the abrasive is Due to the centrifugal force and other forces acting on the
It falls into the window groove, flows out of the window groove and is discharged, and the upper surface of the light transmitting window does not flood.
【0016】以上第一、第二の機能により、透光窓上の
研磨剤層の層厚を極めて薄くすることが可能となるので
ある。また、透光窓は、研磨パッドまたは定盤に設けら
れた照射光や反射光を透過する部分を指す。一例として
透光窓が研磨パッドに嵌め込まれた透明部材として構成
される場合、透光窓は透明部材に相当する。The first and second functions enable the thickness of the abrasive layer on the light transmitting window to be extremely reduced. The light-transmitting window refers to a portion provided on a polishing pad or a surface plate, which transmits irradiation light and reflected light. As an example, when the light transmitting window is configured as a transparent member fitted into a polishing pad, the light transmitting window corresponds to the transparent member.
【0017】また第三に、前記透光窓の上面と前記研磨
パッドの加工面との間隙aが、前記透光窓の表面の研磨
剤を前記研磨パッドの研磨時の回転による遠心力によっ
て排除可能な大きさとされていることを特徴とする請求
項1、2何れか1項記載の研磨パッドを提供する。Thirdly, the gap a between the upper surface of the light-transmitting window and the processing surface of the polishing pad removes the abrasive on the surface of the light-transmitting window by centrifugal force caused by rotation of the polishing pad during polishing. The polishing pad according to any one of claims 1 and 2, wherein the polishing pad is sized.
【0018】また第四に、前記溝部の底面の前記研磨パ
ッドの加工面からの深さをbとすると、b≧aを充たす
ことを特徴とする請求項3記載の研磨パッドを提供す
る。また第五に、前記透光窓の形状が、前記遠心力が働
く方向に対して逆方向に向かって流線型とされているこ
とを特徴とする請求項2〜4何れか1項記載の研磨パッ
ドを提供する。A fourth aspect of the present invention is to provide the polishing pad according to the third aspect, wherein a depth b of the bottom surface of the groove from the processing surface of the polishing pad satisfies b ≧ a. Fifth, the polishing pad according to any one of claims 2 to 4, wherein the shape of the light-transmitting window is streamlined in a direction opposite to a direction in which the centrifugal force acts. I will provide a.
【0019】また第六に、請求項1〜5何れか1項記載
の研磨パッドと光学的に研磨状態を測定する測定装置と
を具え、前記研磨パッドと基板との間に研磨剤を介在さ
せた状態で、前記基板と前記研磨パッドとの間に荷重を
加え、且つ前記基板と前記研磨パッドとを相対移動させ
ることにより前記基板を研磨し、且つ前記基板に光を照
射することにより前記基板の研磨状態を光学的に測定す
ることを特徴とする研磨装置を提供する。Sixth, the polishing pad according to any one of claims 1 to 5 and a measuring device for optically measuring a polishing state are provided, and an abrasive is interposed between the polishing pad and the substrate. In the state, the substrate is polished by applying a load between the substrate and the polishing pad, and relatively moving the substrate and the polishing pad, and irradiating the substrate with light, The present invention provides a polishing apparatus characterized by optically measuring a polishing state of the polishing apparatus.
【0020】また第七に、請求項6記載の研磨装置を用
いて表面を研磨する段階を具えることを特徴とする素子
製造方法を提供する。A seventh aspect of the present invention provides a method for manufacturing an element, comprising a step of polishing a surface using a polishing apparatus according to claim 6.
【0021】[0021]
【発明の実施の形態】[実施形態1]図3は本実施形態
を説明する研磨装置の概要図であり、図1、図2は、図
3の透光窓5の付近の拡大概要図である。図1は平面
図、図2は図1のAA’に於ける切断面図である。図
1、図2にて、2はウェハ、3は研磨パッド、19は研
磨パッド3の加工面に形成された溝部、4は定盤、5は
透光窓としての透明部材、15は定盤に穿たれた孔部で
ある。ここで透光窓5としては複合構造のもの、可動式
のものも含まれる。また、研磨パッドとしては、研磨装
置に取り付けられていない単独の状態で、透光窓と研磨
パッドの残りの部分とが一体化された構造のもののみな
らず、研磨装置に取り付けられた状態で初めて一体化す
るものをも含む。溝部19としては断面形状がV字状や
台形状の格子溝が形成される。また、14は窓溝部であ
り、透明部材5の周囲に設けられている。窓溝部14の
溝は、スラリが窓溝部から溢れることを防止するため
に、スラリの供給量が多いほど広くまたは深くされる。
また窓溝部14の平面形状は、遠心力により、スラリが
溝部19から窓溝部14に流れ込みやすくするように、
またはスラリが窓溝部14を流れ易くするように、更に
またはスラリが窓溝部14から溝部19に流れ出ること
を容易にするように形成されることが好ましい。このた
めに、窓溝部または透光窓の形状を遠心力の働く方向に
対して逆方向に向かって流線型にすることが特に好まし
い。この流線型の一例を図1の14の形状例により示
す。この場合、窓溝部14を透光窓に近接して設けるこ
とが好ましいことから、窓溝部の形状もまた流線型にす
ることが好ましい。本図では、窓溝部14は透光窓5の
全周に設けられているが、必要に応じて全周ではなく部
分周に設けても良く、更には透光窓5を横切る位置に設
けても良く、窓溝部の配置方法は透光窓の近傍でありさ
えすれば特に限定されない。また図2では透光窓5の厚
みは研磨パッドの厚みと同等であるが、透光窓は定盤の
孔部に当たる部分迄張り出した構造でも良く、この場合
には定盤の孔部15は無くなる。また、研磨パッドとし
ては、単層構造や複層構造のもの、または発泡性や無発
泡性のもの、または軟質や硬質のもの、または下部に第
一の定盤を備えるものや備えないもの、またはこれらを
組み合わせたものなど種々の形態のものがある。どちら
の場合も更に第二の定盤(以下単に定盤と呼ぶ)に固定
した状態で研磨が行われる。10は窓溝部内14に流れ
ながら存在するスラリ、17は窓溝部でのスラリの流
れ、20は溝部でのスラリの流れ、18は研磨パッドの
回転軸、そして31はスラリに働く遠心力とそれの働く
方向である。また、12は透光窓5の上面と研磨パッド
3の加工面との間隔aであり、13は研磨パッド3の溝
部の底面の研磨パッド3の加工面からの深さbである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [Embodiment 1] FIG. 3 is a schematic view of a polishing apparatus for explaining the present embodiment, and FIGS. 1 and 2 are enlarged schematic views in the vicinity of a light transmitting window 5 in FIG. is there. FIG. 1 is a plan view, and FIG. 2 is a cross-sectional view taken along AA ′ of FIG. 1 and 2, 2 is a wafer, 3 is a polishing pad, 19 is a groove formed on a processing surface of the polishing pad 3, 4 is a platen, 5 is a transparent member as a light transmitting window, and 15 is a platen. It is a hole drilled in. Here, the translucent window 5 includes a composite structure and a movable window. In addition, as the polishing pad, not only a structure in which the light-transmitting window and the remaining portion of the polishing pad are integrated in a single state not attached to the polishing device, but also a state in which the polishing window is attached to the polishing device. Including those that are integrated for the first time. As the groove 19, a lattice groove having a V-shaped or trapezoidal cross section is formed. A window groove 14 is provided around the transparent member 5. The groove of the window groove 14 is made wider or deeper as the supply amount of the slurry is larger in order to prevent the slurry from overflowing from the window groove.
Further, the planar shape of the window groove portion 14 is such that the slurry easily flows from the groove portion 19 into the window groove portion 14 by centrifugal force.
Or, it is preferable that the slurry is formed so that the slurry easily flows through the window groove portion 14 or that the slurry easily flows out from the window groove portion 14 into the groove portion 19. For this reason, it is particularly preferable that the shape of the window groove or the light transmitting window be streamlined in the direction opposite to the direction in which the centrifugal force acts. One example of this streamline type is shown by a shape example of FIG. In this case, since the window groove 14 is preferably provided close to the light-transmitting window, the shape of the window groove is also preferably streamlined. In this figure, the window groove portion 14 is provided on the entire circumference of the light transmitting window 5, but may be provided on a partial circumference instead of the entire circumference as necessary, and further provided at a position crossing the light transmitting window 5. The arrangement method of the window groove is not particularly limited as long as it is in the vicinity of the light transmitting window. In FIG. 2, the thickness of the light-transmitting window 5 is equal to the thickness of the polishing pad. However, the light-transmitting window may have a structure extending to a portion corresponding to the hole of the surface plate. Disappears. Further, as the polishing pad, a single-layer structure or a multi-layer structure, or foamable or non-foamable, or soft or hard, or those having the first platen at the bottom or those without, Alternatively, there are various forms such as a combination thereof. In both cases, polishing is performed in a state in which the substrate is fixed to a second surface plate (hereinafter, simply referred to as a surface plate). 10 is the slurry existing in the window groove 14 while flowing, 17 is the slurry flow in the window groove, 20 is the slurry flow in the groove, 18 is the rotation axis of the polishing pad, and 31 is the centrifugal force acting on the slurry. Is the working direction. Reference numeral 12 denotes a distance a between the upper surface of the light transmitting window 5 and the processing surface of the polishing pad 3, and reference numeral 13 denotes a depth b of the bottom surface of the groove of the polishing pad 3 from the processing surface of the polishing pad 3.
【0022】以下に動作説明をする。図3の研磨装置に
於いて、ウェハ2を研磨ヘッド1に取り付け、回転(W
H )させながらウェハ2の被研磨面を研磨パッド3の加
工面に押しつける。同時に、定盤4に固定された研磨パ
ッド3を回転(WT )させ、ウェハ2との間に相対運動
を与え、この状態で、研磨剤10を研磨剤供給機構9か
ら被研磨面と加工面との間に供給することにより研磨を
行う。The operation will be described below. In the polishing apparatus shown in FIG. 3, the wafer 2 is mounted on the polishing head 1 and rotated (W).
H ) While polishing, the surface to be polished of the wafer 2 is pressed against the processing surface of the polishing pad 3. At the same time, the polishing pad 3 fixed to the surface plate 4 is rotated (W T ) to give a relative movement between the polishing pad 3 and the wafer 2. Polishing is performed by supplying between the surface.
【0023】この間、研磨終了点の測定のために、光源
及び光検出部6から発する光16を孔部15、透光窓5
を通してウェハ2の被研磨面に照射し、そこからの反射
光を再び透光窓5、孔部15を通して光源及び光検出部
6により受光する。この受光された光信号の変化により
研磨終了点、または残膜厚を測定する。In the meantime, in order to measure the polishing end point, the light 16 emitted from the light source and the light detecting unit 6 is transmitted through the hole 15 and the light transmitting window 5.
Then, the light is radiated to the surface to be polished of the wafer 2, and the reflected light therefrom is again received by the light source and the light detector 6 through the light transmitting window 5 and the hole 15. The polishing end point or the remaining film thickness is measured based on the change in the received light signal.
【0024】この辺りの動作は従来例の研磨装置と同様
であるので、冗長さを避けるために詳しは説明しない。
本発明は透光窓の付近の構造に特徴がある。図3の研磨
装置が運転開始すると、図3の研磨剤供給機構9から供
給されたスラリ10は、ウェハ2と研磨パッド3との相
対運動により、または研磨パッド3の回転(WT )によ
ってスラリ10に対して働く遠心力により研磨パッド3
の加工面全体に形成された溝部全体に行き渡る。この溝
部19を流れるスラリ10の一部分は透光窓5に向か
う。図1、図2に於いて、研磨パッドの相対運動または
遠心力31により溝部19を透光窓5に向かって流れる
スラリ20は流入点21にて溝部19から窓溝部14に
流れ込む。この流れ込むスラリは、遠心力31の働きで
17の矢印で示した方向に窓溝部14に沿って流れ、終
には流出点22にて窓溝部14から溝部19に流出す
る。ここで、スラリにより透光窓5の上面が浸水するこ
とを防止するためにまたは浸水しにくくするために、ま
たは透光窓5上面に到ったスラリの溝部19への排出を
容易にするために、研磨パッド溝部底面の研磨パッド加
工面からの深さbを透光窓5の上面と研磨パッド加工面
との間隔a以上に、即ち、b≧aとすることが好まし
い。こうすることにより透光窓5上面までスラリが満た
される前にこの溝部により排出され、透光窓上面のスラ
リによる浸水を防ぐことができる。また、スラリが窓溝
部14内から透光窓5へ向けて溢れ出すことを防ぐため
にまたは溢れ出しにくくするために、研磨パッドの回転
速度とスラリの供給量に対応して、窓溝部14の巾また
は深さが調整されていることが好ましい。このようにし
て透光窓5に到るスラリの量が低減される。The operation around this is the same as that of the conventional polishing apparatus, so that detailed description is omitted to avoid redundancy.
The present invention is characterized by the structure near the light transmitting window. When the polishing apparatus of FIG. 3 starts operation, the slurry 10 supplied from the polishing agent supply mechanism 9 of FIG. 3 is supplied by the relative motion between the wafer 2 and the polishing pad 3 or by the rotation (W T ) of the polishing pad 3. Polishing pad 3 by centrifugal force acting on 10
Over the entire groove formed on the entire machined surface of. A part of the slurry 10 flowing through the groove 19 is directed to the light transmitting window 5. 1 and 2, the slurry 20 flowing toward the light transmitting window 5 through the groove 19 due to the relative movement of the polishing pad or the centrifugal force 31 flows from the groove 19 into the window groove 14 at the inflow point 21. The flowing slurry flows along the window groove 14 in the direction indicated by the arrow 17 by the action of the centrifugal force 31, and finally flows out of the window groove 14 into the groove 19 at the outflow point 22. Here, in order to prevent or prevent the upper surface of the light transmitting window 5 from being flooded by the slurry, or to easily discharge the slurry reaching the upper surface of the light transmitting window 5 to the groove 19. Preferably, the depth b of the bottom surface of the polishing pad groove from the polishing pad processing surface is equal to or larger than the distance a between the upper surface of the light transmitting window 5 and the polishing pad processing surface, that is, b ≧ a. In this way, before the slurry is filled up to the upper surface of the light transmitting window 5, the slurry is discharged by this groove portion, and it is possible to prevent water from entering by the slurry on the upper surface of the light transmitting window 5. Further, in order to prevent the slurry from overflowing from the inside of the window groove 14 toward the light transmitting window 5 or to prevent the slurry from overflowing, the width of the window groove 14 is determined according to the rotation speed of the polishing pad and the amount of slurry supplied. Alternatively, the depth is preferably adjusted. In this way, the amount of slurry reaching the light transmitting window 5 is reduced.
【0025】更にまた、透光窓上面と研磨パッド加工面
(即ちウェハの被研磨面)との間隔は、透光窓5上のス
ラリに働く遠心力31がスラリと透光窓上面やウェハ被
研磨面との相互作用の力に打ち勝つために充分に広く保
たれる。更にこの相互作用の力自体を低減するために、
透光窓14を溌水性にするか、溌水性の膜を透光窓14
に形成することも好ましい。以上のようにすることによ
って、スラリが透光窓5上に到ったとしても、スラリは
透光窓の外側に向けて円滑に移動することができ、その
結果、スラリは再び窓溝部14に落ち込み、窓溝部14
を遠心力31、等の力を受けて流れ、終には流出点22
から排出される。Further, the distance between the upper surface of the light transmitting window and the polishing pad processing surface (ie, the surface to be polished of the wafer) is determined by the centrifugal force 31 acting on the slurry on the light transmitting window 5 and the upper surface of the light transmitting window and the wafer surface. It is kept wide enough to overcome the forces of interaction with the polished surface. In order to further reduce the force of this interaction,
Make the translucent window 14 water-repellent or use a water-repellent film
It is also preferable to form it. By doing as described above, even if the slurry reaches the translucent window 5, the slurry can smoothly move toward the outside of the translucent window, and as a result, the slurry returns to the window groove 14 again. Depression, window groove 14
Flows under the force of centrifugal force 31, etc.
Is discharged from
【0026】以上のようにして、透光窓5の上面に到る
スラリの量を低減させることができ、更にスラリが透光
窓5上面に到ったときには円滑に外側に向けて排除され
るので、透光窓5上面に存在するスラリの量を大きく低
減することができ、その結果、透光窓5上面のスラリ層
厚を大きく低減することができる。As described above, the amount of slurry reaching the upper surface of the light-transmitting window 5 can be reduced, and when the slurry reaches the upper surface of the light-transmitting window 5, it is smoothly removed outward. Therefore, the amount of slurry existing on the upper surface of the light transmitting window 5 can be greatly reduced, and as a result, the thickness of the slurry layer on the upper surface of the light transmitting window 5 can be greatly reduced.
【0027】以上のようにして透光窓上面のスラリ層厚
が従来例よりも極めて薄くなる結果、図3の研磨装置に
て、光16が測定のためにウェハ2に照射される際に1
回、次にウェハ2から反射される際に1回の計2回スラ
リ層を透過するときに散乱される散乱光量及び吸収光量
を大きく低減させることができる。その結果ノイズ光が
大きく低減し、且つ反射信号光の大きさが増加し、反射
信号光のS/N比を向上することができる。また、スラ
リ層厚が薄くなる結果、研磨の進行に伴い、膜の溶け出
し等によるスラリの成分の変動によるスラリの光学特性
等の変動が反射信号光に与える影響の大きさが低減する
効果もあって反射信号光のS/N比が向上する。As described above, the thickness of the slurry layer on the upper surface of the light transmitting window is extremely thinner than that of the conventional example. As a result, when the wafer 16 is irradiated with the light 16 for measurement by the polishing apparatus of FIG.
The amount of light scattered and the amount of light scattered when transmitted through the slurry layer twice, once when reflected from the wafer 2 once, can be greatly reduced. As a result, noise light is greatly reduced and the size of the reflected signal light is increased, so that the S / N ratio of the reflected signal light can be improved. In addition, as the thickness of the slurry layer becomes thinner, the effect of fluctuations in the optical properties of the slurry due to fluctuations in the slurry components due to the melting of the film due to the progress of polishing reduces the magnitude of the effect on the reflected signal light. Accordingly, the S / N ratio of the reflected signal light is improved.
【0028】本発明は、以上のようにS/N比が向上し
た反射信号光を光検出部6により受光し、この反射信号
光の微細な変化を信号処理部7により高精度且つ確実に
検出することができるので、ウェハ上の薄膜の研磨をす
る際に、研磨終了点または残膜厚を高精度に測定するこ
とができる。 [実施形態2]本実施形態は、本発明の研磨装置を用い
半導体デバイスを製造する方法に関するものである。According to the present invention, the reflected signal light whose S / N ratio has been improved as described above is received by the light detecting section 6, and a minute change in the reflected signal light is detected with high accuracy and reliability by the signal processing section 7. Therefore, when polishing a thin film on a wafer, the polishing end point or the remaining film thickness can be measured with high accuracy. [Embodiment 2] This embodiment relates to a method for manufacturing a semiconductor device using the polishing apparatus of the present invention.
【0029】図4は、半導体デバイス製造プロセスを示
すフローチャートである。半導体デバイス製造プロセス
をスタートして、まずステップS200で、次に挙げる
ステップS201〜S204の中から適切な処理工程を
選択する。選択に従って、ステップS201〜S204
のいずれかに進む。FIG. 4 is a flowchart showing a semiconductor device manufacturing process. After the semiconductor device manufacturing process is started, first, in step S200, an appropriate processing step is selected from the following steps S201 to S204. Steps S201 to S204 according to the selection
Proceed to one of
【0030】ステップS201はシリコンウェハの表面
を酸化させる酸化工程である。ステップS202はCV
D、等によりシリコンウェハ表面に絶縁膜を形成するC
VD工程である。ステップS203はシリコンウェハ上
に電極膜を蒸着、等の工程で形成する電極膜形成工程で
ある。ステップS204はシリコンウェハにイオンを打
ち込むイオン打ち込み工程である。Step S201 is an oxidation step for oxidizing the surface of the silicon wafer. Step S202 is CV
D to form an insulating film on the silicon wafer surface
This is a VD process. Step S203 is an electrode film forming step of forming an electrode film on a silicon wafer by a process such as vapor deposition. Step S204 is an ion implantation step of implanting ions into the silicon wafer.
【0031】CVD工程もしくは電極膜形成工程の後
で、ステップS209に進み、CMP工程を行うかどう
かを判断する。行わない場合はステップS206に進む
が、行う場合はステップS205に進む。ステップS2
05はCMP工程であり、この工程では、本発明の研磨
装置を用いて層間絶縁膜の平坦化や、半導体デバイスの
表面の金属膜の研磨によるダマシン(damascene )の形
成等が行われる。After the CVD process or the electrode film forming process, the process proceeds to step S209, and it is determined whether a CMP process is performed. If not, the process proceeds to step S206; otherwise, the process proceeds to step S205. Step S2
Reference numeral 05 denotes a CMP step, in which a polishing apparatus of the present invention is used to planarize an interlayer insulating film and to form a damascene by polishing a metal film on the surface of a semiconductor device.
【0032】CMP工程または酸化工程の後でステップ
S206に進む。ステップS206はフォトリソ工程で
ある。フォトリソ工程では、シリコンウェハへのレジス
トの塗布、露光装置を用いた露光によるシリコンウェハ
への回路パターンの焼き付け、露光したシリコンウェハ
の現像が行われる。さらに次のステップS207は、現
像したレジスト像以外の部分をエッチングにより削り、
その後レジスト剥離を行い、エッチングが済んで不要と
なったレジストを取り除くエッチング工程である。After the CMP step or the oxidation step, the process proceeds to step S206. Step S206 is a photolithography step. In the photolithography process, a resist is applied to a silicon wafer, a circuit pattern is printed on the silicon wafer by exposure using an exposure device, and the exposed silicon wafer is developed. Further, in the next step S207, portions other than the developed resist image are removed by etching.
Thereafter, the resist is stripped, and the etching step is performed to remove the unnecessary resist after the etching.
【0033】次にステップS208で必要な全工程が完
了したかを判断し、完了していなければステップS20
0に戻り、説明済のステップを繰り返して、シリコンウ
エハ上に回路パターンが形成される。ステップS208
で全工程が完了したと判断されればエンドとなる。Next, in step S208, it is determined whether all necessary processes have been completed. If not, step S20
Returning to 0, the described steps are repeated to form a circuit pattern on the silicon wafer. Step S208
If it is determined that all the steps have been completed, the process ends.
【0034】本発明に係る半導体デバイス製造方法で
は、CMP工程において本発明に係る研磨装置を用いて
いるため、CMP工程での研磨終了点の検知精度が向上
することにより、CMP工程での歩留まりが向上する。
これにより、従来の半導体デバイス製造方法に比べて低
コストで半導体デバイスを製造することができるという
効果がある。In the semiconductor device manufacturing method according to the present invention, since the polishing apparatus according to the present invention is used in the CMP step, the accuracy of detecting the polishing end point in the CMP step is improved, and the yield in the CMP step is reduced. improves.
As a result, there is an effect that a semiconductor device can be manufactured at a lower cost than a conventional semiconductor device manufacturing method.
【0035】なお、本発明の研磨装置によるCMP工程
は、図4に示した半導体デバイス製造プロセスの他の半
導体デバイス製造プロセスにも用いることが出来るし、
または他の素子の製造プロセスにも用いることができ
る。The CMP process using the polishing apparatus of the present invention can be used for other semiconductor device manufacturing processes other than the semiconductor device manufacturing process shown in FIG.
Alternatively, it can be used for a manufacturing process of another element.
【0036】本発明に係る半導体デバイスは、本発明に
係る半導体デバイス製造方法により製造される。これに
より、従来の半導体デバイス製造方法に比べて高品質且
つ低コストで半導体デバイスを製造することができ、半
導体デバイスの製造原価を低下することができるという
効果がある。The semiconductor device according to the present invention is manufactured by the semiconductor device manufacturing method according to the present invention. As a result, a semiconductor device can be manufactured with higher quality and at lower cost than the conventional semiconductor device manufacturing method, and the manufacturing cost of the semiconductor device can be reduced.
【0037】以上、実施形態1、2の発明を図を用いて
説明したが、本発明の範囲はこれらの図に示される範囲
に限定されるものではなく、また、本発明は、以上の説
明に限定されるものでもない。As described above, the embodiments 1 and 2 have been described with reference to the drawings. However, the scope of the present invention is not limited to the ranges shown in these drawings, and the present invention is not limited to the above description. It is not limited to.
【0038】[0038]
【発明の効果】[請求項1]本発明では、透光窓と窓溝
部と溝部とが共同して研磨剤が透光窓上面に到ることを
防止する機能または透光窓上面上の研磨剤を排出するこ
とを促す機能を有するよう構成されるので、透光窓上の
研磨剤の平均層厚が薄くなるために、ウェハを研磨中に
光学測定する際に信号光がスラリ層により散乱または吸
収または変動することが少なくなるので、信号光のS/
N比が高くなり、研磨状態等を高精度に光学測定するこ
とが可能である。 [請求項2]本発明では、請求項1の効果に加えて、窓
溝部が透光窓の回りに近接して形成されているために、
透光窓上面のスラリが容易に排出されるので、更に高精
度に光学測定することが可能である。 [請求項3]本発明では、請求項1、2の効果に加え、
透光窓の上面と研磨パッドの加工面との間隙aが、透光
窓の表面の研磨剤を研磨パッドの研磨時の回転による遠
心力によって排除可能な大きさとされているために、ス
ラリに働く遠心力がスラリと表面との相互作用に打ち勝
ってスラリが円滑に除去されるので、更に高精度に光学
測定することが可能である。 [請求項4]本発明では、請求項1、2、3の効果に加
え、溝部の底面の研磨パッドの加工面からの深さをbと
すると、b≧aを充たしているために、透光窓上面のス
ラリが容易に溝部に排出され、そして透光窓上面の浸水
を防ぐことができるので、更に高精度に光学測定するこ
とが可能である。 [請求項5]本発明では、透光窓の形状が、遠心力が働
く方向に対して逆方向に向かって流線型をしているため
に、スラリが窓溝部に沿って遠心力方向に円滑に流れる
ので、スラリを効率良く溝部に向けて排出することがで
き、更に高精度に光学測定することが可能である。 [請求項6]本発明では、請求項1〜5何れか1項記載
の研磨パッドと、この研磨パッドを通る信号光から光学
的に研磨終了点や残膜厚等の研磨状態を測定する測定装
置とを具えているために、基板の研磨中に高精度に研磨
終了点等の研磨状態を光学測定する。 [請求項7]本発明では、請求項6記載の研磨装置を用
いて表面を研磨する段階を具えるために、半導体デバイ
ス等の素子を高品質且つ高歩留りで製造可能である。According to the present invention, the light transmitting window, the window groove and the groove cooperate to prevent the abrasive from reaching the upper surface of the light transmitting window or the polishing on the upper surface of the light transmitting window. Since it is configured to have a function to promote the discharge of the polishing agent, the signal layer is scattered by the slurry layer during optical measurement during polishing of the wafer because the average layer thickness of the polishing agent on the light transmitting window is reduced. Alternatively, since absorption or fluctuation is reduced, the S / S
The N ratio is increased, and the polishing state and the like can be optically measured with high precision. [Claim 2] In the present invention, in addition to the effect of claim 1, since the window groove is formed close to the light-transmitting window,
Since the slurry on the upper surface of the light transmitting window is easily discharged, optical measurement can be performed with higher accuracy. [Claim 3] In the present invention, in addition to the effects of claims 1 and 2,
Since the gap a between the upper surface of the light-transmitting window and the processing surface of the polishing pad is so large that the abrasive on the surface of the light-transmitting window can be removed by centrifugal force due to rotation during polishing of the polishing pad, the slurry a Since the working centrifugal force overcomes the interaction between the slurry and the surface and the slurry is removed smoothly, it is possible to perform optical measurement with higher precision. [Claim 4] In the present invention, in addition to the effects of Claims 1, 2 and 3, if the depth of the bottom surface of the groove from the processing surface of the polishing pad is b, b ≧ a is satisfied. Since the slurry on the upper surface of the light window is easily discharged into the groove and the upper surface of the light transmitting window can be prevented from being immersed, the optical measurement can be performed with higher precision. [Claim 5] In the present invention, since the shape of the light-transmitting window is streamlined in the direction opposite to the direction in which the centrifugal force acts, the slurry smoothly moves in the centrifugal force direction along the window groove. Since the slurry flows, the slurry can be efficiently discharged toward the groove, and the optical measurement can be performed with higher accuracy. [6] In the present invention, a polishing pad according to any one of [1] to [5] and a measurement for optically measuring a polishing state such as a polishing end point or a remaining film thickness from signal light passing through the polishing pad. Since the apparatus is provided with the apparatus, the polishing state such as the polishing end point is optically measured with high precision during the polishing of the substrate. [Claim 7] According to the present invention, since a surface is polished by using the polishing apparatus according to claim 6, elements such as semiconductor devices can be manufactured with high quality and high yield.
【図1】本発明の透光窓付近の平面図である。FIG. 1 is a plan view near a light-transmitting window of the present invention.
【図2】本発明の透光窓付近の断面図である。FIG. 2 is a cross-sectional view of the vicinity of a light transmitting window of the present invention.
【図3】本発明の研磨装置である。FIG. 3 shows a polishing apparatus according to the present invention.
【図4】半導体デバイスの製造プロセスの例のフロー図
である。FIG. 4 is a flowchart of an example of a semiconductor device manufacturing process.
【図5】従来例の研磨装置である。FIG. 5 is a conventional polishing apparatus.
【図6】従来例の透光窓付近の断面図である。FIG. 6 is a cross-sectional view near a light-transmitting window of a conventional example.
1、101 研磨ヘッド 2、102 基板(ウェハ) 3、103 研磨パッド 4、104 定盤 5、105 透光窓(透明部材) 6、106 光源及び光検出部 7、107 信号処理部 8、108 表示部 9、109 研磨剤供給装置 10、110 研磨剤(スラリ) 12 透光窓上面と研磨パッド加工面との間隔
a 13 研磨パッド溝部底面の研磨パッド加工面
からの深さb 14 窓溝部 15、115 孔部 16、116 照射光と反射光 17 窓溝部での研磨剤(スラリ)の流れ 18 研磨パッドの回転軸 19 溝部 20 溝部での研磨剤(スラリ)の流れ 21 流入点 22 流出点 31 遠心力とそれの働く方向 111 透明部材上面とウェハの被研磨面とで囲
まれた空間 112 透明部材上面とウェハの被研磨面との間
隔 WT 研磨パッドの回転を示す WH 研磨ヘッドの回転を示すDESCRIPTION OF SYMBOLS 1, 101 Polishing head 2, 102 Substrate (wafer) 3, 103 Polishing pad 4, 104 Surface plate 5, 105 Translucent window (transparent member) 6, 106 Light source and light detection part 7, 107 Signal processing part 8, 108 Display Unit 9, 109 Abrasive supply device 10, 110 Abrasive (slurry) 12 Interval a between upper surface of light-transmitting window and polishing pad processing surface a 13 Depth b of polishing pad groove bottom surface from polishing pad processing surface b 14 Window groove 15, 115 Holes 16, 116 Irradiation light and reflected light 17 Flow of abrasive (slurry) in window groove 18 Rotation axis of polishing pad 19 Groove 20 Flow of abrasive (slurry) in groove 21 Inflow point 22 Outflow point 31 Centrifugal shows the rotation of the spacing W T polishing pad of the force and the space 112 transparent member top and the polished surface of the wafer enclosed in the working direction 111 polished surface of the transparent member top surface and the wafer with it Shows the rotation of H polishing head
Claims (7)
重を加え、前記基板を相対移動させることにより前記基
板を研磨するための研磨パッドであって、前記研磨パッ
ドが、研磨状態を光学的に測定するための光を透過させ
るための一つ以上の透光窓と、前記透光窓の近傍の窓溝
部と、前記研磨パッド表面の領域から前記透光窓と前記
窓溝部との領域を除く領域の全体または一部に溝部とを
具え、前記透光窓と前記窓溝部と前記溝部とが、研磨剤
が前記透光窓上面に到ることを防止する機能または前記
透光窓上面の研磨剤の排出を促す機能を有するように構
成されていることを特徴とする研磨パッド。1. A polishing pad for polishing a substrate by applying a load with a polishing agent interposed between the substrate and the substrate by relatively moving the substrate, wherein the polishing pad is in a polishing state. One or more light-transmitting windows for transmitting light for optically measuring, a window groove near the light-transmitting window, and the light-transmitting window and the window groove from a region of the polishing pad surface. A groove portion in the whole or a part of the region excluding the region, wherein the light-transmitting window, the window groove portion, and the groove portion function to prevent an abrasive from reaching the upper surface of the light-transmitting window or the light-transmitting portion. A polishing pad characterized by having a function of promoting discharge of an abrasive on a window upper surface.
て形成されることを特徴とする請求項1記載の研磨パッ
ド。2. The polishing pad according to claim 1, wherein said window groove is formed close to said light transmitting window.
面との間隙aが、前記透光窓の表面の研磨剤を前記研磨
パッドの研磨時の回転による遠心力によって排除可能な
大きさとされていることを特徴とする請求項1、2何れ
か1項記載の研磨パッド。3. A gap a between an upper surface of the light-transmitting window and a processing surface of the polishing pad is large enough to remove an abrasive on the surface of the light-transmitting window by centrifugal force caused by rotation of the polishing pad during polishing. The polishing pad according to any one of claims 1 and 2, characterized in that:
からの深さをbとすると、b≧aを充たすことを特徴と
する請求項3記載の研磨パッド。4. The polishing pad according to claim 3, wherein b ≧ a, where b is the depth of the bottom surface of the groove from the processing surface of the polishing pad.
向に対して逆方向に向かって流線型とされていることを
特徴とする請求項2〜4何れか1項記載の研磨パッド。5. The polishing pad according to claim 2, wherein the shape of the light transmitting window is streamlined in a direction opposite to a direction in which the centrifugal force acts. .
と光学的に研磨状態を測定する測定装置とを具え、前記
研磨パッドと基板との間に研磨剤を介在させた状態で、
前記基板と前記研磨パッドとの間に荷重を加え、且つ前
記基板と前記研磨パッドとを相対移動させることにより
前記基板を研磨し、且つ前記基板に光を照射することに
より前記基板の研磨状態を光学的に測定することを特徴
とする研磨装置。6. A polishing pad comprising a polishing pad according to claim 1 and a measuring device for optically measuring a polishing state, wherein a polishing agent is interposed between said polishing pad and a substrate. ,
A load is applied between the substrate and the polishing pad, and the substrate is polished by relatively moving the substrate and the polishing pad, and the substrate is polished by irradiating the substrate with light. A polishing apparatus characterized by performing optical measurement.
磨する段階を具えることを特徴とする素子製造方法。7. A method for manufacturing an element, comprising a step of polishing a surface by using the polishing apparatus according to claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000187731A JP2002001652A (en) | 2000-06-22 | 2000-06-22 | Polishing pad and apparatus, and manufacturing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000187731A JP2002001652A (en) | 2000-06-22 | 2000-06-22 | Polishing pad and apparatus, and manufacturing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002001652A true JP2002001652A (en) | 2002-01-08 |
Family
ID=18687661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000187731A Pending JP2002001652A (en) | 2000-06-22 | 2000-06-22 | Polishing pad and apparatus, and manufacturing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002001652A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002078902A1 (en) * | 2001-03-30 | 2002-10-10 | Lam Research Corporation | Reinforced polishing pad with a shaped or flexible window structure |
JP2006005358A (en) * | 2004-06-16 | 2006-01-05 | Rohm & Haas Electronic Materials Cmp Holdings Inc | Polishing pad with pressure relief passage |
JP2007105877A (en) * | 2004-03-11 | 2007-04-26 | Siltronic Ag | Equipment for simultaneous double-side grinding of disk-shaped workpieces |
JP2007118106A (en) * | 2005-10-26 | 2007-05-17 | Toyo Tire & Rubber Co Ltd | Polishing pad and manufacturing method thereof |
JP2010036305A (en) * | 2008-08-05 | 2010-02-18 | Nitta Haas Inc | Polishing pad |
JP2010536583A (en) * | 2007-08-16 | 2010-12-02 | キャボット マイクロエレクトロニクス コーポレイション | Polishing pad |
US20130017764A1 (en) * | 2011-07-15 | 2013-01-17 | Allison William C | Polishing pad with aperture |
JP2014179660A (en) * | 2010-09-30 | 2014-09-25 | Nexplanar Corp | Abrasive pad for eddy current endpoint detection |
US9597777B2 (en) | 2010-09-30 | 2017-03-21 | Nexplanar Corporation | Homogeneous polishing pad for eddy current end-point detection |
JP2021136288A (en) * | 2020-02-26 | 2021-09-13 | 富士紡ホールディングス株式会社 | Polishing pad and manufacturing method of polishing pad |
WO2022070936A1 (en) | 2020-09-30 | 2022-04-07 | 富士紡ホールディングス株式会社 | Polishing pad and method for manufacturing polishing pad |
WO2022202008A1 (en) * | 2021-03-26 | 2022-09-29 | 富士紡ホールディングス株式会社 | Polishing pad |
JP2022151229A (en) * | 2021-03-26 | 2022-10-07 | 富士紡ホールディングス株式会社 | polishing pad |
JP2022151228A (en) * | 2021-03-26 | 2022-10-07 | 富士紡ホールディングス株式会社 | polishing pad |
-
2000
- 2000-06-22 JP JP2000187731A patent/JP2002001652A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002078902A1 (en) * | 2001-03-30 | 2002-10-10 | Lam Research Corporation | Reinforced polishing pad with a shaped or flexible window structure |
JP2007105877A (en) * | 2004-03-11 | 2007-04-26 | Siltronic Ag | Equipment for simultaneous double-side grinding of disk-shaped workpieces |
JP2006005358A (en) * | 2004-06-16 | 2006-01-05 | Rohm & Haas Electronic Materials Cmp Holdings Inc | Polishing pad with pressure relief passage |
JP2007118106A (en) * | 2005-10-26 | 2007-05-17 | Toyo Tire & Rubber Co Ltd | Polishing pad and manufacturing method thereof |
JP2010536583A (en) * | 2007-08-16 | 2010-12-02 | キャボット マイクロエレクトロニクス コーポレイション | Polishing pad |
JP2010036305A (en) * | 2008-08-05 | 2010-02-18 | Nitta Haas Inc | Polishing pad |
US9597777B2 (en) | 2010-09-30 | 2017-03-21 | Nexplanar Corporation | Homogeneous polishing pad for eddy current end-point detection |
JP2016029743A (en) * | 2010-09-30 | 2016-03-03 | ネクスプラナー コーポレイション | Abrasive pad for detecting eddy current endpoint |
JP2014179660A (en) * | 2010-09-30 | 2014-09-25 | Nexplanar Corp | Abrasive pad for eddy current endpoint detection |
TWI513544B (en) * | 2011-07-15 | 2015-12-21 | Nexplanar Corp | Polishing pad with aperture |
US8920219B2 (en) * | 2011-07-15 | 2014-12-30 | Nexplanar Corporation | Polishing pad with alignment aperture |
CN103796797A (en) * | 2011-07-15 | 2014-05-14 | 内克斯普拉纳公司 | Polishing pad with aperture |
US20130017764A1 (en) * | 2011-07-15 | 2013-01-17 | Allison William C | Polishing pad with aperture |
TWI586484B (en) * | 2011-07-15 | 2017-06-11 | 奈平科技股份有限公司 | Methods of polishing substrate and fabricating polishing pad |
JP2021136288A (en) * | 2020-02-26 | 2021-09-13 | 富士紡ホールディングス株式会社 | Polishing pad and manufacturing method of polishing pad |
WO2022070936A1 (en) | 2020-09-30 | 2022-04-07 | 富士紡ホールディングス株式会社 | Polishing pad and method for manufacturing polishing pad |
WO2022202008A1 (en) * | 2021-03-26 | 2022-09-29 | 富士紡ホールディングス株式会社 | Polishing pad |
JP2022151229A (en) * | 2021-03-26 | 2022-10-07 | 富士紡ホールディングス株式会社 | polishing pad |
JP2022151228A (en) * | 2021-03-26 | 2022-10-07 | 富士紡ホールディングス株式会社 | polishing pad |
JP7659172B2 (en) | 2021-03-26 | 2025-04-09 | 富士紡ホールディングス株式会社 | Polishing Pad |
JP7659171B2 (en) | 2021-03-26 | 2025-04-09 | 富士紡ホールディングス株式会社 | Polishing Pad |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100465929B1 (en) | Method and apparatus for monitoring polishing state, polishing device, process wafer, semiconductor device, and method of manufacturing semiconductor device | |
JP2002001652A (en) | Polishing pad and apparatus, and manufacturing device | |
US6287879B1 (en) | Endpoint stabilization for polishing process | |
JP2012039140A (en) | Polishing table of chemical and mechanical polishing equipment, method for monitoring chemical and mechanical polishing process using the same, method for detecting terminal point using the same, and manufacturing method thereof | |
EP1176630A1 (en) | Polishing body, polisher, method for adjusting polisher, method for measuring thickness of polished film or end point of polishing, method for producing semiconductor device | |
US7942724B2 (en) | Polishing pad with window having multiple portions | |
KR20170035840A (en) | Method of measuring gas introducing hole provided in electrode for plasma etching device, electrode, electrode regeneration method, regenerated electrode, plasma etching device, and gas introducing hole state distribution diagram and display method for same | |
US7534162B2 (en) | Grooved platen with channels or pathway to ambient air | |
JP2005311246A (en) | Chemical mechanical polishing apparatus and method | |
JP2001198802A (en) | Polishing body, flattening device, manufacturing method for semiconductor device and semiconductor device | |
US6524176B1 (en) | Polishing pad | |
JPH09298176A (en) | Polishing method and device therefor | |
JP2001287158A (en) | Polishing member, polishing machine, adjusting method, measuring method, semiconductor device manufacturing method, and semiconductor device | |
US6743075B2 (en) | Method for determining chemical mechanical polishing time | |
JP2006239833A (en) | Polishing pad | |
JPH08339982A (en) | Semiconductor manufacturing equipment, and manufacture of semiconductor device | |
US6429130B1 (en) | Method and apparatus for end point detection in a chemical mechanical polishing process using two laser beams | |
US6730603B2 (en) | System and method of determining a polishing endpoint by monitoring signal intensity | |
JPH10144635A (en) | Step prediction and dummy pattern layout after polishing operation for planarization | |
KR100585070B1 (en) | Apparatus and method for detecting endpoints in chemical-mechanical polishing processes | |
JP2011035093A (en) | Manufacturing method of semiconductor device | |
JPWO2004075276A1 (en) | Polishing apparatus, polishing method, and semiconductor device manufacturing method | |
KR100687426B1 (en) | Copper wiring film planarization method of semiconductor device | |
JP2001291691A (en) | Polishing apparatus and method for manufacturing semiconductor device | |
KR100611470B1 (en) | Chemical Mechanical Grinding Device with Polishing Endpoint Detection |