JP2001337210A - Optical reflection mirror - Google Patents
Optical reflection mirrorInfo
- Publication number
- JP2001337210A JP2001337210A JP2000160082A JP2000160082A JP2001337210A JP 2001337210 A JP2001337210 A JP 2001337210A JP 2000160082 A JP2000160082 A JP 2000160082A JP 2000160082 A JP2000160082 A JP 2000160082A JP 2001337210 A JP2001337210 A JP 2001337210A
- Authority
- JP
- Japan
- Prior art keywords
- film
- polarized light
- optical
- reflecting mirror
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 41
- 239000010408 film Substances 0.000 claims abstract description 60
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000012788 optical film Substances 0.000 claims abstract description 6
- 230000008033 biological extinction Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims 2
- 230000007423 decrease Effects 0.000 abstract description 3
- 238000010030 laminating Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000005361 soda-lime glass Substances 0.000 description 6
- 238000001771 vacuum deposition Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 101150000715 DA18 gene Proteins 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XASAPYQVQBKMIN-UHFFFAOYSA-K ytterbium(iii) fluoride Chemical compound F[Yb](F)F XASAPYQVQBKMIN-UHFFFAOYSA-K 0.000 description 1
- 229940105963 yttrium fluoride Drugs 0.000 description 1
- RBORBHYCVONNJH-UHFFFAOYSA-K yttrium(iii) fluoride Chemical compound F[Y](F)F RBORBHYCVONNJH-UHFFFAOYSA-K 0.000 description 1
Landscapes
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光通信、光学技術
を適用したセンサー、液晶表示素子、光学測定装置等、
光学技術分野で幅広く使用される金属からなる光学反射
鏡に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optical communication, sensors to which optical technology is applied, liquid crystal display elements, optical measuring devices, and the like.
The present invention relates to an optical reflecting mirror made of metal widely used in the optical technology field.
【0002】[0002]
【従来の技術】従来、光学反射鏡には、Al反射鏡、A
g反射鏡等のように金属の高い反射率を利用したものが
多く使用されている。これら光学反射鏡には、反射像の
明瞭性が要求されるため、光学的平滑性が求められる。
しかし、金属を光学平滑に加工することが難しいので、
光学平滑性を得やすいガラス上に金属膜を形成し、これ
を反射鏡として用いている。2. Description of the Related Art Conventionally, optical reflecting mirrors include an Al reflecting mirror and an A reflecting mirror.
A device utilizing a high reflectance of a metal, such as a g reflector, is often used. These optical reflecting mirrors are required to have clarity of the reflected image, and therefore are required to have optical smoothness.
However, it is difficult to process metal optically smoothly,
A metal film is formed on glass, which is easy to obtain optical smoothness, and this is used as a reflector.
【0003】これら金属反射鏡、特にAl反射鏡は耐酸
化性に劣ることが知られている。これらの耐久性を向上
せしめるために金属膜上へオーバーコートを施すことが
行われている。特に、Al反射鏡の場合にはフッ化マグ
ネシウム膜をオーバーコートとして利用することにより
耐酸化性が高められることが知られている。It is known that these metal reflectors, especially Al reflectors, have poor oxidation resistance. In order to improve the durability, overcoating is performed on a metal film. In particular, in the case of an Al reflecting mirror, it is known that oxidation resistance is improved by using a magnesium fluoride film as an overcoat.
【0004】また、金属反射鏡の反射率を向上させるた
めに、金属膜上に低屈折率の透明誘電体膜と高屈折率の
透明誘電体膜を積層した増反射ミラーと呼ばれる反射鏡
も存在する。さらに、金属半透鏡(ハーフミラー)と呼
ばれる光透過性を有する金属反射鏡も存在する。これは
薄い金属膜を光透過性の基体上に形成することによっ
て、付与される光透過性を有するものであり、光反射性
と光透過性の両方を有する。Further, in order to improve the reflectance of a metal reflector, there is also a reflector called an enhanced reflection mirror in which a transparent dielectric film having a low refractive index and a transparent dielectric film having a high refractive index are laminated on a metal film. I do. Further, there is a metal reflecting mirror having a light transmittance called a metal semi-transparent mirror (half mirror). This has a light transmissivity provided by forming a thin metal film on a light transmissive substrate, and has both light reflectivity and light transmissivity.
【0005】[0005]
【発明が解決しようとする課題】ところが従来知られて
いる光学反射鏡では、無偏光の光を入射した場合でも、
斜入射であると反射光に偏光を生じる。入射光とその入
射基板面の法線がなす角度(入射角)が0度に近く垂直
入射に近い場合は、p偏光反射率とs偏光反射率は近い
値になるが、入射角が大きくなるにつれ、p偏光反射率
とs偏光反射率の比は大きくなる。すなわち、p偏光反
射率とs偏光反射率の比は、入射角に依存することが知
られている。However, with a conventionally known optical reflecting mirror, even when unpolarized light is incident,
At oblique incidence, reflected light is polarized. When the angle (incident angle) between the incident light and the normal line of the incident substrate surface is close to 0 ° and close to normal incidence, the p-polarized light reflectance and the s-polarized light reflectance are close to each other, but the incident angle is large. As the ratio increases, the ratio between the p-polarized light reflectance and the s-polarized light reflectance increases. That is, it is known that the ratio between the p-polarized light reflectance and the s-polarized light reflectance depends on the incident angle.
【0006】上述のように反射鏡に光が斜入射する光学
系では、入射光が無偏光状態であっても、出射光は偏光
となる。したがって出力として無偏光の光を取り出した
い場合には、反射強度の強い偏光成分を、何らかの手段
によって反射強度の弱い偏光成分の強度と同程度になる
ように減じ、s偏光強度とp偏光強度の比をを1:1に
調整する必要があった。具体的には偏光フィルターを用
いる方法がある。しかしながら、このような方法によっ
て反射光を無偏光状態にすると、光の強度が低下するの
を避けられないという問題があった。As described above, in an optical system in which light is obliquely incident on a reflecting mirror, outgoing light is polarized even if the incident light is in a non-polarized state. Therefore, when it is desired to extract unpolarized light as an output, the polarization component having a high reflection intensity is reduced by some means so as to be substantially the same as the polarization component having a low reflection intensity, and the s-polarization intensity and the p-polarization intensity are reduced. The ratio had to be adjusted to 1: 1. Specifically, there is a method using a polarizing filter. However, when the reflected light is made to be in a non-polarized state by such a method, there is a problem that a decrease in light intensity cannot be avoided.
【0007】本発明は、このような問題点を解決するた
めに、光を斜入射した場合(入射光線と基板面の法線の
なす角度が0度より大きい場合)にも、反射光が無偏光
状態を維持する金属反射鏡を提供することを目的になさ
れたものである。According to the present invention, in order to solve such a problem, even when light is obliquely incident (when the angle between the incident light and the normal to the substrate surface is larger than 0 °), reflected light is not generated. An object of the present invention is to provide a metal reflecting mirror that maintains a polarization state.
【0008】[0008]
【課題を解決するための手段】本発明の光学反射鏡は、
基板上へ該基板側から順に、少なくとも第1層として光
を通さない程度に十分な厚さをもつ金属膜と、第2層と
して透明な誘電体膜とを順次積層した反射鏡である。こ
こで、入射光波長における前記金属膜の屈折率を2.0
以下、消衰係数が6.0以上とする。かつ入射光波長に
おける前記誘電体膜の屈折率が1.30以上1.65以
下、また入射光波長をλとするとき光学膜厚が0.20
λ以上0.38λ以下とする。さらに、入射光波長にお
ける前記誘電体膜の屈折率は1.30以上1.46以下
であることがより好ましい。The optical reflecting mirror of the present invention comprises:
This is a reflecting mirror in which a metal film having a thickness sufficient to prevent light from passing through is formed as a first layer and a transparent dielectric film is formed as a second layer on the substrate in order from the substrate side. Here, the refractive index of the metal film at the wavelength of incident light is 2.0
Hereinafter, the extinction coefficient is set to 6.0 or more. In addition, the refractive index of the dielectric film at an incident light wavelength is 1.30 or more and 1.65 or less, and the optical film thickness is 0.20 when the incident light wavelength is λ.
It is set to λ to 0.38λ. Further, the refractive index of the dielectric film at the wavelength of incident light is more preferably 1.30 or more and 1.46 or less.
【0009】前記金属膜としては、AlまたはAlを主
成分とする合金、AgまたはAgを主成分とする合金、
CuまたはCuを主成分とする合金、AuまたはAuを
主成分とする合金のいずれかを用いることができる。As the metal film, Al or an alloy containing Al as a main component, Ag or an alloy containing Ag as a main component,
Either Cu or an alloy containing Cu as a main component, Au or an alloy containing Au as a main component can be used.
【0010】[0010]
【発明の実施の形態】以下に本発明を実施例に基づいて
説明する。本発明の目的を達成するための膜構成を見出
すため、初めにマトリックス法と呼ばれる方法を用いて
シミュレーションを行った。この方法についてはH.
A.Macleod著、「光学薄膜」(日刊工業新聞
社)に詳細に説明されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. In order to find a film configuration for achieving the object of the present invention, a simulation was first performed using a method called a matrix method. This method is described in H.
A. This is described in detail in "Optical Thin Film" by Macleod (Nikkan Kogyo Shimbun).
【0011】このシミュレーションにより、本発明者ら
は図1に示すような基板12上に金属膜14と透明誘電
体膜16の積層構造を設けることにより、入射光30が
斜入射である場合においても偏光を生じない光学反射鏡
10が実現できることを見出した。According to this simulation, the present inventors provide a laminated structure of the metal film 14 and the transparent dielectric film 16 on the substrate 12 as shown in FIG. 1 so that even when the incident light 30 is obliquely incident, It has been found that the optical reflecting mirror 10 that does not generate polarized light can be realized.
【0012】このシミュレーション結果を基礎とした反
射鏡の作製例を以下に示す。この結果をまとめると、金
属膜としては反射率を高くするため、消衰係数(複素屈
折率の虚数部)kが6.0以上と大きい材料が好ましい
ことがわかる。なお、通常の金属ではkは20程度以下
である。また、屈折率(複素屈折率の実数部)nは2.
0以下と小さい材料が好ましい。通常の金属のnは約
0.2以上である。このような特性を満たす金属材料と
しては、実施例に示したAl,Ag,Auの他、Cuな
どがあり、またこれらのような単一元素の金属だけでな
く、これら金属を主成分とする合金も使用することがで
きる。An example of manufacturing a reflecting mirror based on the simulation results will be described below. Summarizing the results, it can be seen that a material having an extinction coefficient (imaginary part of the complex refractive index) k as large as 6.0 or more is preferable for increasing the reflectance as the metal film. In addition, k is about 20 or less in a normal metal. The refractive index (the real part of the complex refractive index) n is 2.
A material as small as 0 or less is preferable. The normal metal n is about 0.2 or more. Examples of the metal material satisfying such characteristics include Al, Ag, and Au shown in the examples, Cu, and the like. In addition to a single element metal such as these, these metals are mainly used. Alloys can also be used.
【0013】また、透明誘電体膜については、入射光波
長における前記誘電体膜の屈折率が1.30以上1.6
5以下、また入射光波長をλとするとき光学膜厚が0.
20λ以上0.38λ以下である必要がある。さらに、
入射光波長における前記誘電体膜の屈折率は1.30以
上1.46以下であることがより好ましい。このような
特性を満たす透明誘電体膜としては、実施例に示したフ
ッ化マグネシウム、二酸化珪素、酸化アルミニウムの
他、フッ化カルシウム、フッ化アルミニウム、フッ化イ
ットリウム、フッ化イッテリビウム、一酸化珪素等を用
いることができる。 特にフッ化マグネシウム、フッ化
カルシウム等のフッ素化物は金属膜上へ成膜した際に、
金属膜の表面を酸化させることが無いので好ましい。The transparent dielectric film has a refractive index of 1.30 or more and 1.6 at the wavelength of incident light.
5 or less, and when the incident light wavelength is λ, the optical film thickness is 0.5.
It is necessary to be 20λ or more and 0.38λ or less. further,
The refractive index of the dielectric film at an incident light wavelength is more preferably 1.30 or more and 1.46 or less. Examples of the transparent dielectric film satisfying such characteristics include magnesium fluoride, silicon dioxide, aluminum oxide, calcium fluoride, aluminum fluoride, yttrium fluoride, ytterbium fluoride, silicon monoxide, etc. Can be used. In particular, when fluorides such as magnesium fluoride and calcium fluoride are formed on a metal film,
This is preferable because the surface of the metal film is not oxidized.
【0014】基板の材料について特に限定はない。ただ
し、反射像を得る場合には光学的平滑性が必要であるた
め、光学的に平滑な基板であることが重要である。There is no particular limitation on the material of the substrate. However, in order to obtain a reflection image, optical smoothness is necessary, so that an optically smooth substrate is important.
【0015】本発明の金属膜、透明誘電体膜の成膜法
は、特に限定されるものでは無く、真空蒸着成膜法、ス
パッタリング成膜法、ゾルゲル成膜法、化学的気相成長
法(CVD)、イオンプレーティングと呼ばれるプラズ
マを利用した真空蒸着成膜法等が利用できる。なお、A
u膜などにおいて基板との付着力が不足する場合には、
必要に応じて例えばCr膜などを基板と金属膜の中間層
として用いてもよく、膜構成は必ずしも2層に限定され
るものではない。The method for forming the metal film and the transparent dielectric film of the present invention is not particularly limited, and a vacuum deposition film formation method, a sputtering film formation method, a sol-gel film formation method, a chemical vapor deposition method ( CVD), a vacuum deposition film forming method using plasma called ion plating, or the like can be used. Note that A
When the adhesion to the substrate is insufficient in the u film, etc.,
If necessary, for example, a Cr film or the like may be used as an intermediate layer between the substrate and the metal film, and the film configuration is not necessarily limited to two layers.
【0016】[実施例1]縦30mm×横30mm×厚
み10mmの大きさの石英ガラス基板を真空蒸着装置に
いれ、装置内に設置された基板加熱ヒーターによりこの
石英ガラス基板を150℃に加熱した状態で、Al膜
(入射光波長λ=1550nmでn=1.88、k=1
2.96)を膜厚が200nmになるように成膜した。
その後、フッ化マグネシウム(MgF2)膜を膜厚が2
54nm(λ=1550nmの場合、光学膜厚=0.2
2λ)になるように成膜し、光学反射鏡とした。Example 1 A quartz glass substrate having a size of 30 mm long × 30 mm wide × 10 mm thick was placed in a vacuum evaporation apparatus, and the quartz glass substrate was heated to 150 ° C. by a substrate heater installed in the apparatus. In the state, an Al film (n = 1.88 at an incident light wavelength λ = 1550 nm, k = 1)
2.96) was formed to a thickness of 200 nm.
Thereafter, a magnesium fluoride (MgF 2 ) film is
54 nm (optical thickness = 0.2 when λ = 1550 nm)
2λ) to form an optical reflecting mirror.
【0017】真空蒸着は、電子ビーム蒸着法で行い、蒸
着るつぼからガラス板までの距離を100cmとし、ガ
ラス板を回転させながら成膜した。蒸着開始前の到達真
空度はいずれの層についても、油拡散ポンプで0.00
3Paまで排気を行った。Al層、MgF2層とも、ガ
スを導入せずに蒸着を行った。The vacuum evaporation was performed by an electron beam evaporation method, and the film was formed while rotating the glass plate while setting the distance from the evaporation crucible to the glass plate to 100 cm. The ultimate vacuum before the start of vapor deposition was 0.00
Evacuation was performed up to 3 Pa. Both the Al layer and the MgF 2 layer were deposited without introducing a gas.
【0018】図1に示すように、得られた光学反射鏡1
0に対して、波長1550nmの入射光30を被覆面側
から入射し、出射光32のs偏光反射率およびp偏光反
射率を測定した。測定は入射角22(基板12の表面の
法線20と入射光30がなす角)を5〜75度の間で変
化させて行った。測定結果を図2に示す。As shown in FIG. 1, the obtained optical reflecting mirror 1
At 0, incident light 30 having a wavelength of 1550 nm was incident from the coating surface side, and the s-polarized light reflectance and p-polarized light reflectance of the outgoing light 32 were measured. The measurement was performed by changing the incident angle 22 (the angle formed by the normal 20 of the surface of the substrate 12 and the incident light 30) between 5 and 75 degrees. FIG. 2 shows the measurement results.
【0019】入射角が5度から75度の範囲でs偏光反
射率とp偏光反射率はほぼ等しいことが解る。75度入
射の場合にも、s偏光反射率=95.9%、p偏光反射
率=95.4%とほぼ無偏光状態であり、自然光反射率
=95.7%(=(95.9+95.4)/2)と反射
率も高く反射鏡として十分な機能を有していることが解
る。It is understood that the s-polarized light reflectance and the p-polarized light reflectance are almost equal in the range of the incident angle from 5 degrees to 75 degrees. Also at 75 degrees incidence, the s-polarized light reflectance is 95.9% and the p-polarized light reflectance is 95.4%, which is almost a non-polarized state, and the natural light reflectance is 95.7% (= (95.9 + 95. 4) / 2), the reflectance is high, indicating that the mirror has a sufficient function.
【0020】[実施例2]実施例1と同様にして、光学
的に平滑なソーダライムガラス板上に膜厚200nmの
Ag膜(λ=1550nmでn=0.58、k=10.
75)、膜厚267.7nmのSiO2膜(λ=155
0nmの場合、光学膜厚=0.25λ)を順次真空蒸着
法によって成膜した。Example 2 In the same manner as in Example 1, an Ag film having a thickness of 200 nm (n = 1.58 at λ = 1550 nm, k = 0.10) was formed on an optically smooth soda lime glass plate.
75), a SiO 2 film (λ = 155) having a thickness of 267.7 nm
In the case of 0 nm, the optical film thickness = 0.25λ) was sequentially formed by a vacuum evaporation method.
【0021】実施例1同様のs偏光反射率およびp偏光
反射率の測定結果を図3に示す。入射角が5度から75
度の範囲でs偏光反射率とp偏光反射率はほぼ等しいこ
とが解る。75度入射の場合にも、s偏光反射率=9
6.4%、p偏光反射率=98.0%とほぼ無偏光状態
であり、自然光反射率=97.2%(=(96.4+9
8.0)/2)と反射率も高く反射鏡として十分な機能
を有していることが解る。FIG. 3 shows the measurement results of the s-polarized light reflectance and the p-polarized light reflectance as in Example 1. Incident angle from 5 degrees to 75
It can be seen that the s-polarized light reflectance and the p-polarized light reflectance are almost equal in the range of degrees. Even at 75 degrees incidence, s-polarized light reflectance = 9
6.4%, p-polarized light reflectance = 98.0%, almost non-polarized state, natural light reflectance = 97.2% (= (96.4 + 9)
It can be seen that the reflectance is high (8.0) / 2), and that it has a sufficient function as a reflector.
【0022】[実施例3]実施例1と同様にして、光学
的に平滑なソーダライムガラス板上に膜厚200nmの
Au膜(λ=1200nmでn=0.41、k=7.5
2)、膜厚264.8nmのAl2O3膜(λ=1200
nmの場合、光学膜厚=0.36λ)を順次真空蒸着法
によって成膜した。Example 3 In the same manner as in Example 1, an Au film having a thickness of 200 nm (n = 0.41 at λ = 1200 nm, k = 7.5) was formed on an optically smooth soda lime glass plate.
2), an Al 2 O 3 film having a film thickness of 264.8 nm (λ = 1200
In the case of nm, the optical film thickness = 0.36λ) was sequentially formed by a vacuum evaporation method.
【0023】入射光波長を1200nmとし、他の条件
は実施例1同様とした場合のs偏光反射率およびp偏光
反射率の測定結果を図4に示す。入射角が5度から75
度の範囲でs偏光反射率とp偏光反射率はほぼ等しいこ
とが解る。75度入射の場合にも、s偏光反射率=9
5.9%、p偏光反射率=96.7%とほぼ無偏光状態
であり、自然光反射率=96.3%(=(95.9+9
6.7)/2)と反射率も高く反射鏡として十分な機能
を有していることが解る。FIG. 4 shows the measurement results of the s-polarized light reflectance and the p-polarized light reflectance when the wavelength of the incident light was 1200 nm and the other conditions were the same as in Example 1. Incident angle from 5 degrees to 75
It can be seen that the s-polarized light reflectance and the p-polarized light reflectance are almost equal in the range of degrees. Even at 75 degrees incidence, s-polarized light reflectance = 9
5.9%, p-polarized light reflectance = 96.7%, almost non-polarized state, natural light reflectance = 96.3% (= (95.9 + 9)
It can be seen that the reflectance is high at 6.7) / 2), and that it has a sufficient function as a reflector.
【0024】[比較例1]実施例1と同様にして、光学
的に平滑なソーダライムガラス板上に膜厚200nmの
Al膜のみを真空蒸着法によって成膜した。実施例1同
様のs偏光反射率およびp偏光反射率の測定結果を図5
に示す。入射角が5度から75度と大きくなるに伴い、
s偏光反射率とp偏光反射率の差は大きくなることが解
る。75度入射の場合、s偏光反射率=98.9%、p
偏光反射率=85.5%と偏光状態であり、これをフィ
ルターで無偏光状態(すなわち、s偏光強度:p偏光強
度=1:1)にするためには、s偏光反射強度を少なく
とも85.5%まで低下せしめる必要があることが解
る。したがって、無偏光状態を得るように調整した場合
の自然光反射率は、最高でも85.5%となり反射鏡と
して十分な機能を発揮できないことが解る。Comparative Example 1 In the same manner as in Example 1, only an Al film having a thickness of 200 nm was formed on an optically smooth soda lime glass plate by a vacuum evaporation method. FIG. 5 shows the measurement results of the s-polarized light reflectance and the p-polarized light reflectance as in Example 1.
Shown in As the angle of incidence increases from 5 degrees to 75 degrees,
It can be seen that the difference between the s-polarized light reflectance and the p-polarized light reflectance increases. For 75 degree incidence, s-polarized light reflectance = 98.9%, p
The polarized light reflectance is 85.5%, which is a polarized state. To make this into a non-polarized state (ie, s-polarized light intensity: p-polarized light intensity = 1: 1) with a filter, the s-polarized light reflection intensity must be at least 85.5%. It turns out that it is necessary to reduce it to 5%. Therefore, the natural light reflectance when adjusted to obtain a non-polarized state is 85.5% at the maximum, which indicates that a sufficient function as a reflector cannot be exhibited.
【0025】[比較例2]実施例1と同様にして、光学
的に平滑なソーダライムガラス板上に膜厚200nmの
Ni膜(λ=1550nmでn=3.18、k=4.4
8)を、次にMgF2膜(λ=1550nmの場合、光
学膜厚=0.22λ)を順次成膜し反射鏡を作製した。
実施例1同様のs偏光反射率およびp偏光反射率の測定
結果を図6に示す。入射角が5度から75度の範囲で反
射率は約40%から約60%程度と非常に低く、反射鏡
としては使用できないレベルであることが解る。Comparative Example 2 In the same manner as in Example 1, a 200 nm thick Ni film (λ = 1550 nm, n = 3.18, k = 4.4) was formed on an optically smooth soda lime glass plate.
8), and then an MgF 2 film (optical thickness = 0.22λ in the case of λ = 1550 nm) was sequentially formed to produce a reflecting mirror.
FIG. 6 shows the measurement results of the s-polarized light reflectance and the p-polarized light reflectance as in Example 1. It can be seen that the reflectivity is very low at about 40% to about 60% when the incident angle is in the range of 5 ° to 75 °, which is a level that cannot be used as a reflecting mirror.
【0026】[比較例3]実施例1と同様にして、光学
的に平滑なソーダライムガラス板上にAl膜(膜厚;1
50nm)を、次に膜厚:172.2nmのMgF2膜
(λ=1550nmの場合、光学膜厚=0.15λ)を
順次成膜し反射鏡を作製した。実施例1同様のs偏光反
射率およびp偏光反射率の測定結果を図7に示す。入射
角が65度の時に、p偏光反射率/s偏光反射率の比は
約0.957と大きく偏光が生じていることが解る。Comparative Example 3 An Al film (film thickness: 1) was formed on an optically smooth soda lime glass plate in the same manner as in Example 1.
50 nm) and then a 172.2 nm-thick MgF 2 film (optical thickness = 0.15λ in the case of λ = 1550 nm) to form a reflecting mirror. FIG. 7 shows the measurement results of the s-polarized light reflectance and the p-polarized light reflectance as in Example 1. When the incident angle is 65 degrees, the ratio of the p-polarized light reflectance / s-polarized light reflectance is about 0.957, indicating that polarized light is generated.
【0027】[比較例4]スパッタ成膜により、光学的
に平滑なソーダライムガラス板上にAu膜(膜厚200
nm)を、次に膜厚:208.1nmのSi3N4膜(入
射光波長λ=1200nmの場合、光学膜厚=0.33
λ)を順次積層し反射鏡を成膜した。Comparative Example 4 An Au film (thickness: 200) was formed on an optically smooth soda lime glass plate by sputtering.
nm), and then an Si 3 N 4 film having a thickness of 208.1 nm (in the case of an incident light wavelength λ = 1200 nm, the optical thickness = 0.33).
λ) were sequentially laminated to form a reflecting mirror.
【0028】入射光波長を1200nmとし、他の条件
は実施例1同様とした場合のs偏光反射率およびp偏光
反射率の測定結果を図8に示す。入射角が5度から60
度と大きくなるに伴い、s偏光反射率とp偏光反射率の
差は大きくなり、入射角が60度以上では入射角の増加
に伴い、s偏光反射率とp偏光反射率の差が小さくなる
ことが解る。FIG. 8 shows the measurement results of the s-polarized light reflectance and the p-polarized light reflectance when the incident light wavelength was 1200 nm and the other conditions were the same as in Example 1. Incident angle from 5 degrees to 60
As the angle increases, the difference between the s-polarized light reflectance and the p-polarized light reflectance increases. When the incident angle is 60 degrees or more, the difference between the s-polarized light reflectance and the p-polarized light reflectance decreases as the incident angle increases. I understand.
【0029】55度入射の場合には、s偏光反射率=8
5.7%、p偏光反射率=83.5%と偏光状態であ
り、これをフィルターで無偏光状態(すなわち、s偏光
強度:p偏光強度=1:1)にするためには、s偏光反
射強度を少なくとも83.5%まで低下せしめる必要が
あることが解る。したがって、無偏光状態を得たるよう
に調整した場合の自然光反射率は、最高でも83.5%
となり、反射鏡として十分な反射率を実現できない。In the case of 55 degree incidence, s-polarized light reflectance = 8
The polarization state is 5.7% and the p-polarized light reflectance is 83.5%. To make this into a non-polarized state (that is, s-polarized light intensity: p-polarized light intensity = 1: 1) with a filter, s-polarized light is used. It can be seen that the reflection intensity needs to be reduced to at least 83.5%. Therefore, the natural light reflectance when adjusted so as to obtain a non-polarized state is 83.5% at the maximum.
Therefore, a sufficient reflectance cannot be realized as a reflecting mirror.
【0030】[0030]
【発明の効果】本発明の光学反射鏡は、斜入射光に対し
て偏光を生じることがない。そのため、本発明の光学反
射鏡を使用する際に偏光の影響を考慮する必要が無くな
り、光学設計が非常に簡単に出来るようになる。また、
反射光が無偏光であることから、偏光を自然光に調整す
ることを目的とするフィルターを使用する必要が無くな
る。The optical reflecting mirror of the present invention does not produce polarized light for obliquely incident light. Therefore, there is no need to consider the influence of polarized light when using the optical reflecting mirror of the present invention, and the optical design can be made very simple. Also,
Since the reflected light is unpolarized, it is not necessary to use a filter for adjusting the polarized light to natural light.
【図1】本発明の光学反射鏡の構造を示す断面図であ
る。FIG. 1 is a sectional view showing a structure of an optical reflecting mirror according to the present invention.
【図2】実施例1の光学反射鏡の反射特性を示す図であ
る。FIG. 2 is a diagram illustrating reflection characteristics of the optical reflecting mirror of the first embodiment.
【図3】実施例2の光学反射鏡の反射特性を示す図であ
る。FIG. 3 is a diagram illustrating reflection characteristics of an optical reflecting mirror according to a second embodiment.
【図4】実施例3の光学反射鏡の反射特性を示す図であ
る。FIG. 4 is a diagram illustrating reflection characteristics of an optical reflecting mirror according to a third embodiment.
【図5】比較例1の光学反射鏡の反射特性を示す図であ
る。FIG. 5 is a diagram showing reflection characteristics of the optical reflecting mirror of Comparative Example 1.
【図6】比較例2の光学反射鏡の反射特性を示す図であ
る。FIG. 6 is a diagram showing reflection characteristics of the optical reflecting mirror of Comparative Example 2.
【図7】比較例3の光学反射鏡の反射特性を示す図であ
る。FIG. 7 is a diagram showing the reflection characteristics of the optical reflecting mirror of Comparative Example 3.
【図8】比較例4の光学反射鏡の反射特性を示す図であ
る。FIG. 8 is a diagram showing reflection characteristics of the optical reflecting mirror of Comparative Example 4.
10 光学反射鏡 12 基板 14 金属膜 16 透明誘電体膜 20 基板表面に対する法線 22 入射角 30 入射光 32 出射光 DESCRIPTION OF SYMBOLS 10 Optical reflecting mirror 12 Substrate 14 Metal film 16 Transparent dielectric film 20 Normal to substrate surface 22 Incident angle 30 Incident light 32 Emitted light
───────────────────────────────────────────────────── フロントページの続き (72)発明者 河本 眞司 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 村口 功 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 Fターム(参考) 2H042 DA02 DA04 DA05 DA07 DA12 DA18 DB00 DC02 DE00 DE04 DE09 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinji Kawamoto 3-5-11 Doshomachi, Chuo-ku, Osaka-shi, Osaka Inside Nippon Sheet Glass Co., Ltd. (72) Isao Muraguchi 3-chome, Doshucho, Chuo-ku, Osaka-shi, Osaka No.5-11 Nippon Sheet Glass Co., Ltd. F-term (reference) 2H042 DA02 DA04 DA05 DA07 DA12 DA18 DB00 DC02 DE00 DE04 DE09
Claims (3)
1層として光を通さない程度に十分な厚さをもつ金属膜
と、第2層として透明な誘電体膜とを順次積層した光学
反射鏡において、入射光波長における前記金属膜の屈折
率が2.0以下、消衰係数が6.0以上であり、かつ入
射光波長における前記誘電体膜の屈折率が1.30以上
1.65以下、光学膜厚が入射光波長の0.20倍以上
0.38倍以下であることを特徴とする光学反射鏡。1. An optical device comprising: a metal film having a thickness sufficient to prevent light from passing through at least as a first layer and a transparent dielectric film as a second layer on a substrate in order from the substrate side. In the reflecting mirror, the refractive index of the metal film at an incident light wavelength is 2.0 or less, the extinction coefficient is 6.0 or more, and the refractive index of the dielectric film at an incident light wavelength is 1.30 or more. An optical reflector, wherein the optical thickness is not more than 65 and the optical film thickness is not less than 0.20 times and not more than 0.38 times the wavelength of the incident light.
が1.30以上1.46以下であることを特徴とする請
求項1に記載の光学反射鏡。2. The optical reflecting mirror according to claim 1, wherein a refractive index of said dielectric film at an incident light wavelength is from 1.30 to 1.46.
る合金、AgまたはAgを主成分とする合金、Cuまた
はCuを主成分とする合金、AuまたはAuを主成分と
する合金のいずれかであることを特徴とする請求項1ま
たは2に記載の光学反射鏡。3. The method according to claim 1, wherein the metal film is made of Al or an alloy mainly containing Al, Ag or an alloy mainly containing Ag, Cu or an alloy mainly containing Cu, Au or an alloy mainly containing Au. The optical reflecting mirror according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000160082A JP2001337210A (en) | 2000-05-30 | 2000-05-30 | Optical reflection mirror |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000160082A JP2001337210A (en) | 2000-05-30 | 2000-05-30 | Optical reflection mirror |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001337210A true JP2001337210A (en) | 2001-12-07 |
Family
ID=18664329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000160082A Withdrawn JP2001337210A (en) | 2000-05-30 | 2000-05-30 | Optical reflection mirror |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001337210A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010515247A (en) * | 2006-12-28 | 2010-05-06 | カール・ツァイス・エスエムティー・アーゲー | Catadioptric projection objective having an inclined deflection mirror, projection exposure apparatus, projection exposure method, and mirror |
WO2020173065A1 (en) * | 2019-02-27 | 2020-09-03 | 中国科学院苏州纳米技术与纳米仿生研究所 | Optical film structure, and manufacturing method therefor and use thereof |
CN111971592A (en) * | 2018-07-23 | 2020-11-20 | 大阪瓦斯株式会社 | Radiation cooling device |
-
2000
- 2000-05-30 JP JP2000160082A patent/JP2001337210A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010515247A (en) * | 2006-12-28 | 2010-05-06 | カール・ツァイス・エスエムティー・アーゲー | Catadioptric projection objective having an inclined deflection mirror, projection exposure apparatus, projection exposure method, and mirror |
JP2014225690A (en) * | 2006-12-28 | 2014-12-04 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Catadioptric projection objective with tilted deflecting mirrors, projection exposure apparatus, projection exposure method, and mirror |
JP2016095523A (en) * | 2006-12-28 | 2016-05-26 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Catadioptric projection objective with tilted deflecting mirrors, projection exposure apparatus, projection exposure method, and mirror |
CN111971592A (en) * | 2018-07-23 | 2020-11-20 | 大阪瓦斯株式会社 | Radiation cooling device |
WO2020173065A1 (en) * | 2019-02-27 | 2020-09-03 | 中国科学院苏州纳米技术与纳米仿生研究所 | Optical film structure, and manufacturing method therefor and use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5912762A (en) | Thin film polarizing device | |
JP6402799B2 (en) | Light-absorbing polarizing element, transmissive projector, and liquid crystal display device | |
US10185067B2 (en) | Method of manufacturing polarizing plate | |
US6783253B2 (en) | First surface mirror with DLC coating | |
JPH06510382A (en) | Conductive light-attenuating anti-reflection coating | |
JP2009116218A (en) | Antireflection film, method for forming antireflection film, and translucent member | |
JP2009204577A (en) | Light-transmitting member and timepiece provided with same | |
TW592951B (en) | Substrate with semi-transmissive mirror and semi-transmissive liquid crystal display unit | |
US6317264B1 (en) | Thin film polarizing device having metal-dielectric films | |
US7164530B2 (en) | Polarizing filter and optical device using the same | |
JP2007310335A (en) | Front surface mirror | |
JP2003131011A (en) | Multilayer film and substrate with multilayer film using the multilayer film | |
JP2001337210A (en) | Optical reflection mirror | |
JP4351678B2 (en) | Silver mirror and manufacturing method thereof | |
WO2006129528A1 (en) | Front surface mirror | |
JP2006317603A (en) | Front surface mirror | |
JP2005258050A (en) | Reflection mirror and image projection device using the same | |
JP2748066B2 (en) | Reflector | |
JP4394460B2 (en) | Thin film polarizing splitter, manufacture of the thin film polarizing splitter, and ophthalmic lens including a projection insert having the thin film polarizing splitter | |
JP3266335B2 (en) | Back reflector | |
JP2008064976A (en) | Mirror for optical communication | |
JP2001108802A (en) | Antireflection film | |
JPH10232312A (en) | Optical branching filter | |
JP5045261B2 (en) | Surface mirror | |
JPH05196814A (en) | Polarizing beam splitter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20070409 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
RD05 | Notification of revocation of power of attorney |
Effective date: 20080411 Free format text: JAPANESE INTERMEDIATE CODE: A7425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090918 |
|
A131 | Notification of reasons for refusal |
Effective date: 20091006 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20091008 |