JP2001316939A - High strength polyethylene fiber and method for producing the same - Google Patents
High strength polyethylene fiber and method for producing the sameInfo
- Publication number
- JP2001316939A JP2001316939A JP2000133711A JP2000133711A JP2001316939A JP 2001316939 A JP2001316939 A JP 2001316939A JP 2000133711 A JP2000133711 A JP 2000133711A JP 2000133711 A JP2000133711 A JP 2000133711A JP 2001316939 A JP2001316939 A JP 2001316939A
- Authority
- JP
- Japan
- Prior art keywords
- molecular weight
- polymer
- intrinsic viscosity
- polyethylene fiber
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 70
- -1 polyethylene Polymers 0.000 title claims abstract description 41
- 239000004698 Polyethylene Substances 0.000 title claims abstract description 39
- 229920000573 polyethylene Polymers 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 229920000642 polymer Polymers 0.000 claims abstract description 54
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 230000004927 fusion Effects 0.000 claims abstract description 6
- 238000004898 kneading Methods 0.000 claims abstract description 3
- 238000009987 spinning Methods 0.000 claims description 24
- 229920006158 high molecular weight polymer Polymers 0.000 claims description 21
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 10
- 239000005977 Ethylene Substances 0.000 claims description 10
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 10
- 238000009826 distribution Methods 0.000 abstract description 27
- 238000002074 melt spinning Methods 0.000 abstract description 21
- 238000002844 melting Methods 0.000 abstract description 9
- 230000008018 melting Effects 0.000 abstract description 9
- 238000005259 measurement Methods 0.000 abstract description 5
- 238000002156 mixing Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 21
- 230000000704 physical effect Effects 0.000 description 12
- 239000002904 solvent Substances 0.000 description 10
- 238000001891 gel spinning Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 229920004889 linear high-density polyethylene Polymers 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 4
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 4
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000012968 metallocene catalyst Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 101100453790 Drosophila melanogaster Kebab gene Proteins 0.000 description 1
- 101150096839 Fcmr gene Proteins 0.000 description 1
- 241000446313 Lamella Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 229920006253 high performance fiber Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 235000015231 kebab Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、各種ロープ、釣り
糸、土木・建築等のネット・シート材、化学フィルター
やセパレータ用の布帛・不織布、防弾チョッキを始めと
する防護衣料やスポーツ衣料、あるいはヘルメットや耐
衝撃性コンポジット,スポーツ用コンポジットのための
補強材料など、広く産業資材やテキスタイル用途に使用
可能な高強度ポリエチレン繊維およびそれを製造する方
法に関する。BACKGROUND OF THE INVENTION The present invention relates to protective clothing and sports clothing, such as various ropes, fishing lines, nets and sheet materials for civil engineering and construction, fabrics and nonwoven fabrics for chemical filters and separators, bulletproof vests, helmets and the like. The present invention relates to a high-strength polyethylene fiber which can be widely used for industrial materials and textile applications, such as an impact-resistant composite and a reinforcing material for a sports composite, and a method for producing the same.
【0002】[0002]
【従来の技術】超高分子量ポリエチレンを原料にして高
強度・高弾性率繊維を得ようとする試みは、近年活発で
あり、非常に高い強度・弾性率を有する繊維が報告され
ている。例えば、特開昭56−15408号公報には、
超高分子量ポリエチレンを溶剤に溶解し得られたゲル状
の繊維を高倍率に延伸する、いわゆる「ゲル紡糸法」の
技術が開示されている。2. Description of the Related Art In recent years, attempts have been made to obtain high-strength and high-modulus fibers from ultrahigh-molecular-weight polyethylene as a raw material, and fibers having very high strength and elastic modulus have been reported. For example, JP-A-56-15408 discloses that
There is disclosed a so-called "gel spinning method" in which a gel fiber obtained by dissolving ultrahigh molecular weight polyethylene in a solvent is drawn at a high magnification.
【0003】「ゲル紡糸法」により得られた高強度ポリ
エチレン繊維は、有機繊維としては非常に高い強度・弾
性率を有し、さらには耐衝撃性が非常に優れることが知
られており、各種用途においてその応用が広がりつつあ
る。しかしながら、ゲル紡糸法においては、多量の溶剤
をその製造過程で使用する必要があり、その回収・精製
等にコストがかかり経済的で無いばかりか、環境問題が
重要視される昨今、このような溶剤を使用しない高強度
ポリエチレン繊維の製造方法が求められている。[0003] High-strength polyethylene fibers obtained by the "gel spinning method" are known to have very high strength and elastic modulus as organic fibers, and are also extremely excellent in impact resistance. Its application is expanding in use. However, in the gel spinning method, it is necessary to use a large amount of a solvent in the production process, so that not only is it costly and expensive to collect and purify the solvent, but also environmental issues are regarded as important in recent years. There is a need for a method for producing high-strength polyethylene fibers that does not use solvents.
【0004】従来、溶剤を使用しない方法として溶融紡
糸法により高強度ポリエチレン繊維を得る試みがある。
例えば、特公昭63−23203号公報には、重量平均
分子量30万以上で数平均分子量と重量平均分子量の
比、いわゆる分子量分布の指標(Mw/Mn)が5以上
の特殊な高分子量ポリマーを溶融紡糸することで、クリ
ープ特性に優れた高強度繊維が得られた旨の技術開示が
ある。また、特表平8−504891号公報には、重量
平均分子量が12.5万から17.5万、分子量分布指
数(Mw/Mn)が5未満という極限られた範囲の高密
度ポリエチレンを用いて溶融紡糸を実施することにより
高強度ポリエチレン繊維を得た旨の技術開示がある。Conventionally, there has been an attempt to obtain a high-strength polyethylene fiber by a melt spinning method as a method not using a solvent.
For example, Japanese Patent Publication No. 63-23203 discloses that a special high molecular weight polymer having a weight average molecular weight of 300,000 or more and a ratio of number average molecular weight to weight average molecular weight, that is, a so-called molecular weight distribution index (Mw / Mn) of 5 or more is melted. There is a technical disclosure that high-strength fibers having excellent creep characteristics are obtained by spinning. In addition, Japanese Patent Application Laid-Open Publication No. Hei 8-504891 discloses the use of high-density polyethylene having a weight-average molecular weight of 125,000 to 175,000 and a molecular weight distribution index (Mw / Mn) of less than 5 in an extremely limited range. There is a technical disclosure that high-strength polyethylene fibers were obtained by performing melt spinning.
【0005】これらの技術においては、高分子量であれ
ばあるほど繊維強度が向上するのは自明であるが、高分
子量にするほど分子間の絡み合いが多くなり溶融紡糸が
困難になるという問題がある。かかる観点から、特公昭
63−23203号公報においては分子量分布を広くす
る処方を採用していると推定される。すなわち、同公報
においては、結果的に分子量分布の広いポリマーを用い
ることで、具体的には低粘度成分が可塑剤的に作用して
溶融時の粘度を低減し、分子量が30万を越えるような
高分子量でも溶融紡糸を可能ならしめたと推定される。
一方で、分子量分布が広くなるほど、繊維の力学特性、
特に強度は低下することが予測され、分子量分布を狭く
することは物性上好ましい方向があるが、特表平8−5
04891号公報に開示のごとく、分子量分布が5未満
のポリマーを用いると、溶融粘度や繊維の製造過程での
紡糸安定性の観点から重量平均分子量としては17.5
万程度が限度であった。このように平均分子量が低いこ
とは、たとえ溶融紡糸を可能とさせても、相対的に得ら
れる繊維の物性が、例えば溶剤を用いるゲル紡糸法に比
べると、はるかに低調なレベルのものとなる。[0005] In these techniques, it is obvious that the higher the molecular weight, the higher the fiber strength, but the higher the molecular weight, the more entanglement between the molecules becomes, and there is a problem that melt spinning becomes difficult. . From this viewpoint, it is presumed that JP-B-63-23203 employs a formulation that broadens the molecular weight distribution. That is, in the publication, as a result, by using a polymer having a wide molecular weight distribution, a low-viscosity component acts as a plasticizer to reduce the viscosity at the time of melting, so that the molecular weight exceeds 300,000. It is presumed that melt spinning was possible even with a high molecular weight.
On the other hand, as the molecular weight distribution becomes wider, the mechanical properties of the fiber,
In particular, the strength is expected to decrease, and narrowing the molecular weight distribution is preferable in terms of physical properties.
As disclosed in Japanese Patent No. 04891, if a polymer having a molecular weight distribution of less than 5 is used, the weight-average molecular weight is 17.5 from the viewpoint of melt viscosity and spinning stability in a fiber production process.
The limit was around 10,000. Such a low average molecular weight means that even if melt spinning is enabled, the physical properties of relatively obtainable fibers are at a much lower level than, for example, the gel spinning method using a solvent. .
【0006】[0006]
【発明が解決しようとする課題】以上の観点に鑑み、本
発明は、溶融紡糸法においても従来のゲル紡糸法に匹敵
する物性を有する高強度ポリエチレン繊維を提供するこ
とを目的とする。SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a high-strength polyethylene fiber having physical properties comparable to those of a conventional gel spinning method even in a melt spinning method.
【0007】[0007]
【課題を解決するための手段】本発明は、繊維状態での
極限粘度〔η〕(g/dl)が2以上8以下であり、及び/又
は、少なくとも15cN/dtexの引張り強度を有し、しか
も、示差走査熱量測定(DSC)で求めた融解熱ピーク
における最も高温域にあるピーク温度が140℃以上で
あることを特徴とする高強度ポリエチレン繊維を提供す
るものである。According to the present invention, an intrinsic viscosity [η] (g / dl) in a fiber state is 2 or more and 8 or less, and / or has a tensile strength of at least 15 cN / dtex, Further, the present invention provides a high-strength polyethylene fiber characterized in that the peak temperature in the highest temperature range of the heat of fusion determined by differential scanning calorimetry (DSC) is 140 ° C or higher.
【0008】また、本発明は、極限粘度〔η〕(g/dl)が
3以上であり、かつ、その重量平均分子量(Mw)と数
平均分子量(Mn)との比(Mw/Mn)が4以下であ
る、エチレン成分を主体とする高分子量重合体(A)9
9.9重量部乃至90重量部と、該高分子量重合体
(A)の極限粘度に対して少なくとも2倍の極限粘度を
有する、エチレン成分を主体とする超高分子量重合体
(B)0.1重量部乃至10重量部と、からなる混合物
を、溶融混練り後、紡糸・延伸することを特徴とする高
強度ポリエチレン繊維の製造方法を提供するものであ
る。In the present invention, the intrinsic viscosity [η] (g / dl) is 3 or more, and the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is increased. A high molecular weight polymer (A) 9 having an ethylene component as the main component, which is 4 or less
9.9 parts by weight to 90 parts by weight, and an ultrahigh molecular weight polymer (B) mainly composed of an ethylene component, having an intrinsic viscosity at least twice the intrinsic viscosity of the high molecular weight polymer (A). It is intended to provide a method for producing a high-strength polyethylene fiber, which comprises spinning and stretching a mixture consisting of 1 part by weight to 10 parts by weight after melt-kneading.
【0009】[0009]
【発明の実施の形態】本発明の高強度ポリエチレン繊維
を構成しているポリエチレンは、その繰り返し単位が実
質的にエチレンであることを特徴とし、エチレンと特定
のαオレフィンとの共重合体であってもよい。また、そ
れ以外のモノマー、例えばアクリル酸及びその誘導体,
メタクリル酸及びその誘導体,ビニルシラン及びその誘
導体などの第3成分を微量に含有してもかまわない。α
オレフィン、特にプロピレン、ブテン−1等との共重合
体を用いることで短鎖分岐をある程度含有させること
は、本繊維を製造する上で紡糸・延伸において安定性を
与えることとなり、より好ましい。しかしながら、エチ
レン以外の含有量が増えすぎると引張り強度等の基本性
能の阻害要因となる。従って、高強度・高弾性率繊維を
得るという観点からはモノマー単位で3mol%以下で
あることが好ましい。BEST MODE FOR CARRYING OUT THE INVENTION The polyethylene constituting the high-strength polyethylene fiber of the present invention is characterized in that its repeating unit is substantially ethylene, and is a copolymer of ethylene and a specific α-olefin. You may. In addition, other monomers such as acrylic acid and its derivatives,
Third components such as methacrylic acid and its derivatives, vinylsilane and its derivatives may be contained in trace amounts. α
It is more preferable to use a copolymer with an olefin, particularly propylene, butene-1 or the like, so that short-chain branching is contained to a certain extent in spinning and drawing when producing the present fiber. However, if the content other than ethylene is too large, it will be a hindrance to basic performance such as tensile strength. Therefore, from the viewpoint of obtaining high-strength and high-modulus fibers, the content is preferably 3 mol% or less in monomer units.
【0010】本発明の製造方法で用いる高分子量重合体
(A)と超高分子量重合体(B)とについても、上記と
同様に、繰り返し単位が実質的にエチレンであることを
特徴とし、エチレンと特定のαオレフィンとの共重合体
であってもよく、さらにそれ以外のモノマーを微量に含
有していてもかまわない。[0010] The high molecular weight polymer (A) and the ultra high molecular weight polymer (B) used in the production method of the present invention are also characterized in that the repeating unit is substantially ethylene, as described above. And a specific α-olefin, and may further contain a small amount of other monomers.
【0011】本発明の製造方法においては、主ポリマー
である高分子量重合体(A)の平均分子量と分子量分布
とが非常に重要である。まず、平均分子量については、
溶融紡糸を実施する観点から極限粘度〔η〕(g/dl)で3
以上10以下であることが好ましい。ここで、本発明の
極限粘度〔η〕(g/dl)については下記の式により粘度平
均分子量(Mv)に換算することができる。 Mv=(2.64×103〔η〕)1.388 この式を用いて換算したところ、上記高分子量重合体
(A)に使用される最適なポリマーは、粘度平均分子量
で約25万から約130万の範囲にある。なお、本技術
分野における技術資料では分子量の指標として重量平均
分子量を用いるケースも多いが、若干の差異はあるもの
の粘度平均分子量と重量平均分子量とが近い値を持つこ
とは常識であり(但し、粘度平均分子量は重量平均分子
量を上回ることはない)、本発明では極限粘度および換
算された粘度平均分子量をもってポリマー分子量の指標
とする。上記高分子量重合体(A)の極限粘度〔η〕(g
/dl)が3未満では、得られたポリエチレン繊維において
15cN/dtex以上というような高強度化を達成すること
が困難となる。この重合体(A)の極限粘度は、好まし
くは4以上であり、さらに好ましくは4.5以上であ
る。一方、該重合体(A)の極限粘度が10を越える
と、溶融粘度が著しく高くなり溶融押出しが事実上不可
能となる。結果として、何らかの溶剤あるいは可塑剤が
必要となり本発明の趣旨にそぐわない。In the production method of the present invention, the average molecular weight and the molecular weight distribution of the high molecular weight polymer (A) as the main polymer are very important. First, regarding the average molecular weight,
From the viewpoint of performing melt spinning, the intrinsic viscosity [η] (g / dl) is 3
It is preferably at least 10 and at most 10. Here, the intrinsic viscosity [η] (g / dl) of the present invention can be converted into a viscosity average molecular weight (Mv) by the following equation. Mv = (2.64 × 10 3 [η]) 1.388 When converted using this equation, the optimum polymer used for the high molecular weight polymer (A) is about 250,000 in terms of viscosity average molecular weight. It is in the range of about 1.3 million. In the technical data in this technical field, there are many cases where the weight average molecular weight is used as an index of the molecular weight, but it is common sense that the viscosity average molecular weight and the weight average molecular weight have close values although there are some differences (however, The viscosity average molecular weight does not exceed the weight average molecular weight). In the present invention, the intrinsic viscosity and the converted viscosity average molecular weight are used as indicators of the polymer molecular weight. Intrinsic viscosity [η] (g) of the high molecular weight polymer (A)
If (/ dl) is less than 3, it will be difficult to achieve high strength such as 15 cN / dtex or more in the obtained polyethylene fiber. The intrinsic viscosity of the polymer (A) is preferably 4 or more, more preferably 4.5 or more. On the other hand, when the intrinsic viscosity of the polymer (A) exceeds 10, the melt viscosity becomes extremely high, and melt extrusion becomes practically impossible. As a result, some solvent or plasticizer is required, which does not fit the purpose of the present invention.
【0012】本発明の骨子は、この主ポリマーである重
合体(A)に対し極めて少量の超高分子量重合体(B)
を配合することで、著しく曳糸性(紡糸速度)が向上
し、かつ得られる繊維の強度・弾性率および融点が従来
の溶融紡糸で得られる繊維を遥かに凌駕するばかりか、
ゲル紡糸法で得られる繊維のレベルに近づくほどの高性
能の繊維が得られ、さらには例えば疲労性等の観点から
はむしろそれを凌駕するような新規な繊維が得られる点
にある。The essence of the present invention is that a very small amount of the ultrahigh molecular weight polymer (B) is added to the polymer (A) as the main polymer.
In addition, the spinnability (spinning speed) is remarkably improved, and the strength, elastic modulus and melting point of the obtained fiber far surpass those of the fiber obtained by conventional melt spinning.
The point is that high-performance fibers can be obtained as they approach the level of fibers obtained by the gel spinning method, and further, new fibers can be obtained which, for example, surpass those from the viewpoint of fatigue resistance and the like.
【0013】なお、特開平11−269717号公報に
は、溶融紡糸可能な範囲のポリプロピレンに対して同様
に高分子量のポリプロピレンを添加して高強度繊維が得
られたという技術が開示されている。この技術がポリエ
チレンのような結晶性が高く、その結晶が延伸を阻害す
ると考えられる系で適応できるかどうかは定かでない
が、ともに分子量分布が広く平均分子量の異なる2種の
ポリマーを混合しても、いたずらに分子量分布を広くす
るだけで良好な繊維を得ることは困難であり、特に、そ
のことはポリエチレンの場合において顕著であると推定
される。従って、本発明では、配合において大重量部を
占める高分子量重合体(A)の分子量分布(Mw/M
n)を4以下としている。該分子量分布は、好ましくは
3以下、さらに好ましくは2.7以下である。このよう
な分子量分布の狭いポリマーは、いわゆるメタロセン系
の触媒を用いることで容易に得ることができるが、それ
に限定されるものではない。JP-A-11-269717 discloses a technique in which a high-strength fiber is obtained by similarly adding a high-molecular-weight polypropylene to a range of melt-spinnable polypropylene. It is not clear whether this technology can be applied to systems that have high crystallinity like polyethylene and the crystals are considered to inhibit stretching, but even if two types of polymers having different average molecular weights have a wide molecular weight distribution and are mixed together. However, it is difficult to obtain good fibers only by unnecessarily widening the molecular weight distribution, and it is presumed that this is particularly remarkable in the case of polyethylene. Therefore, in the present invention, the molecular weight distribution (Mw / M
n) is set to 4 or less. The molecular weight distribution is preferably 3 or less, more preferably 2.7 or less. Such a polymer having a narrow molecular weight distribution can be easily obtained by using a so-called metallocene-based catalyst, but is not limited thereto.
【0014】本発明においては、このような分子量分布
の狭い高分子量重合体(A)に対して、極限粘度で該重
合体(A)の2倍以上、好ましくは3倍以上、さらに好
ましくは4倍以上である、分子量の非常に大きな超高分
子量重合体(B)を極少量添加することにある。この添
加量は、上記した両重合体(A)(B)の配合比率の範
囲内であれば、超高分子量重合体(B)の分子量に応じ
て最適に調整されることは言うまでもない。例えば、通
常は溶融紡糸が不可能である極限粘度が20を越えるよ
うな超高分子量重合体(B)を使用する場合、その添加
量は混合物全体の1重量%程度で十分である。また、こ
の際加えられる超高分子量重合体(B)の分子量分布
(Mw/Mn)は特には問わない。むしろ重合体(B)
の分子量分布としては4以上の比較的広いものを選択す
る方が好ましい。なお、両重合体(A)(B)の配合比
率は、より好ましくは、高分子量重合体(A)99.5
〜90重量部に対し、超高分子量重合体(B)0.5〜
10重量部である。In the present invention, such a high molecular weight polymer (A) having a narrow molecular weight distribution has a limiting viscosity of at least twice, preferably at least three times, more preferably at least four times that of the polymer (A). It is to add a very small amount of an ultrahigh molecular weight polymer (B) having an extremely large molecular weight which is twice or more. It goes without saying that the addition amount is optimally adjusted according to the molecular weight of the ultrahigh molecular weight polymer (B) as long as it is within the range of the blending ratio of the two polymers (A) and (B). For example, when an ultrahigh molecular weight polymer (B) having an intrinsic viscosity exceeding 20 which cannot be melt-spun usually is used, its addition amount of about 1% by weight of the whole mixture is sufficient. The molecular weight distribution (Mw / Mn) of the ultrahigh molecular weight polymer (B) added at this time is not particularly limited. Rather polymer (B)
It is preferable to select a relatively wide molecular weight distribution of 4 or more. The blending ratio of both polymers (A) and (B) is more preferably 99.5 for high molecular weight polymer (A).
Ultra high molecular weight polymer (B) 0.5 to 90 parts by weight
10 parts by weight.
【0015】このように、従来では溶融紡糸不可能な範
囲の超高分子量重合体(B)をあえて添加することは、
溶融粘度が著しく向上し、場合によっては完全に溶融せ
ずに紡糸が困難となると考えるのが常識であろう。一般
的には、たとえ均一に溶融されても、紡糸速度などは超
高分子量ポリマー成分によってむしろ低下することが当
業者の技術としては予測されるが、驚くべきことに、本
発明によれば紡糸での張力は増大するがむしろ安定領域
にある最大紡糸速度は著しく向上することを見出した。
この理由は明らかではないが、まず、超高分子量重合体
(B)に対して分子量の低い主ポリマー(A)が一種の
溶剤・可塑剤として機能し、比較的低温でも均一な溶融
状態を可能にしたためと考えられる。ポリマーの分子量
分布を狭くすることは分子鎖の持つ極限的な性能を繊維
の強度や平均物性へ効率よく利用する観点から好まし
い。一方で、分子量分布が5以下、特に3以下のような
ポリマーを使用すると、その紡糸におけるレオロジー的
な流れ挙動がニュートン流体に近づくと推定される。こ
のような場合、ノズルから押出された溶融ストランドは
速い変形速度に対しては変形が追随できず容易に破断す
る、いわゆるキャピラリー破壊現象が起こりやすくなる
と推定される。ここに若干の超高分子量ポリマーを添加
することは、平均的な物性にさほど影響を与えない範囲
で分子量分布が極くわずかに上昇する以上に、溶融紡糸
におけるこれらキャピラリー破断を劇的に解消するよう
に作用するものと推定される。As described above, the conventional purpose of adding the ultrahigh molecular weight polymer (B) in a range where melt spinning cannot be performed is as follows.
It is common knowledge that the melt viscosity is significantly improved, and in some cases spinning becomes difficult without complete melting. In general, it is anticipated by those skilled in the art that the spinning speed and the like will be rather reduced by the ultrahigh molecular weight polymer component, even if they are uniformly melted. It was found that the maximum spinning speed in the stable region was significantly improved, although the tension at increased.
Although the reason is not clear, first, the main polymer (A) having a low molecular weight with respect to the ultrahigh molecular weight polymer (B) functions as a kind of solvent and plasticizer, and enables a uniform molten state even at a relatively low temperature. Probably because of. It is preferable to narrow the molecular weight distribution of the polymer from the viewpoint of efficiently utilizing the ultimate performance of the molecular chain to the strength and average physical properties of the fiber. On the other hand, when a polymer having a molecular weight distribution of 5 or less, particularly 3 or less, is used, it is estimated that the rheological flow behavior in the spinning approaches a Newtonian fluid. In such a case, it is presumed that the molten strand extruded from the nozzle cannot easily follow the deformation at a high deformation speed and easily breaks, that is, a so-called capillary breaking phenomenon is likely to occur. The addition of a few ultra-high molecular weight polymers here dramatically eliminates these capillary breaks in melt spinning, as well as a slight increase in molecular weight distribution without significantly affecting average physical properties. It is presumed to act as follows.
【0016】本発明の製造方法においては、高分子量重
合体(A)と超高分子量重合体(B)からなる上記混合
物を、溶剤を用いることなく溶融混練り後、紡糸・延伸
する。このような溶融紡糸法としては、公知の方法を適
用することができる。例えば、溶融温度としては200
〜300℃、延伸温度としては135〜150℃、延伸
倍率としては5倍以上であることが好適である。また、
延伸は2段階以上で行われることが好ましい。In the production method of the present invention, the above mixture comprising the high molecular weight polymer (A) and the ultra high molecular weight polymer (B) is melt-kneaded without using a solvent, and then spun and drawn. As such a melt spinning method, a known method can be applied. For example, the melting temperature is 200
It is preferable that the stretching temperature is 135 to 150 ° C. and the stretching ratio is 5 times or more. Also,
Stretching is preferably performed in two or more steps.
【0017】以上の製造方法により、繊維状態での極限
粘度〔η〕(g/dl)が2以上8以下である高強度ポリエチ
レン繊維を得ることができる。そして、このような極限
粘度を有することにより、特に極限粘度が2以上である
ことにより、引張り強度として15cN/dtex以上の高強
度ポリエチレン繊維が得られる。ここで、繊維状態での
極限粘度〔η〕(g/dl)が2未満では、高強度が得られな
いばかりか、得られた糸のクリープ特性が著しく低下し
て使用不可であり、8を越えると、延伸が非常に困難と
なり、高強度糸を得ることが難しい。By the above-mentioned production method, a high-strength polyethylene fiber having an intrinsic viscosity [η] (g / dl) in a fiber state of 2 or more and 8 or less can be obtained. By having such an intrinsic viscosity, especially when the intrinsic viscosity is 2 or more, a high-strength polyethylene fiber having a tensile strength of 15 cN / dtex or more can be obtained. Here, when the intrinsic viscosity [η] (g / dl) in the fiber state is less than 2, not only high strength is not obtained, but also the creep characteristics of the obtained yarn are remarkably deteriorated, and the yarn cannot be used. If it exceeds, stretching becomes extremely difficult, and it is difficult to obtain a high-strength yarn.
【0018】また、上記した製造方法によって、示差走
査熱量測定(DSC)における融解熱ピークの最も高温
にあるピーク温度が140℃以上である、特殊な高強度
ポリエチレン繊維が得られる。このような高強度ポリエ
チレン繊維に対して示差走査熱量測定により融解熱ピー
クを求めると、通常100℃ないし120℃付近の低温
側に折れたたみ結晶と思われるピークと、通常130℃
以上の高温部に引き伸ばされた結晶に由来するとみられ
るピークが出現するのが通常である。この高温部のピー
クは、その分子鎖の配向状態によりそのピーク温度が変
化することが知られており、特に分子鎖が完全に伸びき
った状態であるとポリエチレン結晶の平衡融点(141
℃)近傍ないしそれを越える場合があることが知られて
いる。本発明の高強度ポリエチレン繊維は、この伸び切
り結晶に由来すると考えられている高温部のピークの
内、最高温のピーク温度が140℃以上であることを特
徴とする。これは、通常の溶融紡糸で得られたポリエチ
レン繊維のそれがたかだか135℃であることを考慮す
ると驚くべき値である。このことは、繊維の微細構造を
推定して、前述の超高分子量重合体(B)の役割を推定
せしめて示唆的である。すなわち、上述したようにかか
る最高温のピークが伸び切り結晶に由来すると考えられ
ることから、本発明の高強度ポリエチレン繊維において
は、紡糸で超高分子量重合体(B)が先に配向結晶化
し、その後、主要部分である高分子量重合体(A)がそ
の周りに結晶化するような、いわゆるシシカバブ構造を
形成しているのではないかと推定される。この場合、極
く少量の超高分子量重合体(B)は紡糸での張力をささ
えるとともに、特異な繊維の微細構造並びに溶融紡糸で
は極めて高い強度物性及び高融点を得るために重要であ
ると考えられる。溶融紡糸状態でシシカバブ状の構造が
得られたとの確証はないが、通常のラメラ構造から得ら
れる溶融紡糸経由のポリエチレン繊維とDSCによって
区別できることは上記の推定によるものであり、実際、
強度とDSCにより両者を区別することが可能である。In addition, a special high-strength polyethylene fiber having a peak temperature of the highest heat of fusion of 140 ° C. or higher in differential scanning calorimetry (DSC) can be obtained by the above-mentioned production method. When the heat of fusion of such a high-strength polyethylene fiber is determined by differential scanning calorimetry, the peak usually considered to be a folded crystal at a low temperature side of around 100 ° C. to 120 ° C. and the peak of 130 ° C.
Normally, peaks which appear to be derived from the crystal stretched in the high temperature part appear. It is known that the peak of the high-temperature portion changes its peak temperature depending on the orientation state of the molecular chain. In particular, when the molecular chain is completely extended, the equilibrium melting point (141%) of the polyethylene crystal is obtained.
° C) is known to be near or above. The high-strength polyethylene fiber of the present invention is characterized in that the peak temperature of the highest temperature among the peaks in the high-temperature portion, which is considered to be derived from the elongated crystal, is 140 ° C. or higher. This is a surprising value considering that the polyethylene fiber obtained by ordinary melt spinning has a temperature of at most 135 ° C. This is suggestive by estimating the microstructure of the fiber and estimating the role of the ultrahigh molecular weight polymer (B). That is, since the peak of the highest temperature is considered to be derived from the elongated crystal as described above, in the high-strength polyethylene fiber of the present invention, the ultrahigh molecular weight polymer (B) is oriented and crystallized first by spinning, Thereafter, it is presumed that the high molecular weight polymer (A), which is the main part, forms a so-called shish kebab structure that crystallizes around it. In this case, it is considered that a very small amount of the ultra-high molecular weight polymer (B) is important to reduce the tension in spinning, and to obtain a unique fiber microstructure and extremely high strength properties and a high melting point in melt spinning. Can be Although there is no evidence that a shish kebab-like structure was obtained in the melt-spun state, it is based on the above presumption that it can be distinguished by DSC from polyethylene fiber via melt-spinning obtained from a normal lamella structure,
Both can be distinguished by intensity and DSC.
【0019】なお、本発明の高強度ポリエチレン繊維
は、上記した特性を有するものであれば、その製造方法
は特に限定されず、例えば、溶融紡糸法でなくゲル紡糸
法で製造したものであってもよい。但し、溶剤を使用し
ない低コストな溶融紡糸法でありながらゲル紡糸法に匹
敵する物性を有する高強度ポリエチレン繊維を提供せん
とする本発明の目的に鑑みれば、溶融紡糸法により製造
したものであることが好ましい。The manufacturing method of the high-strength polyethylene fiber of the present invention is not particularly limited as long as it has the above-mentioned properties. For example, the high-strength polyethylene fiber is manufactured by a gel spinning method instead of a melt spinning method. Is also good. However, in view of the object of the present invention to provide a high-strength polyethylene fiber having physical properties comparable to the gel spinning method while being a low-cost melt spinning method without using a solvent, it is manufactured by the melt spinning method. Is preferred.
【0020】[0020]
【実施例】以下に本発明における特性値に関する測定法
および測定条件を説明する。 (示差走査熱量測定)示差走査熱量測定は、パーキンエ
ルマー社製の示差走査熱量計「DSC7」を用いて行っ
た。予め5mm以下に裁断したサンプル(繊維)をアルミパ
ンに約5mg充填封入し、同様の空のアルミパンをリファ
レンスにして5℃/分の昇温速度で不活性ガス下、室温
から200℃まで上昇させ、その吸熱ピークを求めた。
そして、得られた曲線から、最も高温にあるピークの温
度を求めた。DESCRIPTION OF THE PREFERRED EMBODIMENTS The measuring method and measuring conditions relating to characteristic values in the present invention will be described below. (Differential scanning calorimetry) The differential scanning calorimetry was performed using a differential scanning calorimeter “DSC7” manufactured by PerkinElmer. Approximately 5 mg of a sample (fiber) cut in advance to 5 mm or less is filled and sealed in an aluminum pan, and the temperature is raised from room temperature to 200 ° C. under an inert gas at a rate of 5 ° C./min. And the endothermic peak was determined.
The temperature of the highest peak was determined from the obtained curve.
【0021】(分子量分布測定)分子量分布Mw/Mn
は、ゲル・パーミエーションクロマトグラフィー法にて
測定した。用いた装置はウォーターズ社製「150C
ALC/GPC」であり、カラムとして東ソ(株)製
「GMHXLシリーズ」を用い、145℃の温度で測定
した。分子量の検量線は、ポリマー・ラボラトリーズ社
製「ポリスチレン−ハイ モレキュラー ウェイト カリ
ブレイション キット」を用いて作成した。試料溶液
は、トリクロルベンゼンに0.02重量%となるように
ポリマーの0.2重量%にあたる酸化防止剤(チバガイ
ギー(社)製「Irgafos168」)を添加して、140℃で約
8時間溶解したものを用いた。(Measurement of molecular weight distribution) Molecular weight distribution Mw / Mn
Was measured by gel permeation chromatography. The equipment used was “150C” manufactured by Waters.
ALC / GPC ", and the measurement was performed at a temperature of 145 ° C. using a“ GMHXL series ”manufactured by Toso Corporation as a column. The calibration curve of the molecular weight was created using "Polystyrene-High Molecular Weight Calibration Kit" manufactured by Polymer Laboratories. The sample solution was added with an antioxidant (“Irgafos168” manufactured by Ciba-Geigy) equivalent to 0.2% by weight of the polymer so as to be 0.02% by weight in trichlorobenzene, and dissolved at 140 ° C. for about 8 hours. Was used.
【0022】(強度・弾性率)強度及び弾性率は、オリ
エンティック社製「テンシロン」を用い、試料長200
mm、伸長速度100%/分の条件で歪−応力曲線を雰囲
気温度25℃、相対湿度65%条件下で測定し、曲線の
破断点での応力を強度(cN/dtex)、曲線の原点付近の
最大勾配を与える接線より弾性率(cN/dtex)を計算し
て求めた。なお、各値は10回の測定値の平均値を使用
した。(Strength and elastic modulus) The strength and elastic modulus were measured using Orientic "Tensilon" sample length 200
mm, the strain-stress curve was measured under the conditions of an ambient temperature of 25 ° C. and a relative humidity of 65% under the condition of an elongation rate of 100% / min. The modulus of elasticity (cN / dtex) was calculated from the tangent line giving the maximum gradient of. In addition, each value used the average value of 10 measured values.
【0023】(極限粘度)135℃のデカリンにてウベ
ローデ型毛細粘度管により、種々の希薄溶液の比粘度を
測定し、その粘度の濃度に対するプロットの最小2乗近
似で得られる直線の原点への外挿点より極限粘度を決定
した。測定に際し、原料ポリマーがパウダー状の場合は
その形状のまま、パウダーが塊状であったり糸状サンプ
ルの場合は約5mm長の長さにサンプルを分割または切断
し、ポリマーに対して1重量%の酸化防止剤(商標名
「ヨシノックスBHT」吉富製薬製)を添加し、135
℃で4時間撹はん溶解して測定溶液を調整した。(Intrinsic viscosity) The specific viscosities of various dilute solutions were measured using an Ubbelohde capillary viscometer with decalin at 135 ° C., and the straight line obtained by the least-square approximation of the plot of the concentration of the viscosity with respect to the concentration was measured. The intrinsic viscosity was determined from the extrapolated point. At the time of measurement, if the raw material polymer is in the form of a powder, the sample is kept in that shape, and if the powder is a lump or a fibrous sample, the sample is divided or cut into lengths of about 5 mm, and 1% by weight of the polymer is oxidized. An inhibitor (trade name "Yoshinox BHT" manufactured by Yoshitomi Pharmaceutical) was added, and 135
The solution was stirred at 4 ° C. for 4 hours to prepare a measurement solution.
【0024】以下、実施例をもって本発明を説明する。Hereinafter, the present invention will be described with reference to examples.
【0025】(実施例1)極限粘度が3.2でかつその
分子量分布Mw/Mnが2.5のメタロセン系触媒で重
合された直鎖状高密度ポリエチレンポリマー(A)99
重量部と、通常のチーグラーナッタ触媒で重合された極
限粘度が30.5でかつその分子量分布Mw/Mnが約
5.6の直鎖状超高分子量ポリエチレンポリマー(B)
1重量部とからなるパウダー状の混合物を、単軸の混合
押し出し機にて溶融・押し出しした。詳細には、上記混
合物を270℃の温度で溶融後、直径0.9mmのオリフ
ィスが24ホール設置された口金を275℃に設定して
各ホールの吐出量が2.4g/minとなるように押し出
し、約50cmの加熱帯を通過後直ちに室温の空気流で冷
却しつつ500m/分の速度で巻取りを実施した。引き
取られた糸を直ちに120℃のオーブンにて3倍に延伸
した後、さらに146℃に調整したオーブンにて4.5
倍に延伸して高強度ポリエチレン繊維を得た。得られた
繊維の諸物性(極限粘度、繊度、強度、弾性率、示差走
査熱量測定による最高ピーク温度)を表1に示す。(Example 1) Linear high-density polyethylene polymer (A) 99 polymerized with a metallocene catalyst having an intrinsic viscosity of 3.2 and a molecular weight distribution Mw / Mn of 2.5.
Parts by weight and a linear ultra-high molecular weight polyethylene polymer (B) polymerized with a conventional Ziegler-Natta catalyst and having an intrinsic viscosity of 30.5 and a molecular weight distribution Mw / Mn of about 5.6.
The powdery mixture consisting of 1 part by weight was melted and extruded with a single-screw mixing extruder. Specifically, after the above mixture is melted at a temperature of 270 ° C., a die having orifices having a diameter of 0.9 mm and 24 holes is set at 275 ° C. so that the discharge rate of each hole is 2.4 g / min. Immediately after extruding and passing through a heating zone of about 50 cm, winding was performed at a speed of 500 m / min while cooling with an air stream at room temperature. The drawn yarn was immediately stretched three times in an oven at 120 ° C., and then 4.5 in an oven adjusted to 146 ° C.
It was drawn twice to obtain a high-strength polyethylene fiber. Table 1 shows various physical properties (intrinsic viscosity, fineness, strength, elastic modulus, and maximum peak temperature by differential scanning calorimetry) of the obtained fiber.
【0026】実施例1においては、紡糸等での糸切れも
なく優れた可紡性を示し、また、得られた繊維も溶融紡
糸で得られたポリエチレンとしては極めて高い強度・弾
性率を有していた。In Example 1, excellent spinnability was exhibited without yarn breakage in spinning or the like, and the obtained fibers also had extremely high strength and elastic modulus as polyethylene obtained by melt spinning. I was
【0027】(実施例2)主成分ポリマー(A)とし
て、メタロセン系触媒で重合された極限粘度が8.5で
かつその分子量分布Mw/Mnが2.5の直鎖状高密度
ポリエチレンポリマーを用い、超高分子量ポリマー
(B)として、通常のチーグラーナッタ触媒で重合され
た極限粘度が18.0でかつその分子量分布Mw/Mn
が約8.0の直鎖状超高分子量ポリエチレンポリマーを
用い、両者の混合比率をポリマー(A)95重量部に対
してポリマー(B)5重量部として、その他は実施例1
と同様の方法で延伸糸を得た。得られた繊維の諸物性
(極限粘度、繊度、強度、弾性率、最高ピーク温度)を
表1に示す。実施例2においては、実施例1に比べて延
伸性が若干低下したが、概して満足のいく物性が得られ
た。(Example 2) As the main component polymer (A), a linear high-density polyethylene polymer having an intrinsic viscosity of 8.5 and a molecular weight distribution Mw / Mn of 2.5 polymerized with a metallocene catalyst was used. As the ultra-high molecular weight polymer (B), the intrinsic viscosity polymerized with a usual Ziegler-Natta catalyst is 18.0 and its molecular weight distribution Mw / Mn
Is about 8.0, and the mixing ratio of both is 95 parts by weight of the polymer (A) and 5 parts by weight of the polymer (B).
A drawn yarn was obtained in the same manner as described above. Table 1 shows various physical properties (intrinsic viscosity, fineness, strength, elastic modulus, maximum peak temperature) of the obtained fiber. In Example 2, although the stretchability was slightly lower than that in Example 1, generally satisfactory physical properties were obtained.
【0028】(実施例3)主成分ポリマー(A)とし
て、実施例2の直鎖状高密度ポリエチレンポリマーを用
い、その他は実施例1と同様の方法で延伸糸を得た。得
られた繊維の諸物性(極限粘度、繊度、強度、弾性率、
最高ピーク温度)を表1に示す。実施例3では、延伸性
がさらに低下したものの、実用にたる高強度で耐熱性を
有する高強度ポリエチレン繊維を得ることができた。Example 3 A drawn yarn was obtained in the same manner as in Example 1 except that the linear high-density polyethylene polymer of Example 2 was used as the main component polymer (A). Various properties of the obtained fiber (intrinsic viscosity, fineness, strength, elastic modulus,
The maximum peak temperature is shown in Table 1. In Example 3, although the stretchability was further reduced, a high-strength polyethylene fiber having practically high strength and heat resistance could be obtained.
【0029】(比較例1)実施例1の主成分ポリマー
(A)を用いて、超高分子量ポリマー(B)を添加する
ことなく、その他は実施例1と同様の方法で紡糸を試み
た。その際、実施例1の条件から溶融温度や紡糸温度等
が最適となるように種々変更したが、何れにおいても紡
糸において著しい脈動(ドローレゾナンス)が起こり、
巻取りはおろか、ノズル直下で十分な糸状のサンプルを
採取することも困難であった。(Comparative Example 1) Using the main component polymer (A) of Example 1, spinning was attempted in the same manner as in Example 1 except that the ultrahigh molecular weight polymer (B) was not added. At that time, various changes were made from the conditions of Example 1 such that the melting temperature and the spinning temperature were optimized, but in each case, significant pulsation (draw resonance) occurred in the spinning,
Let alone winding, it was also difficult to collect a sufficient thread-like sample directly below the nozzle.
【0030】(比較例2)実施例2の主成分ポリマー
(A)を用いて、超高分子量ポリマー(B)を添加する
ことなく、その他は実施例2と同様の方法で紡糸を試み
たが、ポリマー(A)の溶融粘度が著しく高く、押出し
が非常に不安定で連続した繊維を得るのが困難であっ
た。ただし、比較例1に比べると繊維物性を測定する短
時間の繊維を得ることは可能であったが、表1に物性を
示すごとく性能的にも不満足なものであった。(Comparative Example 2) Spinning was attempted using the main component polymer (A) of Example 2 without adding the ultrahigh molecular weight polymer (B) in the same manner as in Example 2 except for the addition. The melt viscosity of the polymer (A) was extremely high, the extrusion was very unstable, and it was difficult to obtain continuous fibers. However, although it was possible to obtain fibers for a short period of time for measuring the physical properties of the fiber as compared with Comparative Example 1, the properties were unsatisfactory as shown in Table 1 of the physical properties.
【0031】(比較例3)実施例1の直鎖状高密度ポリ
エチレンポリマー(A)80重量部と、実施例1の直鎖
状超高分子量ポリエチレンポリマー(B)20重量部と
からなるパウダー状の混合物を用いて、その他は実施例
1と同様の操作で紡糸・延伸を実施した。紡糸での粘度
上昇が著しく、紡糸速度を100m/分まで落とさざる
を得なかった。延伸においては、120℃のオーブンに
て3倍延伸可能であったが、引き続いての146℃に調
整されたオーブンでの延伸では2.1倍が最大であっ
た。従って、得られた繊維の物性は、表1に示すよう
に、低いレベルで満足のいくものではなかった。Comparative Example 3 A powder comprising the linear high-density polyethylene polymer (A) of Example 1 (80 parts by weight) and the linear ultrahigh molecular weight polyethylene polymer (B) of Example 1 (20 parts by weight) Using the above mixture, spinning and stretching were carried out in the same manner as in Example 1 except for the above. The viscosity increased significantly during spinning, and the spinning speed had to be reduced to 100 m / min. In the stretching, the film could be stretched three times in an oven at 120 ° C., but in the subsequent stretching in an oven adjusted to 146 ° C., the maximum was 2.1 times. Therefore, as shown in Table 1, the properties of the obtained fiber were not satisfactory at a low level.
【0032】(比較例4)実施例1の直鎖状高密度ポリ
エチレンポリマー(A)の代わりに、通常のチーグラー
ナッタ触媒を用いて重合された極限粘度が3.5でかつ
その分子量分布Mw/Mnが7.2の直鎖状高密度ポリ
エチレンを用いた他は、実施例1と同様の操作で紡糸・
延伸を実施した。紡糸の速度は300m/分が最大であ
り、比較例3と同じく2段目の延伸倍率は2.5倍が最
大であった。得られた繊維の物性値も表1に示す如く低
調なものであった。(Comparative Example 4) Instead of the linear high-density polyethylene polymer (A) of Example 1, the intrinsic viscosity obtained by polymerization using an ordinary Ziegler-Natta catalyst was 3.5, and its molecular weight distribution Mw / Except for using a linear high-density polyethylene having Mn of 7.2, spinning and
Stretching was performed. The maximum spinning speed was 300 m / min, and the maximum draw ratio of the second stage was 2.5 times as in Comparative Example 3. The physical properties of the obtained fibers were also low as shown in Table 1.
【0033】[0033]
【表1】 [Table 1]
【0034】[0034]
【発明の効果】以上説明したように本発明によれば、溶
融紡糸法においても非常にすぐれた強度と高い融点を有
する高強度ポリエチレン繊維が得られ、しかも、かかる
高性能繊維を糸切れ等がなく安定して製造することがで
き、従って、繊維の性能と生産性(紡糸速度)を両立す
ることができる。よって、産業上のさまざまな用途にお
いて好適な、コストパフォーマンスに優れる高強度ポリ
エチレン繊維を提供することができる。As described above, according to the present invention, high-strength polyethylene fibers having excellent strength and a high melting point can be obtained even in the melt spinning method. Therefore, the fiber can be manufactured stably without any problem, and therefore, both the performance of the fiber and the productivity (spinning speed) can be compatible. Therefore, it is possible to provide a high-strength polyethylene fiber that is suitable for various industrial uses and has excellent cost performance.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小田 勝二 滋賀県大津市堅田2丁目1−1 東洋紡績 株式会社総合研究所内 Fターム(参考) 4L035 BB22 BB52 BB55 BB89 BB91 EE01 EE08 FF01 FF02 FF05 HH10 LA02 MA01 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Katsuji Oda 2-1-1 Katata, Otsu-shi, Shiga F-term in Toyobo Co., Ltd. Research Laboratory 4L035 BB22 BB52 BB55 BB89 BB91 EE01 EE08 FF01 FF02 FF05 HH10 LA02 MA01
Claims (5)
上8以下であり、示差走査熱量測定で求めた融解熱ピー
クにおける最も高温域にあるピーク温度が140℃以上
であることを特徴とする高強度ポリエチレン繊維。(1) An intrinsic viscosity [η] (g / dl) in a fiber state is 2 or more and 8 or less, and a peak temperature in the highest temperature range in a heat of fusion peak obtained by differential scanning calorimetry is 140 ° C. or more. A high-strength polyethylene fiber, which is characterized in that:
することを特徴とする請求項1記載の高強度ポリエチレ
ン繊維。2. The high-strength polyethylene fiber according to claim 1, having a tensile strength of at least 15 cN / dtex.
し、示差走査熱量測定で求めた融解熱ピークにおける最
も高温域にあるピーク温度が140℃以上であることを
特徴とする高強度ポリエチレン繊維。3. A high-strength polyethylene fiber having a tensile strength of at least 15 cN / dtex and having a peak temperature in the highest temperature range of 140 ° C. or higher in a heat of fusion peak determined by differential scanning calorimetry.
つ、その重量平均分子量(Mw)と数平均分子量(M
n)との比(Mw/Mn)が4以下である、エチレン成
分を主体とする高分子量重合体(A)99.9重量部乃
至90重量部と、該高分子量重合体(A)の極限粘度に
対して少なくとも2倍の極限粘度を有する、エチレン成
分を主体とする超高分子量重合体(B)0.1重量部乃
至10重量部と、からなる混合物を、紡糸・延伸してな
ることを特徴とする高強度ポリエチレン繊維。4. An intrinsic viscosity [η] (g / dl) of 3 or more, and a weight average molecular weight (Mw) and a number average molecular weight (M
n): 99.9 parts by weight to 90 parts by weight of a high molecular weight polymer (A) mainly composed of an ethylene component having a ratio (Mw / Mn) of 4 or less to the limit of the high molecular weight polymer (A) A mixture comprising 0.1 to 10 parts by weight of an ultrahigh molecular weight polymer (B) having an intrinsic viscosity of at least twice the viscosity and mainly composed of an ethylene component, which is obtained by spinning and drawing. Characterized by high strength polyethylene fiber.
つ、その重量平均分子量(Mw)と数平均分子量(M
n)との比(Mw/Mn)が4以下である、エチレン成
分を主体とする高分子量重合体(A)99.9重量部乃
至90重量部と、該高分子量重合体(A)の極限粘度に
対して少なくとも2倍の極限粘度を有する、エチレン成
分を主体とする超高分子量重合体(B)0.1重量部乃
至10重量部と、からなる混合物を、溶融混練り後、紡
糸・延伸することを特徴とする高強度ポリエチレン繊維
の製造方法。5. An intrinsic viscosity [η] (g / dl) of 3 or more, and its weight average molecular weight (Mw) and number average molecular weight (M
n): 99.9 parts by weight to 90 parts by weight of a high molecular weight polymer (A) mainly composed of an ethylene component having a ratio (Mw / Mn) of 4 or less to the limit of the high molecular weight polymer (A) A mixture of 0.1 to 10 parts by weight of an ultrahigh molecular weight polymer (B) having an intrinsic viscosity of at least twice the viscosity and mainly composed of an ethylene component is melt-kneaded, and then subjected to spinning and kneading. A method for producing a high-strength polyethylene fiber, comprising drawing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000133711A JP4337233B2 (en) | 2000-05-02 | 2000-05-02 | High-strength polyethylene fiber and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000133711A JP4337233B2 (en) | 2000-05-02 | 2000-05-02 | High-strength polyethylene fiber and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001316939A true JP2001316939A (en) | 2001-11-16 |
JP4337233B2 JP4337233B2 (en) | 2009-09-30 |
Family
ID=18642144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000133711A Expired - Fee Related JP4337233B2 (en) | 2000-05-02 | 2000-05-02 | High-strength polyethylene fiber and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4337233B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009028590A1 (en) * | 2007-08-31 | 2009-03-05 | Toyo Boseki Kabushiki Kaisha | High-strength polyethylene fiber with high productivity, precursor therefor, and process for producing precursor |
JP2011513598A (en) * | 2008-02-26 | 2011-04-28 | シャンドン アイシーディー ハイ パフォーマンス ファイバース カンパニー リミテッド | High strength polyethylene fiber having a strength of 10-50 g / d and method for producing the same |
CN102713030A (en) * | 2010-02-19 | 2012-10-03 | 东洋纺织株式会社 | Highly-moldable, highly-functional polyethylene fiber |
WO2014084470A1 (en) * | 2012-11-29 | 2014-06-05 | 주식회사 삼양사 | Polyethylene fiber, and method for preparing same |
JP2015086473A (en) * | 2013-10-28 | 2015-05-07 | 東洋紡株式会社 | Monofilament-like high-strength polyethylene fiber |
CN105885154A (en) * | 2014-12-18 | 2016-08-24 | 江苏杜为新材料科技有限公司 | Melting-kneading combined modified ultra-high molecular weight polyethylene co-mixture for melt spinning and preparation method thereof |
CN115559018A (en) * | 2022-10-14 | 2023-01-03 | 浙江大学 | A kind of high-strength polyolefin fiber and its preparation method |
JP2025031446A (en) * | 2023-08-25 | 2025-03-07 | 青島万青生活家居用品有限公司 | PE 100% spun yarn with anti-fuzzing and anti-pilling properties and its manufacturing method |
JP7710503B2 (en) | 2023-08-25 | 2025-07-18 | 青島万青生活家居用品有限公司 | PE 100% spun yarn with anti-fuzzing and anti-pilling properties and its manufacturing method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI397621B (en) * | 2011-01-24 | 2013-06-01 | Toyo Boseki | Highly-moldable,highly-functional polyethylene fiber |
CN103255578A (en) * | 2013-05-30 | 2013-08-21 | 山东爱地高分子材料有限公司 | Ultra-high molecular weight polyethylene anti-cutting cloth and production method thereof |
-
2000
- 2000-05-02 JP JP2000133711A patent/JP4337233B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009028590A1 (en) * | 2007-08-31 | 2009-03-05 | Toyo Boseki Kabushiki Kaisha | High-strength polyethylene fiber with high productivity, precursor therefor, and process for producing precursor |
JP2011513598A (en) * | 2008-02-26 | 2011-04-28 | シャンドン アイシーディー ハイ パフォーマンス ファイバース カンパニー リミテッド | High strength polyethylene fiber having a strength of 10-50 g / d and method for producing the same |
EP2151511A4 (en) * | 2008-02-26 | 2011-08-03 | Shandong Icd High Performance Fibres Co Ltd | 10-50 g/d high strength polyethylene fiber and preparation method thereof |
AU2008351679B2 (en) * | 2008-02-26 | 2013-06-27 | Shandong Icd High Performance Fibres Co., Ltd | 10-50 g/d high strength polyethylene fiber and preparation method thereof |
CN102713030A (en) * | 2010-02-19 | 2012-10-03 | 东洋纺织株式会社 | Highly-moldable, highly-functional polyethylene fiber |
EP2537965A4 (en) * | 2010-02-19 | 2013-11-20 | Toyo Boseki | HIGHLY FUNCTIONAL, HIGHLY MOLDABLE POLYETHYLENE FIBER |
WO2014084470A1 (en) * | 2012-11-29 | 2014-06-05 | 주식회사 삼양사 | Polyethylene fiber, and method for preparing same |
KR101440570B1 (en) | 2012-11-29 | 2014-09-17 | 주식회사 삼양사 | Polyethylene fiber and manufacturing method thereof |
JP2015086473A (en) * | 2013-10-28 | 2015-05-07 | 東洋紡株式会社 | Monofilament-like high-strength polyethylene fiber |
CN105885154A (en) * | 2014-12-18 | 2016-08-24 | 江苏杜为新材料科技有限公司 | Melting-kneading combined modified ultra-high molecular weight polyethylene co-mixture for melt spinning and preparation method thereof |
CN115559018A (en) * | 2022-10-14 | 2023-01-03 | 浙江大学 | A kind of high-strength polyolefin fiber and its preparation method |
CN115559018B (en) * | 2022-10-14 | 2024-01-09 | 浙江大学 | High-strength polyolefin fiber and preparation method thereof |
JP2025031446A (en) * | 2023-08-25 | 2025-03-07 | 青島万青生活家居用品有限公司 | PE 100% spun yarn with anti-fuzzing and anti-pilling properties and its manufacturing method |
JP7710503B2 (en) | 2023-08-25 | 2025-07-18 | 青島万青生活家居用品有限公司 | PE 100% spun yarn with anti-fuzzing and anti-pilling properties and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP4337233B2 (en) | 2009-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101363813B1 (en) | Polyethylene fiber and method for production thereof | |
CA2334015C (en) | High-strength polyethylene fibres and process for producing the same | |
JP4337233B2 (en) | High-strength polyethylene fiber and method for producing the same | |
TW200909621A (en) | High strength polyethylene fiber, its precursor and method of manufacturing the same with high productivity | |
JPH08509530A (en) | Elastic fibers, fabrics and products made from them | |
JP3738873B2 (en) | High strength polyethylene fiber | |
JP3832614B2 (en) | High-strength polyethylene fiber and method for producing the same | |
JP2011241485A (en) | Producing method of high-strength polyethylene fiber | |
JP3370791B2 (en) | Polypropylene resin composition and method for producing the same | |
JP5497255B2 (en) | High-strength polyethylene fiber and method for producing the same | |
JP2003055833A (en) | High-strength polyolefin fiber and method for producing the same | |
JP3906349B2 (en) | Biodegradable composite monofilament and its use | |
EP1270773B1 (en) | Vinylidene fluoride resin monofilament and method for producing the same | |
TWI752250B (en) | Multifilaments and monofilaments constituting them | |
JP3849851B2 (en) | High strength polyethylene fiber nonwoven fabric and battery separator | |
JP7371326B2 (en) | Monofilament for fishing line and fishing line | |
JP2000226721A (en) | High-strength polyethylene yarn | |
JP2004018318A (en) | Fibrous material for cement mortar or concrete reinforcement | |
JP3992385B2 (en) | High elongation polyester filament yarn | |
JP2003113567A (en) | Nonwovens and filters | |
JP2887381B2 (en) | Polyphenylene sulfide monofilament | |
JP2001181941A (en) | Protective material | |
JP2020114955A (en) | Polyethylene filament excellent in knot strength retention | |
JP3849861B2 (en) | rope | |
WO2023127876A1 (en) | Ultra-high molecular weight polyethylene fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090609 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090622 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4337233 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130710 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |