[go: up one dir, main page]

JP2001318301A - Optical member supporting device - Google Patents

Optical member supporting device

Info

Publication number
JP2001318301A
JP2001318301A JP2000138840A JP2000138840A JP2001318301A JP 2001318301 A JP2001318301 A JP 2001318301A JP 2000138840 A JP2000138840 A JP 2000138840A JP 2000138840 A JP2000138840 A JP 2000138840A JP 2001318301 A JP2001318301 A JP 2001318301A
Authority
JP
Japan
Prior art keywords
optical
frame
mirror
supporting
linear expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000138840A
Other languages
Japanese (ja)
Inventor
Makoto Taniguchi
谷口  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000138840A priority Critical patent/JP2001318301A/en
Publication of JP2001318301A publication Critical patent/JP2001318301A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Astronomy & Astrophysics (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Telescopes (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To constantly maintain the geometrical positional relation of an optical member regardless of temperature change by making the supporting structure of the optical member of an optical system light in weight and simple. SOLUTION: A main mirror 1 which is the optical member is supported by a main mirror supporting part 2 and is coupled with a main mirror base 3. Three frame supporting members 4 are radially extended from the optical axis center or the main mirror 1 by a uniform angle at the main mirror base 3, and a sub-mirror frame 6 is attached at a position opposed to the main mirror 1 through a V-shaped frame 5 fixed by the frame supporting member 4. A sub-mirror 8 is fixed so as to be opposed to the main mirror through a sub- mirror supporting member 7 at the sub-mirror frame 6. The coefficients of the linear expansion of the main mirror base 3, the frame 5 and the sub-mirror frame 6 are equally set as αa=αc=αd, and also the coefficient αb of linear expansion of the frame supporting member 4 is set as αb>αa. Though the temperature change is caused and a change is caused in the dimension of each member, the length and the coefficient of linear expansion of each member are selected so that the change is not caused in an optical distance between the main mirror 1 and the sub-mirror 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱的な環境が厳し
い条件下でも、例えば主鏡、副鏡の位置関係に対して安
定した光学性能を発揮させることが可能な光学部材支持
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical member supporting device capable of exhibiting stable optical performance, for example, with respect to the positional relationship between a primary mirror and a secondary mirror even under a severe thermal environment. It is.

【0002】[0002]

【従来の技術】従来の反射望遠鏡等の光学系において
は、主鏡と副鏡を円筒状又は三脚状の構造部材を介して
保持し、光学部材の幾何学的位置関係を保持している。
2. Description of the Related Art In a conventional optical system such as a reflection telescope, a primary mirror and a secondary mirror are held via a cylindrical or tripod-shaped structural member to maintain a geometric positional relationship between the optical members.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述の従
来例においては、人工衛星等に搭載される観測機器や光
通信用光学系においては、使用される温度環境が著しく
変化することが多く、構造体により光学系を構成する
と、前述の温度変化に伴って光学距離が変化し、長時間
に渡って光学性能を維持することは困難である。
However, in the above-mentioned conventional example, the temperature environment used in observation equipment and optical communication optical systems mounted on artificial satellites and the like often changes remarkably, and the structure , The optical distance changes with the above-described temperature change, and it is difficult to maintain the optical performance for a long time.

【0004】また、前述の温度変化に伴って光学部材そ
のものの曲率変化が生じ、焦点位置の補正が必要となる
場合に、光学距離を前述の温度変化に伴って変化させる
ことで焦点位置の補正が可能であるが、単一材料の構成
では、光学距離の変化が材質の線膨張係数に依存される
ため、光学性能の維持に適する補正量を得ることは困難
である。
When the curvature of the optical member itself changes with the above-mentioned temperature change and the focus position needs to be corrected, the optical distance is changed with the above-mentioned temperature change to correct the focus position. However, with a single material configuration, it is difficult to obtain a correction amount suitable for maintaining the optical performance because the change in the optical distance depends on the linear expansion coefficient of the material.

【0005】本発明の目的は、光学系の光学部材の支持
構造を軽量、簡素化し、温度変化に拘わらず光学部材の
幾何学的な位置関係を一定に維持し得る光学部材支持装
置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical member supporting apparatus capable of reducing the weight and simplification of a supporting structure of an optical member of an optical system and maintaining a constant geometrical positional relationship between optical members regardless of a temperature change. It is in.

【0006】また、本発明の他の目的は、光学部材その
ものの変化に伴う焦点移動を支持構造の光学距離の変化
量を調整することで補正し、安定した光学性能を維持し
得る光学部材支持装置を提供することにある。
Another object of the present invention is to correct the movement of the focal point caused by the change in the optical member itself by adjusting the amount of change in the optical distance of the support structure, thereby maintaining a stable optical performance. It is to provide a device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る光学部材支持装置は、第1、第2の光学
部材の幾何学的位置関係を保持しながら前記第1、第2
の光学部材を支持する装置において、前記第1の光学部
材を支持すると共に前記第1の光学部材の光軸中心に対
して放射方向に延在する複数の脚部材を有する第1の支
持手段と、前記第2の光学部材を支持すると共に前記第
1の支持部材の脚部の先端に連結する複数のフレームを
備えた第2の支持手段とを有し、前記第1、第2の支持
部材の線膨張係数を異ならせ、温度変化が生じても幾何
学的位置関係が一定となる部材寸法を選定したことを特
徴とする。
According to the present invention, there is provided an optical member supporting apparatus for achieving the above object, wherein the first and second optical members are maintained in a geometrical positional relationship.
An apparatus for supporting the optical member, comprising: a first supporting means for supporting the first optical member and having a plurality of leg members extending radially with respect to the optical axis center of the first optical member; And second support means having a plurality of frames for supporting the second optical member and connecting to the distal ends of the legs of the first support member, wherein the first and second support members are provided. Are characterized by having different linear expansion coefficients and selecting a member size that keeps the geometrical positional relationship constant even when a temperature change occurs.

【0008】[0008]

【発明の実施の形態】本発明を図示の実施例に基づいて
詳細に説明する。図1は斜視図を示し、光学部材である
主鏡1は主鏡支持部2により支持され、主鏡ベース3に
結合されている。主鏡ベース3には3つのフレーム支持
部材4が主鏡1の光軸中心から等角度で放射状に張り出
され、フレーム支持部材4の先端に固定されたV字状の
フレーム5を介して、主鏡1と対向する位置に副鏡フレ
ーム6が取り付けられている。つまり、フレーム5のV
字状の分岐部はフレーム支持部材4に結合され、フレー
ム5の2つの端部は副鏡フレーム6に結合されている。
副鏡フレーム6には副鏡支持部7を介して主鏡1に対向
して副鏡8が固定されており、また、主鏡1の中心部に
はリレー光学系用の鏡筒9が設けられ、主鏡ベース3に
結合されている。また、フレーム支持部材4の線膨張係
数は他の部材の線膨張係数と異なっている。なお、主鏡
1の裏面の複数の孔は軽量化のための肉抜きである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 is a perspective view, in which a primary mirror 1 as an optical member is supported by a primary mirror support 2 and is coupled to a primary mirror base 3. On the primary mirror base 3, three frame supporting members 4 are radially extended from the center of the optical axis of the primary mirror 1 at an equal angle, and via a V-shaped frame 5 fixed to the tip of the frame supporting member 4, A sub mirror frame 6 is mounted at a position facing the main mirror 1. That is, V of frame 5
The U-shaped branch is connected to the frame support member 4, and two ends of the frame 5 are connected to the secondary mirror frame 6.
A sub-mirror 8 is fixed to the sub-mirror frame 6 so as to face the main mirror 1 via a sub-mirror support 7, and a lens barrel 9 for a relay optical system is provided at the center of the main mirror 1. And is connected to the primary mirror base 3. The linear expansion coefficient of the frame support member 4 is different from the linear expansion coefficients of the other members. The plurality of holes on the back surface of the primary mirror 1 are lightened for weight reduction.

【0009】本実施例では、フレーム5のそれぞれの結
合部の近傍にばね性を持つ可撓部材を使用しており、こ
れによりフレーム5の主要部分の変形や他の部材への変
形の影響がないようにされている。なお、フレーム5を
V字形状の部材としたが、長さと線膨張係数が同じ2つ
の部材で構成することも可能である。
In this embodiment, a flexible member having a spring property is used in the vicinity of each joint of the frame 5, so that the influence of the deformation of the main part of the frame 5 and the deformation of other members is reduced. Not to be. Although the frame 5 is a V-shaped member, the frame 5 may be formed of two members having the same length and the same linear expansion coefficient.

【0010】図2は本実施例の模式図であり、計算に必
要な寸法を示している。主鏡ベース3は線膨張係数αa
で、主鏡1の光軸中心からフレーム支持部材4の結合部
までの距離はaである。フレーム支持部材4は線膨張係
数αbで、主鏡ベース3との結合部からフレーム5との
結合部までの距離はbである。フレーム5は線膨張係数
αcで長さはcである。副鏡フレーム6は三角形の形状
をしており、線膨張係数αdで一辺の長さはdである。
また、主鏡1と副鏡8との光学距離をHとし、e、f、
g、h1 、h2 は補助寸法である。
FIG. 2 is a schematic view of the present embodiment, showing dimensions required for calculation. The primary mirror base 3 has a linear expansion coefficient α a
The distance from the optical axis center of the primary mirror 1 to the joint of the frame support member 4 is a. The frame support member 4 has a linear expansion coefficient α b , and the distance from the joint with the primary mirror base 3 to the joint with the frame 5 is b. The frame 5 has a linear expansion coefficient α c and a length c. The secondary mirror frame 6 has a triangular shape, and has a linear expansion coefficient α d and a side length d.
The optical distance between the primary mirror 1 and the secondary mirror 8 is H, and e, f,
g, h1, and h2 are auxiliary dimensions.

【0011】本実施例において、主鏡ベース3、フレー
ム5、副鏡フレーム6の線膨張係数は、等しくαa=αc
=αdであり、αb>αaである。なお、線膨張係数は全
て正の値である。
In this embodiment, the linear expansion coefficients of the primary mirror base 3, the frame 5, and the secondary mirror frame 6 are equal to α a = α c.
= The α d, is α b> α a. The linear expansion coefficients are all positive values.

【0012】図2の本実施例の構成から、各部の寸法に
は以下の関係が成立する。 H=(h2 2−i21/2 ここで、i=(a+b)−e=(a+b)−31/2 d/
6 h2 =(c2−d2/4)1/2 である。これを整理すると、 H=[{3c2−3(a+b)2+31/2 d (a+b)−
2}/3]1/2 となる。
From the configuration of this embodiment shown in FIG. 2, the following relationships are established for the dimensions of each part. H = (h2 2 -i 2 ) 1/2 where i = (a + b) -e = (a + b) -3 1/2 d /
6 h2 = (c 2 -d 2 /4) 1/2. In summary this, H = [{3c 2 -3 (a + b) 2 +3 1/2 d (a + b) -
d 2 } / 3] 1/2 .

【0013】ここで、温度変化Tが発生した場合に、各
部材はこの温度変化に伴う寸法変化を生ずる。各部材に
ついて寸法変化後の寸法を、主鏡ベース3の寸法a’、
フレーム支持部材4の寸法b’、フレーム5の寸法
c’、副鏡フレーム6の長さd’とすると、次式のよう
になる。 a’=a(1+αaT) b’=b(1+αbT) c’=c(1+αcT)=c(1+αaT) d’=d(1+αdT)=d(1+αaT)
Here, when a temperature change T occurs, each member undergoes a dimensional change accompanying this temperature change. The dimensions of each member after the dimensional change are referred to as dimensions a ′ of the primary mirror base 3,
If the dimension b ′ of the frame support member 4, the dimension c ′ of the frame 5, and the length d ′ of the sub mirror frame 6, the following equation is obtained. a ′ = a (1 + α a T) b ′ = b (1 + α b T) c ′ = c (1 + α c T) = c (1 + α a T) d ′ = d (1 + α d T) = d (1 + α a T)

【0014】また、各部材の寸法変化後の光学距離を
H’とすると、次の式で計算される。 H’=[{3c’2−3(a’+b’)2+31/2d’(a’+
b’)−d’2}/3]1/2 このとき、H=H’となるように、各部材の長さ及び線
膨張係数を選択すると、温度変化が生じても光学距離H
が変化することはない。
Further, assuming that the optical distance after the dimensional change of each member is H ′, it is calculated by the following equation. H ′ = [{3c ′ 2 −3 (a ′ + b ′) 2 +3 1/2 d ′ (a ′ +
b ′) − d ′ 2 } / 3] 1/2 At this time, if the length and the linear expansion coefficient of each member are selected so that H = H ′, the optical distance H can be obtained even if a temperature change occurs.
Does not change.

【0015】例えば、bとcを未知数として、bについ
て方程式を整理すると、以下のようになる。 Ab2+Bb+C=0 ただし、 A=2T(αc−αb)+T2(αc 2−αb 2) B=2a{T(2αc−αa−αb)+T2(αc 2−α
aαb)}−31/2d{T(2αc−αb−αd)+T2(αc 2
−αaαd)}/3 C=a2{(2T(αc−αa)+T2(αc 2−αa 2)}−3
1/2ad{T(2αc−αa−αd)+T2(αc 2−α
aαd)}/3−d2{2T(αc−αd)+T2(αc 2
αd 2)}/3−H2(2αcT+αc 22) ここで、A<0となることを考慮して方程式を解くと、 b={−B−(B2−4AC)1/2}/(2A) となる。
For example, when b and c are unknowns and the equation is rearranged for b, the following is obtained. Ab 2 + Bb + C = 0, where A = 2T (α c −α b ) + T 2c 2 −α b 2 ) B = 2a {T (2α c −α a −α b ) + T 2c 2 − α
a α b )} − 31/2 d {T (2α c −α b −α d ) + T 2c 2
−α a α d )} / 3 C = a 2 {(2T (α c −α a ) + T 2c 2 −α a 2 )} − 3
1/2 ad {T (2α c −α a −α d ) + T 2c 2 −α
a α d )} / 3-d 2 {2T (α c −α d ) + T 2c 2
α d 2 )} / 3-H 2 (2α c T + α c 2 T 2 ) Here, when the equation is solved in consideration of A <0, b = {− B− (B 2 -4AC) 1 / 2 } / (2A).

【0016】いま、フレーム支持部材4にチタン合金
(線膨張係数αb=8.80・10-6[/K])を使用
し、主鏡ベース3、フレーム5、副鏡フレーム6にイン
バー合金(線膨張係数αa=αc=αd=1.20・10
-6[/K])を使用することとし、それぞれの寸法を、
光学距離H=300.00[mm]、主鏡ベース3はa=
120.00[mm]、副鏡フレーム6はd=50.00
[mm]とする。また、温度差Tを50.00[K]とす
る。
Now, a titanium alloy (linear expansion coefficient α b = 8.80 · 10 −6 [/ K]) is used for the frame supporting member 4, and an invar alloy is used for the primary mirror base 3, the frame 5, and the secondary mirror frame 6. (Linear expansion coefficient α a = α c = α d = 1.20 · 10
-6 [/ K]).
Optical distance H = 300.00 [mm], primary mirror base 3 has a =
120.00 [mm], d = 50.00 for the secondary mirror frame 6
[mm]. Further, the temperature difference T is set to 50.00 [K].

【0017】このとき、上記の方程式によりフレーム支
持部材4はb=77.582[mm]、フレーム5はc=
352.375[mm]となり、想定した温度差T50.
0[K]において、この温度変化に拘らず光学距離はほ
ぼ一定となる、なお、寸法の微調整により微妙な光学距
離Hの変化、例えば温度差T50.0[K]で光学距離
Hの変化量を数μmにすることも可能である。
At this time, according to the above equations, b = 77.582 [mm] for the frame supporting member 4 and c =
352.375 [mm], and the assumed temperature difference T50.
At 0 [K], the optical distance is substantially constant irrespective of this temperature change. A slight change in the optical distance H due to fine adjustment of the dimensions, for example, a change in the optical distance H at a temperature difference T50.0 [K]. It is also possible for the volume to be several μm.

【0018】次に、ここで示した組み合わせと寸法で、
フレーム支持部材4に更に大きな線膨張係数を持つ材質
のものを使用すると、温度の上昇に伴い光学距離Hが短
くなる方向の変化を生じさせることができる。光学部材
そのものの曲率変化などにより、温度の上昇に伴い焦点
位置の補正を光学距離が短くなるようにすべき場合にも
適用できる。例えば、寸法は上記と同じで、フレーム支
持部材4にアルミ合金(線膨張係数αb=22.0・1
-6[/K])を使用した場合に、温度差T=50.0
[K]に対して、光学距離Hの変化量は−31.7μm
となる。
Next, with the combination and dimensions shown here,
If a material having a larger linear expansion coefficient is used for the frame support member 4, a change in the direction in which the optical distance H becomes shorter with an increase in temperature can be caused. The correction of the focal position can be applied to the case where the optical distance should be shortened with an increase in temperature due to a change in the curvature of the optical member itself. For example, the dimensions are the same as above, and an aluminum alloy (linear expansion coefficient α b = 22.
0 -6 [/ K]), the temperature difference T = 50.0
The change amount of the optical distance H is -31.7 μm with respect to [K].
Becomes

【0019】また、逆に光学部材そのものの曲率変化等
により、温度の上昇に伴い焦点位置の補正を光学距離の
長くなるようにすべき場合には、ここで示した組み合わ
せで、フレーム支持部材4に本実施例よりも小さな線膨
張係数を持つ材質のものを使用すると、温度の上昇に伴
い光学距離Hが長くなる方向の変化を生じさせることが
できる。例えば、フレーム支持部材4にCFRP(線膨
張係数2.30・10 -6[/K])を使用した場合に、
温度差T=50.0[K]に対して、光学距離Hの変化
量は+15.4μmとなる。
Conversely, a change in the curvature of the optical member itself, etc.
Correction of the focal position as the temperature rises
If it should be longer, use the combination shown here.
Therefore, the frame supporting member 4 has a smaller linear expansion than that of the present embodiment.
If a material with a tension coefficient is used,
Causes a change in the direction in which the optical distance H becomes longer.
it can. For example, a CFRP (linear expansion) is
Tension coefficient 2.30 · 10 -6[/ K]),
Change in optical distance H with respect to temperature difference T = 50.0 [K]
The amount is +15.4 μm.

【0020】また、本実施例の構造は光軸に対して対称
な形状であり、光軸に対称に部分的に切り取っても上述
の補正関係が成立する。例えば、図3に示すハッチング
部分のみに温度変化が生じたとすると、主鏡ベース3、
フレーム支持部材4、フレーム5、副鏡フレーム6の温
度変化を生じた部分に対して上述の補正関係が成立し、
温度変化を生じていない部分は元の関係のままである。
従って、図3に示すような温度分布が生じても、副鏡8
には主鏡1に対する偏芯、偏角が生ずることはない。
Further, the structure of the present embodiment has a shape symmetrical with respect to the optical axis, and the above-described correction relationship holds even if the structure is partially cut out symmetrically with respect to the optical axis. For example, if a temperature change occurs only in a hatched portion shown in FIG.
The above-described correction relationship is established for the portions of the frame support member 4, the frame 5, and the sub mirror frame 6 where the temperature change has occurred,
Portions where no temperature change occurs remain in the original relationship.
Therefore, even if the temperature distribution as shown in FIG.
Does not cause eccentricity and declination with respect to the primary mirror 1.

【0021】このように、各部材の材質及び寸法の組み
合わせにより、温度変化があっても光学系の幾何学的な
位置関係をほぼ一定としたり、環境温度の変化に伴う光
学性能変化を光学部材の支持構造による光学距離Hの補
正によって、軽減することができる。また、光学部材の
支持方法を骨組構造としたことにより、軽量で簡素な構
造となる。
As described above, depending on the combination of the materials and dimensions of each member, the geometrical positional relationship of the optical system can be made substantially constant even if there is a temperature change, and the optical performance change due to the environmental temperature change can be suppressed. Can be reduced by correcting the optical distance H by the supporting structure. Further, since the supporting method of the optical member is a frame structure, the structure is light and simple.

【0022】図4は第2の実施例の模式図である。この
第2の実施例は第1の実施例に対して、フレーム5を1
つ多くしたものであり、各部の名称及び材質、寸法記号
は第1の実施例と同様である。副鏡フレーム6は四角形
の形状とされ、その一辺の長さはdである。
FIG. 4 is a schematic diagram of the second embodiment. This second embodiment is different from the first embodiment in that the frame 5 is set to 1
The names, materials, and dimensional symbols of each part are the same as in the first embodiment. The secondary mirror frame 6 has a rectangular shape, and the length of one side is d.

【0023】図2の本実施例の構成から、各部の寸法に
は以下の関係が成立する。 H=[h2 −{(a+b)2−d/2}2]1/2 ここで、h =(c2−d2/4)1/2であり、これを整理
すると、次式となる。 H={(c2−(a+b)2+d(a+b)−d2/2}]1/2
From the configuration of this embodiment shown in FIG. 2, the following relationships are established for the dimensions of each part. H = [h 2 - {( a + b) 2 -d / 2} 2] 1/2 where, h = (c 2 -d 2 /4) 1/2, and rearranging this, the following expression . H = {(c 2 - ( a + b) 2 + d (a + b) -d 2/2}] 1/2

【0024】ここで、温度変化Tが生じた場合に、各部
材は温度変化に伴い寸法変化を生ずる。各部材について
寸法変化後の寸法をそれぞれ、主鏡ベース3の寸法
a’、フレーム支持部材4の寸法b’、フレーム5の寸
法c’、副鏡フレーム6の長さd’とすると、先と同様
に次の通りとなる。 a’=a(1+αaT) b’=b(1+αbT) c’=c(1+αcT)=c(1+αaT) d’=d(1+αdT)=d(1+αaT)
Here, when the temperature change T occurs, each member undergoes a dimensional change with the temperature change. Assuming that the dimensions of each member after the dimensional change are the dimension a 'of the primary mirror base 3, the dimension b' of the frame support member 4, the dimension c 'of the frame 5, and the length d' of the secondary mirror frame 6, Similarly, it is as follows. a ′ = a (1 + α a T) b ′ = b (1 + α b T) c ′ = c (1 + α c T) = c (1 + α a T) d ′ = d (1 + α d T) = d (1 + α a T)

【0025】また、各部材の寸法変化後の光学距離を
H’とすると、H’は次式で計算される。 H’={c’2−(a’+b’)2+d’(a’+b’)
−d’2/2}1/2 このとき、H=H’となるように各部材の長さ及び線膨
張係数を選択すると、温度変化が生じても光学距離Hが
変化することはない。
Assuming that the optical distance after the dimensional change of each member is H ', H' is calculated by the following equation. H ′ = {c ′ 2 − (a ′ + b ′) 2 + d ′ (a ′ + b ′)
-D '2/2} 1/2 In this case, H = H' Selecting the length and the linear expansion coefficient of each member so that, never optical distance H varies even when the temperature change occurs.

【0026】例えば、bとcを未知数として、bについ
て方程式を整理すると、以下のようになる。 Ab2+Bb+C=0 ただし、 A=2T(αc−αb)+T2(αc 2−αb 2) B=2a{T(2αc−αa−αb)+T2(αc 2−α
aαb)}−d{T(2αc−αb−αd)+T2(αc 2−αb
αd)} C=a2{2T(αc−αa)+T2(αc 2−αa 2)}−a
d{T(2αc−αa−αd)+T2(αc 2−αaαd)}−
2{2T(αc−αd)+T2(αc 2−αd 2)}/2−H
(2αcT+αc 22) ここで、A<0となることを考慮して方程式を解くと、
次式となる。 b={−B−(B2−4AC)1/2}/(2A)
For example, when b and c are unknown numbers and the equation is arranged for b, the following is obtained. Ab 2 + Bb + C = 0, where A = 2T (α c −α b ) + T 2c 2 −α b 2 ) B = 2a {T (2α c −α a −α b ) + T 2c 2 − α
a α b )} − d {T (2α c −α b −α d ) + T 2c 2 −α b
α d )} C = a 2 {2T (α c −α a ) + T 2c 2 −α a 2 )} − a
d {T (2α c −α a −α d ) + T 2c 2 −α a α d )} −
d 2 {2T (α c −α d ) + T 2c 2 −α d 2 )} / 2−H
(2α c T + α c 2 T 2 ) Here, when the equation is solved in consideration of A <0,
The following equation is obtained. b = {- B- (B 2 -4AC) 1/2} / (2A)

【0027】いま、フレーム支持部材4にチタン合金
(線膨張係数αb=8.80・10-6[/K])を使用
し、主鏡ベース3、フレーム5、副鏡フレーム6にイン
バー合金(線膨張係数αa=αc=αd=1.20・E-6
[/K])を使用することとし、それぞれの寸法を、光
学距離H=300.00[mm]、主鏡ベース3はa=
120.00[mm]、副鏡フレーム6はd=50.0
0[mm]とする。また、温度差Tを50.0[K]と
する。
Now, a titanium alloy (linear expansion coefficient α b = 8.80 · 10 −6 [/ K]) is used for the frame supporting member 4, and an invar alloy is used for the primary mirror base 3, the frame 5, and the secondary mirror frame 6. (Linear expansion coefficient α a = α c = α d = 1.20 · E -6
[/ K]), and the respective dimensions are set as follows: the optical distance H = 300.00 [mm];
120.00 [mm], d = 50.0 for the secondary mirror frame 6
0 [mm]. Further, the temperature difference T is set to 50.0 [K].

【0028】このとき、上記の方程式よりフレーム支持
部材4はb=80.816[mm]、フレーム5はc=
348.621[mm]となり、想定した温度差T(5
0.0[K])においても光学距離Hはほぼ一定とな
る。
At this time, from the above equation, b = 80.816 [mm] for the frame support member 4 and c =
348.621 [mm], and the assumed temperature difference T (5
0.0 [K]), the optical distance H is substantially constant.

【0029】[0029]

【発明の効果】以上説明したように本発明に係る光学部
材支持装置は、各部材の材質及び長さを調整し組み合わ
せることにより、光学距離を温度変化に拘わらずほぼ一
定とすることができる。また、温度変化により光学部材
の曲率変化等が生ずる場合には、上述の組み合わせを変
えることにより、温度変化に伴う焦点位置のずれを光学
距離の調整により補正することができる。
As described above, in the optical member supporting apparatus according to the present invention, by adjusting and combining the materials and lengths of the respective members, the optical distance can be made substantially constant regardless of the temperature change. Further, when a change in the curvature of the optical member occurs due to a change in the temperature, a shift in the focal position due to the change in the temperature can be corrected by adjusting the optical distance by changing the above combination.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の斜視図である。FIG. 1 is a perspective view of a first embodiment.

【図2】第1の実施例の模式図である。FIG. 2 is a schematic diagram of the first embodiment.

【図3】第1の実施例の光学系に仮定した温度分布図で
ある。
FIG. 3 is a temperature distribution diagram assumed for the optical system of the first embodiment.

【図4】第2の実施例の模式図である。FIG. 4 is a schematic diagram of a second embodiment.

【符号の説明】[Explanation of symbols]

1 主鏡 2 主鏡支持部 3 主鏡ベース 4 フレーム支持部材 5 フレーム 6 副鏡フレーム 7 副鏡支持部 8 副鏡 9 リレーレンズ鏡筒 DESCRIPTION OF SYMBOLS 1 Primary mirror 2 Primary mirror support part 3 Primary mirror base 4 Frame support member 5 Frame 6 Secondary mirror frame 7 Secondary mirror support part 8 Secondary mirror 9 Relay lens barrel

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1、第2の光学部材の幾何学的位置関
係を保持しながら前記第1、第2の光学部材を支持する
装置において、前記第1の光学部材を支持すると共に前
記第1の光学部材の光軸中心に対して放射方向に延在す
る複数の脚部材を有する第1の支持手段と、前記第2の
光学部材を支持すると共に前記第1の支持部材の脚部の
先端に連結する複数のフレームを備えた第2の支持手段
とを有し、前記第1、第2の支持部材の線膨張係数を異
ならせ、温度変化が生じても幾何学的位置関係が一定と
なる部材寸法を選定したことを特徴とする光学部材支持
装置。
1. An apparatus for supporting the first and second optical members while maintaining the geometrical positional relationship between the first and second optical members, wherein the first and second optical members are supported and the first and second optical members are supported. First support means having a plurality of leg members extending radially with respect to the optical axis center of the first optical member; and supporting the second optical member and supporting the first optical member. A second support means having a plurality of frames connected to the distal end, wherein the first and second support members have different coefficients of linear expansion so that a geometrical positional relationship is constant even if a temperature change occurs. An optical member supporting device, wherein a member size is selected.
【請求項2】 前記第1、第2の支持手段は可撓部材を
介して連結した請求項1に記載の光学部材支持装置。
2. The optical member supporting device according to claim 1, wherein said first and second supporting means are connected via a flexible member.
【請求項3】 前記第1の支持部材を前記第2の光学部
材よりも線膨張係数が大きい材料とした請求項1又は2
に記載の光学部材支持装置。
3. The first support member is made of a material having a larger linear expansion coefficient than that of the second optical member.
6. The optical member supporting device according to claim 5.
JP2000138840A 2000-05-11 2000-05-11 Optical member supporting device Pending JP2001318301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000138840A JP2001318301A (en) 2000-05-11 2000-05-11 Optical member supporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000138840A JP2001318301A (en) 2000-05-11 2000-05-11 Optical member supporting device

Publications (1)

Publication Number Publication Date
JP2001318301A true JP2001318301A (en) 2001-11-16

Family

ID=18646394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000138840A Pending JP2001318301A (en) 2000-05-11 2000-05-11 Optical member supporting device

Country Status (1)

Country Link
JP (1) JP2001318301A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544888A (en) * 2004-12-28 2008-12-11 テールズ Support equipment for space equipment elements using flexible and extensible thin plates
JP2012510083A (en) * 2008-11-25 2012-04-26 テールズ Space optical system having means for active control of optical system
JP2014010332A (en) * 2012-06-29 2014-01-20 Mitsubishi Electric Corp Mirror support structure
CN104459939A (en) * 2014-12-25 2015-03-25 中国科学院长春光学精密机械与物理研究所 Space reflecting mirror supporting and focusing integrated device
WO2015062568A1 (en) * 2013-10-28 2015-05-07 Mbda Deutschland Gmbh Adjustable mounting arrangement for an object to be positioned precisely relative to a base
CN107037567A (en) * 2017-05-19 2017-08-11 北京空间机电研究所 A kind of 3 bulbs combine radially cementing reflecting mirror support structure
JP2018529992A (en) * 2015-09-29 2018-10-11 レイセオン カンパニー High rigidity structure for large aperture telescope
JP2019159137A (en) * 2018-03-14 2019-09-19 日本電気株式会社 Optical supporting structure and method for adjusting support
CN111458827A (en) * 2020-04-23 2020-07-28 中国科学院西安光学精密机械研究所 High-stability frame embedded structure, high-stability support frame and installation method
CN113589517A (en) * 2021-08-11 2021-11-02 哈尔滨工业大学 Separable modular sub-mirror structure of large-scale space telescope and on-orbit replacement method
CN116068713A (en) * 2022-10-31 2023-05-05 中国科学院西安光学精密机械研究所 A stable support device and system for installing low temperature optical system components

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544888A (en) * 2004-12-28 2008-12-11 テールズ Support equipment for space equipment elements using flexible and extensible thin plates
JP2012510083A (en) * 2008-11-25 2012-04-26 テールズ Space optical system having means for active control of optical system
JP2014010332A (en) * 2012-06-29 2014-01-20 Mitsubishi Electric Corp Mirror support structure
US10048463B2 (en) 2013-10-28 2018-08-14 Mbda Deutschland Gmbh Adjustable mounting arrangement for an object to be positioned precisely relative to a base
WO2015062568A1 (en) * 2013-10-28 2015-05-07 Mbda Deutschland Gmbh Adjustable mounting arrangement for an object to be positioned precisely relative to a base
CN104459939A (en) * 2014-12-25 2015-03-25 中国科学院长春光学精密机械与物理研究所 Space reflecting mirror supporting and focusing integrated device
JP2018529992A (en) * 2015-09-29 2018-10-11 レイセオン カンパニー High rigidity structure for large aperture telescope
CN107037567A (en) * 2017-05-19 2017-08-11 北京空间机电研究所 A kind of 3 bulbs combine radially cementing reflecting mirror support structure
JP2019159137A (en) * 2018-03-14 2019-09-19 日本電気株式会社 Optical supporting structure and method for adjusting support
JP7102802B2 (en) 2018-03-14 2022-07-20 日本電気株式会社 Optical system support mechanism
CN111458827A (en) * 2020-04-23 2020-07-28 中国科学院西安光学精密机械研究所 High-stability frame embedded structure, high-stability support frame and installation method
CN111458827B (en) * 2020-04-23 2024-06-04 中国科学院西安光学精密机械研究所 High-stability frame embedded structural member, high-stability supporting frame and mounting method
CN113589517A (en) * 2021-08-11 2021-11-02 哈尔滨工业大学 Separable modular sub-mirror structure of large-scale space telescope and on-orbit replacement method
CN116068713A (en) * 2022-10-31 2023-05-05 中国科学院西安光学精密机械研究所 A stable support device and system for installing low temperature optical system components

Similar Documents

Publication Publication Date Title
US5760979A (en) Reflecting optical apparatus
KR960002314B1 (en) High resonant adjustable reflector mount
US5801891A (en) Flat mirror mounting flexure
JP2001318301A (en) Optical member supporting device
US7992835B2 (en) Kinematic mirror mount adjustable from two directions
JP2008096994A (en) Optical element unit and method of supporting optical element
JP2017511507A (en) Optical module with deformation device and method for deforming optical element
US7387395B2 (en) Optical units
EP0256212A1 (en) Adjustable mount for large mirrors
EP1308765B1 (en) Mount for ultra-high performance of optical components under thermal and vibrational distortion conditions
JP4820074B2 (en) Convergence device for radiation from a light source
EP3717950B1 (en) Multi-material mirror system
JPH1130709A (en) Reflecting telescope
JP2009505411A (en) Objective for immersion lithography
JP6008938B2 (en) Facet mirror device
US3015990A (en) Mounting of optical elements
JP2010152090A (en) Reflecting mirror system
JP2019159137A (en) Optical supporting structure and method for adjusting support
JP4283311B2 (en) Reflector device
US10591676B1 (en) Fiber micropositioner
JP4447694B2 (en) Optical member support structure
JP2795181B2 (en) Light reflection telescope for satellite
US20060187511A1 (en) Device for mounting an optical element, particularly a lens in an objective
JP2001350103A (en) Reflecting telescopic device
JP2003172857A (en) Supporting means for optical element, optical system using the same, exposure device, device manufacturing method, and device