[go: up one dir, main page]

JP2001359264A - Static field coil-type synchronous machine serving both as magnet - Google Patents

Static field coil-type synchronous machine serving both as magnet

Info

Publication number
JP2001359264A
JP2001359264A JP2000175290A JP2000175290A JP2001359264A JP 2001359264 A JP2001359264 A JP 2001359264A JP 2000175290 A JP2000175290 A JP 2000175290A JP 2000175290 A JP2000175290 A JP 2000175290A JP 2001359264 A JP2001359264 A JP 2001359264A
Authority
JP
Japan
Prior art keywords
rotor core
magnetic
magnet
peripheral surface
synchronous machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000175290A
Other languages
Japanese (ja)
Other versions
JP4066219B2 (en
Inventor
Akira Fukushima
明 福島
Hiroaki Kajiura
裕章 梶浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000175290A priority Critical patent/JP4066219B2/en
Publication of JP2001359264A publication Critical patent/JP2001359264A/en
Application granted granted Critical
Publication of JP4066219B2 publication Critical patent/JP4066219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a static field coil-type synchronous machine which serves both as a magnet that enables the reduction of axial length and the enhancement of high-speed rotating capability and produces high output. SOLUTION: A rotor core 1210 is installed rotatably inside a stator core 1120 in the radial direction, and static yokes 1230 and 1274 and a field coil 1230 are installed so that the static yokes and the filed coil are secured on an end wall of a housing 1911 between the rotor core 1210 and the shaft 1240. A magnetically short-circuiting member (soft magnetic pin) 1281 is inserted into the rotor core 1210 in the axial direction. Magnetic projected portions are formed on the inner circumferential face of the rotor core 1210, with the projected portions at the axially front part and the projected portions at the axially rear part of the rotor core 1210 being displaced from each other by one field pole pitch in the circumferential direction. As a result, short-circuiting flux of a magnet 1280 can be controlled by the current field of the field coil 1230.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、使用回転数範囲の
広い自動車用回転機として好適な静止界磁コイル式磁石
併用同期機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchronous machine with a stationary field coil type magnet which is suitable as a rotating machine for an automobile having a wide range of rotation speed.

【0002】[0002]

【従来の技術】永久磁石型同期機は他の形式の同期機に
比較して高出力でコンパクト化が容易であり、ハイブリ
ッド車や電気自動の車両走行モータに好適であるが、車
両走行モータでは、低速トルクを十分に確保するととも
に、高速回転時に過大な電機子巻線誘起電圧が駆動回路
の半導体駆動素子などに印加されるのを防止するため、
高速回転時の磁石磁界を低減する手段を設ける必要があ
る。
2. Description of the Related Art A permanent magnet type synchronous machine has a high output and is easy to be compact in comparison with other types of synchronous machines, and is suitable for a hybrid vehicle or an electric automatic vehicle traveling motor. In order to ensure a sufficient low-speed torque and to prevent an excessive armature winding induced voltage from being applied to a semiconductor drive element of a drive circuit during high-speed rotation,
It is necessary to provide a means for reducing the magnet magnetic field during high-speed rotation.

【0003】本出願人の出願になる特開平10ー304
633号公報は、永久磁石型ロータコア内に、これら永
久磁石を磁気的に短絡する磁気短絡部材を軸方向に挿通
し、更にロータコアの径内側に静止ヨークを設けてそれ
に界磁コイルを巻装し、界磁コイルへの通電により磁気
短絡部材を流れる短絡磁束量を調節し、これにより電機
子巻線と有効に鎖交する有効界磁束量を制御して電機子
巻線の発電電圧を調節可能する静止界磁コイル式磁石併
用同期機を提案している。
JP-A-10-304 filed by the present applicant
No. 633 discloses that a magnetic short-circuit member for magnetically short-circuiting these permanent magnets is inserted in a permanent magnet type rotor core in the axial direction, a stationary yoke is provided inside the rotor core, and a field coil is wound around the stationary yoke. By adjusting the amount of short-circuit magnetic flux flowing through the magnetic short-circuit member by energizing the field coil, the amount of effective field magnetic flux that effectively links with the armature winding can be controlled to adjust the voltage generated by the armature winding. We propose a synchronous machine with a static field coil type magnet.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た公報の静止界磁コイル式磁石併用同期機は、ロータコ
アの一端面から軸方向外側へ突出する軟磁性ピンの先端
部に回転ヨークを固定し、この回転ヨークの内周面と静
止ヨークの外周面とを近接させることにより、界磁コイ
ル電流による磁束(電流磁束)が軟磁性ピンを軸方向へ
流れるように構成しているために、ステータコアの内周
面と対面するロータコアより上記回転ヨークの分だけロ
ータの軸方向長が増大して体格が増大するという欠点が
あった。
However, in the synchronous machine with a stationary field coil magnet disclosed in the above publication, a rotating yoke is fixed to the tip of a soft magnetic pin projecting outward from one end face of a rotor core in the axial direction. By bringing the inner peripheral surface of the rotating yoke and the outer peripheral surface of the stationary yoke close to each other, the magnetic flux (current magnetic flux) generated by the field coil current flows through the soft magnetic pin in the axial direction. There is a disadvantage that the axial length of the rotor is increased by the amount of the rotating yoke as compared with the rotor core facing the inner peripheral surface, thereby increasing the physical size.

【0005】また、回転慣性質量が増大し、また回転ヨ
ークに作用する遠心力を支承する問題から高速回転性に
劣るという問題も派生した。
[0005] In addition, the problem that the rotational inertia mass is increased and the centrifugal force acting on the rotating yoke is supported, which results in poor high-speed rotation.

【0006】本発明は、上記問題点に鑑みなされたもの
であり、軸長短縮及び高速回転性の向上が可能な高出力
の静止界磁コイル式磁石併用同期機を提供することをそ
の目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a synchronous machine with a high-output static field coil magnet capable of shortening the shaft length and improving high-speed rotation. I have.

【0007】[0007]

【課題を解決するための手段】請求項1記載の静止界磁
コイル式磁石併用同期機は、ハウジングと、電機子巻線
が巻装されて前記ハウジングの内周面に固定されたステ
ータコアと、積層又は螺旋巻きされた電磁鋼板により構
成されて前記ステータコアの内周面に所定ギャップを隔
てて前記ハウジングに相対回転自在に支承される円筒状
のロータコアと、前記ロータコアに固定されて前記ロー
タコアの外周面に周方向極性交互かつ所定の磁極ピッチ
で界磁極を形成する複数の永久磁石と、前記ロータコア
に軸方向に挿通されて前記永久磁石により形成される磁
石磁界を磁気的に短絡する磁気短絡部材と、前記ロータ
コアの径内側に配置されて前記ロータコアを通じて前記
磁気短絡部材に軸方向に磁束を流す界磁コイルと、前記
ロータコアの径内側にて前記界磁コイルとともに前記ハ
ウジングの端壁部に固定されて前記ロータコア及び磁気
短絡部材とともに前記界磁コイルが形成する磁束を貫流
させる短絡磁気回路を構成する静止ヨークとを備え、前
記ロータコアの内周部は、前記静止ヨークの外周面に低
磁気抵抗で磁気的に結合する磁気的凸部、及び、前記静
止ヨークの外周面に高磁気抵抗で磁気的に結合する磁気
的凹部が周方向磁極ピッチ毎に交互に形成された磁気的
凹凸部を有し、前記磁気的凸部及び磁気的凹部は、前記
ロータコアの内周部の軸方向一端部及び軸方向他端部に
て周方向逆位置に配置されることを特徴としている。
According to a first aspect of the present invention, there is provided a synchronous machine with a static field coil type magnet, comprising: a housing; a stator core on which an armature winding is wound and fixed to an inner peripheral surface of the housing; A cylindrical rotor core made of laminated or spirally wound electromagnetic steel plates and rotatably supported by the housing with a predetermined gap on the inner peripheral surface of the stator core, and an outer periphery of the rotor core fixed to the rotor core A plurality of permanent magnets that form field poles at circumferentially alternating and predetermined magnetic pole pitches on a surface, and a magnetic short-circuit member that is axially inserted through the rotor core and magnetically shorts a magnet magnetic field formed by the permanent magnets A field coil disposed radially inside the rotor core to flow magnetic flux in the axial direction through the rotor core to the magnetic short-circuit member; And a stationary yoke that forms a short-circuit magnetic circuit that allows the magnetic flux formed by the field coil to flow through together with the rotor core and the magnetic short-circuit member together with the field coil at the end wall of the housing. The inner peripheral portion has a magnetic convex portion magnetically coupled to the outer peripheral surface of the stationary yoke with low magnetic resistance, and a magnetic concave portion magnetically coupled to the outer peripheral surface of the stationary yoke with high magnetic resistance in the circumferential direction. The magnetic core has a magnetic concavo-convex portion alternately formed for each magnetic pole pitch, and the magnetic protruding portion and the magnetic concave portion are circumferentially opposite at one axial end and the other axial end of an inner peripheral portion of the rotor core. It is characterized by being arranged at a position.

【0008】本発明によれば、界磁コイルが巻装された
静止ヨークの外周面にギャップを挟んで対面するロータ
コアの内周部に磁気的凹凸部を設けているので、静止界
磁コイル式磁石併用同期機において、上記公報のごとき
回転ヨークロータコアの軸方向外側に追設する必要がな
く、その分だけロータの軸長を短縮して小型高出力化を
実現することができる。 また、回転慣性質量の低減及
びロータコア又は磁気短絡部材に掛かる遠心力を低減す
ることができるので、高速回転が可能となり、出力向
上、小型軽量化が可能となる。
According to the present invention, since the magnetic yoke is provided on the inner peripheral portion of the rotor core facing the outer peripheral surface of the stationary yoke on which the field coil is wound with a gap therebetween, the stationary yoke type is provided. In the synchronous machine with magnets, it is not necessary to additionally install the rotor in the axial direction outside of the rotating yoke rotor core as described in the above-mentioned publication, so that the axial length of the rotor can be shortened by that much, and high power and small size can be realized. In addition, since the rotational inertia mass can be reduced and the centrifugal force applied to the rotor core or the magnetic short-circuit member can be reduced, high-speed rotation can be achieved, and the output can be improved and the size and weight can be reduced.

【0009】請求項2記載の構成によれば請求項1記載
の静止界磁コイル式磁石併用同期機において更に、前記
ロータコアは、軸方向に貫設されて前記永久磁石を収容
する磁石収容用貫通孔を有し、前記永久磁石の磁極面
は、周方向両端面に形成され、周方向に隣接する2つの
前記永久磁石の対向端面は同一極性に磁化されて前記2
つの前記永久磁石間の前記ロータコアの外周面を同一極
性の界磁極に磁化し、前記磁気的凹部は、前記ロータコ
アの外周面に形成された2つの極性の前記界磁極の一方
の径内側に位置して前記ロータコアの内周面から径内側
に凹設された凹部からなり、前記磁気的凸部は、前記ロ
ータコアの外周面に形成された2つの極性の前記界磁極
の他方の径内側に位置して前記ロータコアの内周面から
径内側に突設された凸部からなることを特徴としてい
る。
According to a second aspect of the present invention, in the synchronous machine with a static field coil type magnet according to the first aspect, the rotor core is further provided in the axial direction to penetrate the magnet for accommodating the permanent magnet. The permanent magnet has a magnetic pole face formed at both circumferential end faces, and two end faces of two permanent magnets adjacent in the circumferential direction are magnetized to the same polarity to form the permanent magnet.
The outer peripheral surface of the rotor core between the two permanent magnets is magnetized to a field pole having the same polarity, and the magnetic concave portion is located radially inside one of the two polar field poles formed on the outer peripheral surface of the rotor core. And a concave portion provided radially inward from the inner peripheral surface of the rotor core, wherein the magnetic convex portion is located on the other radial inner side of the two polarity field poles formed on the outer peripheral surface of the rotor core. In addition, the rotor core is characterized by comprising a convex portion projecting radially inward from the inner peripheral surface of the rotor core.

【0010】本構成によれば、簡素な構成で請求項1記
載の磁気的凹凸部を形成することができる。
According to this structure, the magnetic unevenness according to claim 1 can be formed with a simple structure.

【0011】請求項3記載の構成によれば請求項1記載
の静止界磁コイル式磁石併用同期機において更に、前記
ロータコアは、軸方向に貫設されて前記永久磁石を収容
する磁石収容用貫通孔を有し、前記永久磁石の磁極面
は、周方向両端面に形成され、周方向に隣接する2つの
前記永久磁石の対向端面は同一極性に磁化されて前記2
つの前記永久磁石間の前記ロータコアの外周面を同一極
性の界磁極に磁化し、前記磁気的凹部は、前記ロータコ
アの外周面に形成された2つの極性の前記界磁極の一方
の径内側に位置して前記ロータコアの内周部に位置して
軸方向に貫設された長孔からなり、前記磁気的凸部は、
前記ロータコアの外周面に形成された2つの極性の前記
界磁極の他方の径内側に位置して前記ロータコアの内周
部に位置して前記長孔をもたない中実部からなることを
特徴としている。
According to a third aspect of the present invention, in the synchronous machine with a static field coil type magnet according to the first aspect, the rotor core is further provided in an axial direction to accommodate the permanent magnet. The permanent magnet has a magnetic pole face formed at both circumferential end faces, and two end faces of two permanent magnets adjacent in the circumferential direction are magnetized to the same polarity to form the permanent magnet.
The outer peripheral surface of the rotor core between the two permanent magnets is magnetized to a field pole having the same polarity, and the magnetic concave portion is located radially inside one of the two polar field poles formed on the outer peripheral surface of the rotor core. And an elongated hole located in the inner peripheral portion of the rotor core and penetrating in the axial direction.
The rotor core is formed of a solid portion which is located inside the other radius of the field pole of two polarities formed on the outer peripheral surface of the rotor core and located on the inner peripheral portion of the rotor core and does not have the elongated hole. And

【0012】本構成によれば、簡素な構成で請求項1記
載の磁気的凹凸部を形成することができる。
According to this structure, the magnetic unevenness according to claim 1 can be formed with a simple structure.

【0013】請求項4記載の構成によれば請求項1記載
の静止界磁コイル式磁石併用同期機において、前記ロー
タコアは、周方向両端部が前記ロータコアの外周部に達
し、周方向中央部が前記周方向両端部材よりも径内側に
位置する円弧状径方向断面をもち、前記ロータコアの界
磁極数の半分の個数だけ形成された磁石収容用貫通孔を
有し、前記永久磁石は、前記磁石収容用貫通孔の略深さ
方向に着磁され、各前記磁石収容用貫通孔内の前記永久
磁石は、略回転対称位置にて同一極性の磁極面をもち、
前記磁石収容用貫通孔の前記周方向中央部は、前記ロー
タコアの内周面近傍に達して前記磁気的凹部をなすこと
を特徴としている。
According to a fourth aspect of the present invention, in the synchronous machine with a stationary field coil type magnet according to the first aspect, both ends of the rotor core in the circumferential direction reach the outer peripheral portions of the rotor core, and a center portion in the circumferential direction has a center portion. The permanent magnet has an arc-shaped radial cross section located radially inward of the circumferential end members, and has magnet accommodation through holes formed by half the number of field poles of the rotor core. The permanent magnet in each of the magnet containing through holes is magnetized in a substantially depth direction of the containing through hole, and has a magnetic pole surface of the same polarity at a substantially rotationally symmetric position,
The circumferential center portion of the magnet containing through hole reaches the vicinity of the inner circumferential surface of the rotor core to form the magnetic recess.

【0014】本構成によれば、簡素な構成で請求項1記
載の磁気的凹凸部を形成することができる。
According to this structure, the magnetic unevenness according to claim 1 can be formed with a simple structure.

【0015】請求項5記載の構成によれば請求項2ない
し4のいずれか記載の静止界磁コイル式磁石併用同期機
において更に、前記ロータコアの外周面は、前記磁石収
容用貫通孔の径外側に位置して径内側に凹設された外周
凹部を有し、前記ロータコアを構成する前記電磁鋼板
は、前記外周凹部にて溶接されていることを特徴として
いる。
According to a fifth aspect of the present invention, in the synchronous machine with a static field coil type magnet according to any one of the second to fourth aspects, the outer peripheral surface of the rotor core is radially outside the through hole for accommodating the magnet. And the outer peripheral concave portion recessed radially inward and the electromagnetic steel sheet forming the rotor core is welded at the outer peripheral concave portion.

【0016】本構成によれば、溶接肉盛部を後加工する
ことなくロータコアの積層電磁鋼板を一体化して機械的
強度を向上することができるとともに、ロータコアの磁
気特性を損なうことが少ない。
According to this configuration, it is possible to improve the mechanical strength by integrating the laminated electromagnetic steel sheets of the rotor core without post-processing the weld overlay, and to lessen the loss of the magnetic properties of the rotor core.

【0017】請求項6記載の構成によれば請求項2乃至
5のいずれか記載の静止界磁コイル式磁石併用同期機に
おいて更に、略径方向へ形成されて前記磁石収容用貫通
孔又は前記磁気短絡部材収容孔と前記ロータコアの内周
面を連通するスリットを有することを特徴としている。
According to a sixth aspect of the present invention, in the synchronous machine with a static field coil magnet according to any one of the second to fifth aspects, the through hole for accommodating the magnet or the magnet is formed substantially in a radial direction. It is characterized by having a slit communicating the short-circuit member accommodation hole and the inner peripheral surface of the rotor core.

【0018】本構成によれば、磁気短絡部材収容孔や磁
石収容用貫通孔への磁気短絡部材や磁石の挿通が容易と
なる。
According to this configuration, the magnetic short-circuit member and the magnet can be easily inserted into the magnetic short-circuit member receiving hole and the magnet receiving through-hole.

【0019】[0019]

【発明の実施の形態】本発明の好適な態様を実施例を参
照して以下に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to examples.

【0020】[0020]

【実施例1】実施例1記載の静止界磁コイル式磁石併用
同期機を図1〜図3を参照して説明する。 (全体構造の説明)回転機1000は、ステータ110
0と、ロータ1200とを有し、ステータ1100は、
フロントフレーム1910およびエンドフレーム191
1の内周面に固定されている。
Embodiment 1 A synchronous machine with a stationary field coil type magnet according to Embodiment 1 will be described with reference to FIGS. (Description of Overall Structure) The rotating machine 1000 includes a stator 110
0, and a rotor 1200, and the stator 1100 includes:
Front frame 1910 and end frame 191
1 is fixed to the inner peripheral surface.

【0021】ロータ1200は、軸受け1920、19
21を介してフロントフレーム1910およびエンドフ
レーム1911に支承されており、その外周面はエアギ
ャップを介してステータ1100の内周面に対面してい
る。1930はロータ1200の回転位置を測定するレ
ゾルバロータであり、1931はレゾルステータであ
る。
The rotor 1200 has bearings 1920, 19
The outer peripheral surface faces the inner peripheral surface of the stator 1100 via an air gap. Reference numeral 1930 denotes a resolver rotor for measuring the rotational position of the rotor 1200, and reference numeral 1931 denotes a resolver stator.

【0022】ステータ1100は、電磁鋼板を軸方向に
積層してなるステータコア1120に3相コイル111
0を巻装してなり、ステータコア1120は、3相コイ
ル1110を挿入するスロット1121、ティース11
22およびコアバック1123を有している。
The stator 1100 has a three-phase coil 111 on a stator core 1120 formed by laminating electromagnetic steel sheets in the axial direction.
0, the stator core 1120 includes a slot 1121 for inserting the three-phase coil 1110, and the teeth 11
22 and a core back 1123.

【0023】ロータ1200は、電磁鋼板製のロータコ
ア1210、軟磁性体鉄心製のロータヨーク1270を
有している。
The rotor 1200 has a rotor core 1210 made of an electromagnetic steel plate and a rotor yoke 1270 made of a soft magnetic iron core.

【0024】ロータコア1210は、図2(図1におけ
るEーE線矢視断面図)に示すように多数の輪板状の電
磁鋼板を軸方向に積層することにより(電磁薄鋼板を螺
旋状に巻き重ねて軸方向に積層してもよい)円筒形状に
形成されている。ロータコア1210は、周方向に等間
隔ピッチ(磁極ピッチ)で軸方向に貫設された角形の磁
石挿入孔(磁石収容用貫通孔)1211、及び、周方向
に隣り合う2つの磁石挿入孔1211の間に軸方向に貫
設された丸孔(短絡部材収容用貫通孔)1212を有し
ている。
As shown in FIG. 2 (a cross-sectional view taken along the line EE in FIG. 1), the rotor core 1210 is formed by laminating a large number of ring-shaped electromagnetic steel plates in the axial direction. (It may be wound and laminated in the axial direction.) The rotor core 1210 includes a rectangular magnet insertion hole (magnet accommodation through hole) 1211 penetrating in the axial direction at an equal pitch (magnetic pole pitch) in the circumferential direction, and two magnet insertion holes 1211 adjacent in the circumferential direction. It has a round hole (through hole for accommodating a short-circuit member) 1212 penetrating in the axial direction between them.

【0025】ロータコア1210の内周部には、後述の
界磁ヨーク1232からの磁束が通過容易な磁気的凸部
1250、及び、通過しにくい磁気的凹部1251が磁
極ピッチ毎に交互に形成されてなる磁気的凹凸部が形成
されている。
On the inner peripheral portion of the rotor core 1210, a magnetic convex portion 1250 through which a magnetic flux from a field yoke 1232 described later easily passes and a magnetic concave portion 1251 through which a magnetic flux hard to pass are alternately formed at every magnetic pole pitch. Magnetic irregularities are formed.

【0026】磁石挿入孔1211には磁石1280が、
丸孔1212には軟磁性体からなる軟磁性ピン(磁気短
絡部材)1281が軸方向に圧入(または嵌合)されて
いる。
A magnet 1280 is inserted into the magnet insertion hole 1211.
A soft magnetic pin (magnetic short circuit member) 1281 made of a soft magnetic material is press-fitted (or fitted) in the axial direction in the round hole 1212.

【0027】磁気的凸部1250は、周方向一つおきの
丸孔1212の内周側に隣接して周方向両側の2つの磁
石挿入孔1211の間にわたって設けられ、磁気的凹部
1251は、他の丸孔1212の内周側に隣接して周方
向両側の2つの磁石挿入孔1211の間にわたって設け
られている。磁気的凸部1250及び磁気的凹部125
1は、図1に示すように、ロータコア1210の軸方向
前半部と軸方向後半部とで位置が逆転して形成されてい
る。
The magnetic projection 1250 is provided between two magnet insertion holes 1211 on both sides in the circumferential direction, adjacent to the inner peripheral side of every other circular hole 1212 in the circumferential direction. Is provided between two magnet insertion holes 1211 on both sides in the circumferential direction, adjacent to the inner peripheral side of the round hole 1212. Magnetic protrusion 1250 and magnetic recess 125
As shown in FIG. 1, 1 is formed by reversing the positions of the first half in the axial direction and the second half in the axial direction of the rotor core 1210.

【0028】各磁石挿入孔1211に軸方向に挿入され
た磁石1280は、その厚さ方向すなわち略周方向に磁
化されており、周方向に隣接する2つの磁石1280
は、互いに対面する端面が同一極性の磁極面となってい
る。
The magnet 1280 inserted in each magnet insertion hole 1211 in the axial direction is magnetized in its thickness direction, that is, substantially in the circumferential direction, and two magnets 1280 adjacent in the circumferential direction are magnetized.
In the above, the end faces facing each other are magnetic pole faces having the same polarity.

【0029】軟磁性ピン1281は、基端部に丸孔12
12より径大の鍔部を有し、圧入後に軟磁性ピン128
1の先端部を押し広げてロータコア1210の各電磁鋼
板を軸方向に挟圧している。また、一つおきの軟磁性ピ
ン1281はロータコア1210をロータヨーク127
0に固定している。
The soft magnetic pin 1281 has a round hole 12 at its base end.
12 has a flange with a diameter larger than that of the soft magnetic pin 128 after press-fitting.
1 is pressed and spread to pinch each electromagnetic steel plate of the rotor core 1210 in the axial direction. Also, every other soft magnetic pin 1281 connects the rotor core 1210 to the rotor yoke 127.
It is fixed to 0.

【0030】ロータコア1210は、その外周面と磁石
挿入孔1211の径外端との間にて図8に示すように径
内側へ凹設された凹設部をもち、この凹設部は、磁石挿
入孔1211に沿って軸方向に形成されている。この凹
設部は、ロータコア1210の外周面とステータコア1
120の内周面との間に大きなギャップを確保し、磁石
1280の磁束が電機子巻線1110と十分に鎖交せず
に漏れ磁束となってしまうのを抑止している。また、こ
の凹設部は、ロータコア1210の外周面と磁石挿入孔
1211の径外端との間のロータコア1210の周方向
磁気通路を狭窄して、磁石1280の漏れ磁束を低減し
ている。更に、この凹設部は、ロータコア1210の外
周面側から軸方向へレーザ溶接されており、これによ
り、ロータコア1210を構成する各電磁鋼板を一体化
するとともに、この凹設部の磁気特性を劣化させてこの
部位を周方向に流れる漏れ磁束を低減している。
The rotor core 1210 has a recess formed radially inward as shown in FIG. 8 between the outer peripheral surface and the outer end of the magnet insertion hole 1211. It is formed in the axial direction along the insertion hole 1211. The recess is formed between the outer peripheral surface of the rotor core 1210 and the stator core 1.
A large gap is secured between the magnet 120 and the inner peripheral surface of the armature 120, thereby preventing the magnetic flux of the magnet 1280 from leaking without being sufficiently linked with the armature winding 1110. Further, the recessed portion narrows the circumferential magnetic path of the rotor core 1210 between the outer peripheral surface of the rotor core 1210 and the radially outer end of the magnet insertion hole 1211 to reduce the leakage magnetic flux of the magnet 1280. Further, the recessed portion is laser-welded in the axial direction from the outer peripheral surface side of the rotor core 1210, thereby integrating the respective electromagnetic steel plates constituting the rotor core 1210 and deteriorating the magnetic characteristics of the recessed portion. Thus, the leakage magnetic flux flowing in the circumferential direction at this portion is reduced.

【0031】ロータヨーク1270は、図1及び図1の
P視断面図である図3に示すように、軟磁性体鉄心を鍛
造加工して形成されている。ロータヨーク1270は、
径方向に延在する円板部1271と、円板部1271の
内周端からリヤ側に延在するボス部1272とからなる
フランジ部材であって、円板部1271は、円板部12
71の外周端縁から更に径外方向へ放射状に張り出した
磁石挿入孔1211の半分の数のリブ1273を有して
いる。リブ1273は、ロータヨーク1270の軸方向
後半部の丸孔1212(図2参照)と同一位置に同一径
で形成された丸孔1278を有している。ロータヨーク
1270の丸孔1212を貫通した軟磁性ピン(磁性ピ
ン)1281はリブ1273の丸孔1278に圧入さ
れ、これにより、ロータコア1210がロータヨーク1
270に固定されている。1240はスプライン124
1をもつシャフトであって、ボス部1272に相対回転
不能に圧入されている。
The rotor yoke 1270 is formed by forging a soft magnetic iron core as shown in FIG. 1 and FIG. The rotor yoke 1270 is
A flange member comprising a radially extending disk portion 1271 and a boss 1272 extending rearward from the inner peripheral end of the disk portion 1271, wherein the disk portion 1271 is
A half of the number of ribs 1273 of the magnet insertion hole 1211 radially outwardly protruding from the outer peripheral edge of the magnet 71 is provided. The rib 1273 has a round hole 1278 formed with the same diameter at the same position as the round hole 1212 (see FIG. 2) at the rear half of the rotor yoke 1270 in the axial direction. The soft magnetic pin (magnetic pin) 1281 penetrating through the round hole 1212 of the rotor yoke 1270 is press-fitted into the round hole 1278 of the rib 1273, whereby the rotor core 1210 is
270. 1240 is a spline 124
The shaft 1 is press-fitted into the boss 1272 so as not to rotate relatively.

【0032】1274は、軟磁性体よりなるフランジ状
の界磁コア(静止ヨーク)であって、その円板部はエン
ドフレーム1911の端壁部にねじ1940にて固定さ
れている。界磁コア1274のボス部の内周面は、ロー
タヨーク1270のボス部1272の外周面に微小ギャ
ップを隔てて相対回転自在に嵌着され、ロータコア12
10の径内側に存在する空間に軸方向に突出している。
界磁コア1274の上記ボス部の外周面には、界磁巻線
1230が巻装され、界磁巻線1230の軸方向両側に
は、界磁磁束をロータコア1210の内周面に導くため
の積層電磁鋼板製の界磁ヨーク1232が圧入により嵌
着されている。
Reference numeral 1274 denotes a flange-shaped field core (stationary yoke) made of a soft magnetic material, and its disk portion is fixed to an end wall of the end frame 1911 by screws 1940. The inner peripheral surface of the boss portion of the field core 1274 is relatively rotatably fitted to the outer peripheral surface of the boss portion 1272 of the rotor yoke 1270 with a small gap therebetween.
It protrudes in the axial direction into the space existing inside the diameter of 10.
A field winding 1230 is wound around the outer peripheral surface of the boss portion of the field core 1274. On both sides of the field winding 1230 in the axial direction, a field magnetic flux is guided to the inner peripheral surface of the rotor core 1210. A field yoke 1232 made of laminated electromagnetic steel sheets is fitted by press fitting.

【0033】なお、1350は、外部から界磁巻線12
30へ給電するためのリード部である。
The reference numeral 1350 designates the field winding 12 from the outside.
This is a lead unit for supplying power to 30.

【0034】回転電機1000の3相コイル1110
は、直ー交電力変換器(インバータ)200を通じてバ
ッテリ300から給電されている。界磁コイル1230
に流れる界磁電流は、リード線1350を通じて界磁電
流制御回路400から給電され、レゾルバのステータ1
931は信号処理回路500に出力し、インバータ20
0、界磁電流制御回路400及び信号処理回路500は
制御回路600により制御される。 (磁気回路の説明)次に、磁石1280が形成する磁石
磁界及び界磁コイル1230の電流が形成する電流磁界
について以下に説明する。特に重要な点は、既に説明し
たようにロータコア1210の軸方向前半部の磁気的凸
部1250と軸方向後半部の磁気的凸部1250とが周
方向へ1磁極ピッチだけずれている点にある。
Three-phase coil 1110 of rotating electric machine 1000
Are supplied from a battery 300 through a direct-to-alternating power converter (inverter) 200. Field coil 1230
Is supplied from the field current control circuit 400 through the lead wire 1350 to the resolver stator 1.
931 outputs the signal to the signal processing circuit 500,
0, the field current control circuit 400 and the signal processing circuit 500 are controlled by the control circuit 600. (Description of Magnetic Circuit) Next, the magnet magnetic field formed by the magnet 1280 and the current magnetic field formed by the current of the field coil 1230 will be described below. What is particularly important is that, as described above, the magnetic protrusion 1250 in the first half in the axial direction of the rotor core 1210 and the magnetic protrusion 1250 in the second half in the axial direction are shifted by one magnetic pole pitch in the circumferential direction. .

【0035】厚さ方向(略周方向)に着磁された磁石1
280はロータコア1210の外周面に周方向交互にS
磁極、N磁極を形成する。このS磁極から出た磁束は、
ステータコア1120との間のエアギャップを通じてス
テータコア1120内で電機子巻線1110と鎖交し、
エアギャップを通じてロータコア1210に戻る有効磁
束となる。
Magnet 1 magnetized in thickness direction (substantially circumferential direction)
280 are alternately arranged on the outer peripheral surface of the rotor core 1210 in the circumferential direction.
A magnetic pole and an N magnetic pole are formed. The magnetic flux from the S magnetic pole is
The armature winding 1110 is linked in the stator core 1120 through an air gap between the armature winding 1110 and the stator core 1120,
The effective magnetic flux returns to the rotor core 1210 through the air gap.

【0036】また、磁石1280のS磁極から出た磁石
磁束は、ロータコア1210のS磁極部分の軟磁性体ピ
ン1281、ロータヨーク1270のリブ部1273、
円板部1271、ボス部1272、界磁コア1274の
ボス部、界磁ヨーク1232、ロータコア1210の軸
方向後半部の磁気的凸部1250、N磁極側軟磁性体ピ
ン1281を通って磁石1280のN磁極に戻り、これ
により短絡磁気回路が形成される。
The magnetic flux from the S magnetic pole of the magnet 1280 is applied to the soft magnetic pin 1281 of the S magnetic pole portion of the rotor core 1210, the rib portion 1273 of the rotor yoke 1270,
The magnet 1280 passes through the disk portion 1271, the boss portion 1272, the boss portion of the field core 1274, the field yoke 1232, the magnetic convex portion 1250 at the rear half in the axial direction of the rotor core 1210, and the N magnetic pole side soft magnetic material pin 1281. Return to the N pole, thereby forming a short circuit magnetic circuit.

【0037】また、磁石1280のS磁極から出た磁石
磁束は、ロータコア1210のS磁極部分の軟磁性体ピ
ン1281、ロータコア1210の軸方向前半部の磁気
的凸部1250、界磁ヨーク1232(軸方向前部)、
界磁コア1274のボス部、界磁ヨーク1232(軸方
向後部)、ロータコア1210の軸方向後半部の磁気的
凸部1250、N磁極側軟磁性体ピン1281を通って
磁石1280のN磁極に戻り、これにより上記短絡磁気
回路とほぼ並列の短絡磁気回路が形成される。
The magnet magnetic flux emitted from the S magnetic pole of the magnet 1280 is supplied to the soft magnetic pin 1281 of the S magnetic pole portion of the rotor core 1210, the magnetic convex portion 1250 in the first half of the rotor core 1210 in the axial direction, and the field yoke 1232 (axial). Direction front),
It returns to the N magnetic pole of the magnet 1280 through the boss portion of the field core 1274, the field yoke 1232 (the rear portion in the axial direction), the magnetic convex portion 1250 in the rear half portion of the rotor core 1210 in the axial direction, and the soft magnetic pin 1281 on the N magnetic pole side. Thus, a short-circuit magnetic circuit substantially parallel to the short-circuit magnetic circuit is formed.

【0038】当然、ステータ1100の電機子巻線11
10と鎖交する上記有効磁束は、この短絡磁気回路を流
れる磁束分だけ減少する。
Of course, the armature winding 11 of the stator 1100
The effective magnetic flux linked to 10 is reduced by the amount of the magnetic flux flowing through the short-circuit magnetic circuit.

【0039】上記両短絡磁気回路は、界磁コイル123
0とも鎖交しているので、磁石磁界から短絡磁気回路に
される磁束の量は、界磁コイル1230に通電する電流
により制御することができる。
The two short-circuit magnetic circuits are composed of a field coil 123
Since the magnetic flux is linked to zero, the amount of magnetic flux from the magnet magnetic field to the short-circuit magnetic circuit can be controlled by the current flowing through the field coil 1230.

【0040】この回転電機の等価磁気回路を図4に示
す。
FIG. 4 shows an equivalent magnetic circuit of the rotating electric machine.

【0041】ステータ1100側の磁気抵抗をRs、エ
アギャップの磁気抵抗をRg、磁石部の磁気抵抗をRm
とする。Rmは上記有効磁束が流れる磁気回路のロータ
側の磁気抵抗である。上記短絡磁気回路の磁気抵抗のう
ち上記Rmを除く磁気抵抗(短絡磁気抵抗)をRr、磁
石の起磁力をFm、界磁巻線の起磁力をFcとすると、
ステータ1100側に流れる有効磁束量Φ1は次式で表
わせる。
The magnetic resistance of the stator 1100 is Rs, the magnetic resistance of the air gap is Rg, and the magnetic resistance of the magnet is Rm.
And Rm is a magnetic resistance on the rotor side of the magnetic circuit through which the effective magnetic flux flows. When the magnetic resistance (short-circuit magnetic resistance) excluding Rm among the magnetic resistances of the short-circuit magnetic circuit is Rr, the magnetomotive force of the magnet is Fm, and the magnetomotive force of the field winding is Fc,
The effective magnetic flux amount Φ1 flowing on the stator 1100 side can be expressed by the following equation.

【0042】Φ1=(RmFc+RrFm)/(RrR
m+Rm(Rg+Rs)+(Rg+Rs)Rr) Φ2は短絡磁束量である。各パラメータの設定により有
効磁束量Φ1は任意に設定できる。例えば界磁巻線12
30に電流を流さないとき(Fc=0)の有効磁束量Φ
10は、 Φ10=RrFm/(RrRm+Rm(Rg+Rs)+
(Rg+Rs)Rr) となり、短絡磁気抵抗Rrが小のときはΦ10はほぼ0
となる。短絡磁気抵抗Rrは、軟磁性体ピン1281、
リブ部1223、円筒状鉄心1231および各部材の接
合部の磁気抵抗により決定されるため、各部の断面積お
よび長さを設定することで、界磁巻線1230に電流を
流さない時の有効磁束量Φ10を設定することができ
る。ここでは、有効磁束が流れる磁路を構成する磁性材
料のBーH特性の線形領域(図5に示す0〜Φ’の領
域)に設定し、有効磁束量Φ1が磁路を構成する磁性材
料の磁気飽和領域に達しないようにする。
Φ1 = (RmFc + RrFm) / (RrR
m + Rm (Rg + Rs) + (Rg + Rs) Rr) Φ2 is a short-circuit magnetic flux amount. The effective magnetic flux amount Φ1 can be set arbitrarily by setting each parameter. For example, the field winding 12
Effective flux amount Φ when no current flows through Fc = 0 (Fc = 0)
10 is: Φ10 = RrFm / (RrRm + Rm (Rg + Rs) +
(Rg + Rs) Rr) When the short-circuit magnetic resistance Rr is small, Φ10 is almost 0.
Becomes The short-circuited magnetic resistance Rr is expressed by a soft magnetic material pin 1281,
The magnetic flux is determined by the magnetic resistance of the rib 1223, the cylindrical iron core 1231, and the joint of each member. Therefore, by setting the cross-sectional area and length of each part, the effective magnetic flux when no current flows through the field winding 1230 The quantity Φ10 can be set. Here, the BH characteristic of the magnetic material constituting the magnetic path through which the effective magnetic flux flows is set to a linear region (range of 0 to Φ 'shown in FIG. 5), and the effective magnetic flux amount Φ1 is set to the magnetic material constituting the magnetic path. Not reach the magnetic saturation region.

【0043】界磁巻線1230に通電した場合は、界磁
巻線起磁力Fc分の磁束量Φ1cが形成される。
When current is supplied to the field winding 1230, a magnetic flux amount Φ1c corresponding to the field winding magnetomotive force Fc is formed.

【0044】Φ1c=RmFc/(RrRm+Rm(R
g+Rs)+(Rs+Rs)Rr) その結果、有効磁束量Φ1は Φ1=Φ10+Φ1c となり、界磁巻線通電流により有効磁束量を調整するこ
とができる。なお、磁束量Φ1cは、短絡磁気回路に漏
れる磁石磁束量を減らすと考えることができる。
Φ1c = RmFc / (RrRm + Rm (R
g + Rs) + (Rs + Rs) Rr) As a result, the effective magnetic flux amount Φ1 becomes Φ1 = Φ10 + Φ1c, and the effective magnetic flux amount can be adjusted by the field winding current. The magnetic flux amount Φ1c can be considered to reduce the magnetic flux amount leaking to the short-circuit magnetic circuit.

【0045】(実施例効果)上記説明した磁石併用式同
期機は、ハイブリッド車や電機自動車などの走行用モー
タとして特に好適である。
(Effects of the Embodiment) The synchronous machine with a magnet described above is particularly suitable as a running motor for a hybrid vehicle or an electric vehicle.

【0046】この種の走行用モータは車輪回転数に応じ
て広い回転数範囲で用いられる。弱め界磁制御が不要な
低回転域では、界磁巻線1230への通電電流を増加さ
せ、有効磁束量Φ1を増加する。モータ発生トルクは有
効磁束量Φ1とトルク電流とに比例するため、有効磁束
量Φ1を増加させることにより電機子巻線1110に通
電する電機子電流を低減することができる。
This kind of running motor is used in a wide range of rotation speed according to the wheel rotation speed. In a low rotation range where the field weakening control is not required, the current flowing through the field winding 1230 is increased to increase the effective magnetic flux amount Φ1. Since the motor generated torque is proportional to the effective magnetic flux amount Φ1 and the torque current, the armature current flowing through the armature winding 1110 can be reduced by increasing the effective magnetic flux amount Φ1.

【0047】反作用誘起電圧が印加電圧を超えるため、
モータ駆動に弱め界磁制御が必要な高回転域では、界磁
巻線1230への通電電流をゼロ又は低減して、磁石磁
束を短絡磁路へ分流させて、電機子巻線に流す弱め界磁
電流を減少させるか又は0とすることができる。これに
より、最大電機子電流を減らすことができるため、巻線
部の発熱が抑えられ回転機を小型化ができ、更に電力変
換器200の半導体スイッチング素子を小型化すること
ができる。
Since the reaction induced voltage exceeds the applied voltage,
In a high rotation range where the field weakening control is required for driving the motor, the current flowing through the field winding 1230 is reduced to zero or reduced, the magnet flux is shunted to the short-circuit magnetic path, and the field weakening current flowing through the armature winding is reduced. Can be reduced or set to zero. Accordingly, the maximum armature current can be reduced, so that the heat generation of the winding portion is suppressed, the rotating machine can be downsized, and the semiconductor switching element of the power converter 200 can be downsized.

【0048】なお、界磁コイル1230の銅損は電機子
巻線1110の銅損に比べてわずかであるため、この実
施例記載の界磁電流による弱め界磁は、従来の電機子電
流によるそれに比較して効率向上をもたらす。
Since the copper loss of the field coil 1230 is slightly smaller than the copper loss of the armature winding 1110, the field weakening caused by the field current described in this embodiment is smaller than that caused by the conventional armature current. This leads to an increase in efficiency.

【0049】また、この実施例では、界磁巻線起磁力F
c=0のときの有効磁束量Φ10を有効磁路を構成する
磁性材料のBーH特性の線形領域に設定しているので、
有効磁束量Φ10による反作用誘起電圧が印加電圧以上
となる高回転域でモータ駆動する必要が生じたとき、電
機子巻線1110からの弱め界磁に必要な電機子電流を
最小限に抑えることができる。
In this embodiment, the field winding magnetomotive force F
Since the effective magnetic flux amount Φ10 when c = 0 is set in the linear region of the BH characteristic of the magnetic material constituting the effective magnetic path,
When it is necessary to drive the motor in a high rotation range where the reaction induced voltage due to the effective magnetic flux amount Φ10 is equal to or higher than the applied voltage, it is possible to minimize the armature current necessary for the field weakening from the armature winding 1110. it can.

【0050】図5において説明すると、電機子電流によ
り有効磁束をΦ0からΦ’に減少させる場合、BーHカ
ーブが線形であるときに必要ATをATa、非線形であ
るときの必要ATをATbとするとATa<ATbとな
るので、その差に比例して電機子電流を低減することが
できる。
Referring to FIG. 5, when the effective magnetic flux is reduced from Φ0 to Φ ′ by the armature current, the required AT is ATa when the BH curve is linear, and the required AT is ATb when the BH curve is nonlinear. Then, ATa <ATb, so that the armature current can be reduced in proportion to the difference.

【0051】更に、従来の永久磁石回式転電機をモータ
として動作させ、電機子巻線に弱め界磁電流を流して制
御する場合のTーN(トルクー回転数)特性上の効率マ
ップを図6に示し、この実施例の回転電機を上記制御方
法にて駆動した場合のTーN特性上の効率マップを図7
に示す。両図の比較からわかるように、効率マップ上の
最大効率範囲が拡大する。
Further, an efficiency map on the TN (torque-rotational speed) characteristic when the conventional permanent magnet rotary electric machine is operated as a motor and a field weakening current is applied to the armature winding for control is shown. FIG. 6 shows an efficiency map on TN characteristics when the rotating electric machine of this embodiment is driven by the above control method.
Shown in As can be seen from the comparison between the two figures, the maximum efficiency range on the efficiency map is expanded.

【0052】なお、この実施例の回転電機を発電機動作
させる場合、Φ10を車両用常用負荷のレベルに設定し
ておき、それ以上の出力が要求されるときのみ界磁巻線
に通電すれば、界磁巻線の銅損が低減でき高効率の発電
が可能である。
When the rotating electric machine of this embodiment is operated as a generator, it is necessary to set Φ10 to the level of a normal load for a vehicle and to energize the field winding only when a higher output is required. In addition, the copper loss of the field winding can be reduced, and high-efficiency power generation is possible.

【0053】更に付言すれば、従来、ロータから界磁コ
ントロ−ル可能な同期回転機として突極形同期機、クロ
ーボール形同期機があるが、これらは共に界磁巻線のみ
により有効磁束を得ており、有効磁束の必要最小限(短
絡磁束解消分)を界磁巻線で補うことが可能なこの実施
例の回転電機と比較して、界磁巻線への通電電流が大き
く、界磁コイルの大型化、や界磁コイルの抵抗損が大き
いという問題がある。ロータ巻装の界磁コイルは冷却性
において電機子巻線に劣るので、本実施例の採用により
界磁コイルの損失、発熱低減が可能となる。
In addition, conventionally, there are salient pole type synchronous machines and claw ball type synchronous machines as synchronous rotary machines which can control the field from the rotor, and both of them use a field winding only to generate an effective magnetic flux. As compared with the rotating electric machine of this embodiment, which can compensate for the necessary minimum of the effective magnetic flux (elimination of short-circuit magnetic flux) by the field winding, the current flowing through the field winding is large. There are problems that the size of the magnetic coil is increased and that the field coil has a large resistance loss. Since the field coil of the rotor winding is inferior to the armature winding in cooling performance, the use of this embodiment can reduce the loss and heat generation of the field coil.

【0054】更に、この実施例では、ロータコア121
0の内周面の軸方向前半部(又は軸方向一端部)と、軸
方向後半部(又は軸方向他端部)に磁極ピッチごとに交
互に磁気的凸部1250を設けているので、ロータコア
1210に貫挿した軟磁性ピン1281を軸方向反リブ
1273側に突出させて、この部分から磁性材にて静止
ヨークに磁束を流す必要がないため、ロータの軸長短縮
及び軽量化を図ることができ、耐遠心力性能も向上する
ことができる。
Further, in this embodiment, the rotor core 121
Since the magnetic protrusions 1250 are provided alternately at the magnetic pole pitch in the axial first half (or one axial end) and the axial second half (or the other axial end) of the inner peripheral surface of the rotor core 0, the rotor core The soft magnetic pin 1281 inserted through the 1210 protrudes toward the opposite rib 1273 in the axial direction, and there is no need to flow magnetic flux from this portion to the stationary yoke with the magnetic material. And the centrifugal resistance performance can be improved.

【0055】[0055]

【実施例2】本発明の磁石併用式同期機の他の実施例を
図8を参照して説明する。
Embodiment 2 Another embodiment of the present invention will be described with reference to FIG.

【0056】この実施例では、ロータコア1210の内
周部に設ける磁気的凹凸部は、内周面に近接して周方向
所定ピッチでそれぞれ軸方向に貫された長孔1252に
より形成され、各長孔1252は互いに隣接する磁石1
280の間に一つおきに設けられている。当然、ロータ
コア1210の内周部のうち、長孔1252をもつ部位
は磁気的凹部になり、他の部位が磁気的凸部となる。
In this embodiment, the magnetic concave and convex portions provided on the inner peripheral portion of the rotor core 1210 are formed by elongated holes 1252 penetrating in the axial direction at a predetermined circumferential pitch near the inner peripheral surface. Hole 1252 is adjacent to magnet 1
Every other 280 is provided. Naturally, a portion having the elongated hole 1252 in the inner peripheral portion of the rotor core 1210 is a magnetic concave portion, and the other portions are magnetic convex portions.

【0057】なお、長孔1252と内周面との間の薄肉
部1253は隣接する磁石1280同士の漏れ磁束通路
となるが磁気飽和するために漏れ磁束量は無視すること
ができる。
The thin portion 1253 between the long hole 1252 and the inner peripheral surface becomes a leakage magnetic flux path between the adjacent magnets 1280, but is magnetically saturated, so that the amount of leakage magnetic flux can be ignored.

【0058】[0058]

【実施例3】本発明の磁石併用式同期機の他の実施例を
図9を参照して説明する。
Embodiment 3 Another embodiment of the present invention will be described with reference to FIG.

【0059】この実施例では、ロータコア1210の内
周部に設ける磁気的凹凸部は、実施例2と同様の長孔1
255により形成されている。ただし、この実施例の長
孔1255の周方向両端部は径外側へ向かうにつれて互
いに周方向に離れるように傾斜しつつロータコア121
0の外周面近傍に達し、磁石1254が長孔1255の
周方向両端部にそれぞれ収容されている。すなわち、長
孔1255の周方向両端部は磁石収容用貫通孔となって
いる。
In this embodiment, the magnetic uneven portion provided on the inner peripheral portion of the rotor core 1210 has the same shape as that of the second embodiment.
255. However, both ends in the circumferential direction of the elongated hole 1255 in this embodiment are inclined so as to be separated from each other in the circumferential direction toward the radially outer side while the rotor core 121 is inclining.
0, and the magnet 1254 is housed at both ends in the circumferential direction of the elongated hole 1255. That is, both ends in the circumferential direction of the elongated hole 1255 are through holes for accommodating the magnet.

【0060】このように磁石1254の磁極面を傾斜さ
せると磁石磁束の方向を磁極中心方向に集中させること
ができるので、ロータコア1210の外周面の界磁極を
強化することができる。また、磁石1254を孔125
5の傾斜孔部に装着した後で着磁することが可能になる
ため、生産性が向上する。
As described above, when the magnetic pole surface of the magnet 1254 is inclined, the direction of the magnet magnetic flux can be concentrated toward the magnetic pole center, so that the field pole on the outer peripheral surface of the rotor core 1210 can be strengthened. Also, the magnet 1254 is
5 can be magnetized after being mounted in the inclined hole, thereby improving the productivity.

【0061】(変形態様)図9記載の長孔1255を図
10に示すように円弧状の径方向断面形状に変形した変
形態様を図10に示す。この場合でも、長孔1257は
図9の長孔1255と同様の効果を奏することができ
る。
(Modification) FIG. 10 shows a modification in which the long hole 1255 shown in FIG. 9 is deformed into an arc-shaped radial cross section as shown in FIG. Even in this case, the long hole 1257 can achieve the same effect as the long hole 1255 in FIG.

【0062】更に、この実施例では、長孔1257内部
一杯に磁石1256を設けている。すなわち、実施例3
の2つの磁石1254に比較して磁石個数を半減するこ
とができ、更に、磁石体積を増大できる分だけ、界磁極
を強化することができる。
Further, in this embodiment, the magnet 1256 is provided to fill the inside of the elongated hole 1257. That is, the third embodiment
The number of magnets can be halved as compared with the two magnets 1254, and the field poles can be strengthened by the amount by which the magnet volume can be increased.

【0063】この場合も、実施例3と同じく、ロータコ
ア1210の内周面及び外周面に外部着磁装置の磁極面
を設けてロータコア1210内の磁石1256を着磁す
ることができ、生産性が向上する。
Also in this case, similarly to the third embodiment, the magnets 1256 in the rotor core 1210 can be magnetized by providing the magnetic pole surfaces of the external magnetizing device on the inner and outer peripheral surfaces of the rotor core 1210, thereby improving productivity. improves.

【0064】特に、図10の例では、円弧状磁石125
6の中央部は、磁石1256の径外側に向いた磁極面を
ロータコア1210の内周面から遮断するため、磁気的
凹部として機能することができ、好都合である。
In particular, in the example of FIG.
The central portion of 6 can function as a magnetic recess because the magnetic pole surface facing radially outward of the magnet 1256 is shielded from the inner peripheral surface of the rotor core 1210, which is convenient.

【0065】また、界磁ヨークの外周面から出た磁束
は、上記長孔1257の形状により、ロータコア121
0の内周面のより広い部分を利用してロータコア121
0の内周面に入ることができるために、短絡磁気回路の
磁気抵抗を低減することができる。
The magnetic flux coming out of the outer peripheral surface of the field yoke is generated by the rotor core 121 due to the shape of the slot 1257.
0 by using a wider portion of the inner peripheral surface of the rotor core 121.
Since it can enter the inner peripheral surface of 0, the magnetic resistance of the short-circuit magnetic circuit can be reduced.

【0066】[0066]

【実施例4】本発明の磁石併用式同期機の他の実施例を
図11を参照して説明する。
Embodiment 4 Another embodiment of the present invention will be described with reference to FIG.

【0067】この実施例は、図8に示す丸形断面の磁気
短絡部材収容孔を、角部がR面取りされた角形断面に変
更し、角部がR面取りされた角形断面の軟磁性ピン12
14をこの角形断面の磁気短絡部材収容孔に収容してい
るので、磁気短絡部材の径方向断面積を増大して、その
磁気抵抗を低減しているので、短絡磁束量を更に増大す
ることができる。
In this embodiment, the magnetic short-circuit member accommodating hole having a round cross section shown in FIG. 8 is changed to a square cross section having a rounded corner, and the soft magnetic pin 12 having a square cross section with a rounded corner.
14 is accommodated in the magnetic short-circuit member receiving hole having the rectangular cross section, the radial cross-sectional area of the magnetic short-circuit member is increased and its magnetic resistance is reduced, so that the amount of short-circuit magnetic flux can be further increased. it can.

【0068】また、図8の長孔1253に相当する磁気
遮断孔1259をその径外側の磁気短絡部材収容孔に連
通孔1261を介して連通させている。
Further, a magnetic shielding hole 1259 corresponding to the long hole 1253 in FIG. 8 is communicated with a magnetic short-circuit member accommodating hole on the radial outside thereof through a communication hole 1261.

【0069】更に、磁気遮断孔1259及び磁石収容用
貫通孔をスリット1291、1290を介して連通させ
ている。
Further, the magnetic blocking hole 1259 and the through hole for accommodating the magnet are communicated through slits 1291 and 1290.

【0070】これにより、磁石や軟磁性ピン1214の
装着が容易となり、これら装着時における電磁鋼板の応
力緩和効果も生じる。
As a result, the mounting of the magnet and the soft magnetic pin 1214 is facilitated, and the effect of relaxing the stress of the magnetic steel sheet at the time of mounting the magnet and the soft magnetic pin 1214 also occurs.

【0071】また、連通孔1261の両側のフック部1
262を角形の軟磁性ピン1214に接して設けている
ので、軟磁性ピン1214の径方向のずれを防止するこ
とができる。 更に、この実施例では、ロータコア1
210は、磁石1280の径外側の外周面に磁石128
0に沿って軸方向に形成された凹部1260を有し、こ
の凹部1260において、ロータコア1210を構成す
る積層電磁鋼板がレーザー溶接などで溶着補強されてい
る。これにより、ロータコア1210の他の部位の磁気
特性への影響を抑止しつつ、ロータコア1210の機械
的強度を向上することができる。
The hook portions 1 on both sides of the communication hole 1261
Since the 262 is provided in contact with the square soft magnetic pin 1214, it is possible to prevent the soft magnetic pin 1214 from shifting in the radial direction. Further, in this embodiment, the rotor core 1
210 is a magnet 128 on the outer peripheral surface on the radial outside of the magnet 1280.
It has a concave portion 1260 formed in the axial direction along 0. In this concave portion 1260, the laminated electromagnetic steel sheet forming the rotor core 1210 is welded and reinforced by laser welding or the like. Accordingly, it is possible to improve the mechanical strength of the rotor core 1210 while suppressing the influence on the magnetic properties of other parts of the rotor core 1210.

【0072】以上説明した各実施例において、磁石挿入
孔を周方向等間隔に形成することにより、磁石をロータ
コア1210の軸方向全体を貫通するように配設するこ
とができ磁石を軸方向で二分する必要がなくなる。
In each of the embodiments described above, the magnet insertion holes are formed at equal intervals in the circumferential direction, so that the magnets can be disposed so as to penetrate the entire rotor core 1210 in the axial direction. You don't have to.

【0073】また、図9、図10に示す実施例3とその
変形実施例では、磁石はロータコア1210の軸方向前
半部及び軸方向後半部で別々に配設すればよい。
In the third embodiment shown in FIGS. 9 and 10 and its modification, the magnets may be provided separately in the first half in the axial direction and the second half in the axial direction of the rotor core 1210.

【0074】また、上記各実施例では、ロータコア12
10を厚さが等しい電磁鋼板を用いて形成したが、厚さ
がばらついてもよい。また、各電磁鋼板のうち、一部の
電磁鋼板の孔形状を他の電磁鋼板の孔形状と異なるよう
にしてもよい。
In each of the above embodiments, the rotor core 12
Although 10 was formed using an electromagnetic steel plate having the same thickness, the thickness may vary. Further, among the respective electromagnetic steel sheets, the hole shape of some of the electromagnetic steel sheets may be different from the hole shape of the other electromagnetic steel sheets.

【0075】以上説明した様に本発明によれば、埋込み
磁石形回転子の中に有効磁束をコントロ−ル可能な界磁
巻線を設けることにより、回転機の全回転数領域におい
て効率最大となる制御が可能となる。また、磁極を円環
状電磁鋼板により構成しているため遠心力に対して強
く、磁極表面に発生する鉄損を低減することができる。
As described above, according to the present invention, by providing a field winding capable of controlling the effective magnetic flux in the embedded magnet type rotor, the efficiency is maximized in the entire rotational speed range of the rotating machine. Control becomes possible. Further, since the magnetic pole is made of an annular magnetic steel sheet, the magnetic pole is strong against centrifugal force and iron loss generated on the magnetic pole surface can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の磁石併用式同期機の軸方向
断面図である。
FIG. 1 is an axial sectional view of a synchronous machine with a magnet according to a first embodiment of the present invention.

【図2】図1のEーE線矢視断面図である。FIG. 2 is a sectional view taken along line EE of FIG. 1;

【図3】図1のロータのP視矢視側面図である。FIG. 3 is a side view of the rotor of FIG.

【図4】図1の同期機の等価磁気回路図である。FIG. 4 is an equivalent magnetic circuit diagram of the synchronous machine of FIG. 1;

【図5】図1の同期機に用いる磁気材料の磁束密度と磁
界との関係を示すB−H特性図である。
FIG. 5 is a BH characteristic diagram showing a relationship between a magnetic flux density and a magnetic field of a magnetic material used in the synchronous machine of FIG.

【図6】従来の永久磁石型同期機のトルクと回転数の関
係を示す特性図である。
FIG. 6 is a characteristic diagram showing a relationship between torque and rotation speed of a conventional permanent magnet type synchronous machine.

【図7】図1の磁石併用式同期機のトルクと回転数の関
係を示す特性図である。
FIG. 7 is a characteristic diagram showing a relationship between a torque and a rotation speed of the synchronous machine with a magnet of FIG. 1;

【図8】実施例2のロータコアを示す径方向断面図であ
る。
FIG. 8 is a radial cross-sectional view illustrating a rotor core according to a second embodiment.

【図9】実施例3のロータコアを示す径方向断面図であ
る。
FIG. 9 is a radial cross-sectional view illustrating a rotor core according to a third embodiment.

【図10】図9に示す実施例3の変形態様のロータコア
を示す径方向断面図である。
FIG. 10 is a radial cross-sectional view illustrating a rotor core according to a modification of the third embodiment shown in FIG. 9;

【図11】実施例4のロータコアを示す径方向断面図で
ある。
FIG. 11 is a radial cross-sectional view illustrating a rotor core according to a fourth embodiment.

【符号の説明】[Explanation of symbols]

1000 回転電機 1100 ステータ 1120 ステータコア 1200 ロータ 1230 界磁巻線 1211 磁石挿入孔(磁石収容用貫通孔) 1212 丸孔(短絡部材収容用貫通孔) 1270 ロータヨーク 1280 磁石(永久磁石) 1281 軟磁性体ピン(磁気短絡部材) 1910 フロントフレーム(ハウジング) 1911 エンドフレーム(ハウジング) 1110 電機子巻線 1232 界磁ヨーク(静止ヨーク) 1274 界磁コア(静止ヨーク) 1000 Rotating electric machine 1100 Stator 1120 Stator core 1200 Rotor 1230 Field winding 1211 Magnet insertion hole (magnet accommodation through hole) 1212 Round hole (short circuit member accommodation through hole) 1270 Rotor yoke 1280 Magnet (permanent magnet) 1281 Soft magnetic material pin ( Magnetic short-circuit member) 1910 Front frame (housing) 1911 End frame (housing) 1110 Armature winding 1232 Field yoke (stationary yoke) 1274 Field core (stationary yoke)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H619 AA00 AA01 BB01 BB17 BB22 PP02 PP12 PP35 5H621 AA03 BB07 BB10 GA01 HH01 HH09 HH10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H619 AA00 AA01 BB01 BB17 BB22 PP02 PP12 PP35 5H621 AA03 BB07 BB10 GA01 HH01 HH09 HH10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ハウジングと、 電機子巻線が巻装されて前記ハウジングの内周面に固定
されたステータコアと、 積層又は螺旋巻きされた電磁鋼板により構成されて前記
ステータコアの内周面に所定ギャップを隔てて前記ハウ
ジングに相対回転自在に支承される円筒状のロータコア
と、 前記ロータコアに固定されて前記ロータコアの外周面に
周方向極性交互かつ所定の磁極ピッチで界磁極を形成す
る複数の永久磁石と、 前記ロータコアに軸方向に挿通されて前記永久磁石によ
り形成される磁石磁界を磁気的に短絡する磁気短絡部材
と、 前記ロータコアの径内側に配置されて前記ロータコアを
通じて前記磁気短絡部材に軸方向に磁束を流す界磁コイ
ルと、 前記ロータコアの径内側にて前記界磁コイルとともに前
記ハウジングの端壁部に固定されて前記ロータコア及び
磁気短絡部材とともに前記界磁コイルが形成する磁束を
貫流させる短絡磁気回路を構成する静止ヨークと、 を備え、 前記ロータコアの内周部は、前記静止ヨークの外周面に
低磁気抵抗で磁気的に結合する磁気的凸部、及び、前記
静止ヨークの外周面に高磁気抵抗で磁気的に結合する磁
気的凹部が周方向磁極ピッチ毎に交互に形成された磁気
的凹凸部を有し、 前記磁気的凸部及び磁気的凹部は、前記ロータコアの内
周部の軸方向一端部及び軸方向他端部にて周方向逆位置
に配置されることを特徴とする静止界磁コイル式磁石併
用同期機。
1. A housing, an armature winding wound thereon and a stator core fixed to an inner peripheral surface of the housing, and a laminated or spirally wound electromagnetic steel plate, which is formed on a predetermined inner peripheral surface of the stator core. A cylindrical rotor core rotatably supported by the housing with a gap therebetween; and a plurality of permanent magnets fixed to the rotor core and forming field poles on the outer peripheral surface of the rotor core with alternating circumferential polarity and a predetermined magnetic pole pitch. A magnet, a magnetic short-circuit member axially inserted through the rotor core and magnetically short-circuiting a magnet magnetic field formed by the permanent magnet; a magnetic short-circuit member disposed radially inside the rotor core and axially connected to the magnetic short-circuit member through the rotor core. A field coil for flowing magnetic flux in a direction, and fixed to an end wall portion of the housing together with the field coil inside the rotor core. A stationary yoke that constitutes a short-circuit magnetic circuit that allows the magnetic flux formed by the field coil to flow through together with the rotor core and the magnetic short-circuit member, wherein the inner peripheral portion of the rotor core has a low magnetic resistance on the outer peripheral surface of the stationary yoke. A magnetic projection that is magnetically coupled, and a magnetic depression and projection that is magnetically coupled to the outer peripheral surface of the stationary yoke with a high magnetic resistance at every circumferential magnetic pole pitch. A stationary field coil magnet, wherein the magnetic projections and the magnetic recesses are arranged at circumferentially opposite positions at one axial end and the other axial end of an inner peripheral portion of the rotor core. Combination synchronous machine.
【請求項2】請求項1記載の静止界磁コイル式磁石併用
同期機において、 前記ロータコアは、軸方向に貫設されて前記永久磁石を
収容する磁石収容用貫通孔を有し、 前記永久磁石の磁極面は、周方向両端面に形成され、 周方向に隣接する2つの前記永久磁石の対向端面は同一
極性に磁化されて前記2つの前記永久磁石間の前記ロー
タコアの外周面を同一極性の界磁極に磁化し、 前記磁気的凹部は、前記ロータコアの外周面に形成され
た2つの極性の前記界磁極の一方の径内側に位置して前
記ロータコアの内周面から径内側に凹設された凹部から
なり、 前記磁気的凸部は、前記ロータコアの外周面に形成され
た2つの極性の前記界磁極の他方の径内側に位置して前
記ロータコアの内周面から径内側に突設された凸部から
なることを特徴とする静止界磁コイル式磁石併用同期
機。
2. The synchronous machine according to claim 1, wherein the rotor core has a through-hole for accommodating a magnet, which is provided in an axial direction to accommodate the permanent magnet, and wherein the permanent magnet is provided. Are formed at both ends in the circumferential direction. Opposing end faces of two permanent magnets adjacent in the circumferential direction are magnetized to have the same polarity so that the outer peripheral surface of the rotor core between the two permanent magnets has the same polarity. Magnetizing the field poles, the magnetic recess is located radially inward of one of the two polarities of the field poles formed on the outer peripheral surface of the rotor core, and is recessed radially inward from the inner peripheral surface of the rotor core. The magnetic projection is located radially inside the other of the two polarities of the field poles formed on the outer peripheral surface of the rotor core and protrudes radially inward from the inner peripheral surface of the rotor core. Characterized by having convex portions Stationary field coil type magnet combination synchronous machine.
【請求項3】請求項1記載の静止界磁コイル式磁石併用
同期機において、 前記ロータコアは、軸方向に貫設されて前記永久磁石を
収容する磁石収容用貫通孔を有し、 前記永久磁石の磁極面は、周方向両端面に形成され、 周方向に隣接する2つの前記永久磁石の対向端面は同一
極性に磁化されて前記2つの前記永久磁石間の前記ロー
タコアの外周面を同一極性の界磁極に磁化し、 前記磁気的凹部は、前記ロータコアの外周面に形成され
た2つの極性の前記界磁極の一方の径内側に位置して前
記ロータコアの内周部に位置して軸方向に貫設された長
孔からなり、 前記磁気的凸部は、前記ロータコアの外周面に形成され
た2つの極性の前記界磁極の他方の径内側に位置して前
記ロータコアの内周部に位置して前記長孔をもたない中
実部からなることを特徴とする静止界磁コイル式磁石併
用同期機。
3. The synchronous machine according to claim 1, wherein the rotor core has a through-hole for magnet accommodation which is provided in the axial direction and accommodates the permanent magnet, and wherein the permanent magnet is provided. Are formed at both ends in the circumferential direction. Opposing end faces of two permanent magnets adjacent in the circumferential direction are magnetized to have the same polarity so that the outer peripheral surface of the rotor core between the two permanent magnets has the same polarity. Magnetizing the field poles, the magnetic concave portion is located radially inside one of the two polarities of the field poles formed on the outer peripheral surface of the rotor core and is located on the inner peripheral portion of the rotor core in the axial direction. The magnetic projection is located on the inner periphery of the rotor core at a position radially inside the other of the two polarity field poles formed on the outer periphery of the rotor core. Consisting of a solid part without the slot Stationary field coil type magnet combination synchronous machine, wherein the door.
【請求項4】請求項1記載の静止界磁コイル式磁石併用
同期機において、 前記ロータコアは、周方向両端部が前記ロータコアの外
周部に達し、周方向中央部が前記周方向両端部材よりも
径内側に位置する円弧状径方向断面をもち、前記ロータ
コアの界磁極数の半分の個数だけ形成された磁石収容用
貫通孔を有し、 前記永久磁石は、前記磁石収容用貫通孔の略深さ方向に
着磁され、 各前記磁石収容用貫通孔内の前記永久磁石は、略回転対
称位置にて同一極性の磁極面をもち、 前記磁石収容用貫通孔の前記周方向中央部は、前記ロー
タコアの内周面近傍に達して前記磁気的凹部をなすこと
を特徴とする静止界磁コイル式磁石併用同期機。
4. The synchronous machine according to claim 1, wherein both ends of the rotor core in the circumferential direction reach the outer peripheral portion of the rotor core, and a center portion in the circumferential direction is larger than the both end members in the circumferential direction. A permanent magnet has an arc-shaped radial cross section positioned radially inward, and has a magnet housing through-hole formed by half the number of field poles of the rotor core, and the permanent magnet is substantially deeper than the magnet housing through-hole. The permanent magnet in each of the magnet containing through holes has a magnetic pole surface of the same polarity at a substantially rotationally symmetric position, and the circumferential central portion of the magnet containing through hole is A synchronous machine combined with a stationary field coil magnet, wherein the synchronous machine reaches the vicinity of the inner peripheral surface of the rotor core to form the magnetic recess.
【請求項5】請求項2ないし4のいずれか記載の静止界
磁コイル式磁石併用同期機において、 前記ロータコアの外周面は、前記磁石収容用貫通孔の径
外側に位置して径内側に凹設された外周凹部を有し、 前記ロータコアを構成する前記電磁鋼板は、前記外周凹
部にて溶接されていることを特徴とする静止界磁コイル
式磁石併用同期機。
5. The synchronous machine with a stationary field coil magnet according to claim 2, wherein an outer peripheral surface of said rotor core is located radially outward of said through hole for accommodating said magnet and is concave radially inward. A synchronous machine with a stationary field coil magnet, wherein the synchronous steel plate has an outer peripheral recess provided therein, and the electromagnetic steel sheet constituting the rotor core is welded at the outer peripheral recess.
【請求項6】請求項2乃至5のいずれか記載の静止界磁
コイル式磁石併用同期機において、 略径方向へ形成されて前記磁石収容用貫通孔又は前記磁
気短絡部材収容孔と前記ロータコアの内周面を連通する
スリットを有することを特徴とする静止界磁コイル式磁
石併用同期機。
6. The synchronous machine with a stationary field coil magnet according to any one of claims 2 to 5, wherein the rotor core is formed substantially in the radial direction and is formed in the through hole for accommodating the magnet or the accommodating hole for the magnetic short circuit member. A synchronous machine with a stationary field coil type magnet, characterized by having a slit communicating the inner peripheral surface.
JP2000175290A 2000-06-12 2000-06-12 Synchronous machine with stationary field coil magnet Expired - Fee Related JP4066219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000175290A JP4066219B2 (en) 2000-06-12 2000-06-12 Synchronous machine with stationary field coil magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000175290A JP4066219B2 (en) 2000-06-12 2000-06-12 Synchronous machine with stationary field coil magnet

Publications (2)

Publication Number Publication Date
JP2001359264A true JP2001359264A (en) 2001-12-26
JP4066219B2 JP4066219B2 (en) 2008-03-26

Family

ID=18677188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000175290A Expired - Fee Related JP4066219B2 (en) 2000-06-12 2000-06-12 Synchronous machine with stationary field coil magnet

Country Status (1)

Country Link
JP (1) JP4066219B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017694A (en) * 2007-09-10 2008-01-24 Okuma Corp Motor using permanent magnet
WO2011040247A1 (en) * 2009-09-30 2011-04-07 三菱電機株式会社 Lundell type rotating machine
JP2013124944A (en) * 2011-12-15 2013-06-24 Toyota Motor Corp Resolver rotor
WO2016147945A1 (en) * 2015-03-16 2016-09-22 株式会社 豊田自動織機 Rotor for rotating electrical machine
US10277101B2 (en) 2015-04-15 2019-04-30 Denso Corporation Rotor for rotating electric machine
US10523070B2 (en) 2016-06-03 2019-12-31 Denso Corporation Rotor for rotary electric machine
CN112436689A (en) * 2020-12-18 2021-03-02 山东理工大学 Production method of nested drive motor salient pole rotor with backstop function

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017694A (en) * 2007-09-10 2008-01-24 Okuma Corp Motor using permanent magnet
WO2011040247A1 (en) * 2009-09-30 2011-04-07 三菱電機株式会社 Lundell type rotating machine
US8593029B2 (en) 2009-09-30 2013-11-26 Mitsubishi Electric Corporation Lundell type rotating machine
JP2013124944A (en) * 2011-12-15 2013-06-24 Toyota Motor Corp Resolver rotor
WO2016147945A1 (en) * 2015-03-16 2016-09-22 株式会社 豊田自動織機 Rotor for rotating electrical machine
JPWO2016147945A1 (en) * 2015-03-16 2017-10-19 株式会社豊田自動織機 Rotating electrical machine rotor
US10923973B2 (en) 2015-03-16 2021-02-16 Kabushiki Kaisha Toyota Jidoshokki Rotor for rotating electrical machine
US10277101B2 (en) 2015-04-15 2019-04-30 Denso Corporation Rotor for rotating electric machine
US10523070B2 (en) 2016-06-03 2019-12-31 Denso Corporation Rotor for rotary electric machine
CN112436689A (en) * 2020-12-18 2021-03-02 山东理工大学 Production method of nested drive motor salient pole rotor with backstop function

Also Published As

Publication number Publication date
JP4066219B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP4729551B2 (en) Axial gap type motor
US5298827A (en) Permanent magnet type dynamoelectric machine rotor
JP5259927B2 (en) Permanent magnet rotating electric machine
JPH10126985A (en) Permanent magnet rotating electric machine and electric vehicle using permanent magnet rotating electric machine
JP2009060678A (en) Axial gap type motor
JP2008271640A (en) Axial gap type motor
JP5347588B2 (en) Embedded magnet motor
JP6789451B1 (en) Hybrid field double gap synchronous machine and drive system
JP4211200B2 (en) Synchronous machine with magnet
JP3704881B2 (en) Synchronous rotating machine with permanent magnet and driving method thereof
JP4066219B2 (en) Synchronous machine with stationary field coil magnet
JP4299391B2 (en) Permanent magnet rotor
JP3790665B2 (en) Permanent magnet rotating electric machine and electric vehicle using permanent magnet rotating electric machine
JP3790774B2 (en) Permanent magnet rotating electric machine and automobile
JP2002191157A (en) Synchronous rotating electric machine with combined use of permanent magnet
JP2019187132A (en) Motor and brushless wiper motor
US10848041B2 (en) Rotating electric machine
JP2010093929A (en) Axial gap-type motor
JP6976492B1 (en) Magnetic flux modulation type magnetic gear
JP3790765B2 (en) Permanent magnet rotating electric machine and electric vehicle using permanent magnet rotating electric machine
US20050116581A1 (en) Rotor for dynamo-electric machine
JP3790773B2 (en) Permanent magnet rotating electric machine and automobile
JP3790766B2 (en) Permanent magnet rotating electric machine and electric vehicle using permanent magnet rotating electric machine
JP3679624B2 (en) Permanent magnet rotating electric machine
JP2003204661A (en) Rotating-electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees