[go: up one dir, main page]

JP2001345111A - Electrolyte membrane for solid polymer fuel cell and method of manufacturing it - Google Patents

Electrolyte membrane for solid polymer fuel cell and method of manufacturing it

Info

Publication number
JP2001345111A
JP2001345111A JP2001096810A JP2001096810A JP2001345111A JP 2001345111 A JP2001345111 A JP 2001345111A JP 2001096810 A JP2001096810 A JP 2001096810A JP 2001096810 A JP2001096810 A JP 2001096810A JP 2001345111 A JP2001345111 A JP 2001345111A
Authority
JP
Japan
Prior art keywords
film
polymer
fuel cell
electrolyte membrane
fibril
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001096810A
Other languages
Japanese (ja)
Inventor
Yoshiaki Higuchi
義明 樋口
Ichiro Terada
一郎 寺田
Hiroshi Shimoda
博司 下田
Satoru Motomura
了 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001096810A priority Critical patent/JP2001345111A/en
Publication of JP2001345111A publication Critical patent/JP2001345111A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer fuel cell having a cation exchange membrane with low resistance and high strength as an electrolyte membrane and high stability in the initial performance and long-term performance. SOLUTION: The cation exchange membrane reinforced with a reinforcing material made from a fibril-like fluorocarbon polymer in which the fibrils having a fibril fiber diameter of 1 μm or less occupy 70% or more of the number of total fibrils, and having a thickness of 3-70 μm made from a perfluorocarbon polymer having a sulfonic group is used as the electrolyte membrane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池用電解質膜に関する。
The present invention relates to an electrolyte membrane for a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】水素・酸素燃料電池は、その反応生成物
が原理的に水のみであり地球環境への悪影響がほとんど
ない発電システムとして注目されている。固体高分子型
燃料電池は、かつてジェミニ計画及びバイオサテライト
計画で宇宙船に搭載されたが、当時の電池出力密度は低
かった。その後、より高性能のアルカリ型燃料電池が開
発され、現在のスペースシャトルに至るまで宇宙用には
アルカリ型燃料電池が採用されている。
2. Description of the Related Art A hydrogen / oxygen fuel cell has attracted attention as a power generation system whose reaction product is only water in principle and has almost no adverse effect on the global environment. Solid polymer fuel cells were once mounted on spacecraft in the Gemini and Biosatellite programs, but the power density at that time was low. Since then, higher performance alkaline fuel cells have been developed, and up to the present space shuttle, alkaline fuel cells have been adopted for space applications.

【0003】ところが、近年技術の進歩により固体高分
子型燃料電池が再び注目されている。その理由として次
の2点が挙げられる。(1)固体高分子電解質として高
導電性の膜が開発された。(2)ガス拡散電極層に用い
られる触媒をカーボンに担持し、これをイオン交換樹脂
で被覆することにより、高い活性が得られるようになっ
た。
However, in recent years, polymer electrolyte fuel cells have attracted attention again due to technological advances. The reasons are as follows. (1) A highly conductive film was developed as a solid polymer electrolyte. (2) By supporting a catalyst used for the gas diffusion electrode layer on carbon and coating the same with an ion exchange resin, high activity can be obtained.

【0004】性能をさらに向上させるために、固体高分
子電解質膜のスルホン酸基濃度の増加と厚さの低減によ
り電気抵抗を低減させることが考えられる。しかし、ス
ルホン酸基濃度の著しい増加は電解質膜の機械的強度や
引裂強さを低下させたり、取扱の際に寸法変化を起こし
たり、長期運転において電解質膜がクリープしやすくな
り耐久性を低下させる等の問題が生じる。一方厚さの低
減は電解質膜の機械的強度及び引裂強さを低下させた
り、さらに膜をガス拡散電極と接合させる場合等の加工
性・取扱い性を低下させる等の問題が生じる。
In order to further improve the performance, it is conceivable to reduce the electric resistance by increasing the sulfonic acid group concentration and reducing the thickness of the solid polymer electrolyte membrane. However, a remarkable increase in the sulfonic acid group concentration decreases the mechanical strength and tear strength of the electrolyte membrane, causes dimensional changes during handling, and reduces the durability because the electrolyte membrane is easily creeped during long-term operation. And the like. On the other hand, a reduction in thickness causes problems such as a decrease in mechanical strength and tear strength of the electrolyte membrane, and a decrease in workability and handleability when the membrane is bonded to a gas diffusion electrode.

【0005】[0005]

【発明が解決しようとする課題】上記の問題を解決する
方法として、ポリテトラフルオロエチレン(以下、PT
FEという。)多孔膜にスルホン酸基を有するフッ素系
イオン交換ポリマーを含浸する方法が提案されている
(特公平5−75835)が、厚さは薄くできるものの
多孔体状のPTFEでは膜の電気抵抗が充分に低下しな
い問題があった。
As a method for solving the above problem, polytetrafluoroethylene (hereinafter, referred to as PT) is used.
It is called FE. ) A method of impregnating a porous membrane with a fluorinated ion exchange polymer having a sulfonic acid group has been proposed (Japanese Patent Publication No. 5-75835). However, although the thickness can be reduced, the electrical resistance of the porous PTFE membrane is sufficient. There was a problem that did not decrease.

【0006】これを解決する方法として、陽イオン交換
膜がフィブリル状、織布状、又は不織布状のパーフルオ
ロカーボン重合体で補強された陽イオン交換膜が提案さ
れた(特開平6−231779)。この膜は抵抗は低
く、この膜を用いて作製した燃料電池の発電特性は比較
的良好であったが、厚さはせいぜい100〜200μm
であり、充分に薄くなく厚さムラがあるため、発電特性
や量産性の点で不充分であった。
As a method for solving this problem, there has been proposed a cation exchange membrane in which the cation exchange membrane is reinforced with a fibril-like, woven-like or non-woven-like perfluorocarbon polymer (JP-A-6-231779). This membrane has low resistance, and the power generation characteristics of a fuel cell produced using this membrane were relatively good, but the thickness was at most 100 to 200 μm.
However, since the thickness was not sufficiently thin and the thickness was uneven, the power generation characteristics and mass productivity were insufficient.

【0007】そこで本発明は、薄くて厚さの均一な補強
膜を提供し、発電特性に優れ、量産が可能な固体高分子
型燃料電池用電解質膜を提供することを目的とする。
Accordingly, an object of the present invention is to provide a thin and uniform reinforcing membrane, to provide an electrolyte membrane for a polymer electrolyte fuel cell which has excellent power generation characteristics and can be mass-produced.

【0008】[0008]

【課題を解決するための手段】本発明は、フィブリル状
のフルオロカーボン重合体からなる補強材で補強された
スルホン酸基を有するパーフルオロカーボン重合体から
なる陽イオン交換膜であって、厚さが3〜70μmであ
り、かつ前記補強材はフィブリル繊維径が1μm以下の
フィブリル数が全フィブリル数の70%以上を占めるこ
とを特徴とする固体高分子型燃料電池用電解質膜を提供
する。
SUMMARY OF THE INVENTION The present invention provides a cation exchange membrane comprising a perfluorocarbon polymer having a sulfonic acid group and reinforced with a reinforcing material comprising a fibril-like fluorocarbon polymer and having a thickness of 3%. And a reinforcing material having a fibril fiber diameter of 1 μm or less occupying 70% or more of the total number of fibrils.

【0009】また、本発明は、スルホン酸基又はその前
駆体基を有するパーフルオロカーボン重合体とフィブリ
ル化可能なフルオロカーボン重合体との混合物をフィル
ム状に成形し、得られたフィルムの少なくとも片面に延
伸補助フィルムを積層した後、加熱下で2軸延伸するこ
とを特徴とする固体高分子型燃料電池用電解質膜の製造
方法を提供する。
Further, the present invention provides a method of forming a mixture of a perfluorocarbon polymer having a sulfonic acid group or a precursor group thereof and a fluorocarbon polymer capable of fibrillation into a film, and stretching the film on at least one surface of the obtained film. A method for producing an electrolyte membrane for a polymer electrolyte fuel cell, comprising laminating an auxiliary film and then biaxially stretching the film under heating.

【0010】[0010]

【発明の実施の形態】本発明において、スルホン酸基の
前駆体基とは、加水分解、酸型化処理等を行うことによ
りスルホン酸基に変換し得る基をいう。具体的には、−
SO2F基、−SO2Cl基等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a precursor group of a sulfonic acid group refers to a group which can be converted to a sulfonic acid group by performing hydrolysis, acid-forming treatment and the like. Specifically,-
An SO 2 F group and a —SO 2 Cl group are exemplified.

【0011】本発明において、フィブリル状のフルオロ
カーボン重合体からなる補強材(以下、フィブリル状補
強材という。)は、陽イオン交換膜中に含まれる量が少
なくても、引裂強さを高め寸法変化を少なくする等の補
強効果を発現できる。また、フィブリル状補強材を含有
させることによる膜の抵抗上昇も小さくできるので、有
効な補強材である。
In the present invention, a reinforcing material comprising a fibril-like fluorocarbon polymer (hereinafter referred to as a fibril-like reinforcing material) increases tear strength and reduces dimensional change even if the amount contained in a cation exchange membrane is small. And a reinforcing effect such as reduction of Further, since the increase in the resistance of the membrane due to the inclusion of the fibril-like reinforcing material can be reduced, it is an effective reinforcing material.

【0012】本発明において、フィブリル状補強材で補
強された膜の厚さは3〜70μmである。3μmより薄
いと電極を接合する際に欠陥が発生しやすくなり、70
μmより厚いと膜抵抗が増大する。特に厚さが10〜3
0μmであると、膜抵抗も低く欠陥発生もなく、さらに
燃料電池に組込んで評価を行うと発電特性が良好で安定
しており好ましい。
In the present invention, the thickness of the membrane reinforced with the fibril-like reinforcing material is 3 to 70 μm. If the thickness is less than 3 μm, defects are likely to be generated when joining the electrodes.
If the thickness is larger than μm, the film resistance increases. Especially the thickness is 10-3
When the thickness is 0 μm, the film resistance is low, no defects are generated, and the power generation characteristics are favorable and stable when incorporated in a fuel cell and evaluated.

【0013】本発明におけるフィブリル状補強材は、繊
維径が1μm以下のフィブリルが全フィブリル数の70
%以上、好ましくは95%以上である。フィブリル状補
強材のフィブリルの繊維径は、補強膜の加工成形時に応
力がかかることで微細化するため、最終的に得られる、
燃料電池に組込む膜で評価する必要がある。
In the fibril-like reinforcing material of the present invention, fibrils having a fiber diameter of 1 μm or less have a total fibril number of 70.
%, Preferably 95% or more. The fiber diameter of the fibrils of the fibril-like reinforcing material is finally obtained because it is refined by applying a stress at the time of processing and forming the reinforcing film.
It is necessary to evaluate with the membrane incorporated in the fuel cell.

【0014】フィブリル状補強材のフィブリルの繊維径
は、膜をエタノール等の極性溶媒に高温で浸漬すること
によりスルホン酸基を有するパーフルオロカーボン重合
体(以下、スルホン酸型パーフルオロカーボン重合体と
いう。)を溶解し、フィブリル状補強材のみを取り出し
て評価することもできるが、膜の断面を走査型電子顕微
鏡で観察して繊維径と繊維数を評価する方法が、簡便に
評価できるので好ましい。フィブリル状補強材のフィブ
リルは、繊維径1μm以下のフィブリルが全フィブリル
数の70%未満であると補強効果が小さくなる。
The fiber diameter of the fibrils of the fibril-like reinforcing material can be determined by immersing the membrane in a polar solvent such as ethanol at a high temperature to obtain a perfluorocarbon polymer having a sulfonic acid group (hereinafter referred to as a sulfonic acid type perfluorocarbon polymer). Can be dissolved and only the fibril-like reinforcing material can be taken out and evaluated. However, a method of observing the cross section of the membrane with a scanning electron microscope and evaluating the fiber diameter and the number of fibers is preferable because it can be easily evaluated. The fibril of the fibril-shaped reinforcing material has a small reinforcing effect when the fibril having a fiber diameter of 1 μm or less is less than 70% of the total number of fibrils.

【0015】本発明で使用するフィブリル状補強材とな
るフルオロカーボン重合体の含有率は、イオン交換膜全
質量中に0.5〜15%であることが好ましい。0.5
%より少ないと補強効果が充分に発現されず、15%よ
り多いと膜抵抗が高くなりやすい。2〜8%の場合に
は、膜抵抗が上昇せずかつ補強効果が充分に発現され、
さらに成形性も良好であるので特に好ましい。
The content of the fluorocarbon polymer serving as the fibril reinforcing material used in the present invention is preferably 0.5 to 15% based on the total mass of the ion exchange membrane. 0.5
%, The reinforcing effect is not sufficiently exhibited, and when it is more than 15%, the film resistance tends to increase. In the case of 2 to 8%, the membrane resistance does not increase and the reinforcing effect is sufficiently exhibited,
It is particularly preferable because the moldability is good.

【0016】本発明におけるフィブリル状補強材は、P
TFE又はテトラフルオロエチレンに基づく重合単位を
95モル%以上含む共重合体を、当該補強材全質量中に
80%以上含有することが好ましい。PTFE又はテト
ラフルオロエチレンに基づく重合単位を95モル%以上
含む共重合体の含有率が80%未満であると、微細なフ
ィブリルが形成されにくく補強効果が不充分となるおそ
れがある。
In the present invention, the fibril-like reinforcing material is P
It is preferable that a copolymer containing 95 mol% or more of a polymerized unit based on TFE or tetrafluoroethylene is contained in an amount of 80% or more based on the total mass of the reinforcing material. When the content of the copolymer containing 95 mol% or more of the polymer units based on PTFE or tetrafluoroethylene is less than 80%, fine fibrils are hardly formed, and the reinforcing effect may be insufficient.

【0017】テトラフルオロエチレンに基づく重合単位
を95モル%以上含む共重合体の例としては、テトラフ
ルオロエチレン−ヘキサフルオロプロピレン共重合体、
テトラフルオロエチレン−クロロトリフルオロエチレン
共重合体、テトラフルオロエチレン−パーフルオロ(ア
ルキルビニルエーテル)共重合体、テトラフルオロエチ
レン−パーフルオロ(2,2−ジメチル−1,3−ジオ
キソール)共重合体、テトラフルオロエチレン−パーフ
ルオロ(ブテニルビニルエーテル)共重合体等が挙げら
れる。これらの共重合体においてテトラフルオロエチレ
ンに基づく重合単位の含有率が95モル%未満である
と、フィブリル化しにくくなり補強効果が低下するので
好ましくない。
Examples of copolymers containing 95 mol% or more of polymerized units based on tetrafluoroethylene include tetrafluoroethylene-hexafluoropropylene copolymer,
Tetrafluoroethylene-chlorotrifluoroethylene copolymer, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene-perfluoro (2,2-dimethyl-1,3-dioxole) copolymer, tetra Fluoroethylene-perfluoro (butenyl vinyl ether) copolymer and the like can be mentioned. If the content of the polymerized units based on tetrafluoroethylene in these copolymers is less than 95% by mole, it is difficult to fibrillate, and the reinforcing effect is undesirably reduced.

【0018】本発明におけるスルホン酸型パーフルオロ
カーボン重合体としては、従来より公知の重合体が広く
採用される。好ましい重合体としては、一般式CF2
CF(OCF2CFX)m−Op−(CF2nSO3H(こ
こでXはフッ素原子又はトリフルオロメチル基であり、
mは0〜3の整数であり、nは0〜12の整数であり、
pは0又は1であり、n=0のときにはp=0であ
る。)で表されるパーフルオロビニル化合物とパーフル
オロオレフィン又はパーフルオロアルキルビニルエーテ
ル等との共重合体が例示される。パーフルオロビニル化
合物の具体例としては下式の化合物等が挙げられる。た
だし、下式において、qは1〜9の整数であり、rは1
〜8の整数であり、sは0〜8の整数であり、zは2又
は3である。
As the sulfonic acid type perfluorocarbon polymer in the present invention, conventionally known polymers are widely used. Preferred polymers include those of the general formula CF 2 =
CF (OCF 2 CFX) m -O p - (CF 2) n SO 3 H ( wherein X is a fluorine atom or a trifluoromethyl group,
m is an integer of 0 to 3, n is an integer of 0 to 12,
p is 0 or 1, and when n = 0, p = 0. )) And a copolymer of a perfluorovinyl compound represented by the formula (1) with a perfluoroolefin or a perfluoroalkylvinyl ether. Specific examples of the perfluorovinyl compound include a compound represented by the following formula. Here, in the following formula, q is an integer of 1 to 9, and r is 1
S is an integer of 0 to 8, and z is 2 or 3.

【0019】[0019]

【化1】 Embedded image

【0020】スルホン酸基を有するパーフルオロビニル
化合物に基づく重合単位を含む重合体は、通常−SO2
F基を有するパーフルオロビニル化合物を用いて重合さ
れる。−SO2F基を有するパーフルオロビニル化合物
は、単独重合も可能であるが、ラジカル重合反応性が小
さいため、通常は上記のようにパーフルオロオレフィン
又はパーフルオロ(アルキルビニルエーテル)等のコモ
ノマーと共重合して用いられる。コモノマーとなるパー
フルオロオレフィンとしては、テトラフルオロエチレ
ン、ヘキサフルオロプロピレン等が挙げられるが、通常
はテトラフルオロエチレンが好ましく採用される。
The polymer containing a polymerized unit based on a perfluorovinyl compound having a sulfonic acid group is usually -SO 2
It is polymerized using a perfluorovinyl compound having an F group. The perfluorovinyl compound having a —SO 2 F group can be homopolymerized, but has low radical polymerization reactivity. Therefore, it is usually used together with a comonomer such as perfluoroolefin or perfluoro (alkyl vinyl ether) as described above. Used after polymerization. Examples of the perfluoroolefin to be a comonomer include tetrafluoroethylene, hexafluoropropylene, and the like, but usually tetrafluoroethylene is preferably employed.

【0021】コモノマーとなるパーフルオロ(アルキル
ビニルエーテル)としては、CF2=CF−(OCF2
FY)t−O−Rfで表される化合物が好ましい。ただ
し、式中、Yはフッ素原子又はトリフルオロメチル基で
あり、tは0〜3の整数であり、Rfは直鎖又は分岐鎖
のCu2u+1で表されるパーフルオロアルキル基(1≦
u≦12)である。
The perfluoro (alkyl vinyl ether) serving as a comonomer includes CF 2 CFCF— (OCF 2 C
FY) a compound represented by t -O-R f are preferred. However, in the formula, Y is a fluorine atom or a trifluoromethyl group, t is an integer from 0 to 3, perfluoroalkyl group and R f represented by C u F 2u + 1 linear or branched (1 ≦
u ≦ 12).

【0022】CF2=CF−(OCF2CFY)t−O−
fで表される化合物の好ましい例としては、以下の化
合物が挙げられる。ただし、下式中、vは1〜8の整数
であり、wは1〜8の整数であり、xは1〜3の整数で
ある。
CF 2 CFCF— (OCF 2 CFY) t —O—
Preferred examples of the compound represented by R f include the following compounds. However, in the following formula, v is an integer of 1 to 8, w is an integer of 1 to 8, and x is an integer of 1 to 3.

【0023】[0023]

【化2】 Embedded image

【0024】また、パーフルオロオレフィンやパーフル
オロ(アルキルビニルエーテル)以外に、パーフルオロ
(3−オキサヘプタ−1,6−ジエン)等の含フッ素モ
ノマーもコモノマーとして−SO2F基を有するパーフ
ルオロビニル化合物と共重合させてもよい。
In addition to perfluoroolefins and perfluoro (alkyl vinyl ethers), fluorine-containing monomers such as perfluoro (3-oxahepta-1,6-diene) are also perfluorovinyl compounds having a —SO 2 F group as a comonomer. May be copolymerized.

【0025】本発明において、電解質膜を構成するスル
ホン酸型パーフルオロカーボン重合体中のスルホン酸基
の濃度、すなわちイオン交換容量としては、0.5〜
2.0ミリ当量/g乾燥樹脂、特に0.7〜1.6ミリ
当量/g乾燥樹脂であることが好ましい。イオン交換容
量がこの範囲より低い場合には得られる電解質膜の抵抗
が大きくなり、一方高い場合には電解質膜の機械的強度
が不充分となる。
In the present invention, the concentration of the sulfonic acid group in the sulfonic acid type perfluorocarbon polymer constituting the electrolyte membrane, that is, the ion exchange capacity is 0.5 to 0.5.
It is preferably 2.0 meq / g dry resin, especially 0.7 to 1.6 meq / g dry resin. When the ion exchange capacity is lower than this range, the resistance of the obtained electrolyte membrane increases, while when the ion exchange capacity is high, the mechanical strength of the electrolyte membrane becomes insufficient.

【0026】本発明の電解質膜は、引裂強さがどの方向
について測定しても2N/mm以上であることが好まし
い。また、引裂強さが最も高い方向の引裂強さと最も低
い方向の引裂強さとの比が1:1〜10:1であること
が好ましい。例えば電解質膜が1軸押出し成形によりフ
ィルム状に成形されたものである場合は、通常フィブリ
ルの配向により1軸押出し機を通した方向(以下、MD
方向という。)の引裂強さが最も低く、MD方向に垂直
な方向(以下、TD方向という。)の引裂強さが最も高
くなる。
The electrolyte membrane of the present invention preferably has a tear strength of 2 N / mm or more in any direction. The ratio of the tear strength in the direction with the highest tear strength to the tear strength in the lowest direction is preferably 1: 1 to 10: 1. For example, when the electrolyte membrane is formed into a film by single-screw extrusion, the direction through a single-screw extruder (hereinafter referred to as MD) is usually determined by the orientation of the fibrils.
It is called direction. ) Has the lowest tear strength, and the direction perpendicular to the MD direction (hereinafter referred to as the TD direction) has the highest tear strength.

【0027】上記引裂強さは、本発明では以下のよう
に、JIS−K7128に準ずる方法で測定する。膜を
90℃の純水中に16時間浸漬した後、幅5cm、長さ
15cmの短冊状サンプルを切り出し、引裂強さを測定
したい方向を長さ方向とする。各サンプルは、長さ方向
に沿って2等分するように、短辺の中央から長さ15c
mの半分の7.5cmまで切れ目を入れる。次いで切れ
目部分から引き裂かれるように切れ端の一方を引張り試
験機の上部チャックに、もう一方を下部チャックに取り
付け、25℃にて200mm/分の速度でチャック間を
広げ、引裂荷重を測定する。引裂強さは引裂荷重をサン
プルの厚さで除した値(N/mm)として算出する。各
方向について5〜10サンプル程度測定し、その平均値
を引裂強さとする。
In the present invention, the tear strength is measured by a method according to JIS-K7128 as follows. After immersing the film in 90 ° C. pure water for 16 hours, a strip sample having a width of 5 cm and a length of 15 cm is cut out, and the direction in which the tear strength is to be measured is defined as the length direction. Each sample has a length of 15c from the center of the short side so as to be bisected along the length direction.
Make a cut to 7.5 cm, half of m. Next, one of the cut ends is attached to the upper chuck of the tensile tester and the other is attached to the lower chuck so as to be torn from the cut portion, and the distance between the chucks is increased at a speed of 200 mm / min at 25 ° C., and the tear load is measured. The tear strength is calculated as a value (N / mm) obtained by dividing the tear load by the thickness of the sample. About 5 to 10 samples are measured in each direction, and the average value is defined as the tear strength.

【0028】本発明においてフィブリル状補強材により
補強された電解質膜は、スルホン酸基又はその前駆体基
を有するパーフルオロカーボン重合体とフィブリル化可
能なフルオロカーボン重合体との混合物をフィルム状に
成形し、得られたフィルムの少なくとも片面に延伸補助
フィルムを積層した後、加熱下で延伸することにより得
られる。電解質膜となるフィルムを延伸する場合、当該
フィルムのみを延伸すると破れやすく均一に薄くするこ
とが困難であるが、延伸補助フィルムを積層して延伸す
ると、電解質膜となるフィルムを均一に薄くできる。す
なわち本発明における延伸補助フィルムは、電解質膜と
なるフィルムの延伸を補助するために積層されるフィル
ムである。また、このときの延伸は、2軸延伸すること
が好ましい。
In the present invention, the electrolyte membrane reinforced by the fibril-like reinforcing material is formed into a film by mixing a mixture of a perfluorocarbon polymer having a sulfonic acid group or a precursor group thereof and a fluorocarbon polymer capable of fibrillation, It is obtained by laminating a stretching auxiliary film on at least one side of the obtained film and then stretching the film under heating. When a film serving as an electrolyte membrane is stretched, if the film alone is stretched, it is easily broken and it is difficult to make the film uniform. However, if a stretching auxiliary film is laminated and stretched, the film serving as an electrolyte membrane can be made uniform and thin. That is, the stretching auxiliary film in the present invention is a film that is laminated to assist the stretching of the film serving as the electrolyte membrane. The stretching at this time is preferably performed biaxially.

【0029】具体的には以下の手順で作製することが好
ましい。 (1)フィブリル化可能なフルオロカーボン重合体とス
ルホン酸基の前駆体基を有するパーフルオロカーボン重
合体(以下、スルホン酸基前駆体型パーフルオロカーボ
ン重合体という。)との混合。 (2)(1)で得られた混合物の2軸押出し成形による
混練、ペレット化。 (3)(2)で得られたペレットを用いて1軸押出し成
形によるフィルム化及びフィルム平滑化。 (4)加水分解、酸型化処理、洗浄、乾燥。 (5)延伸補助フィルムを積層後、2軸延伸。
More specifically, it is preferable to manufacture it by the following procedure. (1) Mixing of a fibrillable fluorocarbon polymer and a perfluorocarbon polymer having a sulfonic acid group precursor group (hereinafter referred to as a sulfonic acid group precursor type perfluorocarbon polymer). (2) Kneading and pelletizing the mixture obtained in (1) by twin-screw extrusion. (3) Using the pellets obtained in (2), forming a film and smoothing the film by uniaxial extrusion. (4) Hydrolysis, acid-form treatment, washing and drying. (5) Biaxial stretching after laminating the stretching auxiliary film.

【0030】上記(1)〜(5)の工程をさらに具体的
に説明する。フィブリル状補強材は、フィブリル化可能
なフルオロカーボン重合体粉末に剪断力を付与すること
により得られるので、まず上記フルオロカーボン重合体
を用いてフィブリル状補強材のみを作製し、スルホン酸
基前駆体型パーフルオロカーボン重合体と混合し、又は
スルホン酸前駆体型パーフルオロカーボン重合体の溶液
中にフィブリル状補強材を分散し、キャスト製膜して補
強された膜を作製してもよい。
The steps (1) to (5) will be described more specifically. Since the fibril-like reinforcing material is obtained by applying a shearing force to the fibrillable fluorocarbon polymer powder, first, only the fibril-like reinforcing material is prepared using the above fluorocarbon polymer, and the sulfonic acid group precursor type perfluorocarbon is prepared. A fibril-like reinforcing material may be mixed with a polymer or dispersed in a solution of a sulfonic acid precursor-type perfluorocarbon polymer, and cast to form a reinforced membrane.

【0031】しかし、膜中にフィブリル状補強材を均一
に分散させるためには、上記フルオロカーボン重合体粉
末とスルホン酸基前駆体型パーフルオロカーボン重合体
粉末を混合した後に((1)の工程)、混練して上記フ
ルオロカーボン重合体粉末をフィブリル化させる
((2)の工程)の方法が好ましい。また、フルオロカ
ーボン重合体粉末をスルホン酸基前駆体型パーフルオロ
カーボン重合体を重合した後の重合溶液に混合分散後、
凝集させ、洗浄、乾燥してから混練してもよい。
However, in order to uniformly disperse the fibril-like reinforcing material in the film, the above-mentioned fluorocarbon polymer powder and sulfonic acid group precursor type perfluorocarbon polymer powder are mixed (step (1)), and then kneaded. Then, the method of fibrillating the fluorocarbon polymer powder (step (2)) is preferable. Further, after mixing and dispersing the fluorocarbon polymer powder in the polymerization solution obtained by polymerizing the sulfonic acid group precursor type perfluorocarbon polymer,
Aggregation, washing and drying may be performed before kneading.

【0032】このとき、スルホン酸基前駆体型パーフル
オロカーボン重合体と上記フルオロカーボン重合体粉末
との混合物を2軸押出し成形してペレット化することに
より混練される。また、先に上記混合物を混練しておい
てから2軸押出し成形してもよい。
At this time, the mixture of the sulfonic acid group precursor type perfluorocarbon polymer and the above fluorocarbon polymer powder is kneaded by twin-screw extrusion molding and pelletizing. Alternatively, the mixture may be kneaded first and then subjected to twin-screw extrusion.

【0033】次いで得られたペレットは、(3)の工程
で、好ましくは加熱下で1軸押出し成形されフィルム化
される。また、(2)のペレット化する工程を経ずに、
上記混合物を直接1軸押出し成形し、この1軸押出し成
形の工程でフィルム化すると同時に上記フルオロカーボ
ン重合体をフィブリル化してもよい。加熱下で1軸押出
し成形する場合は、フィルムの温度が200〜270℃
程度となるように成形することが好ましい。フィルム温
度が200℃未満の場合は、吐出圧力が高くなりすぎ、
生産性が低下するおそれがある。フィルム温度が270
℃を超えると得られる膜の表面が荒れて膜の厚さが不均
一になるので好ましくない。このようにして(3)の工
程を終えて得られるフィルムの厚さは80〜500μm
程度となる。
Next, the obtained pellets are uniaxially extruded and formed into a film in step (3), preferably under heating. Also, without going through the pelletizing step (2),
The mixture may be directly uniaxially extruded and formed into a film in the uniaxial extrusion molding step, and the fluorocarbon polymer may be fibrillated at the same time. In the case of uniaxial extrusion molding under heating, the temperature of the film is 200 to 270 ° C.
It is preferable to mold to such an extent. If the film temperature is less than 200 ° C., the discharge pressure becomes too high,
Productivity may be reduced. Film temperature is 270
When the temperature exceeds ℃, the surface of the obtained film becomes rough and the thickness of the film becomes uneven, which is not preferable. The thickness of the film obtained after completing the step (3) in this manner is 80 to 500 μm.
About.

【0034】上記の工程で得られたフィルムは、フィブ
リル状補強材の量が増大すると表面の平滑性が低下して
くるので、必要であれば加熱プレスにより平滑化を行
う。(1)〜(3)の工程では、主に加熱下で成形を行
うため、スルホン酸基前駆体型パーフルオロカーボン重
合体を使用することが好ましい。
The surface of the film obtained in the above-mentioned process decreases as the amount of the fibril-like reinforcing material increases, and if necessary, the film is smoothed by a hot press. In the steps (1) to (3), since the molding is performed mainly under heating, it is preferable to use a sulfonic acid group precursor type perfluorocarbon polymer.

【0035】スルホン酸基前駆体型パーフルオロカーボ
ン重合体を使用した場合は、次いで加水分解、酸型化処
理、洗浄、乾燥を行い((4)の工程)、スルホン酸基
の前駆体基をスルホン酸基に変換させる。この(4)の
工程は、後述する(5)の工程の後に行ってもよく、
(5)の工程で2軸延伸を複数回行う場合は(5)の工
程の途中で行ってもよい。
When a sulfonic acid group precursor type perfluorocarbon polymer is used, hydrolysis, acidification treatment, washing and drying are then performed (step (4)) to convert the sulfonic acid group precursor group to sulfonic acid. To the base. This step (4) may be performed after the step (5) described later.
When performing biaxial stretching a plurality of times in the step (5), the biaxial stretching may be performed in the middle of the step (5).

【0036】次に、上記フィルムに延伸補助フィルムを
例えば70〜100℃程度に加熱したロールプレスを用
いて加熱積層し、加熱下で2軸延伸し、延伸補助フィル
ムを剥がすことにより薄膜が得られる((5)の工
程)。1回の延伸操作における延伸倍率は、使用するス
ルホン酸型パーフルオロカーボン重合体の種類により異
なるが、面積倍率で30倍以下の倍率とすることが好ま
しい。上記2軸延伸は、何度繰り返し行ってもよく、繰
り返し行うことで1μm未満の薄膜も得ることができ
る。
Next, a thin film is obtained by laminating the stretching auxiliary film on the above-mentioned film by using a roll press heated to, for example, about 70 to 100 ° C., biaxially stretching under heating, and peeling the stretching auxiliary film. (Step (5)). The stretching ratio in one stretching operation varies depending on the type of the sulfonic acid type perfluorocarbon polymer used, but is preferably 30% or less in area ratio. The biaxial stretching may be repeated several times, and a thin film having a thickness of less than 1 μm can be obtained by repeating the biaxial stretching.

【0037】(3)の工程後に得られたフィルムの厚さ
が200μmを超えている場合には、スルホン酸基前駆
体型パーフルオロカーボン重合体を使用した場合であっ
ても(4)の工程の前にまず(5)の工程によりフィル
ムの厚さを200μm以下に調整することが好ましい。
すなわち、フィルムの少なくとも片面に延伸補助フィル
ムを積層し、必要に応じて1回以上2軸延伸を行う。フ
ィブリル状補強材の量が増大すると2軸延伸により欠陥
が発生しやすいので、2軸延伸後にフィルムを加熱プレ
スで160〜200℃程度で熱処理することが好まし
い。
When the thickness of the film obtained after the step (3) exceeds 200 μm, even if the sulfonic acid group precursor type perfluorocarbon polymer is used, the film before the step (4) is used. First, it is preferable to adjust the thickness of the film to 200 μm or less by the step (5).
That is, a stretching auxiliary film is laminated on at least one side of the film, and biaxial stretching is performed once or more as necessary. When the amount of the fibril-like reinforcing material increases, defects are likely to be generated by biaxial stretching. Therefore, it is preferable that the film is heat-treated at about 160 to 200 ° C. by a hot press after the biaxial stretching.

【0038】上記(5)の工程において使用される延伸
補助フィルムは、延伸可能であれば特に限定されない
が、例えば、ポリエチレンテレフタレートフィルム、ポ
リブチレンテレフタレートフィルム、ポリエチレンフィ
ルム、エチレン−α−オレフィン共重合体フィルム、エ
チレン−ビニルアルコール共重合体フィルム、エチレン
−酢酸ビニル共重合体フィルム、エチレン−酢酸ビニル
−塩化ビニル共重合体フィルム、エチレン−塩化ビニル
共重合体フィルム、ポリプロピレンフィルム、ポリ塩化
ビニルフィルム、ポリアミドフィルム、ポリビニルアル
コールフィルム等が挙げられる。なかでもポリエチレン
テレフタレートフィルム又はポリプロピレンフィルムが
好ましい。
The stretching auxiliary film used in the step (5) is not particularly limited as long as it can be stretched. For example, a polyethylene terephthalate film, a polybutylene terephthalate film, a polyethylene film, an ethylene-α-olefin copolymer Film, ethylene-vinyl alcohol copolymer film, ethylene-vinyl acetate copolymer film, ethylene-vinyl acetate-vinyl chloride copolymer film, ethylene-vinyl chloride copolymer film, polypropylene film, polyvinyl chloride film, polyamide And a polyvinyl alcohol film. Among them, a polyethylene terephthalate film or a polypropylene film is preferable.

【0039】特にアモルファス状態のポリエチレンテレ
フタレートフィルム及びキャスト製膜したポリプロピレ
ンフィルムは、比較的低温で延伸でき延伸性も良好であ
るので好ましい。延伸の際の温度は延伸補助フィルムの
種類により異なるが、40〜150℃の温度範囲が延伸
性の観点から好ましい。
In particular, an amorphous polyethylene terephthalate film and a cast polypropylene film are preferred because they can be stretched at a relatively low temperature and have good stretchability. The temperature at the time of stretching varies depending on the type of the stretching auxiliary film, but a temperature range of 40 to 150 ° C is preferable from the viewpoint of stretchability.

【0040】本発明の固体高分子型燃料電池は、通常の
手法に従い、例えば以下のようにして得られる。まず、
白金触媒微粒子を担持させた導電性のカーボンブラック
粉末とスルホン酸型パーフルオロカーボン重合体の溶液
を混合し均一分散液を得て、以下のいずれかの方法でガ
ス拡散電極を形成して膜電極接合体を得る。膜はフィブ
リル状補強材で補強されたスルホン酸型パーフルオロカ
ーボン重合体からなる陽イオン交換膜を用いる。
The polymer electrolyte fuel cell of the present invention can be obtained according to a usual method, for example, as follows. First,
A solution of a conductive carbon black powder carrying platinum catalyst fine particles and a solution of a sulfonic acid type perfluorocarbon polymer are mixed to obtain a uniform dispersion, and a gas diffusion electrode is formed by any of the following methods to form a membrane electrode junction. Get the body. As the membrane, a cation exchange membrane made of a sulfonic acid type perfluorocarbon polymer reinforced with a fibril-like reinforcing material is used.

【0041】第1の方法は、上記陽イオン交換膜の両面
に上記均一分散液を塗布し乾燥後、両面を2枚のカーボ
ンクロス又はカーボンペーパーで密着する方法である。
第2の方法は、上記均一分散液を2枚のカーボンクロス
又はカーボンペーパー上に塗布乾燥後、均一分散液が塗
布された面が上記陽イオン交換膜と密着するように、上
記陽イオン交換膜の両面から挟みこむ方法である。
The first method is a method in which the uniform dispersion is applied to both sides of the cation exchange membrane and dried, and then both sides are brought into close contact with two sheets of carbon cloth or carbon paper.
In the second method, the uniform dispersion is applied to two carbon cloths or carbon papers and dried, and then the cation exchange membrane is applied so that the surface coated with the uniform dispersion adheres to the cation exchange membrane. It is a method of sandwiching from both sides.

【0042】得られた膜電極接合体は、燃料ガス又は酸
化剤ガスの通路となる溝が形成され導電性カーボン板か
らなるセパレータの間に挟まれ、セルに組み込まれて固
体高分子型燃料電池が得られる。
The obtained membrane / electrode assembly is provided with a groove serving as a passage for a fuel gas or an oxidizing gas, sandwiched between separators made of a conductive carbon plate, and incorporated in a cell to be assembled into a polymer electrolyte fuel cell. Is obtained.

【0043】上記のようにして得られる固体高分子型燃
料電池では、アノード側には水素ガスが供給され、カソ
ード側には酸素又は空気が供給される。アノードにおい
てはH2→2H++2e-の反応が起こり、カソードにお
いては1/2O2+2H++2e-→H2Oの反応が起こ
り、化学エネルギが電気エネルギに変換される。
In the polymer electrolyte fuel cell obtained as described above, hydrogen gas is supplied to the anode side, and oxygen or air is supplied to the cathode side. At the anode, a reaction of H 2 → 2H + + 2e occurs, and at the cathode, a reaction of 1 / 2O 2 + 2H + + 2e → H 2 O occurs, whereby chemical energy is converted into electric energy.

【0044】[0044]

【実施例】[例1(実施例)]テトラフルオロエチレン
に基づく重合単位とCF2=CF−OCF2CF(C
3)O(CF22SO2Fに基づく重合単位とからなる
共重合体粉末(イオン交換容量1.1ミリ当量/グラム
乾燥樹脂)9730gとPTFE粉末(商品名:フルオ
ンCD−1、旭硝子社製)270gとを混合し、2軸押
出し成形によりペレット9500gを得た。得られたペ
レットを1軸押出し機によりフィルム化し、厚さ250
μmのフィルムを得た。得られたフィルムを一旦220
℃の温度で加熱ロールプレスして表面を平滑化した後、
延伸補助フィルムとして厚さ200μmのアモルファス
ポリエチレンテレフタレートフィルム2枚で両側から挟
み、80℃で加熱ロールプレスして延伸補助フィルムが
両面に積層された膜を得た。
EXAMPLES Example 1 (Example) Tetrafluoroethylene
Polymerized unit based on CF and CFTwo= CF-OCFTwoCF (C
F Three) O (CFTwo)TwoSOTwoConsisting of polymerized units based on F
Copolymer powder (ion exchange capacity 1.1 meq / g)
9730 g of dry resin and PTFE powder (trade name: Fluo)
270 g) and mixed with two screws.
9500 g of pellets were obtained by extrusion molding. The obtained pe
The film is made into a film by a single screw extruder and has a thickness of 250 mm.
A μm film was obtained. Once the obtained film is
After heating roll press at the temperature of ℃ and smoothing the surface,
Amorphous with a thickness of 200μm as a stretching aid film
Sandwiched between two polyethylene terephthalate films
, And hot roll press at 80 ° C.
A film laminated on both sides was obtained.

【0045】この積層膜を85℃で各軸方向(1軸押出
し機を通した方向(MD方向)及びMD方向に垂直な方
向(TD方向))に対しそれぞれ1.4倍の2軸延伸を
行い(面積延伸倍率2倍)、厚さ120μmの延伸膜が
2枚の延伸補助フィルムに挟まれた積層膜を得た。得ら
れた延伸膜を延伸補助フィルムが積層されたままの状態
で180℃の加熱ロールプレスにて熱処理した。次いで
延伸補助フィルムを剥がした後、ジメチルスルホキシド
と水酸化カリウムとを含む水溶液を用いて加水分解し、
塩酸で酸型化処理、洗浄、乾燥して厚さ120μmの膜
を得た。
The laminated film is biaxially stretched at 85 ° C. in a biaxial direction 1.4 times each of the axial directions (the direction (MD direction) through a single-screw extruder and the direction perpendicular to the MD direction (TD direction)). This was carried out (area stretching ratio 2 times) to obtain a laminated film in which a stretched film having a thickness of 120 µm was sandwiched between two stretching auxiliary films. The obtained stretched film was heat-treated with a hot roll press at 180 ° C. in a state where the stretching auxiliary film was kept laminated. Then, after peeling off the stretching auxiliary film, it is hydrolyzed using an aqueous solution containing dimethyl sulfoxide and potassium hydroxide,
The film was acidified with hydrochloric acid, washed, and dried to obtain a film having a thickness of 120 μm.

【0046】この膜を再び延伸補助フィルムとして厚さ
200μmのアモルファスポリエチレンテレフタレート
フィルムで両側から挟んで上記同様に加熱積層し、85
℃で各軸方向につき2倍の2軸延伸を行い(面積延伸倍
率4倍)、延伸補助フィルムを剥がして厚さ30μmの
フィブリル補強膜を得た。得られた膜の厚さを5cm間
隔で10点測定したが、厚さのバラツキは±3μmの範
囲であった。
This film was again sandwiched from both sides with an amorphous polyethylene terephthalate film having a thickness of 200 μm as a stretching auxiliary film and heated and laminated in the same manner as described above.
The biaxial stretching was performed twice in each axial direction at a temperature of 4 ° C. (area stretching ratio was 4 times), and the stretching auxiliary film was peeled off to obtain a fibril reinforcing film having a thickness of 30 μm. The thickness of the obtained film was measured at 10 points at intervals of 5 cm, and the thickness variation was in a range of ± 3 μm.

【0047】[補強膜断面の走査型電子顕微鏡観察]上
記フィブリル補強膜断面を走査型電子顕微鏡を用いて観
察した。拡大倍率10000倍にて5ヶ所以上観察し、
一辺5μm角の領域内で繊維径1μm以下のフィブリル
数を数えたところ、全フィブリル数の98%であった。
[Scanning Electron Microscope Observation of Cross Section of Reinforcement Film] The cross section of the fibril reinforcement film was observed using a scanning electron microscope. Observe at 5 or more places at 10000x magnification,
When the number of fibrils with a fiber diameter of 1 μm or less was counted in a region of 5 μm square on one side, it was 98% of the total number of fibrils.

【0048】[フィブリル補強膜の引裂強さ測定]上記
フィブリル補強膜を、90℃の純水中に16時間浸漬し
た後、幅5cm、長さ15cmの短冊状サンプルを切り
出した。このサンプルは、長さ方向がMD方向と一致す
るサンプルと、長さ方向がTD方向と一致するサンプル
とを各5サンプルとした。各サンプルは、長さ方向に沿
って2等分するように、短辺の中央から長さ15cmの
半分の7.5cmまで切れ目を入れた。切れ目部分から
引き裂かれるように切れ端の一方を引張り試験機の上部
チャックに、もう一方を下部チャックに取り付け、25
℃にて200mm/分の速度でチャック間を広げ、引裂
荷重を測定した。引裂強さは引裂荷重をサンプルの厚さ
で除して算出し、5サンプルの平均値をとった。得られ
たフィブリル補強膜の引裂強さはMD方向が2.5N、
TD方向が15Nであった。
[Measurement of Tear Strength of Fibril Reinforcement Membrane] The fibril reinforcement film was immersed in pure water at 90 ° C. for 16 hours, and then a strip sample having a width of 5 cm and a length of 15 cm was cut out. As for this sample, a sample whose length direction coincides with the MD direction and a sample whose length direction coincides with the TD direction were each 5 samples. Each sample was cut from the center of the short side to 7.5 cm, which is half the length of 15 cm, so as to be bisected along the length direction. Attach one of the cut pieces to the upper chuck of the tensile tester and the other to the lower chuck so that the cut piece is torn from the cut part.
The distance between the chucks was widened at a speed of 200 mm / min at a temperature of ° C, and the tear load was measured. The tear strength was calculated by dividing the tear load by the thickness of the sample, and the average value of five samples was taken. The tear strength of the obtained fibril reinforcing membrane was 2.5 N in the MD direction,
The TD direction was 15N.

【0049】[フィブリル補強膜の抵抗測定]上記フィ
ブリル補強膜から5mm幅の短冊状膜サンプルを作製
し、その表面に白金線(直径:0.2mm)を幅方向と
平行になるように5mm間隔に5本押し当て、80℃、
相対湿度95%の恒温・恒湿装置中にサンプルを保持
し、交流10kHzにおける白金線間の交流インピーダ
ンスを測定することにより交流比抵抗を求めた。5mm
間隔に白金線を5本押し当てているため、極間距離を
5、10、15、20mmに変化させることができるの
で、各極間距離における交流抵抗を測定し、極間距離と
抵抗の勾配から膜の比抵抗を算出することで白金線と膜
との間の接触抵抗の影響を除外した。極間距離と抵抗測
定値との間には良い直線関係が得られ、勾配と厚さから
次式により比抵抗を算出した。 比抵抗R(Ω・cm)=サンプルの幅(cm)×サンプ
ルの厚さ(cm)×抵抗極間勾配(Ω/cm) 得られたフィブリル補強膜の比抵抗は5Ω・cmであっ
た。
[Measurement of Resistance of Fibril Reinforcement Membrane] A strip-shaped film sample having a width of 5 mm was prepared from the fibril reinforcement film, and a platinum wire (diameter: 0.2 mm) was formed on the surface thereof at intervals of 5 mm so as to be parallel to the width direction. 5 pcs, 80 ℃,
The sample was held in a thermo-hygrostat at a relative humidity of 95%, and the AC impedance between the platinum wires at an AC of 10 kHz was measured to determine the AC specific resistance. 5mm
Since five platinum wires are pressed against the interval, the interelectrode distance can be changed to 5, 10, 15, and 20 mm. Therefore, the AC resistance at each interelectrode distance is measured, and the interelectrode distance and the gradient of the resistance are measured. The influence of the contact resistance between the platinum wire and the film was excluded by calculating the specific resistance of the film from. A good linear relationship was obtained between the distance between the electrodes and the measured resistance, and the specific resistance was calculated from the gradient and the thickness by the following equation. Specific resistance R (Ω · cm) = sample width (cm) × sample thickness (cm) × resistance electrode gradient (Ω / cm) The specific resistance of the obtained fibril reinforcing film was 5 Ω · cm.

【0050】[燃料電池の作製及び評価]燃料電池セル
は以下のようにして組み立てた。テトラフルオロエチレ
ンに基づく重合単位とCF2=CF−OCF2CF(CF
3)O(CF22SO3Hに基づく重合単位とからなる共
重合体(イオン交換容量1.1ミリ当量/グラム乾燥樹
脂)と白金担持カーボンとを1:3の質量比で含みエタ
ノールを溶媒とする塗工液を、カーボンクロス上にダイ
コート法で塗工し、乾燥して厚さ10μm、白金担持量
0.5mg/cm2のガス拡散電極層を形成した。
[Fabrication and evaluation of fuel cell] The fuel cell was assembled as follows. Polymerized units based on tetrafluoroethylene and CF 2 CFCF—OCF 2 CF (CF
3 ) Ethanol containing a copolymer consisting of polymerized units based on O (CF 2 ) 2 SO 3 H (ion exchange capacity 1.1 meq / g dry resin) and platinum-supported carbon in a mass ratio of 1: 3 Was applied on a carbon cloth by a die coating method, and dried to form a gas diffusion electrode layer having a thickness of 10 μm and a platinum carrying amount of 0.5 mg / cm 2 .

【0051】上記カーボンクロス2枚を、それぞれのガ
ス拡散電極層が内側を向くように対向させ、その間に上
記フィブリル補強膜を挟み、平板プレス機を用いてプレ
スして膜電極接合体を作製した。この膜電極接合体の両
外側にガス通路用の細溝をジグザグ状に切削加工したカ
ーボン板製のセパレータ、さらにその外側にヒータを配
置し、有効膜面積25cm2の燃料電池を組み立てた。
The two carbon cloths were opposed to each other so that the respective gas diffusion electrode layers faced inward, the fibril reinforcing film was interposed therebetween, and pressed using a flat plate press to produce a membrane electrode assembly. . A fuel cell having an effective membrane area of 25 cm 2 was assembled by disposing a separator made of a carbon plate in which narrow grooves for gas passages were cut in a zigzag shape on both outer sides of the membrane electrode assembly and a heater on the outside thereof.

【0052】燃料電池の温度を80℃に保ち、カソード
に空気、アノードに水素をそれぞれ1.5気圧で供給し
た。電流密度1A/cm2のときの端子電圧を測定した
ところ、端子電圧は0.62Vであった。さらに、上記
の燃料電池を80℃、電流密度1A/cm2で連続運転
を行った。1000時間後の端子電圧は0.62Vであ
り、変化がなかった。
While maintaining the temperature of the fuel cell at 80 ° C., air was supplied to the cathode and hydrogen was supplied to the anode at 1.5 atm. When the terminal voltage at a current density of 1 A / cm 2 was measured, the terminal voltage was 0.62 V. Further, the above fuel cell was continuously operated at 80 ° C. and a current density of 1 A / cm 2 . The terminal voltage after 1000 hours was 0.62 V, and there was no change.

【0053】[例2(実施例)]テトラフルオロエチレ
ンに基づく重合単位とCF2=CF−OCF2CF(CF
3)O(CF22SO2Fに基づく重合単位とからなる共
重合体粉末を9600gに変更し、PTFE粉末を40
0gに変更した以外は例1と同様にしてペレットを得た
後にフィルム化し、厚さ250μmのフィルムを得た。
このフィルムを用いて例1と同様にして延伸し、厚さ3
0μmのフィブリル補強膜を得た。得られた膜の厚さの
バラツキを例1と同様に測定したところ、±3μmの範
囲であった。
Example 2 (Example) Tetrafluoroethylene
And polymerized units based on CFTwo= CF-OCFTwoCF (CF
Three) O (CFTwo)TwoSOTwoAnd a polymer unit based on F
The polymer powder was changed to 9600 g, and the PTFE powder was changed to 40 g.
Pellets were obtained in the same manner as in Example 1 except that the amount was changed to 0 g.
The film was later formed into a film having a thickness of 250 μm.
This film was stretched in the same manner as in Example 1 to obtain a film having a thickness of 3
A 0 μm fibril reinforcing membrane was obtained. Of the resulting film thickness
When the variation was measured in the same manner as in Example 1, the variation was within ± 3 μm.
It was an enclosure.

【0054】得られたフィブリル補強膜を例1と同様に
して評価したところ、繊維径1μm以下のフィブリル数
は全フィブリル数の96%であった。また、フィブリル
補強膜の引裂強さは、MD方向が5.5N/mm、TD
方向が18N/mmであり、交流比抵抗は6Ω・cmで
あった。
When the obtained fibril reinforcing membrane was evaluated in the same manner as in Example 1, the number of fibrils having a fiber diameter of 1 μm or less was 96% of the total number of fibrils. Further, the tear strength of the fibril reinforcing film was 5.5 N / mm in the MD direction and TD.
The direction was 18 N / mm, and the AC specific resistance was 6 Ω · cm.

【0055】上記フィブリル補強膜を用いて例1と同様
にして燃料電池セルを組み立て、例1と同様にして発電
特性を評価した。電流密度1A/cm2のときの端子電
圧を測定したところ、端子電圧は0.61Vであった。
また、1000時間後の端子電圧は0.61Vであり、
変化がなかった。
Using the fibril reinforcing film, a fuel cell was assembled in the same manner as in Example 1, and the power generation characteristics were evaluated in the same manner as in Example 1. When the terminal voltage at a current density of 1 A / cm 2 was measured, the terminal voltage was 0.61 V.
The terminal voltage after 1000 hours is 0.61 V,
There was no change.

【0056】[例3(実施例)]例1におけるフィブリ
ル補強膜作製の途中で得た厚さ250μmのフィルムを
用い、加熱ロールプレスで平滑後、その両面に、延伸補
助フィルムとして厚さ200μmのアモルファスポリエ
チレンテレフタレートフィルムを例1と同様にして積層
した膜を得た。この積層膜を85℃でMD方向及びTD
方向に対し3倍の2軸延伸を行い(面積延伸倍率9
倍)、厚さ30μmの延伸膜が2枚の延伸補助フィルム
に挟まれた積層膜を得た。この延伸膜を例1と同様に熱
処理し、延伸補助フィルムを剥がした後、加水分解、酸
型化、洗浄、乾燥して厚さ30μmのフィブリル補強膜
を得た。得られた膜の厚さのバラツキを例1と同様に測
定したところ、±3μmの範囲であった。
Example 3 (Example) Using the film having a thickness of 250 μm obtained during the preparation of the fibril reinforcing film in Example 1, smoothing it with a hot roll press, and then applying a 200 μm thick film as a stretching aid film on both surfaces. A film in which an amorphous polyethylene terephthalate film was laminated in the same manner as in Example 1 was obtained. This laminated film is subjected to MD and TD at 85 ° C.
Biaxial stretching of 3 times in the direction was performed (area stretching ratio 9
Times), a laminated film in which a stretched film having a thickness of 30 μm is sandwiched between two stretching auxiliary films. This stretched film was heat-treated in the same manner as in Example 1, and after the stretching auxiliary film was peeled off, it was hydrolyzed, acidified, washed and dried to obtain a fibril reinforced film having a thickness of 30 μm. When the thickness variation of the obtained film was measured in the same manner as in Example 1, it was in the range of ± 3 μm.

【0057】得られたフィブリル補強膜を例1と同様に
評価したところ、繊維径1μm以下のフィブリル数は全
フィブリル数の97%であった。またフィブリル補強膜
の引裂強さは、MD方向が2.2N/mm、TD方向が
14N/mmであり、交流比抵抗は5Ω・cmであっ
た。
When the obtained fibril reinforcing membrane was evaluated in the same manner as in Example 1, the number of fibrils having a fiber diameter of 1 μm or less was 97% of the total number of fibrils. Further, the tear strength of the fibril reinforcing film was 2.2 N / mm in the MD direction, 14 N / mm in the TD direction, and the AC specific resistance was 5 Ω · cm.

【0058】上記フィブリル補強膜を用いて例1と同様
にして燃料電池セルを組み立て、例1と同様にして発電
特性を評価した。電流密度1A/cm2のときの端子電
圧を測定したところ、端子電圧は0.60Vであった。
また、1000時間後の端子電圧は0.60Vであり、
変化がなかった。
A fuel cell was assembled in the same manner as in Example 1 using the above fibril reinforcing film, and the power generation characteristics were evaluated in the same manner as in Example 1. When the terminal voltage at a current density of 1 A / cm 2 was measured, the terminal voltage was 0.60 V.
The terminal voltage after 1000 hours is 0.60 V,
There was no change.

【0059】[例4(比較例)]例1におけるフィブリ
ル補強膜作製の途中で得られた厚さ250μmのフィル
ムを用い、180℃の温度で加熱ロールプレス装置を用
いてロール圧延成形することにより膜の厚さを薄くし、
厚さ100μmのフィブリル補強膜を得た。この膜を例
1と同様に加水分解、酸型化、洗浄、乾燥して厚さ10
0μmのフィブリル補強膜を得た。得られた膜の厚さの
バラツキを例1と同様に測定したところ、±15μmの
バラツキがあった。
Example 4 (Comparative Example) The film having a thickness of 250 μm obtained during the production of the fibril reinforcing film in Example 1 was roll-rolled at a temperature of 180 ° C. using a heated roll press. Reduce the thickness of the membrane,
A 100 μm thick fibril reinforcing film was obtained. This film was hydrolyzed, acidified, washed and dried in the same manner as in Example 1 to a thickness of 10
A 0 μm fibril reinforcing membrane was obtained. When the variation in the thickness of the obtained film was measured in the same manner as in Example 1, there was a variation of ± 15 μm.

【0060】得られたフィブリル補強膜を例1と同様に
評価したところ、繊維径1μm以下のフィブリル数は全
フィブリル数の90%であった。またフィブリル補強膜
の引裂強さは、MD方向が1.6N/mm、TD方向が
10N/mmであり、交流比抵抗は5Ω・cmであっ
た。
When the obtained fibril reinforcing membrane was evaluated in the same manner as in Example 1, the number of fibrils having a fiber diameter of 1 μm or less was 90% of the total number of fibrils. Further, the tear strength of the fibril reinforcing film was 1.6 N / mm in the MD direction, 10 N / mm in the TD direction, and the AC specific resistance was 5 Ω · cm.

【0061】上記フィブリル補強膜を用いて例1と同様
にして燃料電池セルを組み立て、例1と同様にして発電
特性を評価した。電流密度1A/cm2のときの端子電
圧を測定したところ、端子電圧は0.54Vであった。
また、1000時間後の端子電圧は0.52Vであっ
た。
A fuel cell was assembled in the same manner as in Example 1 using the above fibril reinforcing membrane, and the power generation characteristics were evaluated in the same manner as in Example 1. When the terminal voltage at a current density of 1 A / cm 2 was measured, the terminal voltage was 0.54 V.
The terminal voltage after 1000 hours was 0.52V.

【0062】[例5(比較例)]例4における膜の作製
において、加熱ロールプレスにより厚さが70μm以下
の膜を作製することを試みた。厚さ70μmの膜を得
て、得られた膜の厚さのバラツキを例1と同様に測定し
たところ、厚さのバラツキが±25μmとなり、均一な
厚さの膜が得られなかった。
Example 5 (Comparative Example) In the production of the film in Example 4, an attempt was made to produce a film having a thickness of 70 μm or less by a heated roll press. When a film having a thickness of 70 μm was obtained and the thickness variation of the obtained film was measured in the same manner as in Example 1, the thickness variation was ± 25 μm, and a film having a uniform thickness was not obtained.

【0063】[例6(実施例)]例1において、加水分
解、酸型処理後の延伸倍率を1.1倍(面積倍率1.2
倍)とした以外は例1と同様にして、厚さ100μmの
フィブリル補強膜を得た。得られた膜の厚さのバラツキ
を例1と同様に測定したところ、±5μmの範囲であっ
た。得られたフィブリル補強膜を例1と同様に評価した
ところ、繊維径1μm以下のフィブリル数は全フィブリ
ル数の95%であった。またフィブリル補強膜の引裂強
さは、MD方向が2.0N/mm、TD方向が16N/
mmであり、交流比抵抗は6Ω・cmであった。
Example 6 (Example) In Example 1, the stretching ratio after the hydrolysis and the acid type treatment was increased by 1.1 times (area ratio: 1.2).
A fibril reinforcing film having a thickness of 100 μm was obtained in the same manner as in Example 1 except that the thickness was changed to (fold). When the thickness variation of the obtained film was measured in the same manner as in Example 1, it was in the range of ± 5 μm. When the obtained fibril reinforcing membrane was evaluated in the same manner as in Example 1, the number of fibrils having a fiber diameter of 1 μm or less was 95% of the total number of fibrils. The tear strength of the fibril reinforcing film was 2.0 N / mm in the MD direction and 16 N / mm in the TD direction.
mm, and the AC specific resistance was 6 Ω · cm.

【0064】上記フィブリル補強膜を用いて例1と同様
にして燃料電池セルを組み立て、例1と同様にして発電
特性を評価した。電流密度1A/cm2のときの端子電
圧を測定したところ、端子電圧は0.53Vであった
が、1000時間後の端子電圧は0.53Vで変化がな
かった。
Using the fibril reinforcing film, a fuel cell was assembled in the same manner as in Example 1, and the power generation characteristics were evaluated in the same manner as in Example 1. When the terminal voltage was measured at a current density of 1 A / cm 2 , the terminal voltage was 0.53 V, but after 1000 hours, the terminal voltage was 0.53 V and remained unchanged.

【0065】[例7(実施例)]例1において、2軸押
出し成形してペレット化するかわりに2本ロールを用い
て230℃で共重合体粉末とPTFEとの混合物を混練
した。得られた混練物を破砕機で破砕した後、例1と同
様にして1軸押出し成形してフィルム化し、厚さ250
μmのフィルムを得た。このフィルムを用いて例1と同
様に1軸押出し成形してフィルム化し、厚さ30μmの
フィブリル補強膜を得た。得られた膜の厚さのバラツキ
を例1と同様に測定したところ、±3μmの範囲であっ
た。
Example 7 (Example) In Example 1, a mixture of the copolymer powder and PTFE was kneaded at 230 ° C. by using two rolls instead of pelletizing by twin-screw extrusion. After the obtained kneaded material was crushed by a crusher, it was uniaxially extruded and formed into a film in the same manner as in Example 1 to obtain a film having a thickness of 250.
A μm film was obtained. This film was uniaxially extruded and formed into a film in the same manner as in Example 1 to obtain a fibril reinforcing film having a thickness of 30 μm. When the thickness variation of the obtained film was measured in the same manner as in Example 1, it was in the range of ± 3 μm.

【0066】得られたフィブリル補強膜を例1と同様に
評価したところ、繊維径1μm以下のフィブリル数は全
フィブリル数の55%であった。またフィブリル補強膜
の引裂強さは、MD方向が0.8N/mm、TD方向が
1.8N/mmであり、交流比抵抗は6Ω・cmであっ
た。
When the obtained fibril reinforcing membrane was evaluated in the same manner as in Example 1, the number of fibrils having a fiber diameter of 1 μm or less was 55% of the total number of fibrils. Further, the tear strength of the fibril reinforcing film was 0.8 N / mm in the MD direction, 1.8 N / mm in the TD direction, and the AC specific resistance was 6 Ω · cm.

【0067】上記フィブリル補強膜を用いて例1と同様
にして燃料電池セルを組み立て、例1と同様にして発電
特性を評価した。電流密度1A/cm2のときの端子電
圧を測定したところ、端子電圧は0.57Vであり、1
000時間後の端子電圧は0.51Vであった。
Using the fibril reinforcing film, a fuel cell was assembled in the same manner as in Example 1, and the power generation characteristics were evaluated in the same manner as in Example 1. When the terminal voltage at a current density of 1 A / cm 2 was measured, the terminal voltage was 0.57 V.
The terminal voltage after 000 hours was 0.51V.

【0068】[例8(比較例)]テトラフルオロエチレ
ンに基づく重合単位とCF2=CF−OCF2CF(CF
3)O(CF22SO2Fに基づく重合単位とからなる共
重合体のみを用い、例1と同様にしてフィルム化し、厚
さ50μmの、フィブリル状補強材を含有しない膜を作
製した。この膜を例1と同様に加水分解、酸型化、洗
浄、乾燥して厚さ50μmの膜とした。得られた膜の厚
さのバラツキを例1と同様に測定したところ、±5μm
の範囲であった。
Example 8 (Comparative Example) Tetrafluoroethylene
And polymerized units based on CFTwo= CF-OCFTwoCF (CF
Three) O (CFTwo)TwoSOTwoAnd a polymer unit based on F
Using only the polymer, a film was formed in the same manner as in Example 1,
50 μm membrane without fibril-like reinforcement
Made. This membrane was hydrolyzed, acidified, washed as in Example 1.
It was purified and dried to form a film having a thickness of 50 μm. The thickness of the obtained film
When the variation in thickness was measured in the same manner as in Example 1, ± 5 μm
Was in the range.

【0069】得られた膜を例1と同様に評価したとこ
ろ、引裂強さは、MD方向が0.4N、TD方向が0.
6Nであり、交流比抵抗は5Ω・cmであった。上記膜
を用いて例1と同様にして燃料電池セルを組み立て、例
1と同様にして発電特性を評価した。電流密度1A/c
2のときの端子電圧を測定したところ、端子電圧は
0.53Vであった。また、1000時間後の端子電圧
は0.50Vであった。
When the obtained film was evaluated in the same manner as in Example 1, the tear strength was 0.4 N in the MD direction and 0.4 in the TD direction.
6N, and the AC specific resistance was 5 Ω · cm. A fuel cell was assembled using the above membrane in the same manner as in Example 1, and the power generation characteristics were evaluated in the same manner as in Example 1. Current density 1A / c
When the terminal voltage at m 2 was measured, the terminal voltage was 0.53 V. The terminal voltage after 1000 hours was 0.50V.

【0070】[0070]

【発明の効果】本発明によれば、従来膜にない低い電気
抵抗と高い機械的強度を有しかつ厚さが均一な、補強さ
れた陽イオン交換膜を固体高分子電解質としているの
で、初期性能に優れかつ長期的性能の安定性にも優れた
固体高分子電解質型燃料電池が得られる。
According to the present invention, a reinforced cation exchange membrane having low electric resistance, high mechanical strength and uniform thickness, which is not available in conventional membranes, is used as a solid polymer electrolyte. A solid polymer electrolyte fuel cell having excellent performance and long-term stability is obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本村 了 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 Fターム(参考) 4J100 AC26P AE38Q BA02Q BA07Q BA56Q BB12Q CA04 JA15 JA16 5H026 AA06 BB00 BB01 BB02 BB08 BB10 CX02 CX05 EE19 HH03 HH05 HH08  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryo Motomura 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture F-term in Asahi Glass Co., Ltd. CX02 CX05 EE19 HH03 HH05 HH08

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】フィブリル状のフルオロカーボン重合体か
らなる補強材で補強されたスルホン酸基を有するパーフ
ルオロカーボン重合体からなる陽イオン交換膜であっ
て、厚さが3〜70μmであり、かつ前記補強材はフィ
ブリル繊維径が1μm以下のフィブリル数が全フィブリ
ル数の70%以上を占めることを特徴とする固体高分子
型燃料電池用電解質膜。
1. A cation exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group reinforced with a reinforcing material made of a fibril-like fluorocarbon polymer, having a thickness of 3 to 70 μm, An electrolyte membrane for a polymer electrolyte fuel cell, wherein the number of fibrils having a fibril fiber diameter of 1 μm or less accounts for 70% or more of the total number of fibrils.
【請求項2】前記補強材は、電解質膜全質量中に0.5
〜15%含まれる請求項1に記載の固体高分子型燃料電
池用電解質膜。
2. The method according to claim 1, wherein the reinforcing material comprises 0.5% of the total weight of the electrolyte membrane.
2. The electrolyte membrane for a polymer electrolyte fuel cell according to claim 1, wherein the content of the electrolyte membrane is about 15%.
【請求項3】前記補強材は、ポリテトラフルオロエチレ
ン又はテトラフルオロエチレンに基づく重合単位を95
モル%以上含む共重合体を、補強材全質量中に80%以
上含有する請求項1又は2に記載の固体高分子型燃料電
池用電解質膜。
3. The reinforcing material comprises polytetrafluoroethylene or 95 polymerized units based on tetrafluoroethylene.
3. The electrolyte membrane for a polymer electrolyte fuel cell according to claim 1, wherein the copolymer containing at least 80 mol% of the total mass of the reinforcing material is at least 80%.
【請求項4】スルホン酸基を有するパーフルオロカーボ
ン重合体が、CF2=CF2に基づく重合単位とCF2
CF(OCF2CFX)m−Op−(CF2nSO3Hに基
づく重合単位(ここでXはフッ素原子又はトリフルオロ
メチル基であり、mは0〜3の整数であり、nは0〜1
2の整数であり、pは0又は1であり、n=0のときに
はp=0である。)とからなる共重合体である請求項
1、2又は3に記載の固体高分子型燃料電池用電解質
膜。
4. A perfluorocarbon polymer having a sulfonic acid group, CF 2 = polymerized units based on CF 2 and CF 2 =
CF (OCF 2 CFX) m -O p - a (CF 2) n SO 3 X polymerized units (here based on H fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is 0-1
Is an integer of 2, p is 0 or 1, and when n = 0, p = 0. 4. The electrolyte membrane for a polymer electrolyte fuel cell according to claim 1, which is a copolymer comprising:
【請求項5】スルホン酸基又はその前駆体基を有するパ
ーフルオロカーボン重合体とフィブリル化可能なフルオ
ロカーボン重合体との混合物をフィルム状に成形し、得
られたフィルムの少なくとも片面に延伸補助フィルムを
積層した後、加熱下で延伸することを特徴とする固体高
分子型燃料電池用電解質膜の製造方法。
5. A mixture of a perfluorocarbon polymer having a sulfonic acid group or a precursor group thereof and a fibrillable fluorocarbon polymer is formed into a film, and a stretching auxiliary film is laminated on at least one surface of the obtained film. And then stretching the film under heating to produce an electrolyte membrane for a polymer electrolyte fuel cell.
【請求項6】加熱下で延伸することにより、前記フィル
ムは厚さが3〜70μmとされかつ前記フルオロカーボ
ン重合体はフィブリルはフィブリル化されてフィブリル
繊維径が1μm以下のフィブリル数が全フィブリル数の
70%以上とされる請求項5に記載の固体高分子型燃料
電池用電解質膜の製造方法。
6. The film is stretched under heating so that the film has a thickness of 3 to 70 μm and the fibrils of the fluorocarbon polymer are fibrillated so that the number of fibrils having a fibril fiber diameter of 1 μm or less is the total number of fibrils. The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to claim 5, wherein the content is 70% or more.
【請求項7】スルホン酸基の前駆体基を有するパーフル
オロカーボン重合体と前記フルオロカーボン重合体との
混合物をフィルム状に成形し、前記スルホン酸基の前駆
体基を加水分解、酸型化処理した後に加熱下で軸延伸す
る請求項5又は6に記載の固体高分子型燃料電池用電解
質膜の製造方法。
7. A mixture of a perfluorocarbon polymer having a precursor group of a sulfonic acid group and the fluorocarbon polymer is formed into a film, and the precursor group of the sulfonic acid group is subjected to hydrolysis and acidification. 7. The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to claim 5, wherein the film is axially stretched after heating.
【請求項8】前記延伸補助フィルムはポリエチレンテレ
フタレートフィルム又はポリプロピレンフィルムからな
り、延伸は40〜150℃の温度で行う請求項5、6又
は7に記載の固体高分子型燃料電池用電解質膜の製造方
法。
8. The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to claim 5, wherein the stretching auxiliary film is made of a polyethylene terephthalate film or a polypropylene film, and the stretching is performed at a temperature of 40 to 150 ° C. Method.
【請求項9】請求項1、2、3又は4に記載の電解質膜
の両面にガス拡散電極が配置されていることを特徴とす
る固体高分子型燃料電池。
9. A polymer electrolyte fuel cell, wherein gas diffusion electrodes are arranged on both sides of the electrolyte membrane according to claim 1, 2, 3 or 4.
JP2001096810A 2000-03-31 2001-03-29 Electrolyte membrane for solid polymer fuel cell and method of manufacturing it Pending JP2001345111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001096810A JP2001345111A (en) 2000-03-31 2001-03-29 Electrolyte membrane for solid polymer fuel cell and method of manufacturing it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000096596 2000-03-31
JP2000-96596 2000-03-31
JP2001096810A JP2001345111A (en) 2000-03-31 2001-03-29 Electrolyte membrane for solid polymer fuel cell and method of manufacturing it

Publications (1)

Publication Number Publication Date
JP2001345111A true JP2001345111A (en) 2001-12-14

Family

ID=26589049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001096810A Pending JP2001345111A (en) 2000-03-31 2001-03-29 Electrolyte membrane for solid polymer fuel cell and method of manufacturing it

Country Status (1)

Country Link
JP (1) JP2001345111A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057228A (en) * 2004-07-21 2006-03-02 Gunze Ltd Extra fine fiber and method for producing the same
US7311989B2 (en) * 2002-07-26 2007-12-25 Asahi Glass Company, Limited Polymer membrane, process for its production and membrane-electrode assembly for solid polymer electrolyte fuel cells
JP2009016075A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Manufacturing method of composite electrolyte membrane and membrane electrode assembly provided with composite electrolyte membrane
US7488788B2 (en) 2003-05-13 2009-02-10 Asahi Glass Company, Limited Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
JP2009043544A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Method for producing polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2009238448A (en) * 2008-03-26 2009-10-15 Teijin Dupont Films Japan Ltd Biaxially oriented laminated film for solid polymer electrolyte membrane reinforcement, and solid polymer electrolyte membrane reinforcing member formed therewith
JP2019065349A (en) * 2017-09-29 2019-04-25 旭化成株式会社 Alkaline water electrolysis diaphragm and production method thereof, and bipolar-type electrolytic bath
CN110690391A (en) * 2019-10-12 2020-01-14 福建师范大学 Coating method of high-safety diaphragm

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311989B2 (en) * 2002-07-26 2007-12-25 Asahi Glass Company, Limited Polymer membrane, process for its production and membrane-electrode assembly for solid polymer electrolyte fuel cells
US7488788B2 (en) 2003-05-13 2009-02-10 Asahi Glass Company, Limited Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
JP2006057228A (en) * 2004-07-21 2006-03-02 Gunze Ltd Extra fine fiber and method for producing the same
JP2009016075A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Manufacturing method of composite electrolyte membrane and membrane electrode assembly provided with composite electrolyte membrane
JP2009043544A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Method for producing polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2009238448A (en) * 2008-03-26 2009-10-15 Teijin Dupont Films Japan Ltd Biaxially oriented laminated film for solid polymer electrolyte membrane reinforcement, and solid polymer electrolyte membrane reinforcing member formed therewith
JP2019065349A (en) * 2017-09-29 2019-04-25 旭化成株式会社 Alkaline water electrolysis diaphragm and production method thereof, and bipolar-type electrolytic bath
JP7009146B2 (en) 2017-09-29 2022-01-25 旭化成株式会社 Alkaline water electrolysis diaphragm and its manufacturing method, multi-pole electrolytic cell
CN110690391A (en) * 2019-10-12 2020-01-14 福建师范大学 Coating method of high-safety diaphragm
CN110690391B (en) * 2019-10-12 2022-04-22 福建师范大学 Coating method of high safety diaphragm

Similar Documents

Publication Publication Date Title
US6692858B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and producing method thereof
JP5849148B2 (en) Polymer electrolyte membrane
JP4857560B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell
JP3342726B2 (en) Solid polymer electrolyte fuel cell and method of manufacturing the same
WO2004011535A1 (en) Polymer film, process for producing the same, and united membrane electrode assembly for solid polymer type fuel cell
US20020064700A1 (en) Solid polymer electrolyte fuel cell and method of its production
JP5331122B2 (en) Reinforcing electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell including the same
EP2109171A1 (en) Solid polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly
JP2002025583A (en) Electrolyte film for solid high polymer molecule fuel cell and its manufacturing method
JP2001345111A (en) Electrolyte membrane for solid polymer fuel cell and method of manufacturing it
EP1263074A1 (en) Ion exchange polymer dispersion and process for its production
JP2000260443A (en) Solid high polymer electrolyte fuel cell
JP2003055568A (en) Ion exchanger resin dispersion and method for producing the same
JP4867081B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same
JP2003059512A (en) Manufacturing method of electrolyte film for solid polymer fuel cell
WO2001006586A1 (en) Solid polymer electrolyte type fuel cell and method for manufacturing the same
JP4218255B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
JP2001035508A (en) Solid high polymer electrolyte fuel cell
JP2006160902A (en) Polyelectrolyte membrane and its manufacturing method
JP4234573B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell
JP2005078895A (en) Cation exchange membrane, its manufacturing method, and membrane-electrode junction for solid polymer fuel cell
JP4188789B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell