JP2001324483A - Evaluation method of pipe - Google Patents
Evaluation method of pipeInfo
- Publication number
- JP2001324483A JP2001324483A JP2000141534A JP2000141534A JP2001324483A JP 2001324483 A JP2001324483 A JP 2001324483A JP 2000141534 A JP2000141534 A JP 2000141534A JP 2000141534 A JP2000141534 A JP 2000141534A JP 2001324483 A JP2001324483 A JP 2001324483A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- circular
- wave
- pipe
- circular tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011156 evaluation Methods 0.000 title claims description 9
- 239000012530 fluid Substances 0.000 claims abstract description 33
- 230000007547 defect Effects 0.000 claims abstract description 21
- 230000001902 propagating effect Effects 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 3
- 230000000644 propagated effect Effects 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 description 13
- 239000010959 steel Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000000523 sample Substances 0.000 description 9
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 101100293260 Homo sapiens NAA15 gene Proteins 0.000 description 1
- 102100026781 N-alpha-acetyltransferase 15, NatA auxiliary subunit Human genes 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/07—Analysing solids by measuring propagation velocity or propagation time of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/11—Analysing solids by measuring attenuation of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02854—Length, thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
(57)【要約】
【課題】 円管内を円周方向に伝搬する超音波によっ
て、円管の平均肉厚や欠陥の有無、或いは、円管内部の
流体の評価を簡易に行う。
【解決手段】 円管10の壁内に向けて超音波を入射
し、円管10の内外表面で多重反射しながら円管壁内を
伝播する波、円管壁内を伝搬し次いで円管内部の流体中
に入射した後に再び円管壁内に入射する複数の経路を伝
播する波の夫々について伝播時間及び/又は振幅を測定
し、円管の平均肉厚、円管内部の欠陥の有無、ライニン
グの欠陥の有無、及び、円管内部の流体の有無や種類を
判定する。
(57) [Summary] [PROBLEMS] To easily evaluate the average thickness of a circular pipe, the presence or absence of a defect, or the fluid in the circular pipe by ultrasonic waves propagating in the circular pipe in the circumferential direction. SOLUTION: An ultrasonic wave is incident on the inside of a wall of a circular tube 10 and propagates in the wall of the circular tube while undergoing multiple reflections on the inner and outer surfaces of the circular tube 10. The propagation time and / or amplitude is measured for each of the waves propagating through a plurality of paths that enter the inside of the pipe wall again after being incident on the fluid, and the average wall thickness of the pipe, presence or absence of defects inside the pipe, The presence / absence of a lining defect and the presence / absence and type of fluid inside the circular pipe are determined.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、円管の評価方法に
関し、特に、超音波を用いて円管及び円筒容器(本明細
書では、これらを総称して単に円管と呼ぶ)の肉厚、欠
陥の有無又は大きさ、円管の内外表面のライニングの欠
陥の有無又は大きさ、さらには、円管内部の液体あるい
は高圧気体(以下流体と呼ぶ)の種類及び/又は状態を
検出するための方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating a circular tube, and more particularly to a method for evaluating the thickness of a circular tube and a cylindrical container (these are collectively referred to simply as a circular tube in this specification) using ultrasonic waves. To detect the presence or size of a defect, the presence or size of a lining defect on the inner and outer surfaces of a circular tube, and the type and / or state of a liquid or a high-pressure gas (hereinafter referred to as a fluid) inside the circular tube. About the method.
【0002】[0002]
【従来の技術】一般に用いられているパルスエコー型超
音波厚さ計は、これを被測定位置に接触させて用いるた
め、円管の円周方向に沿った肉厚分布や平均肉厚を測定
するためには、極めて多数の点での計測を必要とする。
また、欠陥から離れた位置ではその欠陥を検出すること
ができないという欠点がある。2. Description of the Related Art In general, a pulse echo type ultrasonic thickness gauge is used in contact with a position to be measured, so that a thickness distribution and an average thickness along a circumferential direction of a circular pipe are measured. Measurement requires measurement at a very large number of points.
Further, there is a disadvantage that the defect cannot be detected at a position away from the defect.
【0003】上記パルスエコー型超音波厚さ計とは別
に、薄肉円管の壁に沿って伝搬する板波を用いて円管の
厚みを測定する方式も知られている。しかし、この方式
では、多数のモードの波を識別するために特殊な解析を
必要とする。In addition to the above-described pulse-echo ultrasonic thickness gauge, a method of measuring the thickness of a circular tube using a plate wave propagating along the wall of a thin circular tube is also known. However, this scheme requires a special analysis to identify the waves of many modes.
【0004】上記従来技術における問題点のため、簡易
に円管の厚みを計測する方法が従来から望まれている。
また、円管に形成されたライニングの健全性の評価や、
円管の内外表面における欠陥の有無や大きさ、さらに
は、円管内部の流体の種類や状態についても、これらを
簡易に判定し又は評価する方法が望まれている。[0004] Because of the above-mentioned problems in the prior art, a method for simply measuring the thickness of a circular tube has been desired.
In addition, evaluation of the soundness of the lining formed on the circular pipe,
There is a need for a method for easily determining or evaluating the presence or absence and size of defects on the inner and outer surfaces of a circular tube, and also the type and state of a fluid inside the circular tube.
【0005】[0005]
【発明が解決しようとする課題】本発明は、流体を内部
に含む円管の平均肉厚、円管の内外表面の欠陥の有無や
大きさ、円管の内外表面のライニングの欠陥、さらに
は、円管中の流体の種類や状態を検査するために好適
な、円管の評価方法を提供する。DISCLOSURE OF THE INVENTION The present invention relates to an average thickness of a circular pipe containing a fluid therein, the presence or absence of a defect on the inner and outer surfaces of the circular pipe, a defect of a lining on the inner and outer surfaces of the circular pipe, and furthermore, The present invention provides a method for evaluating a circular pipe, which is suitable for inspecting the type and state of a fluid in the circular pipe.
【0006】[0006]
【課題を解決するための手段】本発明に係る円管の評価
方法は、その好適な実施の態様において、超音波センサ
によって円管内に超音波を入射し、円管の周方向にそっ
て超音波を伝搬させつつ円管外周の特定位置で超音波を
観測し、円管の内外表面で多重反射しながら円管壁内を
伝播する第1の波、円管壁内を伝搬し次いで第1の所定
位置で円管内部の流体中に入射した後に再び円管壁内に
入射する第2の波、及び、円管壁内を伝搬し次いで第2
の所定位置で円管内部の流体中に入射し、更に、前記第
1の所定位置で円管の内面で反射した後に再び円管壁内
に入射する第3の波について、夫々、デジタルメモリに
それら波形を複数回同期加算した後に記憶し、それら波
形データをデジタル処理して各波の伝搬時間及び振幅を
算出する。算出された伝播時間及び振幅に基づいて、各
波の伝搬経路を解析し、円管の平均肉厚、円管内外面に
存在する欠陥、ライニングされた円管のライニングの欠
陥、並びに、円管内部の液体の種類及び/又は状態の何
れか1つ以上を求める。According to a preferred embodiment of the method for evaluating a circular tube according to the present invention, an ultrasonic wave is applied to the inside of the circular tube by an ultrasonic sensor and is superposed along a circumferential direction of the circular tube. The first wave propagating in the wall of the circular tube while propagating the sound wave and observing the ultrasonic wave at a specific position on the outer periphery of the circular tube while being reflected multiple times on the inner and outer surfaces of the circular tube, propagates in the wall of the circular tube, and then the first wave. A second wave that is incident on the fluid inside the pipe at a predetermined position, and then re-enters the pipe wall, and propagates through the pipe wall and then
The third wave incident on the fluid inside the circular tube at the predetermined position, and further reflected on the inner surface of the circular tube at the first predetermined position and then incident again on the wall of the circular tube, are stored in the digital memory, respectively. The waveforms are stored after being synchronously added a plurality of times, and the waveform data is digitally processed to calculate the propagation time and amplitude of each wave. The propagation path of each wave is analyzed based on the calculated propagation time and amplitude, and the average wall thickness of the circular pipe, defects existing on the inner and outer surfaces of the circular pipe, defects in the lining of the lined circular pipe, and the inside of the circular pipe Any one or more of the type and / or state of the liquid is determined.
【0007】流体を内部に含む円管の円周方向に入射さ
れた横波は、円管の内外表面で反射を繰り返しながら周
方向に伝搬する。円管内部に流体又は固体が隙間なく接
しているときには、円管内面で反射する波のエネルギー
の一部が、円管内面に接する流体又は固体に伝わる。そ
の結果、円管の壁内のみを伝搬する波、及び、円管壁内
を伝搬し次いで円管内面に接する流体又は固体中を通過
し更に円管壁内に入射し伝搬する波が、超音波センサー
によって受信される。後者には相互に異なる経路を通過
する複数の波が含まれ、それらの伝搬時間は、相互に且
つ円管壁内のみを伝搬する波とは異なるため、これらを
観測し解析することにより、円管及び/又は円管内部の
流体の評価が可能となる。A transverse wave incident in the circumferential direction of a circular tube containing a fluid therein propagates in the circumferential direction while being repeatedly reflected on the inner and outer surfaces of the circular tube. When a fluid or solid is in contact with the inside of the circular tube without any gap, a part of the energy of the wave reflected on the inner surface of the circular tube is transmitted to the fluid or solid in contact with the inner surface of the circular tube. As a result, waves propagating only in the wall of the pipe and waves propagating in the wall of the pipe and then passing through a fluid or solid in contact with the inner surface of the pipe and entering the wall of the pipe and propagating are super- Received by the acoustic sensor. The latter includes a plurality of waves passing through different paths, and their propagation times are different from the waves propagating mutually and only within the wall of the pipe. It is possible to evaluate the fluid inside the tube and / or the circular tube.
【0008】円管の内面及び/又は外面(内外面)に欠
陥が存在すると、波は乱反射されるので、受信振幅が低
下する。また、円管の内面にライニングが施されている
場合には、超音波は、一般にライニングと円管内面の間
の不完全な接合部分では透過しない。受信波形の各波の
到着時間及び振幅を解析することにより、各波の伝搬経
路を定めることができる。ここで、円管や、ライニング
材料、内部流体の音響特性が既知であれば、伝搬時間差
から円管の肉厚、ライニングの厚さを求めることがで
き、また、振幅から欠陥の有無を、さらには、欠陥から
の散乱波の伝搬時間から欠陥位置が求められる。[0008] If a defect exists on the inner surface and / or outer surface (inner and outer surfaces) of the circular tube, the waves are irregularly reflected, so that the reception amplitude decreases. Further, when the inner surface of the circular tube is lined, the ultrasonic waves generally do not pass through the imperfect joint between the lining and the inner surface of the circular tube. By analyzing the arrival time and amplitude of each wave of the received waveform, the propagation path of each wave can be determined. Here, if the acoustic properties of the circular pipe, the lining material, and the internal fluid are known, the wall thickness of the circular pipe and the thickness of the lining can be obtained from the propagation time difference. Is obtained from the propagation time of the scattered wave from the defect.
【0009】[0009]
【発明の実施の形態】以下、図面を参照し本発明の実施
形態例に基づいて本発明を更に詳細に説明する。図1
は、本発明の一実施形態例に係わる円管の健全性評価装
置による円管の評価方法の原理を示す、円管の模式的横
断面図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings based on embodiments of the present invention. FIG.
1 is a schematic cross-sectional view of a circular pipe showing the principle of a method for evaluating a circular pipe by a circular pipe soundness evaluation apparatus according to an embodiment of the present invention.
【0010】健全性評価装置は、円管10の外表面に接
して配置された一対の超音波探触子21、22から成る
超音波センサ11、超音波センサ11の一方の探触子2
1に超音波発生のためのパルスを送信し、且つ、超音波
センサ11の他方の探触子22で受信した超音波の電気
信号を受信するパルス送受信機12、パルス送受信機1
2で受信した信号を収録するデジタル収録装置13、及
び、収録された信号を解析して円管の評価を行うデジタ
ル波形処理装置14から構成される。円管10の内部に
は、高圧ガス又は各種液体が収容される。The soundness evaluation device includes an ultrasonic sensor 11 comprising a pair of ultrasonic probes 21 and 22 arranged in contact with the outer surface of a circular tube 10, and one probe 2 of the ultrasonic sensor 11.
1, a pulse transceiver 12 that transmits a pulse for generating an ultrasonic wave and receives an ultrasonic electric signal received by the other probe 22 of the ultrasonic sensor 11;
The digital recording device 13 includes a digital recording device 13 that records the signal received in step 2, and a digital waveform processing device 14 that analyzes the recorded signal and evaluates the circular tube. High pressure gas or various liquids are accommodated in the inside of the circular tube 10.
【0011】本実施形態例の健全性評価装置では、円管
10外周の任意の位置(図面上ではその頂部)より、超
音波センサ11の一方の探触子21を利用して円周方向
に伝搬する横波を入射し、超音波受信センサー11の他
方の探触子22を用いて、伝搬してきた波を検出する。
パルス受信機12は、この信号を送信した超音波と同期
させて受信し、デジタル波形収録装置13に収録する。
パーソナルコンピュータとして構成されたデジタル波形
処理装置14は、収録された波形から、超音波の伝搬時
間及び振幅を定量的に解析し算出する。In the soundness evaluation apparatus of the present embodiment, one probe 21 of the ultrasonic sensor 11 is used in a circumferential direction from an arbitrary position (the top in the drawing) of the outer periphery of the circular tube 10. A propagating transverse wave is incident, and the propagating wave is detected using the other probe 22 of the ultrasonic receiving sensor 11.
The pulse receiver 12 receives the signal in synchronization with the transmitted ultrasonic wave, and records the signal in the digital waveform recording device 13.
The digital waveform processing device 14 configured as a personal computer quantitatively analyzes and calculates the propagation time and amplitude of the ultrasonic wave from the recorded waveform.
【0012】図2は、超音波の送信位置と同じ位置で受
信した超音波の収録波に、各伝搬経路に対応する波形が
含まれる旨を示している。同図(a)の波形は円管の内
部が空気の場合に、同図(b)は円管の内部が水の場合
に夫々得られたものである。図2(a)及び(b)の双
方において、最左端の波W1は送信波を、その右側のW
2は隣接する探触子に直接に達する波を、波W3は円管
の壁内を1周して伝搬する波を夫々示している。同図
(b)では、W3に隣接して、これとは経路が異なる波
W4、W5を含む波束が検出されており、水等の液体を
透過する超音波が有効に検出できる旨が理解できる。FIG. 2 shows that the recorded wave of the ultrasonic wave received at the same position as the transmission position of the ultrasonic wave includes a waveform corresponding to each propagation path. The waveform in FIG. 3A is obtained when the inside of the circular tube is air, and the waveform in FIG. 3B is obtained when the inside of the circular tube is water. In both FIGS. 2A and 2B, the leftmost wave W1 represents the transmission wave and the rightmost W1.
Numeral 2 indicates a wave that reaches the adjacent probe directly, and wave W3 indicates a wave that propagates around the wall of the circular tube. In FIG. 5B, a wave packet including waves W4 and W5 adjacent to W3 and having different paths from the wave packet W3 is detected, and it can be understood that ultrasonic waves transmitted through a liquid such as water can be effectively detected. .
【0013】超音波の代表的な伝播経路としては、3つ
の経路がある。つまり、図3に示すように、点Pを超音
波の入射点として、円管壁内のみを通過する波W3がた
どる第1の経路、弧PBを経由して円管壁内を通過し、
次いで、弦BCを経由して円管内の流体を通過し再び点
Cで円管壁内に入射する波W4がたどる第2の経路、及
び、弧PAを経由して円管壁内を通過し、次いで、弦A
B及び弦BCを経由して円管内の流体を通過し点Cで再
び円管壁内に入射する波W5がたどる第3の経路であ
る。[0013] There are three typical propagation paths of ultrasonic waves. In other words, as shown in FIG. 3, the point P is set as the point of incidence of the ultrasonic wave, passes through the inside of the tube wall via the arc PB, the first path followed by the wave W3 passing only inside the tube wall,
Next, the wave W4 that passes through the fluid in the pipe via the chord BC and enters the pipe wall at the point C again follows the second path, and passes through the pipe wall via the arc PA. And then string A
This is a third path along which the wave W5 that passes through the fluid in the circular pipe via B and the chord BC and then enters the circular pipe wall at the point C again.
【0014】円管壁内の横波音速をVT、流体中の縦波
音速をVLとすると、上記各経路の伝搬時間は次式で与
えられる。第1の経路を伝搬する波W3の伝播時間t0
は、 t0=C・π・(d−t)/VT (1) 第2の経路を伝播する波W4の伝播時間t1は、 t1=L/VL+t0・(2π−∠COB)/2π (2) 第3の経路を伝搬する波W5の伝播時間t2は、 t2=2L/VL+t0・(2π−∠COA)/2π (3) である。Assuming that the velocity of the transverse wave in the pipe wall is V T and the velocity of the longitudinal wave in the fluid is VL , the propagation time of each path is given by the following equation. Propagation time t 0 of wave W3 propagating in the first path
Is: t 0 = C · π · (dt) / V T (1) The propagation time t 1 of the wave W4 propagating in the second path is t 1 = L / V L + t 0 · (2π−∠ (COB) / 2π (2) The propagation time t 2 of the wave W5 propagating in the third path is t 2 = 2L / V L + t 0 · (2π−∠COA) / 2π (3)
【0015】上式(1)〜(3)で、Cは円管の外形と
肉厚に依存する補正係数、dは円管の外径、tはその肉
厚、Lは弦AB及びBCの長さである。弦AB及び弦B
Cの中心角度(∠AOB及び∠COB)は、送受信超音波セン
サーの角度、円管の内径、スネルの法則(円管の横波音
速、流体の縦波音速)により幾何学的に定まる。In the above equations (1) to (3), C is a correction coefficient depending on the outer shape and thickness of the circular pipe, d is the outer diameter of the circular pipe, t is its thickness, and L is the chord AB and BC. Length. String AB and String B
The central angle of C (∠AOB and ∠COB) is geometrically determined by the angle of the transmitting and receiving ultrasonic sensor, the inner diameter of the circular tube, and Snell's law (transverse sound speed of the circular tube, longitudinal wave speed of the fluid).
【0016】円管内部の横波音速VT、及び、円管外径
dが既知のとき、波W3の伝播時間t0を実測すること
により、式(1)から円管の肉厚tが求められる。When the transverse sound velocity V T inside the pipe and the outer diameter d of the pipe are known, the wall thickness t of the pipe is obtained from equation (1) by actually measuring the propagation time t 0 of the wave W3. Can be
【0017】円管内部に流体が存在する場合或いはその
密度がより大きい場合には、流体中を通過する波の成分
が増加するので、内部に流体が存在するか否かの判定や
内部流体の状態の検出も可能である。円管の横波音速V
T、外径d及び厚さtが既知であれば、測定した各波の
到着時間t0、t1、t2から、繰り返し計算により流体
中の縦波音速を求めることができる。これによって流体
の種類及び密度を推定できる。When a fluid exists inside the circular pipe or when the density of the fluid is higher, the component of the wave passing through the fluid increases, so that it is determined whether or not the fluid exists inside the pipe. State detection is also possible. Transverse sound speed V of circular pipe
If T , the outer diameter d, and the thickness t are known, the longitudinal wave velocity in the fluid can be obtained by repeated calculation from the measured arrival times t 0 , t 1 , and t 2 of each wave. Thus, the type and density of the fluid can be estimated.
【0018】上記各波の振幅は、円管の内外表面に欠陥
が無いときに最大である。円管壁内を進行する超音波横
波では、円管の内外表面で円周方向位置に欠陥が存在す
ると、波が乱反射を受け、図3に示す経路以外にも波が
伝搬する。このため、図3に示す経路に対応する波の受
信振幅が減少する。したがって各波の振幅を相互に比較
することにより、特定位置における欠陥の有無及び大き
さを推定できる。入射側の超音波センサーの位置を円周
方向に順次に変更(走査)することにより、図3に示し
た円管の内外表面での反射位置が変わるので、これを解
析することで任意の位置に存在する欠陥が検出できる。
円管の内面又は外面にライニングが存在する場合にも、
同様な考え方により、ライニングの不完全部を検出でき
る。The amplitude of each wave is maximum when there are no defects on the inner and outer surfaces of the tube. In the case of a transverse ultrasonic wave traveling in the wall of a circular tube, if a defect exists in the circumferential direction on the inner and outer surfaces of the circular tube, the wave is irregularly reflected, and the wave propagates other than the path shown in FIG. For this reason, the reception amplitude of the wave corresponding to the path shown in FIG. 3 decreases. Therefore, by comparing the amplitudes of the waves with each other, it is possible to estimate the presence or absence and size of a defect at a specific position. By sequentially changing (scanning) the position of the ultrasonic sensor on the incident side in the circumferential direction, the reflection position on the inner and outer surfaces of the circular tube shown in FIG. 3 is changed. Can be detected.
Even if there is a lining on the inner or outer surface of the pipe,
With the same concept, an incomplete portion of the lining can be detected.
【0019】例えば、円管の欠陥として減肉があると、
式(2)で得られたt1と実測された波W4の伝播時間
とが異なる。また、欠陥によって内表面の形状が変化し
乱反射が生じると、観測される振幅が変化する。更に、
円管の外表面の欠陥は、式(1)の伝播時間t0の実測
値で判断できる。この場合、式(2)の伝播時間t1も
変化する。For example, if there is wall thinning as a defect in a circular pipe,
The time t 1 obtained by the equation (2) is different from the actually measured propagation time of the wave W4. Also, when the shape of the inner surface changes due to a defect and irregular reflection occurs, the observed amplitude changes. Furthermore,
Defects on the outer surface of the circular tube can be determined from the measured value of the propagation time t 0 in equation (1). In this case, the propagation time t 1 in equation (2) also changes.
【0020】弦AB及び弦BCの長さLが既知であり、
且つ、肉厚が健全な場合には、計算で得られた伝播時間
t1及びt2とそれらの実測値との差から、流体の種類が
判定できる。この場合、流体の密度が大であれば、点B
が点Aから遠ざかる方向にずれ、伝播時間が短くなる。The lengths L of the strings AB and BC are known,
In addition, when the wall thickness is sound, the type of fluid can be determined from the difference between the calculated propagation times t 1 and t 2 and their measured values. In this case, if the density of the fluid is large, the point B
Shifts away from the point A, and the propagation time is shortened.
【0021】[0021]
【実施例】鋼製の円管表面における鋼側の屈折角が70
度であり、送受信用超音波探触子が同じ位置に配設さ
れ、周波数が5MHzの場合について計算を行った。外
径が60mm、厚さが3mmで、横波音速が3250m
/sである鋼製の円管では、内側に流体が存在しない場
合には、円管の壁内を一周した波だけが有効に観測され
る。超音波の到着時間(伝播時間)は計算では63μs
である。この円管内部に水が満たされている場合には、
この波以外に等間隔の時間差で到達する2つの波が観測
される。到着時間差は、約12μsである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A steel tube has a refraction angle of 70 on the steel tube surface.
The calculation was performed for the case where the transmitting and receiving ultrasonic probe was disposed at the same position and the frequency was 5 MHz. Outer diameter 60mm, thickness 3mm, shear wave speed 3250m
/ S, in the case of a steel pipe having no fluid inside, only waves that have made a round in the wall of the pipe are effectively observed. Ultrasonic arrival time (propagation time) is calculated as 63μs
It is. If the inside of this tube is filled with water,
In addition to this wave, two waves arriving at equal time differences are observed. The arrival time difference is about 12 μs.
【0022】図4は、外径が60mm、厚さが3mm
で、横波音速が3250m/sの鋼製円管における伝播
経路を計算によって求めた結果を示している。ここで、
第3の経路における、鋼と水の境界面での鋼から水への
入射点A、反射点B、及び、鋼から水への入射点Cは夫
々、超音波の入射点Pを0度位置として、反時計回りに
約90度、218度、346度の位置になる。反射点B
は、第2の経路における、鋼から水への入射点でもあ
る。FIG. 4 shows an outer diameter of 60 mm and a thickness of 3 mm.
The figure shows the result obtained by calculating the propagation path in a steel circular pipe having a shear wave velocity of 3250 m / s. here,
In the third path, the point of incidence A from steel to water at the interface between steel and water, the point of reflection B, and the point of incidence C from steel to water are respectively located at 0 degrees from the point of incidence P of ultrasonic waves. The position is about 90 degrees, 218 degrees, and 346 degrees counterclockwise. Reflection point B
Is also the point of incidence from steel to water in the second path.
【0023】実際には、円管壁内を伝搬する超音波は、
既に超音波探触子からの入射地点において、円周上に立
てた垂線から約60度〜90度の拡がりをもつため、図
5に示すように、超音波は帯状の波になる。なお、水の
縦波音速は、1500m/sであるので、スネルの法則
より、鋼側屈折角が70度の場合には、水側の屈折角は
約26度になる。In practice, the ultrasonic wave propagating in the wall of the pipe is
At the point of incidence from the ultrasonic probe, the ultrasonic wave has a width of about 60 to 90 degrees from the vertical line formed on the circumference, so that the ultrasonic wave becomes a band-like wave as shown in FIG. Since the longitudinal sound velocity of water is 1500 m / s, the refraction angle on the water side is about 26 degrees according to Snell's law when the steel-side refraction angle is 70 degrees.
【0024】上記構造の円管の内表面に厚さ2mmの塩
化ビニールシートを貼り付けたものを各種用意した。超
音波は、この厚みの塩化ビニルシートを透過できない。
塩化ビニルシートを、円管の内表面全てに貼付したも
の、全く貼付しなかったもの、及び、内表面を円周方向
に12等分し、その分割した各部分の内の何れかの部分
に開放窓を開けた鋼製円管を各種製作し、鋼側から水側
へ、或いは、水側から鋼側への波の伝播経路を遮断/開
放することにより、上記鋼製の円管における超音波の伝
播経路を確認することとした。Various pipes having a 2 mm thick vinyl chloride sheet attached to the inner surface of a circular tube having the above structure were prepared. Ultrasound cannot penetrate a vinyl chloride sheet of this thickness.
A vinyl chloride sheet attached to the entire inner surface of a circular tube, one not attached at all, and an inner surface divided into 12 equal parts in the circumferential direction, and any one of the divided parts Various types of steel circular pipes with open windows were manufactured, and the wave propagation path from the steel side to the water side or from the water side to the steel side was blocked / opened, so that the above-mentioned steel circular pipes The propagation path of the sound wave was confirmed.
【0025】図6は、ビニルシート15なしのもの(同
図(a))、及び、全面に貼付したもの(同図(b))
からの受信波を比較して示す。内周全面に塩化ビニル1
5を貼付した円管では、同図(b)に示すように、円管
壁内を伝搬する波のみが観測され、塩化ビニルを貼付し
なかった円管では、同図(a)に示すように、3種類の
波が観測された。FIGS. 6A and 6B show the case without the vinyl sheet 15 (FIG. 6A) and the one attached to the entire surface (FIG. 6B).
Are shown in comparison. Vinyl chloride 1 on the entire inner circumference
5A, only the wave propagating in the wall of the circular tube was observed in the circular tube to which the vinyl chloride was applied, and in the circular tube to which no vinyl chloride was affixed, as shown in FIG. In addition, three types of waves were observed.
【0026】同様に、角度210°〜240°及び角度
330°〜360°に塩化ビニル15が貼付されなく、
従って、経路BC間が窓16で開放されている円管(図
7(a))、上記に加えて角度90゜〜120°に塩化
ビル15が貼付されなく、従って、経路AB及びBC間
が窓16で開放されている円管(同図(b))、及び、
(b)の円管の開放窓16の何れか1つを少しずらした
3種類の円管(同図(c)〜(e))を用意して、夫々
の円管内を伝搬する超音波を観測した。Similarly, vinyl chloride 15 is not stuck at angles 210 ° to 240 ° and 330 ° to 360 °,
Therefore, the chloride pipe 15 is not stuck at an angle of 90 ° to 120 ° in addition to the above-mentioned circular pipe in which the path BC is opened by the window 16 (FIG. 7A). A circular pipe opened in the window 16 (FIG. (B)), and
(B) Three kinds of circular tubes (FIGS. (C) to (e)) in which one of the open windows 16 of the circular tube is slightly shifted are prepared, and ultrasonic waves propagating in each circular tube are transmitted. Observed.
【0027】図7(a)では、第1及び第2の経路の波
W3、W4が観測され、同図(b)では、第1〜第3の
経路の波W3、W4、W5が全て観測された。同図
(c)では、鋼から水への入射点Aの遮断によって第1
及び第2の波W3、W4のみが観測され、同図(d)で
は、反射点Bの遮断によって第1の経路の波W3のみが
観測され、同図(e)では、水から鋼への入射点Cの遮
断によって同様に第1の経路の波W3のみが観測され
た。これら観測結果から、前記計算により得られた波の
伝播経路は正しいものと判断できる。In FIG. 7A, waves W3 and W4 on the first and second paths are observed, and in FIG. 7B, waves W3, W4 and W5 on the first to third paths are all observed. Was done. In the same figure (c), the first point A due to the interruption of the point of incidence A from the steel to the water.
And only the second waves W3 and W4 are observed. In FIG. 6D, only the wave W3 in the first path is observed due to the interruption of the reflection point B. In FIG. Similarly, only the wave W3 in the first path was observed by blocking the incident point C. From these observation results, it can be determined that the wave propagation path obtained by the above calculation is correct.
【0028】以上、本発明をその好適な実施形態例に基
づいて説明したが、本発明の円管の評価方法は、上記実
施形態例の構成にのみ限定されるものではなく、上記実
施形態例の構成から種々の修正及び変更を施したもの
も、本発明の範囲に含まれる。Although the present invention has been described based on the preferred embodiment, the method for evaluating a circular tube according to the present invention is not limited to the configuration of the above-described embodiment. Various modifications and changes from the configuration described above are also included in the scope of the present invention.
【0029】[0029]
【発明の効果】以上説明したように、本発明に係る円管
の評価方法によると、円管に入射した超音波の伝播時間
及び/又は振幅を計測するという極めて簡易な方法によ
って、円管及び/又は円管内部の流体の評価が可能とな
る効果がある。As described above, according to the method for evaluating a circular tube according to the present invention, the circular tube and the ultrasonic wave incident on the circular tube are measured by a very simple method of measuring the propagation time and / or amplitude. And / or there is an effect that the fluid inside the circular pipe can be evaluated.
【図1】本発明の評価方法を実施する健全性評価装置の
模式的ブロック図。FIG. 1 is a schematic block diagram of a soundness evaluation device that performs an evaluation method of the present invention.
【図2】図1の評価装置で観測される波形を示すグラ
フ。FIG. 2 is a graph showing a waveform observed by the evaluation device of FIG. 1;
【図3】円管内部を通過する波の伝播経路を示す円管の
横断面図。FIG. 3 is a cross-sectional view of a circular pipe showing a propagation path of a wave passing through the inside of the circular pipe.
【図4】計算上の波の伝播経路を示す円管の横断面図。FIG. 4 is a cross-sectional view of a circular tube showing a calculated wave propagation path.
【図5】計算上の波束の伝播経路を示す円管の横断面
図。FIG. 5 is a cross-sectional view of a circular tube showing a propagation path of a calculated wave packet.
【図6】(a)及び(b)は夫々、実施例で計測した円
管の横断面図及び観測された波形を示すグラフ。6A and 6B are a cross-sectional view of a circular tube measured in the example and a graph showing an observed waveform, respectively.
【図7】(a)〜(e)は夫々、実施例で計測した各種
円管の横断面図及び観測された波形を示すグラフ。7A to 7E are cross-sectional views of various circular tubes measured in the examples and graphs showing observed waveforms, respectively.
10:円管 11:超音波センサ 12:パルス送受信機 13:デジタル波形収録装置 14:デジタル波形処理装置 15:ライニングシート 16:開放窓 21、22:超音波探触子 10: Circular tube 11: Ultrasonic sensor 12: Pulse transceiver 13: Digital waveform recording device 14: Digital waveform processing device 15: Lining sheet 16: Open window 21, 22: Ultrasonic probe
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮内 淳二 香川県坂出市番の州町1番地 三菱化学株 式会社坂出事業所内 Fターム(参考) 2G047 AB01 AB05 BA02 BC02 BC03 BC07 BC18 GA19 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Junji Miyauchi 1 Sakaide-cho, Sakaide-shi, Kagawa F-term in the Sakaide Works of Mitsubishi Chemical Corporation (reference) 2G047 AB01 AB05 BA02 BC02 BC03 BC07 BC18 GA19
Claims (5)
周方向に沿って超音波を伝搬させつつ円管外周の特定位
置で超音波を検出し、 円管の内外表面で多重反射しながら円管壁内を伝播する
第1の波、円管壁内を伝搬し次いで第1の所定位置で円
管内部の流体中に入射した後に再び円管壁内に入射する
第2の波、及び、円管壁内を伝搬し次いで第2の所定位
置で円管内部の流体中に入射し、更に、前記第1の所定
位置で円管の内面で反射した後に再び円管壁内に入射す
る第3の波の少なくとも1つについて、伝播時間及び/
又は振幅を計測し、 前記計測結果から、円管及び/又は円管内の流体につい
ての評価を行うことを特徴とする円管の評価方法。An ultrasonic wave is propagated along a circumferential direction of a circular tube or a cylindrical container (hereinafter referred to as a circular tube) while detecting ultrasonic waves at a specific position on the outer periphery of the circular tube, and multiple reflections are formed on inner and outer surfaces of the circular tube. A first wave propagating in the wall of the tube while propagating in the wall of the tube, a second wave propagating in the wall of the tube and then entering the fluid inside the tube at the first predetermined position and then again entering the wall of the tube And then propagates through the wall of the tube and then enters the fluid inside the tube at the second predetermined position, and further reflects at the inner surface of the tube at the first predetermined position and then re-enters the wall of the tube. For at least one of the incident third waves, the propagation time and / or
Alternatively, a method of evaluating a circular tube, comprising measuring an amplitude and evaluating a circular tube and / or a fluid in the circular tube from the measurement result.
づいて円管の平均肉厚を求める、請求項1に記載の円管
の評価方法。2. The method for evaluating a circular pipe according to claim 1, wherein an average wall thickness of the circular pipe is obtained based on at least a propagation time of the first wave.
円管内面又は外面での欠陥の有無又は大きさを求める、
請求項1に記載の円管の評価方法。3. At least based on the measured amplitude,
To find the presence or size of a defect on the inner or outer surface of the pipe,
The method for evaluating a circular pipe according to claim 1.
/又は状態を判定する、請求項1に記載の円管の評価方
法。4. The method for evaluating a circular pipe according to claim 1, wherein the type and / or state of the fluid is determined from the measured propagation time.
は外面におけるライニングの健全性の評価を行う、請求
項1に記載の円管の評価方法。5. The method for evaluating a circular pipe according to claim 1, wherein the evaluation of the soundness of the lining on the inner surface or the outer surface of the circular tube is performed based on the measured amplitude.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000141534A JP3715177B2 (en) | 2000-05-15 | 2000-05-15 | Evaluation method of circular pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000141534A JP3715177B2 (en) | 2000-05-15 | 2000-05-15 | Evaluation method of circular pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001324483A true JP2001324483A (en) | 2001-11-22 |
JP3715177B2 JP3715177B2 (en) | 2005-11-09 |
Family
ID=18648632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000141534A Expired - Lifetime JP3715177B2 (en) | 2000-05-15 | 2000-05-15 | Evaluation method of circular pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3715177B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014196996A (en) * | 2013-03-08 | 2014-10-16 | 三菱電機株式会社 | Liquid detection method and liquid detection device |
WO2016194331A1 (en) * | 2015-05-29 | 2016-12-08 | 日本電気株式会社 | Degradation analysis device, degradation analysis method, degradation analysis program, and storage medium |
CN114674257A (en) * | 2022-03-31 | 2022-06-28 | 中国空气动力研究与发展中心计算空气动力研究所 | High-precision thickness measuring method and device based on ultrasonic transverse wave detection |
-
2000
- 2000-05-15 JP JP2000141534A patent/JP3715177B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014196996A (en) * | 2013-03-08 | 2014-10-16 | 三菱電機株式会社 | Liquid detection method and liquid detection device |
WO2016194331A1 (en) * | 2015-05-29 | 2016-12-08 | 日本電気株式会社 | Degradation analysis device, degradation analysis method, degradation analysis program, and storage medium |
JPWO2016194331A1 (en) * | 2015-05-29 | 2018-03-22 | 日本電気株式会社 | Degradation analyzer, degradation analysis method, degradation analysis program, and recording medium |
CN114674257A (en) * | 2022-03-31 | 2022-06-28 | 中国空气动力研究与发展中心计算空气动力研究所 | High-precision thickness measuring method and device based on ultrasonic transverse wave detection |
Also Published As
Publication number | Publication date |
---|---|
JP3715177B2 (en) | 2005-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0837217B1 (en) | Downhole tool | |
US6634233B2 (en) | Method for determining the wall thickness and the speed of sound in a tube from reflected and transmitted ultrasound pulses | |
US6883376B2 (en) | Method for determining the wall thickness and the speed of sound in a tube from reflected and transmitted ultrasound pulses | |
EP0826148B1 (en) | Ultrasonic inspection | |
US4619143A (en) | Apparatus and method for the non-destructive inspection of solid bodies | |
JPH0352908B2 (en) | ||
JP2007155733A (en) | Automatic discrimination method of weld signal from defect signal in long-distance waveguide inspection using phase comparison | |
EP1271097A2 (en) | Method for inspecting clad pipe | |
JPS60104255A (en) | Device and method for inspecting solid under nondestructive state | |
EP3710795B1 (en) | Device and method for detecting deposition layers in a conduit conducting a liquid or a soft medium and/or for level detection | |
JP4952489B2 (en) | Flaw detection method and apparatus | |
JP2009097942A (en) | Noncontact-type array probe, and ultrasonic flaw detection apparatus and method using same | |
JP3715177B2 (en) | Evaluation method of circular pipe | |
RU2596242C1 (en) | Method for ultrasonic inspection | |
JP2009058238A (en) | Defect inspection method and apparatus | |
KR100966543B1 (en) | Deposition layer evaluation device using guided ultrasound | |
JP3729686B2 (en) | Defect detection method for piping | |
JP3810661B2 (en) | Defect detection method for piping | |
JP6731863B2 (en) | Inspection method | |
RU2188412C2 (en) | Ultrasonic device for detecting stressed state of process-channel wall metal in fast reactors | |
RU2791670C1 (en) | Method for checking quality of acoustic contact between ultrasonic transducer and ceramic product during ultrasonic flaw detection | |
JP2003090829A (en) | Non-destructive inspection method of composite material | |
JPH11183235A (en) | Method and device for detecting gas layer in pipe using ultrasonic wave | |
US7418867B2 (en) | Remote use of ultrasonic sensors | |
JP2000221023A (en) | Wall inspection method for liquid storing structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050824 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3715177 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080902 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090902 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090902 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100902 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120902 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130902 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |