JP2001355933A - Heat pump type air conditioner and its operating method - Google Patents
Heat pump type air conditioner and its operating methodInfo
- Publication number
- JP2001355933A JP2001355933A JP2000175131A JP2000175131A JP2001355933A JP 2001355933 A JP2001355933 A JP 2001355933A JP 2000175131 A JP2000175131 A JP 2000175131A JP 2000175131 A JP2000175131 A JP 2000175131A JP 2001355933 A JP2001355933 A JP 2001355933A
- Authority
- JP
- Japan
- Prior art keywords
- expansion valve
- air conditioner
- heat pump
- heat exchanger
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011017 operating method Methods 0.000 title 1
- 239000003507 refrigerant Substances 0.000 claims description 55
- 238000009835 boiling Methods 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 13
- 238000004378 air conditioning Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 abstract description 25
- 230000008859 change Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば高沸点冷媒
と低沸点冷媒からなる非共沸混合冷媒を用いるヒートポ
ンプ式空気調和機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner using a non-azeotropic mixed refrigerant composed of, for example, a high-boiling refrigerant and a low-boiling refrigerant.
【0002】[0002]
【従来の技術】一般に、圧縮機、室外熱交換器、室外膨
張弁、室内膨張弁および室内熱交換器を備えたヒートポ
ンプ式空気調和機が知られている。2. Description of the Related Art Generally, a heat pump type air conditioner including a compressor, an outdoor heat exchanger, an outdoor expansion valve, an indoor expansion valve, and an indoor heat exchanger is known.
【0003】この種のものでは、空気調和機の起動時
に、上記膨張弁の初期ステップを一定に設定して、初期
弁開度を一定に制御していた。In this type, when the air conditioner is started, the initial step of the expansion valve is set to be constant, and the initial valve opening is controlled to be constant.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、初期弁
開度を一定に制御したのでは、例えば空調負荷が大きい
場合、上記膨張弁の相対的な開き不足により、熱交換器
に流入する冷媒不足が発生し、圧縮機の吐出温度の上昇
の遅れを招来するとともに、空調負荷が小さい場合、上
記膨張弁の相対的な開き過ぎにより、熱交換器に多量の
冷媒が流入して、圧縮機への液バックが発生する等の問
題があった。However, if the initial valve opening is controlled to be constant, for example, when the air-conditioning load is large, the shortage of the refrigerant flowing into the heat exchanger due to the relative insufficient opening of the expansion valve. When the air-conditioning load is small, a large amount of refrigerant flows into the heat exchanger due to the relative opening of the expansion valve. There were problems such as occurrence of liquid back.
【0005】一方、近年では、冷媒として、高沸点冷媒
と低沸点冷媒とからなる非共沸混合冷媒を用いることが
ある。この場合、これがアキュムレータに入ると、低沸
点冷媒から気化して圧縮機に吸い込まれ、高沸点冷媒が
アキュムレータの内部に多く残存するという問題があ
る。こうなると、冷媒回路において低沸点冷媒の液量が
多くなって、非共沸混合冷媒の高沸点冷媒と低沸点冷媒
との比率が所定値に対して変動し、所定の冷媒能力を発
揮できなくなるおそれがある。On the other hand, in recent years, a non-azeotropic mixed refrigerant composed of a high-boiling refrigerant and a low-boiling refrigerant may be used as a refrigerant. In this case, when this enters the accumulator, there is a problem that the low-boiling refrigerant is vaporized and sucked into the compressor, and a large amount of the high-boiling refrigerant remains in the accumulator. In this case, the liquid amount of the low-boiling refrigerant increases in the refrigerant circuit, and the ratio between the high-boiling refrigerant and the low-boiling refrigerant in the non-azeotropic mixed refrigerant fluctuates with respect to a predetermined value. There is a risk.
【0006】これを解消するために、従来、上述のアキ
ュムレータを設けずに、上記室外膨張弁および上記室内
膨張弁を制御して、上記圧縮機への液バックを防止する
ようにした技術が提案されている。In order to solve this problem, there has been proposed a technique in which the outdoor expansion valve and the indoor expansion valve are controlled without providing the accumulator to prevent the liquid from flowing back to the compressor. Have been.
【0007】しかしながら、アキュムレータを設けない
場合、起動時において、上記のように初期弁開度を一定
に制御したのでは、例えば空調負荷が小さい場合、上記
膨張弁の相対的な開き過ぎにより、熱交換器に多量の冷
媒が流入して、圧縮機への液バックが発生するという問
題があった。However, when the accumulator is not provided, if the initial valve opening is controlled to be constant at the time of start-up as described above, for example, when the air-conditioning load is small, the relative expansion of the expansion valve causes the thermal expansion. There is a problem that a large amount of refrigerant flows into the exchanger and liquid back to the compressor occurs.
【0008】そこで、本発明は、上記の課題を解決する
ためになされたものであり、空気調和機の運転停止時の
液バックを防止できるようにした、ヒートポンプ式空気
調和機を提供することを目的としている。Accordingly, the present invention has been made to solve the above-mentioned problem, and it is an object of the present invention to provide a heat pump type air conditioner capable of preventing liquid back when the operation of the air conditioner is stopped. The purpose is.
【0009】[0009]
【課題を解決するための手段】請求項1記載の発明は、
圧縮機、室外熱交換器、室外膨張弁、室内膨張弁、室内
熱交換器を備えたヒートポンプ式空気調和機において、
起動時に、上記室外膨張弁または上記室内膨張弁を閉じ
気味の状態にして、時間の経過とともに、弁開度を開く
初期弁開度制御を行う制御手段を備えたことを特徴とす
る。According to the first aspect of the present invention,
In a heat pump air conditioner equipped with a compressor, an outdoor heat exchanger, an outdoor expansion valve, an indoor expansion valve, and an indoor heat exchanger,
At the time of activation, the outdoor expansion valve or the indoor expansion valve is set in a state of being closed slightly, and control means for performing initial valve opening control for opening the valve opening over time is provided.
【0010】請求項2記載の発明は、圧縮機、室外熱交
換器、室外膨張弁、室内膨張弁、室内熱交換器を備えた
ヒートポンプ式空気調和機において、起動時に、上記室
外膨張弁または上記室内膨張弁を閉じ気味の状態から、
時間の経過とともに、一定の割合で弁開度を開く初期弁
開度制御を行う制御手段を備えたことを特徴とする。According to a second aspect of the present invention, there is provided a heat pump type air conditioner including a compressor, an outdoor heat exchanger, an outdoor expansion valve, an indoor expansion valve, and an indoor heat exchanger. Close the indoor expansion valve,
It is characterized by comprising control means for performing initial valve opening control to open the valve at a constant rate over time.
【0011】請求項3記載の発明は、請求項1または2
記載のものにおいて、上記初期弁開度制御の目標弁開度
を、空調負荷を考慮して決定することを特徴とする。[0011] The invention according to claim 3 is the invention according to claim 1 or 2.
In the above description, a target valve opening of the initial valve opening control is determined in consideration of an air conditioning load.
【0012】請求項4記載の発明は、請求項1または2
記載のものにおいて、上記初期弁開度制御の目標弁開度
を、蒸発器として作用する上記熱交換器側の温度条件を
考慮して決定することを特徴とする。The invention according to claim 4 is the first or second invention.
In the above description, a target valve opening of the initial valve opening control is determined in consideration of a temperature condition on the heat exchanger side acting as an evaporator.
【0013】請求項5記載の発明は、請求項1ないし4
のいずれか1項記載のものにおいて、上記初期弁開度制
御の制御時間を、高圧容器型の圧縮機、低圧容器型の圧
縮機に対応して、変更制御することを特徴とする。[0013] The invention according to claim 5 is the invention according to claims 1 to 4.
Wherein the control time of the initial valve opening degree control is changed and controlled in accordance with a high-pressure container type compressor and a low-pressure container type compressor.
【0014】請求項6記載の発明は、請求項1ないし5
のいずれか1項記載のものにおいて、上記初期弁開度制
御の制御時間を、冷房運転時、暖房運転時に対応して、
変更制御することを特徴とする。The invention according to claim 6 is the first to fifth aspects.
In any one of the above, the control time of the initial valve opening control, during the cooling operation, corresponding to the heating operation,
Change control is performed.
【0015】請求項7記載の発明は、請求項1ないし6
のいずれか1項記載のものにおいて、空気調和機の冷媒
が、高沸点冷媒と低沸点冷媒からなる非共沸混合冷媒で
あことを特徴とするものである。The invention according to claim 7 is the first to sixth aspects of the present invention.
Wherein the refrigerant of the air conditioner is a non-azeotropic mixed refrigerant composed of a high-boiling refrigerant and a low-boiling refrigerant.
【0016】請求項8記載の発明は、圧縮機、室外熱交
換器、室外膨張弁、室内膨張弁、室内熱交換器を備えた
ヒートポンプ式空気調和機の運転方法において、起動時
に、室外膨張弁または室内膨張弁を閉じ気味の状態にし
て、時間の経過とともに、弁開度を開く初期弁開度制御
を行う制御手段を備えたことを特徴とする。The invention according to claim 8 is a method of operating a heat pump type air conditioner including a compressor, an outdoor heat exchanger, an outdoor expansion valve, an indoor expansion valve, and an indoor heat exchanger. Alternatively, control means is provided for performing initial valve opening control for opening the valve opening over time with the indoor expansion valve being in a slightly closed state.
【0017】[0017]
【発明の実施の形態】以下、添付図面を参照して本発明
の一実施形態を詳細に説明する。An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.
【0018】図1は、本発明の実施形態にかかるヒート
ポンプ式空気調和機の回路図である。この実施形態にか
かる空気調和機は、冷媒回路を循環する冷媒として高沸
点冷媒と低沸点冷媒からなる非共沸混合冷媒を用いてい
る。この非共沸混合冷媒としては、例えば、R134a
(化学式;CH2 FCF3 )、R125(化学式;C2
HF5 )、R32(化学式;CH2 F2 )の混合冷媒が
用いられる。FIG. 1 is a circuit diagram of a heat pump type air conditioner according to an embodiment of the present invention. The air conditioner according to this embodiment uses a non-azeotropic mixed refrigerant including a high-boiling refrigerant and a low-boiling refrigerant as the refrigerant circulating in the refrigerant circuit. As this non-azeotropic mixed refrigerant, for example, R134a
(Chemical formula; CH2FCF3), R125 (Chemical formula; C2
A mixed refrigerant of HF5) and R32 (chemical formula: CH2 F2) is used.
【0019】なお、一般に、R134aの沸点は−26
℃であり、R125の沸点が−48℃であり、R32の
沸点は−52℃である。In general, the boiling point of R134a is -26.
° C, the boiling point of R125 is -48 ° C, and the boiling point of R32 is -52 ° C.
【0020】図1に示す冷媒回路には、圧縮機3、室内
熱交換器5、室内膨張弁7、レシーバタンク17、室外
膨張弁10、室外熱交換器9、流路切換え弁としての四
方弁11とが、この順序で配置されている。The refrigerant circuit shown in FIG. 1 includes a compressor 3, an indoor heat exchanger 5, an indoor expansion valve 7, a receiver tank 17, an outdoor expansion valve 10, an outdoor heat exchanger 9, and a four-way valve as a flow path switching valve. 11 are arranged in this order.
【0021】本実施形態では、一般的に上記圧縮機3の
吸込管3Aに接続されるべき、アキュムレータが省略さ
れている。In this embodiment, an accumulator to be connected to the suction pipe 3A of the compressor 3 is generally omitted.
【0022】上記圧縮機3の吐出管3Bと吸込管3Aと
の間にはバイパス管51が接続され、このバイパス管5
1にはキャピラリーチューブ53と開閉弁55とが直列
に接続されている。これらはバイパス手段を構成する。A bypass pipe 51 is connected between the discharge pipe 3B of the compressor 3 and the suction pipe 3A.
1, a capillary tube 53 and an on-off valve 55 are connected in series. These constitute bypass means.
【0023】そして、この空気調和機の運転停止時に、
上記室外膨張弁10および上記室内膨張弁7を全閉する
とともに、上記開閉弁55を全開して、高圧側と低圧側
とを均圧させる制御手段57が設けられている。When the operation of the air conditioner is stopped,
Control means 57 is provided for fully closing the outdoor expansion valve 10 and the indoor expansion valve 7 and fully opening the on-off valve 55 to equalize the pressure on the high pressure side and the low pressure side.
【0024】室外熱交換器9は、冷房時に凝縮器として
暖房時に蒸発器としてそれぞれ作用するものであり、室
内熱交換器5は、冷房時に蒸発器として暖房時に凝縮器
としてそれぞれ作用するものである。The outdoor heat exchanger 9 functions as a condenser during cooling and as an evaporator during heating, and the indoor heat exchanger 5 functions as an evaporator during cooling and as a condenser during heating. .
【0025】四方弁11は、冷房運転時には破線で示す
ように冷媒を流すように位置し、暖房運転時には実線に
示すように位置される。このように四方弁を切換えるこ
とにより冷房と暖房時の冷媒流路が切換えられる。The four-way valve 11 is positioned so as to flow the refrigerant as indicated by a broken line during the cooling operation, and is positioned as indicated by the solid line during the heating operation. By switching the four-way valve in this manner, the refrigerant flow path for cooling and heating is switched.
【0026】次に、上記実施形態の動作を説明する。Next, the operation of the above embodiment will be described.
【0027】暖房運転時には、図1中に実線矢印で示す
ように、圧縮機3、室内熱交換器5、室内膨張弁7、レ
シーバタンク17、室外膨張弁10、室外熱交換器9、
四方弁11の順序で冷媒が循環される。During the heating operation, as shown by the solid arrows in FIG. 1, the compressor 3, the indoor heat exchanger 5, the indoor expansion valve 7, the receiver tank 17, the outdoor expansion valve 10, the outdoor heat exchanger 9,
The refrigerant is circulated in the order of the four-way valve 11.
【0028】室外膨張弁10から室外熱交換器9に導入
された冷媒は、室外熱交換器9が蒸発器として作用する
ため、気化して外気から熱を汲み上げる。The refrigerant introduced from the outdoor expansion valve 10 to the outdoor heat exchanger 9 is vaporized and pumps heat from outside air because the outdoor heat exchanger 9 acts as an evaporator.
【0029】本実施形態では、圧縮機3の吸込管3A
に、液冷媒を貯えるためのアキュムレータが付設されて
いないため、この圧縮機3への冷媒は、ほぼ完全に気化
してから送り込まなければならない。In this embodiment, the suction pipe 3A of the compressor 3
In addition, since no accumulator for storing the liquid refrigerant is provided, the refrigerant to the compressor 3 must be almost completely vaporized before being sent.
【0030】そこで、暖房運転時には、室外膨張弁10
の弁開度が絞られ、室外熱交換器9への冷媒流入量が制
御される。この制御は制御手段57が司る。これによ
り、冷媒は、室外熱交換器9でほぼ完全に気化して、圧
縮機3に送り込まれるため、アキュムレータ無しの状態
でも、液バックが防止される。Therefore, during the heating operation, the outdoor expansion valve 10
, The amount of refrigerant flowing into the outdoor heat exchanger 9 is controlled. This control is controlled by the control means 57. Thereby, the refrigerant is almost completely vaporized in the outdoor heat exchanger 9 and sent to the compressor 3, so that liquid back is prevented even without the accumulator.
【0031】一方、冷房運転時には、図1中に点線矢印
で示すように、圧縮機3、室外熱交換器9、室外膨張弁
10、レシーバタンク17、室内膨張弁7、室内熱交換
器5、四方弁11の順序で冷媒が循環される。On the other hand, during the cooling operation, as indicated by the dotted arrows in FIG. 1, the compressor 3, the outdoor heat exchanger 9, the outdoor expansion valve 10, the receiver tank 17, the indoor expansion valve 7, the indoor heat exchanger 5, The refrigerant is circulated in the order of the four-way valve 11.
【0032】室内膨張弁7から室内熱交換器5に導入さ
れた冷媒は、室内熱交換器5が蒸発器として作用するた
め、気化して外気から熱を汲み上げる。The refrigerant introduced from the indoor expansion valve 7 into the indoor heat exchanger 5 is vaporized and pumps heat from outside air because the indoor heat exchanger 5 acts as an evaporator.
【0033】この場合には、室内膨張弁7の弁開度が絞
られ、室内熱交換器5への冷媒流入量が制御される。こ
の制御は制御手段57が司る。これにより、冷媒は、室
内熱交換器5でほぼ完全に気化して、圧縮機3に送り込
まれるため、アキュムレータ無しの状態でも、液バック
が防止される。In this case, the opening degree of the indoor expansion valve 7 is reduced, and the amount of refrigerant flowing into the indoor heat exchanger 5 is controlled. This control is controlled by the control means 57. Thereby, the refrigerant is almost completely vaporized in the indoor heat exchanger 5 and sent to the compressor 3, so that liquid back is prevented even without an accumulator.
【0034】また、以下の制御によって、アキュムレー
タ無しの状態で、運転停止時における液バックが防止さ
れる。Further, the following control prevents the liquid back when the operation is stopped without the accumulator.
【0035】すなわち、冷房運転中に、その運転を停止
した場合、まず、制御手段57によって、室外膨張弁1
0および室内膨張弁7が全閉される。これにより、液冷
媒は、室内熱交換器5の内部等に封じ込められる。That is, when the operation is stopped during the cooling operation, the control means 57 first controls the outdoor expansion valve 1.
0 and the indoor expansion valve 7 are fully closed. Thus, the liquid refrigerant is sealed in the interior of the indoor heat exchanger 5 and the like.
【0036】ただし、このままの状態を放置すると、運
転停止直後に、冷媒回路内の高圧側と低圧側とが均圧さ
れるまでの間、圧縮機3の吸込管3A内の低圧によって
吸い上げられるように、室内熱交換器5の内部に封じ込
められるべき液冷媒が、圧縮機3側へ移動する。この事
態が発生すれば、圧縮機3の吸込管3Aにアキュムレー
タが無い限り、圧縮機3への液バックを防止できない。However, if this state is left as it is, immediately after the operation is stopped, until the high pressure side and the low pressure side in the refrigerant circuit are equalized, the pressure is sucked up by the low pressure in the suction pipe 3A of the compressor 3. Then, the liquid refrigerant to be confined inside the indoor heat exchanger 5 moves to the compressor 3 side. If this situation occurs, liquid back to the compressor 3 cannot be prevented unless there is an accumulator in the suction pipe 3A of the compressor 3.
【0037】この事態を回避するため、運転停止直後に
は、制御手段57によって、開閉弁55が全開される。
すると、圧縮機3の吐出管3Bと吸込管3Aとの間が、
強制的に均圧される。これによれば、室内熱交換器5内
の液冷媒が、圧縮機3側へ移動することがなく、そのま
ま、室内熱交換器5内に封じ込められるため、アキュム
レータが無い状態でも、圧縮機3への液バックが防止さ
れる。In order to avoid this situation, immediately after the operation is stopped, the control means 57 opens the on-off valve 55 fully.
Then, between the discharge pipe 3B and the suction pipe 3A of the compressor 3,
Forced equalization. According to this, since the liquid refrigerant in the indoor heat exchanger 5 does not move to the compressor 3 side and is directly contained in the indoor heat exchanger 5, even if there is no accumulator, the liquid refrigerant flows to the compressor 3. Liquid back is prevented.
【0038】暖房運転中に、その運転を停止した場合に
は、制御手段57によって、室外膨張弁10および室内
膨張弁7が全閉される。これにより、液冷媒は、室外熱
交換器9の内部等に封じ込められる。If the operation is stopped during the heating operation, the outdoor expansion valve 10 and the indoor expansion valve 7 are fully closed by the control means 57. As a result, the liquid refrigerant is sealed inside the outdoor heat exchanger 9 or the like.
【0039】また、運転停止直後に、制御手段57によ
って、開閉弁55が全開される。すると、圧縮機3の吐
出管3Bと吸込管3Aとの間が、強制的に均圧される。
これによれば、室外熱交換器9内の液冷媒が、圧縮機3
側へ移動することがなく、そのまま、室外熱交換器9内
に封じ込められるため、アキュムレータが無い状態で
も、圧縮機3への液バックが防止される。Immediately after the operation is stopped, the on-off valve 55 is fully opened by the control means 57. Then, the pressure between the discharge pipe 3B and the suction pipe 3A of the compressor 3 is forcibly equalized.
According to this, the liquid refrigerant in the outdoor heat exchanger 9 is supplied to the compressor 3
Since the liquid does not move to the side and is sealed in the outdoor heat exchanger 9 as it is, even if there is no accumulator, liquid back to the compressor 3 is prevented.
【0040】これによれば、アキュムレータが不要にな
るため、コストダウンが図られるとともに、室外機の小
型化が図られる。また、上記バイパス手段は、開閉弁5
5のほかにキャピラリーチューブ53を直列に有するた
め、このキャピラリーチューブ53の抵抗を適宜設定し
ておけば、この空気調和機の運転中に開閉弁55を開く
ことにより、圧縮機3の吐出冷媒の一部が、吸込管3A
に戻されるため、圧縮機3の能力調整が可能になる等の
効果が得られる。According to this, since an accumulator is not required, the cost can be reduced and the size of the outdoor unit can be reduced. Further, the bypass means includes an on-off valve 5.
5, the resistance of the capillary tube 53 is set appropriately, and by opening the on-off valve 55 during the operation of the air conditioner, the flow of the refrigerant discharged from the compressor 3 is reduced. Part of the suction pipe 3A
Therefore, effects such as the ability to adjust the capacity of the compressor 3 can be obtained.
【0041】本実施形態では、空気調和機の起動時の制
御に特徴を有する。The present embodiment is characterized in the control at the time of starting the air conditioner.
【0042】すなわち、起動時には、上記制御手段57
を介して、図2に示すように、上記膨張弁の初期弁開度
制御が行われる。この初期弁開度制御の制御時間Tは例
えば3分程度であり、その後、上記膨張弁の通常制御が
行われる。That is, at the time of startup, the control means 57
2, the initial valve opening control of the expansion valve is performed as shown in FIG. The control time T of the initial valve opening control is, for example, about 3 minutes, and thereafter, the normal control of the expansion valve is performed.
【0043】冷房運転時には、図1において、弁開度の
制御対象が室内膨張弁7である。この室内膨張弁7の起
動時制御がうまく実行されないと、室内熱交換器5での
冷媒不足や、圧縮機3への液バックが発生する。During the cooling operation, the indoor expansion valve 7 is controlled in FIG. If the control at the time of starting the indoor expansion valve 7 is not properly executed, a shortage of refrigerant in the indoor heat exchanger 5 and a liquid back to the compressor 3 occur.
【0044】なお、暖房運転時には、その制御対象が室
外膨張弁9となるが、その動作は同じであるため、説明
を省略する。During the heating operation, the object to be controlled is the outdoor expansion valve 9, but the operation is the same, and the description is omitted.
【0045】本実施形態では、起動時において、図2に
示すように、室内膨張弁7に対する初期弁開度制御が実
行される。In the present embodiment, at the time of startup, as shown in FIG. 2, the initial valve opening control for the indoor expansion valve 7 is executed.
【0046】この初期弁開度制御は、室内膨張弁7の弁
開度を100ステップからスタートさせる。ここで、膨
張弁7はステッピングモータ(図示せず)で開閉される
ものとし、100ステップはほとんど全閉である。その
後、時間の経過とともに、一定の割合で弁開度が開かれ
て、本制御における目標弁開度Aの180ステップに到
達する。全開は480ステップである。In this initial valve opening control, the valve opening of the indoor expansion valve 7 is started from 100 steps. Here, the expansion valve 7 is opened and closed by a stepping motor (not shown), and 100 steps are almost fully closed. Thereafter, as the time elapses, the valve opening is opened at a fixed rate, and reaches 180 steps of the target valve opening A in the present control. Full opening is 480 steps.
【0047】これによれば、ほぼ全閉の100ステップ
からスタートし、時間の経過とともに、弁開度が、一定
の割合で目標弁開度Aまで開かれていくため、アキュム
レータが無い状態でも、起動時における液バックが防止
される。According to this, starting from 100 steps of substantially full closing, the valve opening is opened to the target valve opening A at a fixed rate with the passage of time, so that even if there is no accumulator, Liquid back during startup is prevented.
【0048】上記目標弁開度Aは、空調負荷を考慮して
決定される。The target valve opening A is determined in consideration of the air conditioning load.
【0049】特に、影響度の大きい、蒸発器として動作
する熱交換器側の温度条件を考慮して決定することが望
ましい。すなわち、冷房運転時は、室内熱交換器5側の
温度条件として、例えば室内機の吸込温度Tbを考慮
し、暖房運転時は、室外熱交換器9側の温度条件とし
て、例えば外気温度OAを考慮して決定する。また、膨
張弁の流量特性(流量変化量特性)は、二次式的とな
る。そのため、上記目標弁開度(ステップ)Aは下記式
に基づいて設定される。In particular, it is desirable to determine in consideration of the temperature condition on the side of the heat exchanger that operates as an evaporator, which has a large influence. That is, in the cooling operation, for example, the suction temperature Tb of the indoor unit is considered as the temperature condition on the indoor heat exchanger 5 side, and in the heating operation, the outdoor air temperature OA is set as the temperature condition on the outdoor heat exchanger 9 side. Decide in consideration. In addition, the flow characteristic (flow rate change characteristic) of the expansion valve is quadratic. Therefore, the target valve opening (step) A is set based on the following equation.
【0050】 冷房運転時 ステップA=a×(Tb+b)+c …(1) 暖房運転時 ステップA=a’×(OA+b’)+c’ …(2) a,a’,b,b’,c,c’=定数 この実施形態では、空調負荷に応じて、上述した目標弁
開度Aが変更される。従って、空調負荷に応じて、適正
な初期弁開度制御が行われるので、アキュムレータが無
い状態でも、起動時における液バックが防止されるとと
もに、起動後の安定運転移行までの時間短縮が図られ
る。また、オイル挙動が安定する。During cooling operation Step A = a × (Tb + b) + c (1) During heating operation Step A = a ′ × (OA + b ′) + c ′ (2) a, a ′, b, b ′, c, c ′ = constant In this embodiment, the above-described target valve opening A is changed according to the air conditioning load. Therefore, appropriate initial valve opening control is performed according to the air-conditioning load, so that even when there is no accumulator, liquid back at startup is prevented, and the time required for stable operation after startup is reduced. . Further, the oil behavior is stabilized.
【0051】つぎに、別の実施形態を説明する。Next, another embodiment will be described.
【0052】この実施形態では、初期弁開度制御の制御
時間T(図2)を、高圧容器型の圧縮機(例えば、ロー
タリー圧縮機等)、低圧容器型の圧縮機(例えば、スク
ロール圧縮機等)に対応して、変更制御する。例えば、
高圧容器型の圧縮機では吐出温度がなかなか上昇しない
ため、上記の制御時間Tを長く設定し、低圧容器型の圧
縮機では吐出温度が早く上昇するため、制御時間Tを短
く設定する。また、上記の制御時間Tを、冷房運転時、
暖房運転時に対応して、変更制御してもよい。例えば、
冷房運転時には短く、暖房運転時には長く設定する。In this embodiment, the control time T (FIG. 2) of the initial valve opening control is set to a high-pressure container type compressor (for example, a rotary compressor or the like) or a low-pressure container type compressor (for example, a scroll compressor). , Etc.). For example,
The control time T is set to be long because the discharge temperature does not easily rise in the high-pressure container type compressor, and the control time T is set short in the low-pressure container type compressor because the discharge temperature rises quickly. Further, the above control time T is set at the time of cooling operation,
Change control may be performed in response to the heating operation. For example,
Set short during cooling operation and long during heating operation.
【0053】これによれば、最適な過熱運転起動制御を
行うことができ、アキュムレータが無い状態でも、起動
時における液バックが防止されるとともに、起動後の安
定運転移行までの時間短縮が図られる。According to this, it is possible to perform the optimal superheat operation start control, to prevent the liquid back at the start even in the absence of the accumulator, and to shorten the time until the stable operation after the start. .
【0054】以上、一実施形態に基づいて本発明を説明
したが、本発明は、これに限定されるものでないことは
明らかである。Although the present invention has been described based on one embodiment, it is apparent that the present invention is not limited to this.
【0055】[0055]
【発明の効果】本発明によれば、アキュムレータ無しの
状態で、運転停止時における圧縮機への液バックを防止
することができる。空気調和機の起動後の安定運転移行
までの時間短縮が図られる等の効果を奏する。According to the present invention, it is possible to prevent liquid back to the compressor when the operation is stopped without an accumulator. This has the effect of shortening the time from the start of the air conditioner to the transition to stable operation, for example.
【図1】本発明のヒートポンプ式空気調和機の実施形態
を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram showing an embodiment of a heat pump type air conditioner of the present invention.
【図2】膨張弁の制御タイムチャートである。FIG. 2 is a control time chart of an expansion valve.
3 圧縮機 3A 吸込管 3B 吐出管 5 室内熱交換器 9 室外熱交換器 11 四方弁 17 レシーバタンク 57 制御手段 Reference Signs List 3 Compressor 3A Suction pipe 3B Discharge pipe 5 Indoor heat exchanger 9 Outdoor heat exchanger 11 Four-way valve 17 Receiver tank 57 Control means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田島 保男 栃木県足利市大月町1番地 三洋電機空調 株式会社内 (72)発明者 田村 清 栃木県足利市大月町1番地 三洋電機空調 株式会社内 (72)発明者 田村 ▲吉▼久 栃木県足利市大月町1番地 三洋電機空調 株式会社内 Fターム(参考) 3L092 AA07 DA06 EA18 FA26 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuo Tajima 1 Otsukicho, Ashikaga, Tochigi Prefecture Sanyo Electric Air Conditioning Co., Ltd. (72) Inventor Kiyoshi Tamura 1 Otsukicho, Ashikaga, Tochigi Prefecture Sanyo Electric Air Conditioning Co., Ltd. (72) Inventor Tamura Yoshiyoshi Hisashi 1 Otsukicho, Ashikaga City, Tochigi Prefecture Sanyo Electric Air Conditioning Co., Ltd. F term (reference) 3L092 AA07 DA06 EA18 FA26
Claims (8)
内膨張弁、室内熱交換器を備えたヒートポンプ式空気調
和機において、 起動時に、上記室外膨張弁または上記室内膨張弁を閉じ
気味の状態にして、時間の経過とともに、弁開度を開く
初期弁開度制御を行う制御手段を備えたことを特徴とす
るヒートポンプ式空気調和機。1. A heat pump air conditioner including a compressor, an outdoor heat exchanger, an outdoor expansion valve, an indoor expansion valve, and an indoor heat exchanger, wherein at start-up, the outdoor expansion valve or the indoor expansion valve is closed. A heat pump type air conditioner comprising a control means for performing an initial valve opening control for opening the valve opening as time elapses in the state described above.
内膨張弁、室内熱交換器を備えたヒートポンプ式空気調
和機において、 起動時に、上記室外膨張弁または上記室内膨張弁を閉じ
気味の状態から、時間の経過とともに、一定の割合で弁
開度を開く初期弁開度制御を行う制御手段を備えたこと
を特徴とするヒートポンプ式空気調和機。2. A heat pump type air conditioner comprising a compressor, an outdoor heat exchanger, an outdoor expansion valve, an indoor expansion valve, and an indoor heat exchanger, wherein at start-up, the outdoor expansion valve or the indoor expansion valve is closed. A heat pump type air conditioner comprising control means for performing an initial valve opening control for opening the valve opening at a fixed rate with time from the state of (1).
調負荷を考慮して決定することを特徴とする請求項1ま
たは2記載のヒートポンプ式空気調和機。3. The heat pump type air conditioner according to claim 1, wherein the target valve opening of the initial valve opening control is determined in consideration of an air conditioning load.
発器として作用する上記熱交換器側の温度条件を考慮し
て決定することを特徴とする請求項1または2記載のヒ
ートポンプ式空気調和機。4. The heat pump according to claim 1, wherein a target valve opening of the initial valve opening control is determined in consideration of a temperature condition on a side of the heat exchanger acting as an evaporator. Type air conditioner.
容器型の圧縮機、低圧容器型の圧縮機に対応して、変更
制御することを特徴とする請求項1ないし4のいずれか
1項記載のヒートポンプ式空気調和機。5. The control method according to claim 1, wherein the control time of the initial valve opening control is changed corresponding to a high-pressure container type compressor and a low-pressure container type compressor. 2. The heat pump type air conditioner according to claim 1.
運転時、暖房運転時に対応して、変更制御することを特
徴とする請求項1ないし5のいずれか1項記載のヒート
ポンプ式空気調和機。6. The heat pump air according to claim 1, wherein the control time of the initial valve opening degree control is changed in accordance with a cooling operation and a heating operation. Harmony machine.
点冷媒からなる非共沸混合冷媒であることを特徴とする
請求項1ないし6のいずれか1項記載のヒートポンプ式
空気調和機。7. The heat pump type air conditioner according to claim 1, wherein the refrigerant of the air conditioner is a non-azeotropic mixed refrigerant composed of a high-boiling refrigerant and a low-boiling refrigerant. .
内膨張弁、室内熱交換器を備えたヒートポンプ式空気調
和機の運転方法において、 起動時に、上記室外膨張弁または上記室内膨張弁を閉じ
気味の状態にして、時間の経過とともに、弁開度を開く
初期弁開度制御を行う制御手段を備えたことを特徴とす
るヒートポンプ式空気調和機の運転方法。8. A method for operating a heat pump type air conditioner including a compressor, an outdoor heat exchanger, an outdoor expansion valve, an indoor expansion valve, and an indoor heat exchanger, wherein the outdoor expansion valve or the indoor expansion valve is activated at the time of startup. A method of operating the heat pump type air conditioner, characterized by comprising a control means for performing initial valve opening control for opening the valve opening as time elapses by closing the valve slightly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000175131A JP3819678B2 (en) | 2000-06-12 | 2000-06-12 | Heat pump air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000175131A JP3819678B2 (en) | 2000-06-12 | 2000-06-12 | Heat pump air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001355933A true JP2001355933A (en) | 2001-12-26 |
JP3819678B2 JP3819678B2 (en) | 2006-09-13 |
Family
ID=18677055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000175131A Expired - Fee Related JP3819678B2 (en) | 2000-06-12 | 2000-06-12 | Heat pump air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3819678B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005140433A (en) * | 2003-11-07 | 2005-06-02 | Hitachi Ltd | Air conditioner |
JP2006336889A (en) * | 2005-05-31 | 2006-12-14 | Mitsubishi Heavy Ind Ltd | Air conditioner |
JP2012137207A (en) * | 2010-12-24 | 2012-07-19 | Mitsubishi Electric Corp | Refrigerating cycle apparatus |
JP2015083894A (en) * | 2013-10-25 | 2015-04-30 | ダイキン工業株式会社 | Refrigeration equipment |
WO2019073517A1 (en) * | 2017-10-10 | 2019-04-18 | 三菱電機株式会社 | Air conditioning device |
JPWO2021053710A1 (en) * | 2019-09-17 | 2021-03-25 | ||
CN114110999A (en) * | 2021-11-22 | 2022-03-01 | 珠海格力电器股份有限公司 | Method and device for controlling opening degree of internal machine of multi-connected unit, electronic equipment and storage medium |
-
2000
- 2000-06-12 JP JP2000175131A patent/JP3819678B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005140433A (en) * | 2003-11-07 | 2005-06-02 | Hitachi Ltd | Air conditioner |
JP2006336889A (en) * | 2005-05-31 | 2006-12-14 | Mitsubishi Heavy Ind Ltd | Air conditioner |
JP2012137207A (en) * | 2010-12-24 | 2012-07-19 | Mitsubishi Electric Corp | Refrigerating cycle apparatus |
JP2015083894A (en) * | 2013-10-25 | 2015-04-30 | ダイキン工業株式会社 | Refrigeration equipment |
WO2015060384A1 (en) * | 2013-10-25 | 2015-04-30 | ダイキン工業株式会社 | Refrigeration device |
US11435117B2 (en) | 2017-10-10 | 2022-09-06 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
WO2019073517A1 (en) * | 2017-10-10 | 2019-04-18 | 三菱電機株式会社 | Air conditioning device |
JPWO2019073517A1 (en) * | 2017-10-10 | 2020-04-02 | 三菱電機株式会社 | Air conditioner |
CN114402173B (en) * | 2019-09-17 | 2023-09-12 | 东芝开利株式会社 | Air conditioning device and control method |
KR20220047820A (en) * | 2019-09-17 | 2022-04-19 | 도시바 캐리어 가부시키가이샤 | Air conditioners and control methods |
CN114402173A (en) * | 2019-09-17 | 2022-04-26 | 东芝开利株式会社 | Air conditioner and control method |
WO2021053710A1 (en) * | 2019-09-17 | 2021-03-25 | 東芝キヤリア株式会社 | Air conditioner and control method |
JP7210756B2 (en) | 2019-09-17 | 2023-01-23 | 東芝キヤリア株式会社 | Air conditioner and control method |
EP4015944A4 (en) * | 2019-09-17 | 2023-04-05 | Toshiba Carrier Corporation | AIR CONDITIONING AND CONTROL PROCEDURES |
JPWO2021053710A1 (en) * | 2019-09-17 | 2021-03-25 | ||
AU2019466418B2 (en) * | 2019-09-17 | 2023-11-30 | Toshiba Carrier Corporation | Air conditioner and control method |
KR102749287B1 (en) * | 2019-09-17 | 2024-12-31 | 니혼 캐리어 가부시키가이샤 | Air conditioning apparatus and control method |
US12188678B2 (en) | 2019-09-17 | 2025-01-07 | Carrier Japan Corporation | Air conditioner and control method |
CN114110999A (en) * | 2021-11-22 | 2022-03-01 | 珠海格力电器股份有限公司 | Method and device for controlling opening degree of internal machine of multi-connected unit, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP3819678B2 (en) | 2006-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100457569B1 (en) | a linear expansion valve's control method for a heat pump system | |
CN107110570B (en) | Thermal storage air conditioner | |
WO2019073870A1 (en) | Refrigeration device | |
WO2014068833A1 (en) | Air conditioner | |
JP3640749B2 (en) | Refrigeration cycle of air conditioner | |
CA2981676C (en) | Expansion valve control system and method for air conditioning apparatus | |
JP2003214713A (en) | Refrigeration cycle device | |
JP5239897B2 (en) | refrigerator | |
CN112739966A (en) | heat pump device | |
JP2001355933A (en) | Heat pump type air conditioner and its operating method | |
EP3062041A1 (en) | Refrigeration device | |
JP3750520B2 (en) | Refrigeration equipment | |
JPH04340046A (en) | Air conditioner operation control device | |
JP3744773B2 (en) | Heat pump air conditioner | |
JPH07190515A (en) | Freezer | |
JP2001355931A (en) | Heat pump type air conditioner | |
WO2022249437A1 (en) | Heat pump device and hot water supply device | |
JP3945949B2 (en) | Air conditioner | |
JP2002122364A (en) | Refrigerating apparatus and air conditioner using the apparatus | |
WO2020008916A1 (en) | Refrigeration cycle device and method for controlling same | |
JP7601171B1 (en) | Refrigeration cycle device and method for controlling the refrigeration cycle device | |
JP7019070B2 (en) | Air conditioner | |
JPH05280837A (en) | Air conditioner | |
JP3945948B2 (en) | Air conditioner | |
JPH11159906A (en) | Absorption heat pump system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040702 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050913 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060502 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060515 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060615 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090623 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120623 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |