[go: up one dir, main page]

JP2001321684A - Mechanical air flow type pulverizer and mechanical air for pulverizing method of solid raw material using the same - Google Patents

Mechanical air flow type pulverizer and mechanical air for pulverizing method of solid raw material using the same

Info

Publication number
JP2001321684A
JP2001321684A JP2000146239A JP2000146239A JP2001321684A JP 2001321684 A JP2001321684 A JP 2001321684A JP 2000146239 A JP2000146239 A JP 2000146239A JP 2000146239 A JP2000146239 A JP 2000146239A JP 2001321684 A JP2001321684 A JP 2001321684A
Authority
JP
Japan
Prior art keywords
casing
rotating members
air flow
rotating member
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000146239A
Other languages
Japanese (ja)
Inventor
Michiro Nonaka
道郎 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000146239A priority Critical patent/JP2001321684A/en
Publication of JP2001321684A publication Critical patent/JP2001321684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crushing And Pulverization Processes (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the autogeneous pulverization efficiency by the collision and friction of particles to each other in a pulverizer and to prevent the contamination of a pulverized product. SOLUTION: The mechanical air flow type pulverizer is provided with a hollow rotary body type casing around a prescribed axis line, two rotary members houses respectively in the casing, facing each other to have a space between their front faces in the axis line direction, supported to have a space between the outer peripheral parts and the inside wall surface of the casing and driven to rotate in the direction opposed to each other, a passing passage penetrating the rotary members from the front face to the rear face in the axis line direction, a solid raw material supply port provided at a part facing the rear surface of one of the rotary members and for supplying the solid raw material and air to the casing from the outside, and a pulverized product discharge port provided a part facing the rear face of another rotary member in the casing and for discharging the pulverized product and a gas in the casing to the outside, and the attended air flows generated around respective rotary members by the rotation of the two rotary members are led toward the directions opposed to each other in the space between the front faces of the rotary members by the rotation of the rotary members in the direction opposed to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トナー、シリコン
ウェハーなどの電子材料、ポリイミドなどのプリント基
板材、半導体原料、合成樹脂などの樹脂類、合成ゴムな
どのゴム類、金属の酸化物、硫化物および炭酸化物、岩
石類、大豆および小麦などの食品類、触媒原料、石炭、
木炭などを乾式にて微粉砕する機械気流式粉砕機およ
び、その粉砕機を用いた、固体原料の機械気流式粉砕方
法に関するものである。
The present invention relates to electronic materials such as toners and silicon wafers, printed circuit board materials such as polyimides, semiconductor materials, resins such as synthetic resins, rubbers such as synthetic rubbers, metal oxides, and sulfides. Products and carbonates, rocks, foods such as soybeans and wheat, raw materials for catalysts, coal,
The present invention relates to a mechanical airflow pulverizer for finely pulverizing charcoal or the like by a dry method and a mechanical airflow pulverization method of a solid raw material using the pulverizer.

【0002】[0002]

【従来の技術】近年、粉砕による数ミクロンないしサブ
ミクロンの粒子の製造要求が急速に高まり、しかも粉砕
産物のコンタミネーション(異物の混入による汚染)が
極めて嫌われるようになってきた。しかしながら従来の
媒体(メディア)を利用する粉砕機、例えばボールミ
ル、攪拌ミル、振動ミル、遠心ミルなどでは、媒体と固
体粒子との接触による異物の混入を避けることはでき
ず、また、媒体を利用しないまでも、ディスクミルやピ
ンミルのような、ミルを構成する粉砕促進物体と固体粒
子とが接触するタイプのミルでも、同様に異物の混入は
避けられない。
2. Description of the Related Art In recent years, the demand for producing particles of several microns or submicrons by pulverization has rapidly increased, and contamination (contamination due to entry of foreign substances) of pulverized products has become extremely disliked. However, in a conventional crusher using a medium, such as a ball mill, a stirring mill, a vibrating mill, and a centrifugal mill, it is not possible to avoid mixing of foreign substances due to contact between the medium and the solid particles. Even if not, even in a mill such as a disc mill or a pin mill in which solid particles are in contact with a pulverizing accelerating body constituting the mill, foreign matters cannot be avoided.

【0003】一方、異物の混入がない、すなわち粉砕産
物のコンタミネーションがない粉砕方法として、粉砕し
ようとする固体粒子同士の衝突および摩擦を行わせる、
自生粉砕法あるいは同体粉砕法とも呼ばれる方法があ
る。
On the other hand, as a pulverization method in which no foreign matter is mixed, that is, there is no contamination of the pulverized product, collision and friction between solid particles to be pulverized are performed.
There is a method called an autogenous grinding method or a homogenous grinding method.

【0004】しかして、乾式にて自生粉砕を行うために
は、気流を発生させ、その気流によって固体粒子を加速
して、粒子同士の衝突および摩擦により粉砕を行うこと
が必要となる。かかる乾式自生粉砕として最もよく知ら
れているのは、ジェット気流により固体粒子を加速する
もので、粉砕機はジェットミル、粉砕方法はジェットミ
ル粉砕と呼ばれている。
However, in order to perform autogenous pulverization in a dry system, it is necessary to generate an air flow, accelerate solid particles by the air flow, and perform pulverization by collision and friction between particles. The best known type of dry autogenous pulverization is to accelerate solid particles by a jet stream, and a pulverizer is called a jet mill and a pulverization method is called a jet mill pulverization.

【0005】しかしながら、このようなジェットミル粉
砕では、高速のジェット気流を発生させるため、極めて
大きな消費エネルギーを必要とするという問題点があっ
た。またジェットミル内では、粉砕室の内壁の限られた
開口から高速ジェット気流を噴出させるため、ジェット
気流により加速される固体原料粒子の濃度が低く、ミル
全体の粉砕効率が悪くなるという問題点もあった。
However, in such a jet mill pulverization, there is a problem that an extremely large energy consumption is required in order to generate a high-speed jet stream. In a jet mill, a high-speed jet stream is ejected from a limited opening in the inner wall of the milling chamber, so the concentration of solid material particles accelerated by the jet stream is low, and the milling efficiency of the entire mill deteriorates. there were.

【0006】さらに、ジェット気流発生ノズルや粉砕室
内壁面の摩耗が避けられないことおよび、高速ジェット
気流に起因する騒音が発生することなどの問題点があ
り、よりエネルギー効率の良い、環境にやさしい気流式
粉砕機および気流式粉砕方法の開発が望まれていた。
Further, there are problems such as the inevitable wear of the jet airflow generating nozzle and the inner wall of the crushing chamber, and the generation of noise caused by the high-speed jet airflow, and are more energy efficient and environmentally friendly. The development of a pulverizer and a pneumatic pulverizer has been desired.

【0007】[0007]

【発明が解決しようとする課題】それゆえ、粉砕室内に
気流を発生させて固体原料粒子を加速し、粒子同士の衝
突および摩擦により自生粉砕を行う気流式粉砕におい
て、第一に解決しなければならない課題は、気流の発生
に要するエネルギー消費を低減することである。
Therefore, the first problem to be solved in the pneumatic pulverization in which an air flow is generated in the pulverizing chamber to accelerate the solid raw material particles and autogenous pulverization is performed by collision and friction between the particles. The problem to be solved is to reduce the energy consumption required for generating the airflow.

【0008】第二に解決しなければならない課題は、粉
砕室内に存在する固体粒子の数を増加させ、ひいては粉
砕室内の粒子濃度を向上させて、粒子同士の衝突および
摩擦の機会を増大させることである。
A second problem to be solved is to increase the number of solid particles present in the grinding chamber, and thus increase the particle concentration in the grinding chamber, thereby increasing the chance of collision and friction between particles. It is.

【0009】第三に解決しなければならない課題は、粉
砕室内において、互いに衝突および摩擦しようとする固
体粒子の相対速度をできるだけ大きくすることである。
気流の速度をいくら大きくしても、粉砕しようとする固
体粒子が気流によって効率よく加速されなければ、粉砕
効率は低下することになる。
[0009] A third problem to be solved is to make the relative speed of the solid particles which are going to collide and rub against each other in the grinding chamber as large as possible.
No matter how fast the airflow is, if the solid particles to be pulverized are not efficiently accelerated by the airflow, the pulverization efficiency will decrease.

【0010】そして第四に解決しなければならない課題
は、固体原料粒子による粉砕室内での摩耗作用を抑制し
て、粉砕産物への異物の混入を防ぐこと、すなわち産物
のコンタミネーションが発生しないようにすることであ
る。
A fourth problem to be solved is to suppress the abrasion effect of the solid raw material particles in the crushing chamber and to prevent foreign matter from being mixed into the crushed product, that is, to prevent contamination of the product. It is to be.

【0011】本発明は、このような課題に鑑みてなされ
たものであり、機械的に発生させた対向気流により固体
原料粒子を互いに対向する方向に加速させて、粒子同士
の衝突および摩擦による自生粉砕を効率よく行い、数ミ
クロンないしサブミクロン粒子から成る粉砕産物を作り
出すための機械気流式粉砕機および、その粉砕機を用い
た固体原料の機械気流式粉砕方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such a problem, and accelerates solid raw material particles in directions facing each other by a mechanically generated opposing airflow, thereby generating solid particles due to collision and friction between the particles. It is an object of the present invention to provide a mechanical pneumatic pulverizer for efficiently performing pulverization to produce a pulverized product composed of several micron to submicron particles, and a method of mechanical pneumatic pulverization of a solid raw material using the pulverizer.

【0012】[0012]

【課題を解決するための手段およびその作用】上記の目
的を達成するため、本発明に係る機械気流式粉砕機は、
所定軸線を中心として中空の回転体状をなすとともに、
平滑な内壁面を持つケーシングと、前記ケーシング内に
それぞれ収容されて、前面同士が前記軸線方向に空隙を
空けて互いに対向するとともに外周部が前記ケーシング
の内壁面に対し空隙を空けるようにそれぞれ支持され、
前記軸線を中心として互いに逆方向に回転駆動される二
つの回転部材と、前記二つの回転部材にそれぞれ形成さ
れて、それらの回転部材の前面から背面までそれらの回
転部材を前記軸線方向に貫通する通過路と、前記ケーシ
ングの、前記二つの回転部材のうちの一方の回転部材の
背面に向く部分に設けられて、外部から前記ケーシング
内に固体原料および気体を供給する固体原料供給口と、
前記ケーシングの、前記二つの回転部材のうちの他方の
回転部材の背面に向く部分に設けられて、前記ケーシン
グ内の、前記固体原料から形成された粉砕産物および気
体を外部に排出する粉砕産物排出口と、を具え、前記二
つの回転部材の回転によりそれらの回転部材の周囲にそ
れぞれ発生させる、前記通過路と、前記回転部材の前面
付近と、前記回転部材と前記ケーシングとの間の空隙
と、前記回転部材の背面付近とを通って循環する付き回
り気流を、前記二つの回転部材の互いに逆方向の回転に
より、それらの回転部材の前面間の空隙にて互いに反対
方向に向かわせることを特徴としている。
In order to achieve the above object, a mechanical air flow type pulverizer according to the present invention comprises:
While forming a hollow rotating body around the predetermined axis,
A casing having a smooth inner wall surface, and the casings are respectively housed in the casing, and the front surfaces are opposed to each other with a gap in the axial direction, and the outer peripheral portions are respectively supported so as to leave a gap with respect to the inner wall surface of the casing. And
Two rotating members that are driven to rotate in opposite directions about the axis, and are formed on the two rotating members, respectively, and penetrate the rotating members in the axial direction from the front to the back of the rotating members. A passage, and a solid material supply port that is provided at a portion of the casing facing a back surface of one of the two rotating members and that supplies a solid material and a gas into the casing from outside,
A pulverized product discharge, which is provided at a portion of the casing facing the back of the other rotatable member of the two rotatable members and discharges pulverized products and gas formed from the solid raw material to the outside in the casing. An outlet, which is generated around the rotating members by the rotation of the two rotating members, respectively, the passage, near the front surface of the rotating member, and a gap between the rotating member and the casing. By rotating the two rotating members in opposite directions, the circulating airflow circulating through the vicinity of the back surface of the rotating member is directed in the opposite direction to the gap between the front surfaces of the rotating members. Features.

【0013】かかる機械気流式粉砕機にあっては、各々
回転駆動される二つの回転部材の回転により、それらの
回転部材の周囲にそれぞれ、前記通過路と、前記回転部
材の前面付近と、前記回転部材と前記ケーシングとの間
の空隙と、前記回転部材の背面付近とを通って循環する
付き回り気流が発生し、それら二つの回転部材の周囲の
付き回り気流が、二つの回転部材の互いに逆方向の回転
により、それらの回転部材の前面間の空隙にて互いに反
対方向に向かわせられるので、固体原料供給口からケー
シング内に気体とともに固体原料を供給すれば、その固
体原料は、二つの回転部材の周囲にそれぞれ発生した付
き回り気流に乗って、それらの回転部材の前面間の空隙
に入り、その空隙にて互いに反対方向に加速され、その
加速による固体原料同士の衝突および摩擦により粉砕さ
れて粉砕産物となり、その粉砕産物はさらに上記付き回
り気流に乗って、粉砕産物排出口からケーシング外に気
体とともに排出される。
[0013] In such a mechanical air flow type pulverizer, by the rotation of the two rotating members, each of which is rotationally driven, the passing path, the vicinity of the front surface of the rotating member, and A circulating air flow circulating through a gap between the rotating member and the casing and near the back surface of the rotating member is generated, and a circulating air flow around the two rotating members is generated by the two rotating members. By rotating in the opposite direction, the rotating members are directed in opposite directions in the gap between the front surfaces of the rotating members, so that if the solid raw material is supplied together with the gas from the solid raw material supply port into the casing, the solid raw material is converted into two solid raw materials. Riding on the swirling airflow generated around the rotating members, they enter the gap between the front faces of the rotating members, and are accelerated in opposite directions in the gaps. Crushed by the impact and friction between it becomes pulverized product, the milling products further ride the throwing airflow is discharged together with the gas to the outside of the casing from the milling products outlet.

【0014】従って本発明の機械気流式粉砕機によれ
ば、粒子同士の衝突および摩擦による自生粉砕を行っ
て、数ミクロンないしサブミクロン粒子から成る粉砕産
物を作り出すことができ、しかも互いに反対方向の気流
に乗せて固体原料を互いに反対の方向に加速させること
で固体粒子の衝突および摩擦を効率的に行わせることが
できるので、気流の発生に要するエネルギー消費を低減
させることができる。
Therefore, according to the mechanical air flow type pulverizer of the present invention, a pulverized product consisting of several micron or submicron particles can be produced by performing autogenous pulverization by collision and friction between particles, and furthermore, in the opposite directions. By accelerating the solid raw materials in directions opposite to each other in the airflow, the collision and friction of the solid particles can be efficiently performed, so that the energy consumption required for generating the airflow can be reduced.

【0015】さらに本発明の機械気流式粉砕機によれ
ば、互いに反対方向の気流に固体原料を乗せて、二つの
回転部材の前面間の空隙により形成される粉砕室に固体
原料を搬送することで、その粉砕室内に存在する固体粒
子の数を増加させ、ひいてはその粉砕室内の粒子濃度を
向上させて、粒子同士の衝突および摩擦の機会を増大さ
せることができる。
Further, according to the mechanical airflow type pulverizer of the present invention, the solid raw material is put on the airflows in opposite directions, and the solid raw material is conveyed to the pulverizing chamber formed by the gap between the front surfaces of the two rotating members. Thus, it is possible to increase the number of solid particles present in the grinding chamber, and thereby improve the particle concentration in the grinding chamber, thereby increasing the chance of collision and friction between particles.

【0016】さらに本発明の機械気流式粉砕機によれ
ば、上記粉砕室内において固体原料を互いに反対の方向
に加速させることで、互いに衝突および摩擦しようとす
る固体粒子の相対速度を極めて大きくすることができ、
これにより粉砕効率を高めることができる。
Further, according to the mechanical air flow type pulverizer of the present invention, by accelerating the solid raw materials in directions opposite to each other in the pulverizing chamber, the relative velocity of the solid particles which are likely to collide with and rub against each other is extremely increased. Can be
Thereby, the pulverization efficiency can be increased.

【0017】さらに本発明の機械気流式粉砕機によれ
ば、媒体も、固体粒子と接触する粉砕促進物体も使用せ
ず、ジェット噴流も用いないことから、固体原料粒子に
よる粉砕室内での摩耗作用を抑制して粉砕産物への異物
の混入を防ぎ、産物のコンタミネーションの発生を有効
に防止することができる。
Further, according to the mechanical air flow type pulverizer of the present invention, since neither a medium nor a pulverization accelerating body which comes into contact with the solid particles is used, and a jet jet is not used, the abrasion effect in the pulverization chamber due to the solid raw material particles is eliminated. And the contamination of the crushed product with foreign substances can be prevented, and the generation of contamination of the product can be effectively prevented.

【0018】また本発明の機械気流式粉砕機を用いた、
本発明の固体原料の機械気流式粉砕方法は、前記固体原
料供給口から前記ケーシング内に気体とともに供給した
固体原料を、前記二つの回転部材の回転によりそれらの
回転部材の周囲にそれぞれ発生させる前記付き回り気流
に乗せて、それらの回転部材の前面間の空隙にて互いに
反対方向に加速させ、その加速による固体原料同士の衝
突および摩擦により粉砕して粉砕産物とし、前記粉砕産
物を前記粉砕産物排出口から前記ケーシング外に気体と
ともに排出させることを特徴としている。
Further, using the mechanical air flow type pulverizer of the present invention,
The method of mechanically pulverizing a solid raw material according to the present invention, wherein the solid raw material supplied together with the gas from the solid raw material supply port into the casing is generated around the rotary members by rotating the two rotary members. And accelerated in opposite directions in the gap between the front surfaces of the rotating members, and crushed by collision and friction between the solid raw materials due to the acceleration to obtain a crushed product. It is characterized in that it is discharged together with gas from the discharge port to the outside of the casing.

【0019】かかる本発明の機械気流式粉砕方法によれ
ば、上述した本発明の機械気流式粉砕機の種々の作用効
果をもたらすことができる。
According to the mechanical air flow pulverizing method of the present invention, various effects of the mechanical air flow pulverizer of the present invention described above can be obtained.

【0020】ここで、本発明の機械気流式粉砕機の好ま
しい実施形態について説明すると、一方の回転部材の最
大回転直径をDi1 とし、もう一方の回転部材の最大回転
直径をDi2 とし、それぞれの回転部材の例えば前面等の
最大直径の回転面(軸線と直交する平面)を径方向に拡
張したとき交差するケーシング内壁面の最小直径をそれ
ぞれDc1 およびDc2 とし、回転部材の回転面内のボス部
を除く部分についての通過路の開孔率をそれぞれp1およ
びp2とし、ボス部直径の、最大回転直径に対する比率を
それぞれq1およびq2とするとき、以下の〔数1〕式が成
り立つようにすることが好ましい。
Here, a preferred embodiment of the mechanical air flow type pulverizer of the present invention will be described. The maximum rotation diameter of one rotating member is set to Di1, the maximum rotation diameter of the other rotating member is set to Di2, and each rotation member is set to Di2. The minimum diameter of the casing inner wall surface that intersects when the rotation surface (the plane perpendicular to the axis) of the largest diameter such as the front surface of the member is expanded in the radial direction is Dc1 and Dc2, respectively, and the boss in the rotation surface of the rotation member is When the porosity of the passage for the removed part is p1 and p2, respectively, and the ratio of the boss diameter to the maximum rotation diameter is q1 and q2, respectively, the following equation can be satisfied. preferable.

【数1】 (Equation 1)

【0021】さらに、ケーシング内壁面の最大直径をDc
とし、互いに前面同士が対向する二つの回転部材の、通
過路が設けられた部分の軸線方向幅(厚さ)をそれぞれ
w1およびw2とし、それら二つの回転部材の前面間の距離
(空隙の厚さ)をLiとするとき、以下の〔数2〕式が成
り立つようにすることが好ましい。
Further, the maximum diameter of the inner wall surface of the casing is represented by Dc
And the axial width (thickness) of the portion where the passage is provided of the two rotating members whose front surfaces are opposed to each other
Assuming w1 and w2 and the distance between the front surfaces of the two rotating members (the thickness of the air gap) as Li, it is preferable to satisfy the following [Equation 2].

【数2】 (Equation 2)

【0022】以下、互いに前面同士が対向する二つの回
転部材のうち原料供給側の回転部材を第1回転部材、産
物排出側の回転部材を第2回転部材と呼ぶとともに、上
述のように、第1回転部材および第2回転部材の前面と
ケーシングの内壁面とで囲まれた空間を粉砕室と呼ぶ。
Hereinafter, of the two rotating members whose front surfaces are opposed to each other, the rotating member on the raw material supply side is referred to as a first rotating member and the rotating member on the product discharging side is referred to as a second rotating member. The space surrounded by the front surfaces of the first rotating member and the second rotating member and the inner wall surface of the casing is called a crushing chamber.

【0023】この粉砕機では、ケーシング内に供給した
固体原料粒子の一部が、原料供給側から産物排出側への
気流と、第1回転部材の回転により発生する気流との相
互作用を受け、第1回転部材の通過路を通って粉砕室へ
入り、遠心力の作用でケーシング内壁面側に移動し、再
び原料供給側に戻る、という軌跡を示す運動をすること
が必要である。
In this pulverizer, a part of the solid raw material particles supplied into the casing receives an interaction between the air flow from the raw material supply side to the product discharge side and the air flow generated by the rotation of the first rotating member, It is necessary to move to the grinding chamber through the passage of the first rotating member, move to the inner wall surface of the casing by the action of centrifugal force, and return to the raw material supply side again.

【0024】そのためには、第1回転部材の通過路の回
転面内総面積が、第1回転部材とケーシング内壁面との
間の空隙の最小断面積より大きいことが望ましい。従っ
て、第1回転部材の最大回転直径をDi1 とし、第1回転
部材最大直径回転面を拡張したとき交差するケーシング
内壁面の最小直径をDc1 とし、回転部材回転面内のボス
部を除く部分についての通過路の開孔率をp1とし、ボス
部直径の、最大回転直径に対する比率をq1とするとき、
以下の〔数3〕式が成り立つことが望ましい。なお、p1
およびq1は、それぞれ所要に応じて任意に設定すること
ができる。
For this purpose, it is desirable that the total area in the rotation plane of the passage of the first rotating member is larger than the minimum sectional area of the gap between the first rotating member and the inner wall surface of the casing. Therefore, the maximum rotation diameter of the first rotating member is set to Di1, the minimum diameter of the inner wall surface of the casing that intersects when the first rotating member maximum diameter rotation surface is extended is set to Dc1, and a portion excluding the boss portion in the rotation member rotation surface is set. Let p1 be the opening ratio of the passageway, and q1 be the ratio of the boss diameter to the maximum rotation diameter,
It is desirable that the following [Equation 3] be satisfied. Note that p1
And q1 can be arbitrarily set as required.

【数3】 (Equation 3)

【0025】また、供給した固体原料粒子の他の一部
は、原料供給側から産物排出側への気流により、第1回
転部材の通過路を通過した後、第2回転部材の回転によ
って発生する気流の影響を受けて、第2回転部材の通過
路を通過し、産物排出側で遠心力の作用を受けてケーシ
ング内壁面側に移動し、再び粉砕室へ戻るという軌跡を
示す運動をする必要がある。
Another part of the supplied solid raw material particles is generated by the rotation of the second rotary member after passing through the passage of the first rotary member due to the airflow from the raw material supply side to the product discharge side. Under the influence of the air flow, it must pass through the passage of the second rotating member, move to the inner wall surface side of the casing under the action of centrifugal force on the product discharge side, and perform a motion showing a locus of returning to the grinding chamber again. There is.

【0026】そのためには、第2回転部材の通過路の回
転面内総面積が、第2回転部材とケーシング内壁面との
間の空隙の最小断面積より大きいことが望ましい。従っ
て、第2回転部材の最大回転直径をDi2 とし、第2回転
部材最大直径回転面を拡張したとき交差するケーシング
内壁面の最小直径をDc2 とし、回転部材回転面内のボス
部を除く部分についての通過路の開孔率をp2とし、ボス
部直径の、最大回転直径に対する比率をq2とするとき、
以下の〔数4〕式が成り立つことが望ましい。なお、p2
およびq2は、それぞれ所要に応じて任意に設定すること
ができる。
For this purpose, it is desirable that the total area of the passage of the second rotating member in the rotation plane be larger than the minimum sectional area of the gap between the second rotating member and the inner wall surface of the casing. Accordingly, the maximum rotation diameter of the second rotating member is set to Di2, the minimum diameter of the inner wall surface of the casing that intersects when the second rotating member maximum diameter rotation surface is expanded is set to Dc2, and the portion excluding the boss portion in the rotation member rotation surface is set. P2 and the ratio of the boss diameter to the maximum rotation diameter is q2,
It is desirable that the following [Equation 4] be satisfied. Note that p2
And q2 can be arbitrarily set as required.

【数4】 (Equation 4)

【0027】第1回転部材、第2回転部材およびケーシ
ングについて上記の条件が成り立つときには、固体原料
粒子の運動は図1に矢印および点線で経路を示す如きも
のになる。ここで、図1中符号1は固体原料供給口、2
は気体流入口、3は供給部ケーシング、4は第1回転部
材、5は粉砕室、6は粉砕室ケーシング、7は第2回転
部材、8は後述する分級室、9は分級室ケーシング、10
は粉砕産物排出口、11は気体流出口、Cは第1回転部材
4,第2回転部材7および、ケーシングを構成する部材
である供給部ケーシング3,粉砕室ケーシング6,分級
室ケーシング9の中心軸線をそれぞれ示す。すなわち、
固体原料粒子の運動は、粉砕室5内において第1回転部
材4の前面付近で中心から外側へ向かうものと第2回転
部材7の前面付近で外側から中心へ向かうものとの対向
する粒子流れと、第1回転部材4と第2回転部材7の回
転方向が互いに逆方法であるために発生する、回転面内
での軸線周りの対向する粒子流れとが重なり合って、固
体粒子同士の衝突および摩擦による自生粉砕が行われ
る。
When the above conditions are satisfied for the first rotating member, the second rotating member, and the casing, the movement of the solid raw material particles is as shown by the arrows and dotted lines in FIG. Here, reference numeral 1 in FIG.
Is a gas inlet, 3 is a supply unit casing, 4 is a first rotating member, 5 is a crushing chamber, 6 is a crushing chamber casing, 7 is a second rotating member, 8 is a classifying chamber described later, 9 is a classifying chamber casing, 10
Is a pulverized product discharge port, 11 is a gas outlet, C is the first rotating member 4, the second rotating member 7, and the supply unit casing 3, which is a member constituting the casing, the grinding chamber casing 6, the center of the classifying chamber casing 9. The axes are indicated. That is,
The movement of the solid raw material particles is caused by the opposing particle flows of those moving from the center to the outside near the front surface of the first rotating member 4 and those moving from the outside to the center near the front surface of the second rotating member 7 in the grinding chamber 5. Since the rotating directions of the first rotating member 4 and the second rotating member 7 are opposite to each other, the opposing particle flows around the axis in the plane of rotation are overlapped, and the collision and friction between the solid particles are caused. For self-generated grinding.

【0028】粉砕室内において複数の対向気流を発生さ
せ、固体粒子同士の衝突および摩擦による自生粉砕を効
率よく行なうためには、さらに第1回転部材の前面と第
2回転部材の前面との間の距離を適宜に設定することが
好ましい。
In order to generate a plurality of opposed airflows in the grinding chamber and efficiently perform autogenous grinding by collision and friction between the solid particles, a further space between the front surface of the first rotating member and the front surface of the second rotating member is required. It is preferable to set the distance appropriately.

【0029】そこで、ケーシング内壁面の最大直径をDc
とし、互いに前面同士が対向する二つの回転部材の、通
過路が設けられた部分の軸線方向幅をそれぞれw1および
w2とし、それら二つの回転部材の前面間の距離をLiとす
ると、第1回転部材の回転に伴って粉砕室内の第1回転
部材の前面付近で軸線周りに旋回する気流部分の体積
は、第1回転部材の回転体積に比例し、また第2回転部
材の回転に伴って粉砕室内の第2回転部材の前面付近で
軸線周りに旋回する気流部分の体積は、第2回転部材の
回転体積に比例するので、以下の〔数5〕式が成り立つ
ように上記距離Liを定めることが望ましい。ここで、k
は回転部材の形状によって決まる比例定数であり、0.3
≦k≦1.3 の範囲に設定するのが好ましい。
Therefore, the maximum diameter of the inner wall surface of the casing is represented by Dc
The two rotating members whose front faces are opposed to each other, the width in the axial direction of the portion where the passage is provided, respectively w1 and
Assuming that w2 and the distance between the front surfaces of the two rotating members are Li, the volume of the airflow portion swirling around the axis near the front surface of the first rotating member in the grinding chamber with the rotation of the first rotating member is The volume of the airflow portion which is proportional to the rotation volume of one rotating member and turns around the axis near the front surface of the second rotating member in the grinding chamber with the rotation of the second rotating member is equal to the rotating volume of the second rotating member. Since it is proportional, it is desirable to determine the distance Li so that the following equation (5) holds. Where k
Is a proportionality constant determined by the shape of the rotating member, and 0.3
It is preferable to set the range of ≦ k ≦ 1.3.

【数5】 (Equation 5)

【0030】上記のように条件設定をすれば、粉砕室の
容積と上記対向する気流部分の体積とが実質上一致し
て、それらの気流部分同士が効率良く接触するので、粉
砕室内の複数の対向気流によって、より効率良く粒子を
加速することができ、消費エネルギーをより少なくする
ことができる。また、粉砕室内の粒子濃度を高めること
ができるので、粒子同士の衝突および摩擦による自生粉
砕効率をより向上させることができる。
If the conditions are set as described above, the volume of the pulverizing chamber substantially matches the volume of the opposing airflow portion, and the airflow portions come into efficient contact with each other. By the opposed airflow, particles can be accelerated more efficiently, and energy consumption can be reduced. Further, since the particle concentration in the pulverizing chamber can be increased, the efficiency of spontaneous pulverization due to collision and friction between particles can be further improved.

【0031】さらにこの発明の粉砕機では、粉砕室内に
おける第1回転部材および第2回転部材付近の粒子の相
対速度を、第1回転部材および第2回転部材の回転速度
によって変えることができるため、粉砕速度ひいては処
理量および粉砕産物の目的粒度を、回転部材の回転速度
の変更によって適宜に制御することができる。
Further, in the crusher of the present invention, the relative speed of the particles near the first rotating member and the second rotating member in the crushing chamber can be changed by the rotating speed of the first rotating member and the second rotating member. The crushing speed, and thus the throughput and the target particle size of the crushed product, can be appropriately controlled by changing the rotation speed of the rotating member.

【0032】粉砕室内における粒子濃度および粒子相対
速度が粒子同士の衝突および摩擦ににどのような影響を
与えるかについては、マックスウェルとボルツマンによ
る気体分子運動論により説明できる。
The effects of the particle concentration and the relative velocity of the particles in the grinding chamber on the collision and friction between the particles can be explained by Maxwell and Boltzmann's theory of gas molecule kinetics.

【0033】いま、粒子は同じサイズでその直径をD、
二つの粒子の平均相対速度をVr、単位体積中の粒子数を
nとする。粒子の位置と運動方向が一様に分布している
と仮定すると、1個の粒子が単位時間内に他の粒子と衝
突する回数Zは、 Z=πD・Vr・n である。また、粒子の平均速度をVとすると、気体分子
運動論によれば、 Vr=21/2 ・V である。
Now, the particles have the same size and the diameter D,
The average relative velocity of the two particles is Vr, and the number of particles in a unit volume is n. Assuming that the positions and movement directions of the particles are uniformly distributed, the number of times Z that one particle collides with another particle in a unit time is Z = πD · Vr · n. Further, assuming that the average velocity of the particles is V, according to the gas molecule kinetics, Vr = 2 1/2 · V.

【0034】粉砕室内の空隙率をeとすれば、 n=6(1−e)/(πD3 ) が成り立つ。従って、粉砕室における単位時間単位体積
あたりの全衝突数は、 Z・n=36・21/2 ・V・(1−e)2 /(πD4 ) で与えられる。
Assuming that the porosity in the grinding chamber is e, the following holds: n = 6 (1-e) / (πD 3 ). Therefore, the total number of collisions per unit volume per unit time in the crushing chamber is given by Z · n = 36 · 21/2 · V · (1-e) 2 / (πD 4 ).

【0035】以上より、粉砕室内における粒子同士の接
触回数は、粒子速度に比例し、従って回転部材の回転速
度に比例するとともに、粒子濃度の2乗に比例して変化
することが分かる。本発明の機械気流式粉砕機によれ
ば、二つの回転部材の回転速度の制御と、二つの回転部
材間の距離の調節とにより、これら両者を独立して制御
することができる。
From the above, it can be seen that the number of times particles contact each other in the crushing chamber is proportional to the particle speed, and thus changes in proportion to the rotation speed of the rotating member and also in proportion to the square of the particle concentration. According to the mechanical air flow type pulverizer of the present invention, both can be controlled independently by controlling the rotation speed of the two rotating members and adjusting the distance between the two rotating members.

【0036】気流により加速された粒子同士の衝突およ
び摩擦による粉砕では、粒子の保有する運動エネルギー
が粉砕エネルギーとして利用される。いま、同一直線上
を運動する二つの球形粒子の質量をそれぞれM1, M2、速
度をV1, V2とする。衝突による接触点の法線方向速度成
分uは質量保存の法則より、 u=(M1・V1+M2・V2)/(M1+M2) である。
In crushing by collision and friction between particles accelerated by an air flow, the kinetic energy of the particles is used as crushing energy. Now, let the masses of two spherical particles moving on the same straight line be M1 and M2, and the velocities be V1 and V2. According to the law of conservation of mass, u = (M1 · V1 + M2 · V2) / (M1 + M2) according to the law of conservation of mass.

【0037】従って、衝突の前後での運動エネルギーの
差をEとすると、 E=M1・M2・(V1−V2)2 /{2・(M1+M2)} が粒子の粉砕に利用できるエネルギーになる。
Accordingly, assuming that the difference between the kinetic energies before and after the collision is E, E = M1 · M2 · (V1−V2) 2 / {2 · (M1 + M2)} is the energy that can be used for grinding the particles.

【0038】上述した、粉砕室内における粒子の単位時
間・単位体積あたりの全衝突回数を考慮すると、粒子の
衝突によって粉砕に利用される単位時間・単位体積あた
りの全消費エネルギーΣEは、以下の〔数6〕式で与え
られる。
Considering the total number of collisions of the particles in the grinding chamber per unit time and unit volume, the total energy consumption per unit time and unit volume ΣE used for grinding by the collision of the particles is as follows: Equation 6].

【数6】 (Equation 6)

【0039】ここで、粒子の密度をρとすると、M1=M2
=πρD3 /6、V1=−V2=Vであるから、 ΣE=6・21/2 ・ρV3 (1−e)2 /D により、単位時間および単位体積当たりの粉砕に利用で
きる全エネルギーが求まる。
Here, assuming that the density of the particles is ρ, M1 = M2
= ΠρD 3/6, V1 = -V2 = because it is V,? En = by 6 · 2 1/2 · ρV 3 ( 1-e) 2 / D, the total energy available to the pulverized per unit time and unit volume Is found.

【0040】すなわち、固体原料粒子の粉砕に利用でき
るエネルギーは、粒子の速度ひいては回転部材の回転速
度の3乗に比例するとともに、粒子濃度の2乗に比例し
て変化することが分かる。本発明の機械気流式粉砕機に
よれば、回転部材の回転速度および粒子濃度を独立に制
御できるので、粉砕に利用できるエネルギーを自由に変
化でき、目的粒度の産物を容易に生成することができ
る。
That is, it can be seen that the energy available for the pulverization of the solid raw material particles is proportional to the speed of the particles, and thus to the cube of the rotation speed of the rotating member, and changes in proportion to the square of the particle concentration. According to the mechanical air flow type pulverizer of the present invention, since the rotation speed and the particle concentration of the rotating member can be controlled independently, the energy available for pulverization can be freely changed, and a product having a target particle size can be easily generated. .

【0041】本発明の機械気流式粉砕機では、上述した
ように複数の対向気流により固体粒子を効率よく加速で
きるので、回転部材およびケーシングと固体粒子との接
触はほとんど起こらず、したがって粉砕室内での摩耗が
なく、粉砕産物への異物の混入がなく、コンタミネーシ
ョンの心配がない。
In the mechanical air flow type pulverizer of the present invention, the solid particles can be efficiently accelerated by the plurality of opposing air flows as described above, so that the rotating member and the casing hardly come into contact with the solid particles, and therefore, there is almost no contact in the pulverizing chamber. There is no abrasion, no foreign matter mixed into the pulverized product, and no risk of contamination.

【0042】第2回転部材の産物排出側の空間は、産物
として排出される目的粒度以下の粒子と、再び粉砕室内
に循環する目的粒度より粗い粒子とを分離する空間であ
り、以下、分級室と呼ぶ。この分級室内では、原料供給
側から産物排出側に向かう軸線方法気流と、第2回転部
材を通って循環する循環気流と、第2回転部材の回転に
伴って軸線周りに旋回する旋回気流との3種類の気流が
存在する。
The space on the product discharge side of the second rotating member is a space for separating particles smaller than the target particle size discharged as a product and particles coarser than the target particle size circulating again in the grinding chamber. Call. In the classification chamber, an axial method airflow from the raw material supply side to the product discharge side, a circulating airflow circulating through the second rotating member, and a swirling airflow circling around the axis with the rotation of the second rotating member. There are three types of airflow.

【0043】すなわち、分級室内では、上記3種類の気
流が存在する流れ場における粒子の慣性力分級が行われ
ている。従って、軸線方向気流速度を増大させると、産
物中に粗粒が入り、粉砕産物の平均粒径は大きくなる。
また第2回転部材の回転速度を増大させると、粒子に作
用する遠心力が大きくなり、産物にはより細かい粒子が
含まれるようになるため、粉砕産物の平均粒径は小さく
なる。さらに、第2回転部材とケーシング内壁面との間
の空隙を狭めて行くと、循環気流速度が増大して粉砕産
物の平均粒径は小さくなるが、その空隙の通過抵抗が大
きく成り過ぎると、循環気流速度が低下して、産物の平
均粒径は大きくなる。
That is, in the classification chamber, the inertial classification of the particles in the flow field where the above three types of air flows exist is performed. Therefore, when the axial air velocity is increased, coarse particles enter the product and the average particle size of the pulverized product increases.
Also, when the rotation speed of the second rotating member is increased, the centrifugal force acting on the particles increases, and finer particles are included in the product, so that the average particle size of the pulverized product decreases. Furthermore, when the gap between the second rotating member and the casing inner wall surface is narrowed, the circulating airflow velocity increases and the average particle size of the pulverized product decreases, but when the passage resistance of the gap becomes too large, As the circulating air velocity decreases, the average particle size of the product increases.

【0044】このように、分級室内の気流を制御するこ
とにより、粉砕産物の平均粒径を調節することができ
る。しかしながら、これらの気流に乱れが発生すると慣
性力分級の精度が低下するため、気流の通路の形状には
配慮が必要であり、乱れのない安定した循環気流を生み
出すためには、第2回転部材の分級室側回転面(背面)
と、その回転面の半径方向外方のケーシング内壁面との
角度を、軸線を通る断面上での角度で40度以上でかつ
90度未満、より好ましくは45度とするのが望まし
い。
As described above, by controlling the air flow in the classification chamber, the average particle size of the pulverized product can be adjusted. However, when the turbulence occurs in these airflows, the accuracy of the inertial force classification is reduced. Therefore, it is necessary to consider the shape of the airflow passages. In order to generate a stable circulating airflow without turbulence, the second rotating member is required. Rotation surface of the classification room side (rear)
It is desirable that the angle between the rotating surface and the inner wall surface of the casing radially outward is 40 degrees or more and less than 90 degrees, more preferably 45 degrees, as an angle on a section passing through the axis.

【0045】このことは第1回転部材周りの循環気流に
ついても同様であり、気流の乱れを可能な限り抑制する
ため、第1回転部材の原料供給側回転面(背面)と、そ
の回転面の半径方向外方のケーシング内壁面との角度
を、軸線を通る断面上での角度で40度以上でかつ90
度未満、より好ましくは45度とするのが望ましい。
The same applies to the circulating airflow around the first rotating member. In order to suppress the turbulence of the airflow as much as possible, the rotating surface (back surface) of the first rotating member on the raw material supply side and the rotating surface of the rotating surface. An angle between the radially outer casing inner wall surface and an angle on a cross section passing through the axis is not less than 40 degrees and 90 degrees.
It is desirable that the angle be less than 45 degrees, more preferably 45 degrees.

【0046】[0046]

【発明の実施の形態】以下に、本発明の好適な実施の形
態を、図面を参照して詳細に説明する。図2は、本発明
の機機械気流式粉砕機の好適な一実施形態の基本構造を
示すものであり、この実施形態の粉砕機は、図1に示す
ものと同様、固体原料供給口1、気体流入口2、供給部
ケーシング3、第1回転部材4、粉砕室5、粉砕室ケー
シング6、第2回転部材7、分級室8、分級室ケーシン
グ9、粉砕産物排出口10および気体流出口11を具
え、さらに、第1回転部材支持軸12および第2回転部
材支持軸13を具えてなる。ここで、固体原料供給口1
および気体流入口2は一つの通路で形成され、また、粉
砕産物排出口10および気体流出口11も一つの通路で
形成されている。そして第1回転部材支持軸12および
第2回転部材支持軸13は、中心軸線C上に整列するよ
うに回転自在に支持され、図示しない二つの駆動手段に
よって独立に回転駆動されてその軸線C周りに互いに反
対方向に回転する。なお、図2に示す実施形態では、原
料供給側から産物排出側に向かって軸線方向に、円錐状
の供給部ケーシング3と円筒状の粉砕室ケーシング6と
円錐状の分級室ケーシング9との三つのケーシング部材
を組み合わせてケーシングを構成しているが、これらの
形状の他、楕円体状や球状のケーシング部材を組み合わ
せてケーシングを構成してもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 2 shows a basic structure of a preferred embodiment of the mechanical air flow type pulverizer of the present invention. The pulverizer of this embodiment has a solid material supply port 1 like the one shown in FIG. Gas inlet 2, supply unit casing 3, first rotating member 4, crushing chamber 5, crushing chamber casing 6, second rotating member 7, classifying chamber 8, classifying chamber casing 9, crushed product outlet 10, and gas outlet 11 And a first rotating member supporting shaft 12 and a second rotating member supporting shaft 13. Here, the solid material supply port 1
The gas inlet 2 is formed by one passage, and the pulverized product outlet 10 and the gas outlet 11 are formed by one passage. The first rotating member supporting shaft 12 and the second rotating member supporting shaft 13 are rotatably supported so as to be aligned on the center axis C, and are independently driven by two driving means (not shown) to rotate around the axis C. Rotate in opposite directions to each other. In the embodiment shown in FIG. 2, the conical supply unit casing 3, the cylindrical pulverizing chamber casing 6, and the conical classifying chamber casing 9 are axially moved from the raw material supply side to the product discharge side in the axial direction. Although the casing is configured by combining two casing members, the casing may be configured by combining an elliptical or spherical casing member in addition to these shapes.

【0047】図3(a)〜(e)は、上記第1回転部材
4および第2回転部材7の前面から見た形状を例示する
正面図であり、第1回転部材4および第2回転部材7
は、例えばこれらの例のように車輪状あるいは送風機の
羽根状をなすことで、軸線方向に前面から背面まで貫通
する通過路4a,7aを形成されている。また、これら
第1回転部材4および第2回転部材7は、推進力を生ず
るタービン翼状をなしていても良い。
FIGS. 3A to 3E are front views illustrating the shapes of the first rotary member 4 and the second rotary member 7 as viewed from the front, and show the first rotary member 4 and the second rotary member. 7
Is formed into a wheel shape or a blade shape of a blower as in these examples, thereby forming passageways 4a and 7a penetrating from the front surface to the rear surface in the axial direction. Further, the first rotating member 4 and the second rotating member 7 may have a turbine blade shape that generates a propulsive force.

【0048】図4は本発明に係る機械気流式粉砕機の他
の実施形態を示したもので、ここでは図2に示す基本構
造を具える他、各ケーシング部が外壁と内壁とを持つ中
空二重構造になっていて、それら外壁と内壁との間の空
隙が冷却用流体流路14とされており、ケーシングの外
壁部には、それぞれ異なる位置に、冷却用流体供給口1
5および冷却用流体流出口16が貫通して取り付けられ
ている。この実施形態によれば、冷却用流体供給口15
および冷却用流体流出口16を介して冷却用流体流路1
4内に冷却用流体を流通させることで、ケーシングを冷
却し得て、粉砕室5における粒子同士の衝突および摩擦
による発熱による、粒子の軟化や融着などを有効に防止
することができる。
FIG. 4 shows another embodiment of the mechanical air flow type pulverizer according to the present invention. In this embodiment, in addition to the basic structure shown in FIG. 2, each casing part has a hollow having an outer wall and an inner wall. The cooling fluid flow path 14 is provided between the outer wall and the inner wall as a cooling fluid flow path 14. The cooling fluid supply port 1 is provided at different positions on the outer wall of the casing.
5 and a cooling fluid outlet 16 are mounted therethrough. According to this embodiment, the cooling fluid supply port 15
And the cooling fluid flow path 1 via the cooling fluid outlet 16
By circulating the cooling fluid in the casing 4, the casing can be cooled, and the softening and fusion of the particles due to the heat generated by the collision and friction between the particles in the crushing chamber 5 can be effectively prevented.

【0049】図5は本発明に係る機械気流式粉砕機のさ
らに他の実施形態を示したもので、ここでは粉砕室ケー
シング6の内壁面の直径が軸線方向に一定ではなく、最
大直径と最小直径が存在する。図5に示す例では粉砕室
5の中央部の直径が小さくなっているため、第1回転部
材4および第2回転部材7の周りをそれぞれ循環する粒
子の流れが安定する。
FIG. 5 shows still another embodiment of the mechanical air flow type pulverizer according to the present invention. Here, the diameter of the inner wall surface of the pulverizing chamber casing 6 is not constant in the axial direction, but is the maximum diameter and the minimum diameter. There is a diameter. In the example shown in FIG. 5, since the diameter of the central portion of the crushing chamber 5 is small, the flow of the particles circulating around the first rotating member 4 and the second rotating member 7 is stabilized.

【0050】第1回転部材4および第2回転部材7の周
りを循環する粒子の流れを安定させて、第1回転部材4
側から第2回転部材7側への粒子の極端な迷い込みと、
第2回転部材7側から第1回転部材4側への粒子の極端
な迷い込みを防止するためには、それぞれの回転部材
4、7の中心部に、図6(a)や図6(b)に示す如き
迷い込み防止用の円錐状拡大部17、18を装着するこ
とが有効である。なお、迷い込みを防止するためには、
拡大部は必ずしも円錐状でなくてもよく、例えばラッパ
管状でもよい。
By stabilizing the flow of particles circulating around the first rotating member 4 and the second rotating member 7, the first rotating member 4
Extreme intrusion of particles from the side to the second rotating member 7 side,
In order to prevent the particles from entering from the second rotating member 7 side to the first rotating member 4 side extremely, the center of each of the rotating members 4 and 7 is shown in FIG. It is effective to attach conical enlarged portions 17 and 18 for preventing straying as shown in FIG. In addition, in order to prevent getting lost,
The enlargement does not necessarily have to be conical, for example it may be trumpet tubular.

【0051】また、分級室8内において粉砕産物への粗
粒の迷い込みを防止するためには、第2回転部材7の分
級室8側に、図6(c)に示す如き迷い込み防止用の円
錐状拡大部19を装着することが有効である。なお、迷
い込みを防止するためには、拡大部は必ずしも円錐状で
なくてもよく、例えばラッパ管状でもよい。
Further, in order to prevent the coarse particles from getting into the pulverized product in the classifying chamber 8, the second rotating member 7 is provided on the classifying chamber 8 side as shown in FIG. It is effective to mount the conical enlarged portion 19 of FIG. In order to prevent straying, the enlarged portion does not necessarily have to be conical, and may be, for example, a trumpet tube.

【0052】第1回転部材4および第2回転部材7の形
状については、図3に示すように、それぞれ回転面内に
通過路を有すればよく、それぞれの回転部材の形状が同
一である必要はない。また、回転部材の通過路の回転面
内開孔率は、それぞれ独立に設定でき、同一である必要
はない。回転部材ボス部の直径についても、それぞれ独
立に設定でき、同一である必要はない。
As for the shapes of the first rotating member 4 and the second rotating member 7, as shown in FIG. 3, it suffices that each of the first rotating member 4 and the second rotating member 7 have a passage in the rotating plane, and the rotating members need to have the same shape. There is no. In addition, the in-rotational aperture ratios of the passages of the rotating members can be set independently of each other, and need not be the same. The diameters of the rotating member bosses can also be set independently of each other, and need not be the same.

【0053】さらに、気体流入側から気体排出側に向か
う気流は、流入側から吹き込んで発生させてもよい一
方、排出側から吸い出して発生させてもよく、何れであ
っても粉砕室5内の対向気流の発生、粒子の運動方向お
よび粒子同士の衝突および摩擦による自生粉砕には影響
を及ぼさない。そして、固体原料供給口と気体流入口と
を別々に設けても良く、また、粉砕産物排出口と気体排
出口とを別々に設けても良い。
Further, the gas flow from the gas inflow side to the gas discharge side may be generated by blowing in from the inflow side, or may be generated by sucking out from the discharge side. It does not affect the generation of opposing air flow, the direction of particle movement, and the self-crushing due to collision and friction between particles. Then, the solid material supply port and the gas inlet may be provided separately, or the pulverized product discharge port and the gas discharge port may be provided separately.

【0054】図7,図8および図9は、本発明に係る機
械気流式粉砕機のより具体的な実施形態を示す正面図、
平面図および側面図であり、ここでは、互いに切り離さ
れた三つの回転体状ケーシング部材である円錐状の供給
部ケーシング3と円筒状の粉砕室ケーシング6と円錐状
の分級室ケーシング9とをリング状パッキング材などを
介挿して結合することでケーシング20を構成し、通常
のスライド機構21上に粉砕機を取り付け、供給部ケー
シング3の箇所でケーシング20を分割して供給部ケー
シング3側をスライドさせることで、回転部材4,7の
変更、回転部材間距離の変更、ケーシング内壁面に脱着
可能ひいては交換可能に設けられたライナ22の交換な
ど、機械気流式粉砕機内部の条件設定を容易にしてい
る。なお、図7中符号23,24は、第1回転部材4お
よび第2回転部材7をそれぞれ別個独立に回転駆動する
モータを示す。
FIGS. 7, 8 and 9 are front views showing a more specific embodiment of the mechanical air flow type pulverizer according to the present invention.
It is a plan view and a side view, in which a ring of a conical supply section casing 3, a cylindrical grinding chamber casing 6, and a conical classification chamber casing 9, which are three rotating body casing members separated from each other, is shown. The casing 20 is formed by inserting and connecting a packing material and the like, a crusher is mounted on a normal slide mechanism 21, and the casing 20 is divided at the supply section casing 3 and the supply section casing 3 is slid. By doing so, it is possible to easily set the conditions inside the mechanical air flow type pulverizer, such as changing the rotating members 4 and 7, changing the distance between the rotating members, and replacing the liner 22 that is detachably attached to the inner wall surface of the casing, and is thus replaceable. ing. Reference numerals 23 and 24 in FIG. 7 denote motors that separately and independently drive the first rotating member 4 and the second rotating member 7.

【0055】さらに、図示しないが本発明には、固体原
料供給および気体流入のための単一の固体原料供給口を
有するとともに、粉砕産物排出および気体排出のための
単一の粉砕産物排出口を有し、機械気流式粉砕機の基本
構造が複数直列あるいは複数並列に連結された実施形態
も含まれる。
Further, although not shown, the present invention has a single solid raw material supply port for supplying a solid raw material and a gas inflow, and a single ground product discharge port for discharging a pulverized product and a gas. Embodiments in which a plurality of basic structures of a mechanical air flow type pulverizer are connected in series or in parallel are also included.

【0056】[0056]

【実施例】以下に、本発明に係る機械気流式粉砕機およ
び機械気流式粉砕方法を用いて固体粒子を粉砕した実施
例を示す。なお、本実施例では、以下に示す寸法の機械
気流式粉砕機を用いた。また、第1回転部材と第2回転
部材との回転方向を互いに逆方向とするとともに、それ
ら第1回転部材と第2回転部材との回転速度を互いに同
一とした。
Examples Examples of pulverizing solid particles using the mechanical air flow pulverizer and the mechanical air flow pulverizing method according to the present invention will be described below. In this example, a mechanical air flow type pulverizer having the following dimensions was used. In addition, the rotation directions of the first rotating member and the second rotating member were set to be opposite to each other, and the rotation speeds of the first rotating member and the second rotating member were made equal to each other.

【0057】ケーシング:ステンレス製中空二重構造
で、供給部ケーシング(円錐状)と粉砕室ケーシング
(円筒状)と分級室ケーシング(円錐状)とを具える 粉砕室ケーシング内径:260mm 第1回転部材回転直径:250mm 第2回転部材回転直径:250mm 第1回転部材回転幅:35mm 第2回転部材回転幅:35mm 第1回転部材回転面内開孔率:0.62 第2回転部材回転面内開孔率:0.62 回転部材前面間距離:25mm 固体原料供給口直径:60mm 粉砕産物排出口直径:100mm 第1回転部材支持軸直径:65mm 第2回転部材支持軸直径:65mm
Casing: Stainless steel hollow double structure, comprising a supply section casing (conical), a pulverizing chamber casing (cylindrical), and a classifying chamber casing (conical) Pulverizing chamber casing inner diameter: 260 mm First rotating member Rotation diameter: 250 mm Second rotation member rotation diameter: 250 mm First rotation member rotation width: 35 mm Second rotation member rotation width: 35 mm Opening ratio in the first rotation member rotation plane: 0.62 Second rotation member rotation plane opening Porosity: 0.62 Distance between rotating member front faces: 25 mm Solid material supply port diameter: 60 mm Crushed product discharge port diameter: 100 mm First rotating member supporting shaft diameter: 65 mm Second rotating member supporting shaft diameter: 65 mm

【0058】図10は、第1回転部材および第2回転部
材の回転速度を変化させて、粒径が0.6mm〜1.2
mmのフェライトを粉砕したときの、粉砕産物の粒度分
布を示す。なお、固体原料供給側から産物排出側へ流れ
る気体流量は毎分5m3 、フェライトの供給量は毎時1
5kgであった。通過分積算重量割合が0.5となる粒
径を平均粒径と定義すると、図10から判明するよう
に、平均粒径が数ミクロンないしサブミクロンの粉砕産
物を製造し得ている。また、この結果から、粉砕産物の
平均粒径が回転速度のほぼ3乗に逆比例して変化するこ
とが判明し、回転部材の回転速度が粒子の運動速度に比
例すると考えると、前述した本発明の機械気流式粉砕理
論が実証された。
FIG. 10 shows that the rotation speed of the first rotating member and the second rotating member is changed so that the particle diameter is 0.6 mm to 1.2 mm.
4 shows the particle size distribution of the crushed product when crushed ferrite of mm. The gas flow rate from the solid raw material supply side to the product discharge side is 5 m 3 / min, and the ferrite supply rate is 1 h / hour.
It was 5 kg. Assuming that the particle size at which the integrated weight ratio of the passing amount is 0.5 is defined as the average particle size, as can be seen from FIG. 10, a pulverized product having an average particle size of several microns to submicron can be produced. From this result, it was found that the average particle size of the pulverized product changes in inverse proportion to the third power of the rotation speed, and it is considered that the rotation speed of the rotating member is proportional to the movement speed of the particles. The inventive mechanical airflow grinding theory has been demonstrated.

【0059】図11は、粒径が0.6mm〜1.2mm
の炭化珪素を、第1回転部材および第2回転部材の回転
速度を共に毎分6000回転としつつ、気体流量を変化
させて粉砕したときの、粉砕産物の粒度分布を示してい
る。炭化珪素の供給量は毎時18kgであった。炭化珪
素は非常に研磨性の強い難粉砕物質の一つであるが、1
時間連続運転後の粉砕室の摩耗状態を調べてみると、ス
テンレス製ケーシングの内壁面は、まったく摩耗の痕跡
が見られず、第1回転部材および第2回転部材の前面外
周端部に僅かに摩耗が観察された。図11からも、本発
明の機械気流式粉砕機は、炭化珪素のような粉砕の難し
い物質に対しても平均粒径で数ミクロン以下の粉砕産物
を製造できることが分かる。
FIG. 11 shows that the particle size is 0.6 mm to 1.2 mm.
4 shows the particle size distribution of the crushed product when pulverizing silicon carbide by changing the gas flow rate while setting both the rotation speeds of the first rotating member and the second rotating member to 6000 rpm. The supply amount of silicon carbide was 18 kg / hour. Silicon carbide is one of the extremely difficult-to-grind substances having a very abrasive property.
When the wear state of the crushing chamber after the continuous operation was examined, no trace of wear was found on the inner wall surface of the stainless steel casing, and the inner wall surfaces of the first rotating member and the second rotating member were slightly exposed to the outer peripheral edges. Abrasion was observed. FIG. 11 also shows that the mechanical air flow type pulverizer of the present invention can produce a pulverized product having an average particle size of several microns or less even for a substance that is difficult to pulverize, such as silicon carbide.

【0060】最後に、検査不適合シリコンウェハーから
原料をリサイクリングする目的で行った粉砕試験の実施
例を示す。近年、シリコンウェハーの生産量が増大して
いるが、同時に欠陥製品の量も増えてきており、リサイ
クリングの必要に迫られている。従来は、湿式粉砕でサ
ブミクロン粒子を一応は製造できるものの、湿式のサブ
ミクロン分級がうまく行かずリサイクリング効率が極め
て低かった。一方、欠陥シリコンウェハーを3mm以下
に粗砕したものを原料として、本発明の機械気流式粉砕
を行った結果では、平均粒径で0.79μmの粉砕産物
か得られた。また、全ての粉砕産物粒子は3μm以下に
なっていて、乾式サブミクロン分級が比較的簡単である
ことを考え合わせると、本発明によればシリコンウェハ
ー製造プロセスのリサイクリング効率を相当に向上させ
得ることが判明した。
Finally, an example of a pulverization test performed for the purpose of recycling a raw material from a silicon wafer unsuitable for inspection will be described. In recent years, the production of silicon wafers has been increasing, but the amount of defective products has also been increasing at the same time, and there is a pressing need for recycling. Conventionally, although submicron particles can be produced to some extent by wet pulverization, the submicron classification by wet method has not been successfully performed, and the recycling efficiency has been extremely low. On the other hand, as a result of performing the mechanical air flow pulverization of the present invention using a material obtained by coarsely pulverizing the defective silicon wafer to 3 mm or less, a pulverized product having an average particle diameter of 0.79 μm was obtained. Also, considering that all the crushed product particles are 3 μm or less and that the dry sub-micron classification is relatively simple, the recycling efficiency of the silicon wafer manufacturing process can be considerably improved according to the present invention. It has been found.

【0061】[0061]

【発明の効果】本発明の機械気流式粉砕機およびそれを
用いた固体原料の機械気流式粉砕方法によれば、前面同
士が互いに対向する回転部材を互いに逆方法に回転させ
ることで、粉砕室内に対向気流を発生させることがで
き、それにより固体原料粒子を簡単に加速させることが
できるので、粒子同士の衝突および摩擦による自生粉砕
効率を高めて、粉砕のための消費エネルギーを低減させ
ることができる。
According to the mechanical air flow pulverizer of the present invention and the method of mechanical air flow pulverization of a solid raw material using the same, the rotating members whose front surfaces are opposed to each other are rotated in the opposite manner, so that the pulverizing chamber is rotated. Can generate a counter-current air flow, which can easily accelerate the solid raw material particles, so that the efficiency of autogenous pulverization due to collision and friction between particles can be increased, and the energy consumption for pulverization can be reduced. it can.

【0062】従って、粉砕プロセスの電力原単位すなわ
ち単位処理量当たりの消費電力が小さくなり、粉砕産物
の製造コストも低減させることができ、ひいては製品価
格の低下につながるため、粉砕産物を新たな原料とする
新製品開発の可能性を広げることができる。
Therefore, the power consumption of the pulverization process, that is, the power consumption per unit processing amount is reduced, the production cost of the pulverized product can be reduced, and the product price is reduced. Can expand the possibilities of new product development.

【0063】また、粉砕室の粒子濃度を高め得て、粉砕
室全体で有効な粒子同士の衝突および摩擦を行わせ、粒
子運動エネルギーを効率よく粉砕エネルギーに転換する
ことができるので、粉砕速度が速く、処理量の増大が期
待できると同時に、粉砕機自体の小型化が可能となり、
粉砕機の製造コストを低減させることができる。
In addition, the particle concentration in the grinding chamber can be increased, and effective collision and friction between the particles can be performed in the entire grinding chamber, and the particle kinetic energy can be efficiently converted into the grinding energy. It is possible to increase the throughput quickly and at the same time, it is possible to reduce the size of the crusher itself,
The production cost of the crusher can be reduced.

【0064】さらに、回転部材の回転速度を変えること
で粒子の運動速度を変えることができ、粉砕に利用でき
るエネルギーはその粒子運動速度の3乗に比例して変化
するので、回転速度を少し変えるだけで粉砕産物の平均
粒径を大きく変えることができ、ひいては粉砕機の操作
が極めて簡単になり、オペレイティングコストも低減さ
せることができる。
Further, the moving speed of the particles can be changed by changing the rotating speed of the rotating member, and the energy available for pulverization changes in proportion to the cube of the moving speed of the particles. The crushing alone can greatly change the average particle size of the crushed product, thereby greatly simplifying the operation of the crusher and reducing the operating cost.

【0065】加えて、従来は湿式では粉砕可能でも乾式
では粉砕が困難であった固体原料についても、数ミクロ
ンないしサブミクロンの粉砕が可能となるので、湿式分
級よりは分級精度のよい乾式分級と組み合わせて製品回
収プロセスを構築し得て、粉砕産物の回収率を向上させ
ることができる。
In addition, since solid materials which can be pulverized by a wet method but difficult to pulverize by a dry method can be pulverized to several microns or sub-microns, it is possible to perform dry classification with higher classification accuracy than wet classification. In combination, a product recovery process can be constructed to improve the recovery of the milled product.

【0066】しかも、粉砕産物のコンタミネーションが
ほとんどないため、トナーや電子材料など高品質が望ま
れる微粒子を、最も簡単な単位操作の一つである乾式粉
砕によって製造できるので、この点でも製品コストおよ
び製品価格の低下をもたらすことができる。
In addition, since there is almost no contamination of the pulverized product, fine particles such as toner and electronic materials of high quality can be produced by dry pulverization, which is one of the simplest unit operations. And lower product prices.

【0067】最後に、循環型社会構築のためにリサイク
リング率を向上させるには廃棄物中の構成物質を単体分
離する必要があるが、本発明の機械気流式粉砕機および
粉砕方法はあらゆる固体原料に対応できるので、マテリ
アルリサイクルの分野でも、本発明の適用範囲は広大に
広がっている。
Finally, in order to improve the recycling rate for the construction of a recycling-oriented society, it is necessary to separate the constituent substances in the waste into individual substances. Since the present invention can be applied to raw materials, the applicable range of the present invention has been widely expanded in the field of material recycling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の機械気流式粉砕機の一実施形態にお
ける粉砕機内の固体粒子の運動軌跡を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing a motion trajectory of solid particles in a pulverizer in one embodiment of a mechanical air flow type pulverizer of the present invention.

【図2】 本発明の機械気流式粉砕機の一実施形態の基
本構造を模式的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing a basic structure of one embodiment of a mechanical air flow type pulverizer of the present invention.

【図3】 本発明の機械気流式粉砕機における回転部材
の種々の形状例を示す正面図である。
FIG. 3 is a front view showing various examples of the shape of a rotating member in the mechanical air flow type pulverizer of the present invention.

【図4】 本発明の機械気流式粉砕機の他の一実施形態
である、冷却用流体を流通する二重構造のケーシングを
有する機械気流式粉砕機を模式的に示す断面図である。
FIG. 4 is a cross-sectional view schematically showing a mechanical airflow type pulverizer having a double-structure casing for flowing a cooling fluid, which is another embodiment of the mechanical airflow type pulverizer of the present invention.

【図5】 本発明の機械気流式粉砕機のさらに他の一実
施形態である、二重構造ケーシングのうちの粉砕室ケー
シングが最大直径と最小直径を有する機械気流式粉砕機
を模式的に示す断面図である。
FIG. 5 schematically shows a mechanical air flow type pulverizer according to still another embodiment of the present invention, in which a pulverizing chamber casing of a double structure casing has a maximum diameter and a minimum diameter. It is sectional drawing.

【図6】 (a),(b)は回転部材間での粒子の迷い
込み防止用の円錐状拡大部をそれぞれ取り付けた第1回
転部材および第2回転部材を模式的に示す説明図で、
(a)は外周の一面を削った形の回転部材、(b)は外
周の両面を削った形の回転部材について示すものであ
り、(c)は粉砕産物への粗粒の迷い込み防止用の円錐
状拡大部を第2回転部材に取り付けた状態を示す説明図
である。
FIGS. 6A and 6B are explanatory views schematically showing a first rotating member and a second rotating member to which conical enlarged portions for preventing particles from entering between rotating members are attached.
(A) shows a rotating member having a shape obtained by cutting one surface of an outer periphery, (b) shows a rotating member having a shape obtained by cutting both surfaces of an outer periphery, and (c) shows a method for preventing coarse particles from entering into a crushed product. It is explanatory drawing which shows the state which attached the conical enlarged part to the 2nd rotating member.

【図7】 本発明に係る機械気流式粉砕機のより具体的
な実施形態を示す正面図である。
FIG. 7 is a front view showing a more specific embodiment of a mechanical air flow type pulverizer according to the present invention.

【図8】 上記実施形態の機械気流式粉砕機を示す平面
図である。
FIG. 8 is a plan view showing the mechanical air flow type pulverizer of the embodiment.

【図9】 上記実施形態の機械気流式粉砕機を示す側面
図である。
FIG. 9 is a side view showing the mechanical airflow type pulverizer of the embodiment.

【図10】 本発明の機械気流式粉砕機で粉砕したフェ
ライト粉砕産物の粒度分布を示す説明図である。
FIG. 10 is an explanatory diagram showing a particle size distribution of a ferrite pulverized product pulverized by the mechanical air flow pulverizer of the present invention.

【図11】 本発明の機械気流式粉砕機で粉砕した炭化
珪素粉砕産物の粒度分布を示す説明図である。
FIG. 11 is an explanatory diagram showing a particle size distribution of a silicon carbide pulverized product pulverized by the mechanical air flow pulverizer of the present invention.

【符号の説明】[Explanation of symbols]

1 固体原料供給口 2 気体流入口 3 供給部ケーシング 4 第1回転部材 4a,7a 通過路 5 粉砕室 6 粉砕室ケーシング 7 第2回転部材 8 分級室 9 分級室ケーシング 10 粉砕産物排出口 11 気体流出口 12 第1回転部材支持軸 13 第2回転部材支持軸 14 冷却用流体流路 15 冷却用流体供給口 16 冷却用流体流出口 17,18,19 円錐状拡大部 20 ケーシング 21 スライド機構 22 ライナ 23,24 モータ C 中心軸線 REFERENCE SIGNS LIST 1 solid material supply port 2 gas inlet 3 supply section casing 4 first rotating member 4a, 7a passage 5 crushing chamber 6 crushing chamber casing 7 second rotating member 8 classifying chamber 9 classifying chamber casing 10 crushed product outlet 11 gas flow Outlet 12 First rotating member support shaft 13 Second rotating member support shaft 14 Cooling fluid flow path 15 Cooling fluid supply port 16 Cooling fluid outlet 17, 18, 19 Conical enlarged portion 20 Casing 21 Slide mechanism 22 Liner 23 , 24 Motor C center axis

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年5月19日(2000.5.1
9)
[Submission date] May 19, 2000 (2005.1.
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 機械気流式粉砕機およびその粉砕機
を用いた固体原料の機械気流式粉砕方法
Patent application title: Mechanical air flow pulverizer and method of mechanical air flow pulverization of solid raw material using the pulverizer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 所定軸線を中心として中空の回転体状を
なすとともに、平滑な内壁面を持つケーシング(3,
6,9)と、 前記ケーシング内にそれぞれ収容されて、前面同士が前
記軸線方向に空隙を空けて互いに対向するとともに外周
部が前記ケーシングの内壁面に対し空隙を空けるように
それぞれ支持され、前記軸線を中心として互いに逆方向
に回転駆動される二つの回転部材(4,7)と、 前記二つの回転部材にそれぞれ形成されて、それらの回
転部材の前面から背面までそれらの回転部材を前記軸線
方向に貫通する通過路(4a,7a)と、 前記ケーシングの、前記二つの回転部材のうちの一方の
回転部材の背面に向く部分に設けられて、外部から前記
ケーシング内に固体原料および気体を供給する固体原料
供給口(1,2)と、 前記ケーシングの、前記二つの回転部材のうちの他方の
回転部材の背面に向く部分に設けられて、前記ケーシン
グ内の、前記固体原料から形成された粉砕産物および気
体を外部に排出する粉砕産物排出口(10,11)と、
を具え、 前記二つの回転部材の回転によりそれらの回転部材の周
囲にそれぞれ発生させる、前記通過路と、前記回転部材
の前面付近と、前記回転部材と前記ケーシングとの間の
空隙と、前記回転部材の背面付近とを通って循環する付
き回り気流を、前記二つの回転部材の互いに逆方向の回
転により、それらの回転部材の前面間の空隙にて互いに
反対方向に向かわせることを特徴とする、機械気流式粉
砕機。
A casing (3) having a hollow rotating body around a predetermined axis and having a smooth inner wall surface.
6, 9) are respectively accommodated in the casing, the front faces are opposed to each other with a gap in the axial direction, and the outer peripheral portions are respectively supported so as to leave a gap with respect to the inner wall surface of the casing. Two rotating members (4, 7) that are driven to rotate in opposite directions about an axis; formed on the two rotating members, respectively; A passage (4a, 7a) penetrating in the direction, and a portion of the casing facing a back surface of one of the two rotating members, and a solid material and a gas are externally supplied into the casing. A solid material supply port (1, 2) to be supplied, and a casing provided in a portion of the casing facing a back surface of the other rotating member of the two rotating members. A pulverized product outlet (10, 11) for discharging pulverized products and gas formed from the solid raw material to the outside,
The passageway, the vicinity of the front surface of the rotating member, a gap between the rotating member and the casing, the rotation path being generated around the rotating members by the rotation of the two rotating members, respectively, A circulating air flow circulating through the vicinity of the back surface of the member is directed in opposite directions in a gap between the front surfaces of the two rotating members by rotation of the two rotating members in opposite directions. , Mechanical air crusher.
【請求項2】 前記二つの回転部材の回転によりそれら
の回転部材の周囲にそれぞれ発生させる前記互いに反対
方向の付き回り気流の、それらの回転部材の前面側の厚
さの和が、それらの回転部材の前面間の空隙の厚さに等
しくなるように、その空隙の厚さに対して前記二つの回
転部材の前記軸線方向の厚さを設定することを特徴とす
る、請求項1記載の機械気流式粉砕機。
2. The sum of the thicknesses of the opposing circulating airflows generated around the rotating members by the rotation of the two rotating members, respectively, on the front side of the rotating members, is the rotation of the rotating members. 2. The machine according to claim 1, wherein the thickness of the gap is equal to the thickness of the gap between the front surfaces of the members, and the thickness of the two rotating members in the axial direction is set with respect to the thickness of the gap. Air flow type crusher.
【請求項3】 前記二つの回転部材の少なくとも一方の
前記背面に対する、前記ケーシングの、前記背面の半径
方向外方の部分の、前記軸線を通る断面上での角度が4
0度以上でかつ90度未満になるように、前記ケーシン
グの前記部分を傾斜させることを特徴とする、請求項1
または2記載の機械気流式粉砕機。
3. An angle of a radially outer portion of the rear surface of the casing with respect to the rear surface of at least one of the two rotating members in a cross section passing through the axis is 4 degrees.
The said part of the said casing is inclined so that it may become more than 0 degree and less than 90 degree, The said 1st aspect is characterized by the above-mentioned.
Or a mechanical air flow type pulverizer according to 2 above.
【請求項4】 前記ケーシングを、外壁と内壁とを持つ
二重構造として、前記外壁と内壁との間の空隙を冷却用
流体の流路としたことを特徴とする、請求項1から3ま
での何れか記載の機械気流式粉砕機。
4. The cooling device according to claim 1, wherein the casing has a double structure having an outer wall and an inner wall, and a gap between the outer wall and the inner wall is a flow path of a cooling fluid. The mechanical airflow pulverizer according to any one of the above.
【請求項5】 前記ケーシングを、前記軸線方向に整列
してその軸線方向に互いに分離可能に結合された複数の
ケーシング部材を有するものとしたことを特徴とする、
請求項1から4までの何れか記載の機械気流式粉砕機。
5. The apparatus according to claim 1, wherein the casing includes a plurality of casing members which are aligned in the axial direction and are separably coupled to each other in the axial direction.
A mechanical air flow type pulverizer according to any one of claims 1 to 4.
【請求項6】 前記ケーシングの内壁面の少なくとも一
部を、交換可能なライナにて形成したことを特徴とす
る、請求項1から5までの何れか記載の機械気流式粉砕
機。
6. The mechanical air flow type pulverizer according to claim 1, wherein at least a part of an inner wall surface of the casing is formed of a replaceable liner.
【請求項7】 請求項1から6までの何れか記載の機械
気流式粉砕機を用い、前記固体原料供給口から前記ケー
シング内に気体とともに供給した固体原料を、前記二つ
の回転部材の回転によりそれらの回転部材の周囲にそれ
ぞれ発生させる前記付き回り気流に乗せて、それらの回
転部材の前面間の空隙にて互いに反対方向に加速させ、
その加速による固体原料同士の衝突および摩擦により粉
砕して粉砕産物とし、 前記粉砕産物を前記粉砕産物排出口から前記ケーシング
外に気体とともに排出させることを特徴とする、固体原
料の機械気流式粉砕方法。
7. A solid raw material supplied together with a gas into the casing from the solid raw material supply port by using the mechanical air flow type pulverizer according to any one of claims 1 to 6, by rotating the two rotating members. On the circling airflow generated around each of the rotating members, respectively, accelerated in opposite directions in a gap between the front surfaces of the rotating members,
Mechanical air flow pulverization method of the solid raw material, characterized in that the solid raw material is pulverized by collision and friction between the solid raw materials due to the acceleration to produce a pulverized product, and the pulverized product is discharged from the pulverized product discharge port together with gas to the outside of the casing. .
JP2000146239A 2000-05-18 2000-05-18 Mechanical air flow type pulverizer and mechanical air for pulverizing method of solid raw material using the same Pending JP2001321684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000146239A JP2001321684A (en) 2000-05-18 2000-05-18 Mechanical air flow type pulverizer and mechanical air for pulverizing method of solid raw material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000146239A JP2001321684A (en) 2000-05-18 2000-05-18 Mechanical air flow type pulverizer and mechanical air for pulverizing method of solid raw material using the same

Publications (1)

Publication Number Publication Date
JP2001321684A true JP2001321684A (en) 2001-11-20

Family

ID=18652627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000146239A Pending JP2001321684A (en) 2000-05-18 2000-05-18 Mechanical air flow type pulverizer and mechanical air for pulverizing method of solid raw material using the same

Country Status (1)

Country Link
JP (1) JP2001321684A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087415A (en) * 2004-09-27 2006-04-06 Ics Kk Method for treating rutin-containing substance
JP2008062141A (en) * 2006-09-05 2008-03-21 Furukawa Industrial Machinery Systems Co Ltd Airflow type fine powder production equipment
JP2008194598A (en) * 2007-02-09 2008-08-28 Yukihisa Kato Solid-liquid separator and solid-liquid separation method utilizing this separator
JP2012110808A (en) * 2010-11-22 2012-06-14 Sugino Machine Ltd Crusher
KR101247309B1 (en) * 2011-01-14 2013-03-25 한국식품연구원 Device for milling grain and device for manufacturing grain flour using the same
JP2016166127A (en) * 2006-05-13 2016-09-15 ランクセス・ドイチュランド・ゲーエムベーハー Improved yellow iron oxide pigment
JP2018020500A (en) * 2016-08-04 2018-02-08 Aca株式会社 Production method of regenerated filling fine particle
WO2019159975A1 (en) * 2018-02-13 2019-08-22 T-Fourth Co., Ltd. Drying and grinding machine
WO2025007559A1 (en) * 2023-07-05 2025-01-09 宁德时代新能源科技股份有限公司 Gas-based pulverizing system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087415A (en) * 2004-09-27 2006-04-06 Ics Kk Method for treating rutin-containing substance
JP2016166127A (en) * 2006-05-13 2016-09-15 ランクセス・ドイチュランド・ゲーエムベーハー Improved yellow iron oxide pigment
JP2008062141A (en) * 2006-09-05 2008-03-21 Furukawa Industrial Machinery Systems Co Ltd Airflow type fine powder production equipment
JP2008194598A (en) * 2007-02-09 2008-08-28 Yukihisa Kato Solid-liquid separator and solid-liquid separation method utilizing this separator
JP2012110808A (en) * 2010-11-22 2012-06-14 Sugino Machine Ltd Crusher
KR101247309B1 (en) * 2011-01-14 2013-03-25 한국식품연구원 Device for milling grain and device for manufacturing grain flour using the same
JP2018020500A (en) * 2016-08-04 2018-02-08 Aca株式会社 Production method of regenerated filling fine particle
WO2019159975A1 (en) * 2018-02-13 2019-08-22 T-Fourth Co., Ltd. Drying and grinding machine
AU2019222296B2 (en) * 2018-02-13 2021-10-28 T-Fourth Co., Ltd. Drying and grinding machine
US11478800B2 (en) 2018-02-13 2022-10-25 T-Fourth Co., Ltd. Dry grinding machine
WO2025007559A1 (en) * 2023-07-05 2025-01-09 宁德时代新能源科技股份有限公司 Gas-based pulverizing system

Similar Documents

Publication Publication Date Title
JP3139721B2 (en) Fluidized bed jet mill
CN102125886B (en) Jet mill
US6951312B2 (en) Particle entraining eductor-spike nozzle device for a fluidized bed jet mill
CN115672511B (en) A superfine grinding system for rhizomes of traditional Chinese medicine
JP4472703B2 (en) Crusher
US6942170B2 (en) Plural odd number bell-like openings nozzle device for a fluidized bed jet mill
CN117380361B (en) Superfine grinding technology-based equipment and application method thereof
JPH05309287A (en) Impingement type pneumatic pulverizing machine and production of electrostatic charge developing toner
JP2001321684A (en) Mechanical air flow type pulverizer and mechanical air for pulverizing method of solid raw material using the same
JP2000042441A (en) Jet mill
Yokoyama et al. Selection of fine grinding mills
US5628464A (en) Fluidized bed jet mill nozzle and processes therewith
JP2008086875A (en) Pneumatic fine powder manufacturing apparatus
JP2008126213A (en) Pulverizing apparatus, method for pulverizing, method for manufacturing toner using the same, and toner obtained by the method
JPH09201543A (en) Mechanical crusher
JPS6136463B2 (en)
JP3114040B2 (en) Collision type air crusher
JPS6366582B2 (en)
JP3091281B2 (en) Collision type air crusher
JP3091289B2 (en) Collision type air crusher
JPH07185383A (en) Circulation type pulverizing and classifying machine
JPS59196754A (en) Fine grinding device
JP2005288272A (en) Centrifugal crusher
JPH08182937A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2003334459A (en) Mechanical crusher