JP2001316729A - Method for manufacturing non-oriented electrical steel sheet with low iron loss and high magnetic flux density - Google Patents
Method for manufacturing non-oriented electrical steel sheet with low iron loss and high magnetic flux densityInfo
- Publication number
- JP2001316729A JP2001316729A JP2000129677A JP2000129677A JP2001316729A JP 2001316729 A JP2001316729 A JP 2001316729A JP 2000129677 A JP2000129677 A JP 2000129677A JP 2000129677 A JP2000129677 A JP 2000129677A JP 2001316729 A JP2001316729 A JP 2001316729A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- annealing
- iron loss
- flux density
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
(57)【要約】
【課題】 従来技術で得られる磁気特性を凌駕した、優
れた磁束密度並びに鉄損を無方向性電磁鋼板に与えるた
めの製造方法について提案する。
【解決手段】 Si:1.5 〜4.0 mass%およびMn:0.005
〜1.50mass%を含有する鋼スラブに熱間圧延を施し、次
いで熱延板焼鈍を施してから、1回もしくは中間焼鈍を
挟む2回以上の冷間圧延を施して最終板厚に仕上げ、そ
の後再結晶焼鈍を行い、必要に応じて絶縁コーティング
を施す、無方向性電磁鋼板の製造方法において、鋼スラ
ブに含まれるAl量を0.017 mass%以下かつN量を0.0030
mass%以下に調整するとともに、熱延板焼鈍後の平均粒
径を0.050 〜0.40mmに制御する。PROBLEM TO BE SOLVED: To propose a manufacturing method for giving excellent magnetic flux density and iron loss to a non-oriented electrical steel sheet, which surpasses the magnetic properties obtained by the prior art. SOLUTION: Si: 1.5 to 4.0 mass% and Mn: 0.005
Hot rolling is performed on a steel slab containing 1.51.50 mass%, then hot-rolled sheet annealing is performed, and then cold rolling is performed once or twice or more with intermediate annealing to finish to a final sheet thickness. A method for producing a non-oriented electrical steel sheet, comprising performing recrystallization annealing and applying an insulating coating as necessary, wherein the Al content in the steel slab is 0.017 mass% or less and the N content is 0.0030% or less.
mass% or less and the average grain size after hot-rolled sheet annealing is controlled to 0.050 to 0.40 mm.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、主として電気機
器の鉄心材料に用いられる無方向性電磁鋼板の製造方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-oriented electrical steel sheet mainly used for a core material of electric equipment.
【0002】[0002]
【従来の技術】近年、電力をはじめとする、エネルギー
の節減という、世界的な動きの中、電気機器について
も、その高効率化が強く要望されている。また、電気機
器を小型化する観点から、特に鉄心材料の小型化に対す
る要望も高まっている。2. Description of the Related Art In recent years, with the worldwide movement to save energy such as electric power, there has been a strong demand for higher efficiency of electric equipment. Also, from the viewpoint of reducing the size of electric devices, there is an increasing demand for reducing the size of iron core materials.
【0003】この電気機器の高効率化や鉄心材料の小型
化には、鉄心の素材となる電磁鋼板の磁気特性を改善す
ることが有効である。ここに、従来の無方向性電磁鋼板
の分野では、磁気特性のうち、特に鉄損を低減する手段
として、電気抵抗を増加することによって渦電流損を低
下させるために、Si、AlおよびMn等の含有量を高める手
法が、一般に用いられてきた。しかし、この手法は、磁
束密度の低下を免れることができないという、本質的な
問題を抱えていた。In order to increase the efficiency of the electric equipment and reduce the size of the iron core material, it is effective to improve the magnetic properties of the magnetic steel sheet used as the material of the iron core. Here, in the field of conventional non-oriented electrical steel sheets, in order to reduce eddy current loss by increasing electric resistance as a means for reducing iron loss among magnetic properties, in particular, Si, Al and Mn are used. Techniques for increasing the content of have been generally used. However, this method has an essential problem that a reduction in magnetic flux density cannot be avoided.
【0004】一方、単にSiやAl等の含有量を高めるだけ
でなく、併せてCやSを低減すること、あるいは特開昭
58−15143号公報に記載されているようにBを添
加したり、特開平3−281758号公報に記載されて
いるようにNiを添加したりするなど、合金成分を増加さ
せることも、一般に知られている方法である。これら合
金成分を添加する方法では、主に鉄損は改善されるもの
の、磁束密度の改善効果は小さく満足できるものではな
かった。さらに、合金添加に伴って鋼板の硬さが上昇し
て加工性が劣化するため、この無方向性電磁鋼板を加工
して電気機器に使用する場合の汎用性に乏しく、その用
途は極めて限定されたものとなっていた。On the other hand, in addition to simply increasing the content of Si, Al, and the like, it is also necessary to reduce C and S at the same time, or to add B as described in JP-A-58-15143. It is also a generally known method to increase the alloy component, such as adding Ni as described in JP-A-3-281758. With the method of adding these alloy components, although the iron loss is mainly improved, the effect of improving the magnetic flux density is small and not satisfactory. Furthermore, since the hardness of the steel sheet increases with the addition of the alloy and the workability deteriorates, the versatility of processing this non-oriented electrical steel sheet for use in electrical equipment is poor, and its use is extremely limited. Had become.
【0005】また、製造プロセスを変更し、製品板の結
晶方位の集積度合、すなわち集合組織を改善して磁気特
性を向上させる方法が、いくつか提案されている。例え
ば、特公昭58−181822号公報には、Si: 2.8〜
4.0 mass%およびAl: 0.3〜2.0 mass%を含む鋼に200
〜500 ℃の温度範囲内で温間圧延を施し、{100 }<UV
W >組織を発達させる方法が、そして特公平3−294
422号公報には、Si:1.5 〜4.0 mass%およびAl:
0.1〜2.0 mass%を含む鋼を熱間圧延した後、1000℃以
上1200℃以下の熱延板焼鈍と圧下率:80〜90%の冷間圧
延との組み合わせによって、{100 }組織を発達させる
方法が、それぞれ開示されている。[0005] In addition, several methods have been proposed to improve the magnetic characteristics by improving the degree of integration of the crystal orientation of the product plate, that is, the texture, by changing the manufacturing process. For example, Japanese Patent Publication No. 58-181822 discloses that Si:
4.0 mass% and Al: 200 for steel containing 0.3-2.0 mass%
Warm rolling within the temperature range of ~ 500 ° C, {100} <UV
W> How to develop an organization
No. 422 discloses that Si: 1.5 to 4.0 mass% and Al:
After hot rolling of steel containing 0.1-2.0 mass%, {100} microstructure is developed by a combination of hot-rolled sheet annealing at 1000 ° C or more and 1200 ° C or less and rolling reduction of 80-90%. Methods are disclosed, respectively.
【0006】しかし、これらの方法による磁気特性の改
善効果は、未だ満足できるものではなく、さらには加工
性およびリサイクル性にも問題を残していた。つまり、
鋼中にある程度以上のAlが含まれていると、まず鋼板の
硬さが上昇して加工性が阻害され、また鉄心材料をリサ
イクルしたり需要家でスクラップ処理する場合に電気炉
の電極を傷める、という問題に発展する。However, the effect of improving the magnetic properties by these methods has not been satisfactory yet, and there remains problems in workability and recyclability. That is,
If a certain amount of Al is contained in steel, the hardness of the steel sheet increases first, impairing the workability, and also damages the electrodes of the electric furnace when recycling core materials or scrapping at the customer , To develop the problem.
【0007】しかし、これらの方法による磁気特性の改
善幅は小さい。例えば、特公昭58−191922号公報中の実
施例2では、Si:3.40mass%,Al:0.60mass%を含む成
分系の鋼で板厚0.35mmの製品の磁束密度がB50で1.70
T, 鉄損がW15/50 で2.1 W/kg程度、特公平3−2944
22号公報ではSi:3.0 mass%,Al:0.30mass%およびM
n:0.20mass%を含む成分系の鋼で板厚0.50mmの製品の
磁束密度がB50で1.71T,鉄損がW15/50 で2.5 W/kg
程度の値である。However, the improvement of the magnetic characteristics by these methods is small. For example, in Example 2 in JP-B-58-191922, Si: 3.40mass%, Al : 0.60mass% in magnetic flux density B 50 of products of steel with thickness 0.35mm component system containing 1.70
T, iron loss is about 2.1 W / kg at W15 / 50 , Tokuhei 3-2944
No. 22 discloses Si: 3.0 mass%, Al: 0.30 mass% and M
n: magnetic flux density B 50 of products of steel with thickness 0.50mm component system containing 0.20mass% 1.71T, iron loss at W 15/50 2.5 W / kg
The value of the degree.
【0008】その他にも、製造プロセスを改善する提案
がなされているが、いずれも低鉄損化の到達は不十分で
あり、磁束密度も低いものであった。Other proposals have been made to improve the manufacturing process, but in all cases, the achievement of low iron loss was insufficient and the magnetic flux density was low.
【0009】[0009]
【発明が解決しようとする課題】この発明は、従来技術
で得られる磁気特性を凌駕した、優れた磁束密度並びに
鉄損を無方向性電磁鋼板に与えるための製造方法につい
て、提案することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to propose a manufacturing method for imparting an excellent magnetic flux density and iron loss to a non-oriented electrical steel sheet, which surpasses the magnetic properties obtained by the prior art. And
【0010】[0010]
【課題を解決するための手段】発明者らは、低鉄損と高
磁束密度を同時に達成すべく従来技術における問題点に
ついて鋭意検討を重ねたところ、新しい無方向性電磁鋼
板の製造方法を開発するに到った。すなわち、この発明
の要旨構成は、次の通りである。Means for Solving the Problems The inventors of the present invention have intensively studied the problems in the prior art in order to simultaneously achieve a low iron loss and a high magnetic flux density, and have developed a new method for producing a non-oriented electrical steel sheet. I came to. That is, the gist configuration of the present invention is as follows.
【0011】(1) Si:1.5 〜4.0 mass%およびMn:0.00
5 〜1.50mass%を含有する鋼スラブに熱間圧延を施し、
次いで熱延板焼鈍を施してから、1回もしくは中間焼鈍
を挟む2回以上の冷間圧延を施して最終板厚に仕上げ、
その後再結晶焼鈍を行い、必要に応じて絶縁コーティン
グを施す、無方向性電磁鋼板の製造方法において、鋼ス
ラブに含まれるAl量を0.017 mass%以下かつN量を0.00
30mass%以下に調整するとともに、熱延板焼鈍後の平均
粒径を0.050 〜0.40mmに制御することを特徴とする、鉄
損が低くかつ磁束密度の高い無方向性電磁鋼板の製造方
法。(1) Si: 1.5 to 4.0 mass% and Mn: 0.00
Hot rolling is performed on a steel slab containing 5 to 1.50 mass%,
Next, after performing hot-rolled sheet annealing, the sheet is subjected to one or two or more times of cold rolling sandwiching intermediate annealing to finish to a final sheet thickness,
Thereafter, recrystallization annealing is performed, and if necessary, an insulating coating is applied. In the method for manufacturing a non-oriented electrical steel sheet, the Al content in the steel slab is 0.017 mass% or less and the N content is 0.00
A method for producing a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density, wherein the non-oriented electrical steel sheet has a low iron loss and a high magnetic flux density, while being adjusted to 30 mass% or less and controlling the average grain size after the hot-rolled sheet annealing to 0.050 to 0.40 mm.
【0012】(2) 上記(1) において、鋼スラブに含まれ
る、B、O、S、Ti、V、Zr、NbおよびTaの量を各々20
ppm 以下に抑制することを特徴とする鉄損が低くかつ磁
束密度の高い無方向性電磁鋼板の製造方法。(2) In the above (1), the amounts of B, O, S, Ti, V, Zr, Nb, and Ta contained in the steel slab are each 20
A method for producing a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density, characterized in that the steel sheet has a core loss of not more than ppm.
【0013】(3) 上記(1) または(2) において、再結晶
焼鈍は、700 ℃以上の温度域での昇温速度を100 ℃/h
以下として750 ℃以上1200℃以下の温度域まで到達させ
ることを特徴とする鉄損が低くかつ磁束密度の高い無方
向性電磁鋼板の製造方法。(3) In the above (1) or (2), the recrystallization annealing is carried out at a rate of 100 ° C./h in a temperature range of 700 ° C. or more.
A method for producing a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density, characterized by reaching a temperature range of 750 ° C or more and 1200 ° C or less.
【0014】(4) 上記(1) または(2) において、再結晶
焼鈍は、500 〜700 ℃の温度域での昇温速度を2℃/s
以上として700 ℃以上に昇温して再結晶を完了させた
後、700 ℃以下の温度域まで冷却し、再び700 ℃以上の
温度域での昇温速度を100 ℃/h以下として750 ℃以上
1200℃以下の温度域まで到達させることを特徴とする鉄
損が低くかつ磁束密度の高い無方向性電磁鋼板の製造方
法。(4) In the above (1) or (2), the recrystallization annealing is performed at a rate of 2 ° C./s in a temperature range of 500 to 700 ° C.
After raising the temperature to 700 ° C or higher to complete the recrystallization, cooling to a temperature range of 700 ° C or lower, and again raising the heating rate in the temperature range of 700 ° C or higher to 100 ° C / h or lower, 750 ° C or higher
A method for producing a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density, characterized by reaching a temperature range of 1200 ° C or lower.
【0015】(5) 上記(1) ないし(4) のいずれかにおい
て、鋼スラブが、さらにCr: 0.01〜1.50mass%、Ni:
0.01 〜3.50mass%、Cu: 0.01 〜0.50mass%、Sb: 0.
005〜0.50mass%、Sn: 0.005〜0.50mass%およびP:
0.005〜0.5 mass%のいずれか少なくとも1種を含有す
ることを特徴とする鉄損が低くかつ磁束密度の高い無方
向性電磁鋼板の製造方法。(5) In any one of the above (1) to (4), the steel slab further comprises Cr: 0.01 to 1.50 mass%, Ni:
0.01 to 3.50 mass%, Cu: 0.01 to 0.50 mass%, Sb: 0.
005 to 0.50 mass%, Sn: 0.005 to 0.50 mass% and P:
A method for producing a non-oriented electrical steel sheet having low iron loss and high magnetic flux density, characterized by containing at least one of 0.005 to 0.5 mass%.
【0016】発明者らは、従来の高Si系無方向性電磁鋼
板の磁気特性向上に対する従来技術の限界を打破すべく
鋭意検討を進めた結果、素材中のAl量およびN量を低減
すること、および熱延板焼鈍後の結晶粒径を適正な範囲
に制御することによって、鋼板を構成する結晶の方位を
適切に制御して磁気特性を大きく向上し得ることを新規
に見出した。また、再結晶焼鈍条件についても、さらに
深く考察研究した結果、特に有利な条件を新たに見出し
た。以下、この発明を導くに到った実験結果について、
詳述する。The present inventors have made intensive studies to overcome the limitations of the conventional technology for improving the magnetic properties of the conventional high Si non-oriented electrical steel sheet, and as a result, have found that the Al content and the N content in the material can be reduced. By controlling the crystal grain size after annealing of the hot-rolled sheet and the hot-rolled sheet in an appropriate range, it has been newly found that the orientation of the crystal constituting the steel sheet can be appropriately controlled to greatly improve the magnetic properties. In addition, as a result of further study on recrystallization annealing conditions, particularly advantageous conditions were newly found. Hereinafter, regarding the experimental results that led to the present invention,
It will be described in detail.
【0017】まず、熱延板焼鈍やAl量の影響について、
実験を行った。すなわち、C: 0.0025 mass%、Si:
3.3mass%、Mn: 0.07 mass%、Sb: 0.04 mass%、A
l: 0.20 mass%およびN: 0.0020 mass%を含みB、
O、S、Ti、V、Zr、NbおよびTaの含有量を各々20ppm
以下に低減した成分組成の鋼塊(鋼A)と、C: 0.002
6 mass%、Si: 3.3mass%、Mn: 0.07 mass%、Sb:
0.04mass%、Al: 0.0040 mass%およびN: 0.0020 ma
ss%を含み、B、O、S、Ti、V、Zr、NbおよびTaの含
有量を各々20ppm 以下に低減した成分組成の鋼塊(鋼
B)、そしてC: 0.0030 mass%、Si: 3.3mass%、M
n: 0.07 mass%、Sb: 0.04 mass%、Al: 0.0040 mas
s%およびN: 0.0040 mass%を含み、B、O、Ti、
V、Zr、NbおよびTaの含有量を各々20ppm 以下に低減し
た成分組成の鋼塊(鋼C)、をそれぞれ溶製した。これ
らの鋼塊は、その後1050℃に加熱し熱間圧延にて2.5 mm
厚に仕上げた。その後、種々の条件で熱延板焼鈍を施
し、この熱延板焼鈍後の結晶粒径を測定した後、さらに
焼鈍後の鋼板を酸洗し、200 ℃の温度で冷間圧延を行っ
て最終板厚の0.35mmに仕上げた。この冷間圧延後、これ
らの鋼板に500 〜700 ℃間の昇温速度を10℃/sとして
昇温し、1000℃×10秒間の再結晶焼鈍を行い製品板とし
た。これらの製品板から、圧延方向と平行におよび圧延
方向と直角に、それぞれサンプルを切り出して、JIS C
2550に準拠して磁束密度および鉄損を測定し、その平均
の磁束密度および鉄損を求めた。First, regarding the effects of hot-rolled sheet annealing and the amount of Al,
An experiment was performed. That is, C: 0.0025 mass%, Si:
3.3 mass%, Mn: 0.07 mass%, Sb: 0.04 mass%, A
l: B containing 0.20 mass% and N: 0.0020 mass%
O, S, Ti, V, Zr, Nb and Ta contents are each 20ppm
A steel ingot (Steel A) having the following reduced composition and C: 0.002
6 mass%, Si: 3.3 mass%, Mn: 0.07 mass%, Sb:
0.04 mass%, Al: 0.0040 mass% and N: 0.0020 ma
Ingot (Steel B) containing ss%, and the content of each of B, O, S, Ti, V, Zr, Nb and Ta reduced to 20 ppm or less (steel B), and C: 0.0030 mass%, Si: 3.3 mass%, M
n: 0.07 mass%, Sb: 0.04 mass%, Al: 0.0040 mas
s% and N: 0.0040 mass%, B, O, Ti,
Ingots (steel C) having a component composition in which the contents of V, Zr, Nb, and Ta were each reduced to 20 ppm or less were produced. These ingots were then heated to 1050 ° C and hot-rolled to 2.5 mm
Finished thick. Thereafter, hot-rolled sheet annealing was performed under various conditions, and after measuring the crystal grain size after the hot-rolled sheet annealing, the annealed steel sheet was further pickled and cold-rolled at a temperature of 200 ° C. Finished to a thickness of 0.35mm. After this cold rolling, these steel sheets were heated at a heating rate of 500 to 700 ° C. at a rate of 10 ° C./s, and recrystallized and annealed at 1000 ° C. for 10 seconds to obtain product sheets. Samples were cut out from these product sheets in parallel with the rolling direction and at right angles to the rolling direction, and the JIS C
The magnetic flux density and iron loss were measured according to 2550, and the average magnetic flux density and iron loss were determined.
【0018】図1および図2に、熱延板焼鈍後の粒径と
製品板の磁束密度および鉄損との関係を示す。図1およ
び図2に示すように、Alを0.20mass%含有する鋼Aの場
合は、熱延板焼鈍後の結晶粒径が磁束密度および鉄損に
与える影響は小さく、熱延板焼鈍後の粒径が0.10mm程度
で若干の磁気特性の改善がみられる程度であった。FIGS. 1 and 2 show the relationship between the grain size after hot-rolled sheet annealing and the magnetic flux density and iron loss of a product sheet. As shown in FIGS. 1 and 2, in the case of steel A containing 0.20 mass% of Al, the influence of the crystal grain size after hot-rolled sheet annealing on the magnetic flux density and iron loss is small, and With a particle size of about 0.10 mm, a slight improvement in magnetic properties was observed.
【0019】一方、Al量およびN量をともに低減した鋼
Bでは、熱延板焼鈍後の粒径が0.050 〜0.40mmの範囲で
磁束密度および鉄損が共に大幅に向上した。また、Al量
のみを低減した鋼Cでは、磁束密度の改善は鋼Bと同様
に認められたが、鉄損は熱延板焼鈍後の粒径が0.10mm以
上で劣化し、三種類の鋼の中で最も悪い鉄損値を示し
た。On the other hand, in steel B in which both the Al content and the N content were reduced, both the magnetic flux density and the iron loss were significantly improved when the grain size after the hot-rolled sheet annealing was in the range of 0.050 to 0.40 mm. In steel C in which only the amount of Al was reduced, the improvement in magnetic flux density was recognized as in steel B, but the iron loss deteriorated when the grain size after hot-rolled sheet annealing was 0.10 mm or more. Showed the worst iron loss value.
【0020】そこで、鋼Bにおいて、優れた鉄損が得ら
れた理由を解明するために、各製品板の結晶粒径を調査
した。この調査結果を、図3に示す。図3に示すよう
に、Alを0.20mass%含有する鋼Aの場合は、熱延板焼鈍
後の結晶粒径の製品板結晶粒径に対する影響は小さい。
一方、Al量およびN量をともに低減した鋼Bでは、熱延
板焼鈍後の粒径が0.050 〜0.40mmの範囲で製品板の結晶
粒径が著しく増大した。また、Al量のみを低減した鋼C
では、熱延板焼鈍後の粒径が0.10mm以上で製品板粒径は
減少する傾向にあった。以上から、鋼Bでは熱延板焼鈍
後の粒径が0.050〜0.40mmの範囲で製品板結晶粒径が増
大し、このことが鉄損の改善に寄与していることがわか
った。Therefore, in order to clarify the reason why excellent iron loss was obtained in steel B, the crystal grain size of each product sheet was examined. The result of this investigation is shown in FIG. As shown in FIG. 3, in the case of steel A containing 0.20 mass% of Al, the influence of the crystal grain size after hot-rolled sheet annealing on the product sheet crystal grain size is small.
On the other hand, in steel B in which both the Al content and the N content were reduced, the crystal grain size of the product sheet significantly increased when the grain size after annealing of the hot-rolled sheet was in the range of 0.050 to 0.40 mm. In addition, steel C with only reduced Al content
In Table 2, the grain size of the product sheet tended to decrease when the grain size after the hot-rolled sheet annealing was 0.10 mm or more. From the above, it was found that in steel B, the grain size of the product sheet increased in the range of 0.050 to 0.40 mm after annealing of the hot-rolled sheet, and this contributed to the improvement of iron loss.
【0021】また、鋼Bにおいて、優れた磁束密度が得
られた理由を解明するために、各製品板の結晶粒の強度
について、X線回折により{100 }面強度および{111
}面強度を調査した。熱延板焼鈍後の結晶粒径と製品
板の{100 }面強度との関係を図4に、熱延板焼鈍後結
晶粒径と製品板{111 }面強度との関係を図5に、それ
ぞれ示す。図4および図5に示すように、Alを0.20mass
%含有する鋼Aの場合は、熱延板焼鈍後での結晶粒径の
製品板結晶粒方位に対する影響は小さい。一方、Al量お
よびN量をともに低減した鋼B、そしてAl量のみを低減
した鋼Cでは、熱延板焼鈍後き粒径が0.050 〜0.40mmの
範囲で{100 }面強度が増加し、{111 }面強度が低下
した。すなわち、鋼Bと鋼Cでは、製品板の結晶方位に
おいて磁化特性の良好である{100 }強度が増加し、磁
化特性の悪い{111 }強度が低下することにより、磁束
密度が改善したことがわかった。In order to elucidate the reason why excellent magnetic flux density was obtained in steel B, the crystal grain strength of each product plate was determined by X-ray diffraction using {100} plane strength and {111}.
} Surface strength was investigated. FIG. 4 shows the relationship between the grain size after hot-rolled sheet annealing and the {100} plane strength of the product sheet, and FIG. 5 shows the relationship between the crystal grain size after hot-rolled sheet annealing and the {111} plane strength of the product sheet. Shown respectively. As shown in FIG. 4 and FIG.
% Steel A has a small effect on the crystal grain orientation of the product sheet after the hot-rolled sheet annealing. On the other hand, in steel B in which both the Al content and the N content are reduced, and in steel C in which only the Al content is reduced, the {100} surface strength increases when the grain size after hot-rolled sheet annealing is in the range of 0.050 to 0.40 mm, {111} Surface strength decreased. That is, in steel B and steel C, the magnetic flux density was improved by increasing the {100} strength, which has good magnetization properties, and decreasing the {111} strength, which was poor in magnetization properties, in the crystal orientation of the product sheet. all right.
【0022】さらに、Al含有量とN量との関係につい
て、より詳しく検討した結果を述べる。 C: 0.0020 mass%、Si: 3.0mass%、Mn: 0.10 mass
%およびSb:0.03mass%を含み、さらにAlおよびNの含
有量を種々変更した鋼塊群を溶製した。なお、これらの
鋼塊におけるB、O、S、Ti、V、Zr、NbおよびTaの含
有量は、各々30ppm 以下に低減した。これらの鋼魂は、
その後1100℃に加熱し熱間圧延にて2.4mm厚に仕上げ
た。次いで、1100℃×2分間の熱延板焼鈍を施した。こ
の熱延板焼鈍後の結晶粒径は、0.20〜0.40mmの範囲であ
った。さらに、焼鈍後の鋼板を酸洗し、200 ℃の温度で
の冷間圧延にて最終板厚の0.35mmに仕上げた。この冷間
圧延後、これらの鋼板に950 ℃×20秒の再結晶焼鈍を行
い製品板とした。かくして得られた製品板から、圧延方
向と平行におよび圧延方向と直角に、それぞれサンプル
を切り出して、JIS C2550に準拠して磁束密度および鉄
損を測定し、その平均の磁束密度および鉄損を求めた。Further, the results of a more detailed study of the relationship between the Al content and the N content will be described. C: 0.0020 mass%, Si: 3.0 mass%, Mn: 0.10 mass
% And Sb: 0.03 mass%, and further ingots in which the contents of Al and N were variously changed were melted. The contents of B, O, S, Ti, V, Zr, Nb, and Ta in these ingots were each reduced to 30 ppm or less. These steel souls
Thereafter, it was heated to 1100 ° C. and finished to a thickness of 2.4 mm by hot rolling. Next, hot-rolled sheet annealing was performed at 1100 ° C. × 2 minutes. The crystal grain size after the hot-rolled sheet annealing was in the range of 0.20 to 0.40 mm. Further, the annealed steel sheet was pickled and cold rolled at a temperature of 200 ° C. to a final thickness of 0.35 mm. After this cold rolling, these steel sheets were subjected to recrystallization annealing at 950 ° C. × 20 seconds to obtain product sheets. From the product sheet thus obtained, samples were cut out in parallel with the rolling direction and at right angles to the rolling direction, and the magnetic flux density and iron loss were measured in accordance with JIS C2550, and the average magnetic flux density and iron loss were measured. I asked.
【0023】図6に、磁束密度とAl含有量およびN含有
量との関係を示すように、Al量が0.017 mass%以下にな
ると磁束密度B50が1.7 T以上に向上するが、この鉄損
に与えるN量の影響は小さい。また、図7には、鉄損と
Al合有量およびN含有量との関係を示すが、Al量が0.01
7 mass%以下になると鉄損が向上し、さらにN量を0.00
30mass%以下に低減すると、その向上効果が特に大きく
なることがわかる。FIG. 6 shows the relationship between the magnetic flux density and the Al content and the N content. As the Al content becomes 0.017 mass% or less, the magnetic flux density B 50 increases to 1.7 T or more. Has a small effect on the amount of N. FIG. 7 shows iron loss
The relationship between the Al content and the N content is shown.
When the content becomes 7 mass% or less, the iron loss increases, and the N content becomes 0.00
It can be seen that when the content is reduced to 30 mass% or less, the improvement effect is particularly large.
【0024】ところで、上述したように、Si量の高い高
級無方向性電磁鋼板では、鉄損を改善するために、Alを
添加して固有電気抵抗を増加させる手法が採用されてき
た。また、この方法は結晶粒成長を抑制する鋼中析出物
であるAlN を凝集粗大化させ、結晶粒の粒成長を促進さ
せる効果もある。これらの効果を得るためには、Alの含
有量は一定量以上確保することが必要であり、従来、Al
の含有量は少なくとも0.1 mass%をこえる量に規制さ
れ、通常は0.4 〜1.0 mass%程度の含有量となってい
る。しかし、発明者らの上記実験により得られた結果
は、従来技術の範囲よりもはるかに低いAl量とすること
により、最も好適に集合組織が発達する結果、磁束密度
が向上し、さらにN量をも低減することにより、製品板
における粒成長性も共に改善され、鉄損も大きく向上す
る、という新たな知見である。As described above, in a high-grade non-oriented electrical steel sheet having a high Si content, a method of increasing the specific electric resistance by adding Al has been adopted in order to improve iron loss. This method also has the effect of agglomerating and coarsening AlN, which is a precipitate in steel, which suppresses the growth of crystal grains, thereby promoting the growth of crystal grains. In order to obtain these effects, it is necessary to ensure that the content of Al is a certain amount or more.
Is regulated to an amount exceeding at least 0.1 mass%, and is usually about 0.4 to 1.0 mass%. However, the results obtained by the above experiments of the inventors show that, by setting the Al content much lower than the range of the prior art, the texture is most preferably developed, so that the magnetic flux density is improved and the N content is further improved. It is a new finding that, by also reducing the grain size, the grain growth in the product sheet is also improved, and the iron loss is greatly improved.
【0025】このように素材成分におけるAlの含有量を
低減することによって、良好な集合組織が発達する理由
については必ずしも明らかではないが、発明者らは不純
物の粒界移動抑制効果に関連付けて、次のように考えて
いる。すなわち、Alを低減することにより、より純鉄に
近い結晶格子の配列状態へと近づくため、粒界構造に依
存する本来的な粒界の移動速度差が顕在化して、再結晶
に伴う粒成長過程で一部の粒界のみが優先的に移動し、
{111 }、{554 }、{321 }など数多くの磁気的に不
利な結晶粒の成長が抑制されるとともに{100}強度が
増加する方向に粒成長が起こり、磁気特性が向上したも
のと考える。Although the reason why a good texture is developed by reducing the content of Al in the raw material component is not always clear, the present inventors have linked the effect of suppressing the grain boundary migration of impurities, I think as follows. In other words, by reducing Al, it approaches a crystal lattice arrangement state closer to pure iron, so that the difference in the original moving speed of the grain boundaries depending on the grain boundary structure becomes apparent, and the grain growth accompanying recrystallization During the process, only some grain boundaries move preferentially,
It is considered that the growth of many magnetically disadvantageous crystal grains such as {111}, {554}, and {321} is suppressed and grain growth occurs in the direction of increasing {100} strength, which is considered to have improved magnetic properties. .
【0026】また、Al量のみを低減し、N量を0.0030ma
ss%以下に低減しない場合には、Alを従来技術程度の0.
20mass%含有させた鋼よりも劣る鉄損値となった。この
場合、熱延板焼鈍の均熱中にAlN が固溶し、熱延板焼鈍
の冷却中にAlN がさらに微細に析出していることが観察
された。このAlN 析出物が再結晶焼鈍時の粒成長を抑制
した結果、製品板の結晶粒径が増大せず、鉄損が劣化し
たものと推定される。これに対し、N量を0.0030mass%
以下に低減した場合には、AlN 析出物が減少し、再結晶
焼鈍時にも良好な粒成長性を確保される結果、磁束密度
の向上に伴って鉄損が向上するものと考えられる。Further, only the Al content is reduced and the N content is reduced to 0.0030 ma.
If it is not reduced to ss% or less, Al is reduced to about 0.1%, which is equivalent to that of the conventional technology.
The iron loss value was inferior to that of steel containing 20 mass%. In this case, it was observed that AlN dissolved in solid during the soaking of the hot-rolled sheet, and finer AlN was precipitated during the cooling of the hot-rolled sheet. It is presumed that as a result of the AlN precipitate suppressing grain growth during recrystallization annealing, the crystal grain size of the product sheet did not increase and iron loss deteriorated. On the other hand, the amount of N is 0.0030mass%
When the content is reduced below, it is considered that AlN precipitates are reduced and good grain growth is ensured even during recrystallization annealing. As a result, iron loss increases with an increase in magnetic flux density.
【0027】このように、Alを多量添加することなく集
合組織を改善して磁気特性を向上する手法では、Alが減
量されるため素材のリサイクル性が改善され、また合金
元素の添加量が減少するため飽和磁束密度を高めること
ができる。併せて、合金元素の添加量が減少されると、
鋼板の硬さ上昇が抑制されるから、製品の加工性が確保
されて、汎用電気製品への適用が促進される、利点も得
られる。As described above, in the method of improving the magnetic properties by improving the texture without adding a large amount of Al, since the amount of Al is reduced, the recyclability of the material is improved, and the addition amount of the alloy element is reduced. Therefore, the saturation magnetic flux density can be increased. At the same time, when the addition amount of the alloy element is reduced,
Since the increase in hardness of the steel sheet is suppressed, the workability of the product is ensured, and the advantage that application to general-purpose electrical products is promoted is also obtained.
【0028】次に、鉄損および磁束密度をさらに改善す
るための要件として、再結晶焼鈍条件に関する実験を行
った。すなわち、Si:2.0 mass%およびMn:0.13mass%
を含み、かつAl量を0.0030mass%およびN量を0.0015ma
ss%に低減した鋼塊(鋼D)、Si: 3.6mass%、Mn:0.
13mass%、Sb:0.06mass%を含み、かつAl量を0.0040ma
ss%およびN量を0.0011mass%に低減した鋼塊(鋼
E)、をそれぞれ溶製した。これらの鋼塊は、その後10
00℃に加熱し熱間圧延にて2.5 mm厚に仕上げた。その
後、1000℃×1分の熱延板焼鈍を施し、焼鈍後の鋼板を
酸洗し、200 ℃の温度で冷間圧延を行って最終板厚の0.
35mmに仕上げた。この冷間圧延後、得られたコイルから
試料を採取し、以下に示す3種類の方法で再結晶焼鈍を
別々に行って製品板とした。Next, as a requirement for further improving the iron loss and the magnetic flux density, an experiment on recrystallization annealing conditions was performed. That is, Si: 2.0 mass% and Mn: 0.13 mass%
, And the Al content is 0.0030 mass% and the N content is 0.0015 ma.
Steel ingot reduced to ss% (steel D), Si: 3.6 mass%, Mn: 0.
Contains 13 mass%, Sb: 0.06 mass%, and has an Al content of 0.0040 ma
A steel ingot (steel E) in which the ss% and the N content were reduced to 0.0011 mass% was smelted, respectively. These ingots are then
It was heated to 00 ° C and hot-rolled to a thickness of 2.5 mm. Thereafter, hot-rolled sheet annealing is performed at 1000 ° C for 1 minute, the annealed steel sheet is pickled, and cold-rolled at a temperature of 200 ° C to obtain a final sheet thickness of 0.
Finished to 35mm. After this cold rolling, samples were obtained from the obtained coils, and recrystallization annealing was separately performed by the following three methods to obtain product sheets.
【0029】〔焼鈍1〕 昇温速度:常温から 500℃間で平均30℃/s、 500〜70
0 ℃間で平均15℃/s、 700〜900 ℃間で平均8℃/
s、均熱 900℃×10秒 冷却速度:均熱から常温まで平均10℃/s 焼鈍雰囲気:水素50%、窒素50%、露点−30℃ 〔焼鈍2〕 昇温速度:常温から 500℃間で平均 100℃/h、 500〜
900 ℃間で50℃/h、均熱 900℃×10時間、 冷却速度:均熱から常温まで平均 100℃/h 雰囲気:Ar露点−30℃ 〔焼鈍3〕焼鈍1を行った後焼鈍2を行う。[Annealing 1] Heating rate: average temperature 30 ° C./s between normal temperature and 500 ° C., 500-70
15 ° C / s on average between 0 ° C, 8 ° C / s on average between 700 and 900 ° C
s, soaking 900 ° C x 10 seconds Cooling rate: average 10 ° C / s from soaking to normal temperature Annealing atmosphere: 50% hydrogen, 50% nitrogen, dew point -30 ° C [annealing 2] Heating rate: between normal temperature and 500 ° C 100 ℃ / h on average, 500 ~
50 ° C / h between 900 ° C, soaking at 900 ° C for 10 hours, cooling rate: 100 ° C / h average from soaking to normal temperature Atmosphere: Ar dew point -30 ° C [Annealing 3] After annealing 1, annealing 2 was performed. Do.
【0030】これらの製品板から、圧延方向と平行にお
よび圧延方向と直角に、それぞれサンプルを切り出し
て、JIS C2550に準拠して磁束密度および鉄損を測定
し、その平均の磁束密度および鉄損を求めた。Samples were cut from these product sheets in parallel with the rolling direction and perpendicular to the rolling direction, and the magnetic flux density and iron loss were measured in accordance with JIS C2550, and the average magnetic flux density and iron loss were measured. I asked.
【0031】図8には、再結晶焼鈍条件と磁気特性との
関係を示す。まず、鉄損については、どの鋼ともに焼鈍
1に比べて焼鈍2、さらに焼鈍3を経た鋼板の鉄損が良
好になる。特に、Sbを添加した鋼Eの鉄損が良好であ
る。一方、磁束密度についてはAl, Sbを添加した鋼Eに
おいて、焼鈍1に比較して焼鈍2、焼鈍3が向上してい
るが、Sbを含有していない鋼Dではその向上量が小さ
い。FIG. 8 shows the relationship between recrystallization annealing conditions and magnetic properties. First, regarding the iron loss, the steel loss of all steels after annealing 2 and annealing 3 is better than that of annealing 1. In particular, the iron loss of the steel E to which Sb is added is good. On the other hand, regarding the magnetic flux density, in steel E to which Al and Sb are added, annealing 2 and annealing 3 are improved as compared with annealing 1, but in steel D not containing Sb, the improvement is small.
【0032】さらに、再結晶焼鈍後の粒径と再結晶焼鈍
条件との関係を図9に示す。図8に示すように、各焼鈍
条件において最高到達温度は950 ℃と同一であるが、急
熱昇温である焼鈍1に比べて徐熱昇温である焼鈍2で
は、若干であるが粒成長が進行し、急熱昇温を行った後
に徐熱昇温を施した焼鈍3では、焼鈍1および2に比べ
て著しく粒成長が進行していた。FIG. 9 shows the relationship between the grain size after recrystallization annealing and the recrystallization annealing conditions. As shown in FIG. 8, the maximum temperature reached in each annealing condition was the same as 950 ° C., but in annealing 2 in which the temperature was gradually increased compared with annealing 1 in which the temperature was rapidly increased, the grain growth was slightly increased. The annealing 3 in which the rapid heating was performed and then the gradual heating was performed increased the grain growth more remarkably than the annealings 1 and 2.
【0033】ここに、焼鈍2の場合、急速昇温である焼
鈍1に比較して、到達温度は同一であるが均熱時間が異
なるために、粒成長が進行したものと考えられる。焼鈍
3については、熱効果的に焼鈍2との違いが僅かである
のにも拘わらず、焼鈍2に比べて著しく粒径が増大して
いる。焼鈍2と焼鈍3とを比較した場合、焼鈍3では前
半の急速昇温の焼鈍で再結晶核が生成しているものと考
えられ、再結晶核生成時の昇温速度が異なることにな
る。そして、この核生成時の異なる昇温速度に起因する
集合組織形成過程の差異に基づく再結晶集合組織の相違
が、続く粒成長挙動を大きく変えたものと推定される
が、本質的な機構は明らかでない。Here, in the case of annealing 2, the temperature reached is the same as in annealing 1 which is a rapid temperature rise, but the soaking time is different, so that it is considered that grain growth has progressed. Regarding Annealing 3, although the difference from Annealing 2 is small, the grain size is significantly increased as compared with Annealing 2. When Annealing 2 and Annealing 3 are compared, in Annealing 3, it is considered that recrystallization nuclei have been generated by the rapid rapid temperature annealing in the first half, and the heating rate at the time of recrystallization nucleus generation is different. It is presumed that the difference in recrystallization texture based on the difference in texture formation process due to the different heating rates during nucleation greatly changed the subsequent grain growth behavior, but the essential mechanism is Not clear.
【0034】さらにまた、素材の添加元素について検討
を行ったところ、Niを添加することにより、製品の磁束
密度が向上することを見い出した。Niが強磁性体元素で
あることが何らかの理由で磁束密度の向上に寄与してい
るものと推定されるが理由は明らかでない。また、Sn、
Cu、PおよびCrなどの添加により鉄損が改善する傾向も
確認された。おそらく、電気抵抗を増加させることによ
り鉄損が低減されているものと推定される。Further, when the addition element of the material was examined, it was found that the addition of Ni improves the magnetic flux density of the product. It is presumed that the fact that Ni is a ferromagnetic element contributes to the improvement of the magnetic flux density for some reason, but the reason is not clear. Also, Sn,
It was also confirmed that iron loss was improved by adding Cu, P and Cr. Probably, it is presumed that the iron loss is reduced by increasing the electric resistance.
【0035】[0035]
【発明の実施の形態】以下に、この発明の各構成要件の
限定理由について述べる。すなわち、この発明の電磁鋼
板の成分としては、Siを含有して電気抵抗を増大させて
鉄損を低減する必要があるが、この鉄損改善のためには
1.5 mass%以上のSiが必要である。一方、4.0 mass%を
こえると、磁束密度が低下することおよび製品の二次加
工性が著しく劣化することから、Si含有量は1.5 〜4.0
mass%に制限する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the constituent elements of the present invention will be described below. That is, as a component of the magnetic steel sheet of the present invention, it is necessary to increase the electrical resistance by containing Si to reduce iron loss.
1.5 mass% or more of Si is required. On the other hand, if the content exceeds 4.0 mass%, the magnetic flux density decreases and the secondary workability of the product significantly deteriorates.
Limit to mass%.
【0036】Mnは、熱間加工性を良好にするために必要
な成分であるが、0.005 mass%未満では効果に乏しく、
一方1.50mass%をこえると飽和磁束密度が低下するた
め、0.005 〜1.50mass%の範囲とする。Mn is a component necessary for improving the hot workability, but the effect is poor if it is less than 0.005 mass%.
On the other hand, when the saturation magnetic flux density exceeds 1.50 mass%, the saturation magnetic flux density decreases.
【0037】また、良好な磁気特性を実現するために、
鋼板のAl量を0.017 mass%以下、好ましくは0.005mass
%以下、そしてN量を0.0030mass%以下、好ましくは0.
0020mass%以下に低減することが、肝要である。すなわ
ち、Al量が0.017 mass%をこえると、製品板における集
合組織が劣化して磁束密度が低下し、またN量が0.0003
0 mass%をこえると、熱延板焼鈍後に微細なAlN 析出物
が形成されて、再結晶焼鈍時の結晶粒の成長が抑制され
るため、鉄損が大きく劣化する。In order to realize good magnetic properties,
Reduce the amount of Al in the steel sheet to 0.017 mass% or less, preferably 0.005 mass%
% Or less, and the N content is 0.0030 mass% or less, preferably 0.1% or less.
It is important to reduce it to 0020 mass% or less. That is, when the Al content exceeds 0.017 mass%, the texture of the product plate is deteriorated, the magnetic flux density is reduced, and the N content is 0.0003 mass%.
If it exceeds 0 mass%, fine AlN precipitates are formed after hot-rolled sheet annealing, and the growth of crystal grains during recrystallization annealing is suppressed, so that iron loss is greatly deteriorated.
【0038】さらに、良好な鉄損を得るためには、溶鋼
成分として、B、O、S、Ti、V、Zr、NbおよびTaの含
有量を、各々20ppm 以下とすることが好適である。Further, in order to obtain good iron loss, it is preferable that the contents of B, O, S, Ti, V, Zr, Nb and Ta as molten steel components are each 20 ppm or less.
【0039】なお、Cは、磁気時効劣化を抑制し、かつ
低Al化による集合組織の改善効果を十分に発揮させるた
めに、0.0050mass%以下に低減することが好ましい。な
お、Cの低減は、溶鋼の段階で0.0050mass%以下として
もよいし、溶鋼段階で0.0050mass%をこえていても途中
工程での脱炭処理により0.0050mass%以下としてもよ
く、要は再結晶焼鈍中の鋼板におけるC含有量が50ppm
以下であることが重要になる。C is preferably reduced to 0.0050 mass% or less in order to suppress magnetic aging deterioration and sufficiently exhibit the effect of improving the texture by lowering Al. The reduction of C may be 0.0050 mass% or less in the molten steel stage, or may be 0.0050 mass% or less in the molten steel stage even if it exceeds 0.0050 mass% by decarburization treatment in the middle of the process. C content in steel sheet during crystal annealing is 50ppm
It is important that:
【0040】次に、この発明では、結晶方位の制御が必
須である。すなわち、良好な磁気特性を得るためには、
熱延板焼鈍後の粒径を0.050 〜0.40mmの範囲に制御する
ことが重要になる。この熱延板焼鈍後の粒径が、上記範
囲は外れると、製品板の集合組織が劣化して磁束密度の
低下をまねく。ここで、熱延板焼鈍後の粒径は、断面組
織における結晶粒の個数を測定し、円相当径として算出
する。なお、統計的に有意な結晶粒径を得るためには、
結晶粒の測定個数を200 以上とすることが好ましい。Next, in the present invention, control of the crystal orientation is essential. That is, in order to obtain good magnetic properties,
It is important to control the grain size after hot-rolled sheet annealing to a range of 0.050 to 0.40 mm. If the grain size after the hot-rolled sheet annealing is out of the above range, the texture of the product sheet is degraded and the magnetic flux density is reduced. Here, the grain size after hot-rolled sheet annealing is calculated as a circle equivalent diameter by measuring the number of crystal grains in the cross-sectional structure. In order to obtain a statistically significant grain size,
It is preferable that the number of measured crystal grains is 200 or more.
【0041】次いで、再結晶焼鈍時における700 ℃以上
での昇温速度を 100℃/h以下と徐熱にして、 750℃以
上1200℃以下の温度域まで到達させることが、粒成長を
促進し磁気特性を向上させるために有効である。すなわ
ち、700 ℃以上での昇温速度が100 ℃/hをこえると、
集合組織の改善効果が小さくなるため、昇温速度は 100
℃/h以下とすることが好ましい。なお、昇温速度の下
限は特に定めないが、昇温速度が1℃/h未満である
と、焼鈍時間が長すぎて経済的に不利である。一方、再
結晶焼鈍の到達温度は、 750℃未満であると粒成長が不
十分なために磁気特性が劣化し、1200℃をこえると表面
酸化が進行して鉄損が劣化するため、再結晶焼鈍の到達
温度は 750℃以上1200℃以下が好適である。均熱時間に
関しては特に定めないが、良好な鉄損を得るためには経
済的に許容される範囲内で長時間として粒成長を促進さ
せることが有効である。Next, the rate of temperature rise at 700 ° C. or more during recrystallization annealing is gradually reduced to 100 ° C./h or less to reach a temperature range of 750 ° C. to 1200 ° C., thereby promoting grain growth. This is effective for improving magnetic characteristics. That is, if the heating rate at 700 ° C or more exceeds 100 ° C / h,
The rate of temperature increase is 100
C./h or less is preferable. Although the lower limit of the heating rate is not particularly defined, if the heating rate is less than 1 ° C./h, the annealing time is too long, which is economically disadvantageous. On the other hand, if the temperature reached by recrystallization annealing is less than 750 ° C, grain growth will be insufficient and magnetic properties will deteriorate, and if it exceeds 1200 ° C, surface oxidation will progress and iron loss will deteriorate, so recrystallization will occur. The ultimate temperature of annealing is preferably 750 ° C or more and 1200 ° C or less. Although there is no particular limitation on the soaking time, it is effective to promote grain growth for a long time within an economically acceptable range in order to obtain good iron loss.
【0042】さらに、著しく粒成長を促進させて磁気特
性を向上させるために、再結晶焼鈍の前半では、500 〜
700 ℃間の昇温速度を2℃/s以上の急速昇温として70
0 ℃以上に昇温して再結晶を完了させ、後半は、 700℃
以下の温度へと冷却し、再び700℃以上での昇温速度を
100℃/h以下として 750℃以上1200℃以下の温度まで
到達させることが有効である。Further, in order to remarkably promote grain growth and improve magnetic properties, in the first half of recrystallization annealing, 500 to
The rate of temperature rise between 700 ° C is 70 ° C
Raise the temperature to 0 ° C or higher to complete the recrystallization.
Cool to the following temperature, and increase the heating rate above 700 ° C again.
It is effective to reach a temperature of 750 ° C to 1200 ° C at a rate of 100 ° C / h or less.
【0043】すなわち、再結晶焼鈍前半の昇温時の 500
〜700 ℃間の昇温速度が2℃/s未満であると、後半の
焼鈍における粒成長の促進効果が小さくなるため、前半
の再結晶焼鈍時における 500〜700 ℃間の昇温速度は2
℃/s以上とすることが好ましい。同様に、再結晶焼鈍
前半の温度が 750℃未満、1200℃をこえる場合も、後半
の焼鈍における粒成長の促進効果が小さくなるため、前
半の再結晶焼鈍時における到達温度を 750〜1200℃とす
ることが望ましい。再結晶焼鈍後半における昇温速度が
100℃/hをこえると、集合組織の改善効果が小さくな
るため、再結晶焼鈍後半における昇温速度の好適範囲は
100℃/h以下とする。また、再結晶焼鈍後半の到達温
度は 750℃未満であると粒成長が不十分なために磁気特
性が劣化し、1200℃をこえると表面酸化が進行して鉄損
が劣化するから、再結晶焼鈍後半の到達温度は 750℃以
上1200℃以下とすることが好ましい。なお、再結晶焼鈍
後半における均熱時間に関しては特に定めないが、良好
な鉄損を得るためには経済的に許容される範囲内で長時
間として粒成長を促進させることが有効である。That is, 500 at the time of temperature rise in the first half of recrystallization annealing.
If the heating rate between 700 ° C. and 700 ° C. is less than 2 ° C./s, the effect of accelerating the grain growth in the latter half annealing becomes small.
C./s or higher is preferred. Similarly, when the temperature in the first half of the recrystallization annealing is less than 750 ° C and exceeds 1200 ° C, the effect of promoting the grain growth in the second half of annealing becomes small, so the temperature reached during the first half of the recrystallization annealing is 750 to 1200 ° C. It is desirable to do. In the latter half of recrystallization annealing,
When the temperature exceeds 100 ° C./h, the effect of improving the texture is reduced.
100 ° C./h or less. If the temperature reached in the latter half of the recrystallization annealing is lower than 750 ° C, the grain growth will be insufficient and the magnetic properties will deteriorate, and if it exceeds 1200 ° C, the surface oxidation will progress and iron loss will deteriorate. It is preferable that the temperature reached in the second half of annealing is 750 ° C or more and 1200 ° C or less. Although the soaking time in the latter half of the recrystallization annealing is not particularly defined, it is effective to promote grain growth as long as possible within an economically acceptable range in order to obtain good iron loss.
【0044】ここに、500 ℃までの昇温速度に関しては
再結晶挙動に大きな影響を及ぼさないため、特に規制す
る必要はない。また、冷却条件についても、磁気特性上
は特に規制する必要はないが、経済的には60℃/min 〜
10℃/hの範囲の速度が有利である。Here, the rate of temperature rise up to 500 ° C. does not have a significant effect on the recrystallization behavior, and thus does not need to be particularly restricted. The cooling conditions do not need to be particularly restricted in terms of magnetic properties, but are economically at 60 ° C./min.
Rates in the range of 10 ° C./h are advantageous.
【0045】さらにまた、磁束密度を向上させるために
Niを添加することができる。Niの添加量が0.01mass%未
満であると磁気特性の向上量が小さくなり、一方3.50ma
ss%をこえると、集合組織の発達が不十分で磁気特性が
劣化するため、添加量は0.01〜3.50mass%とする。同様
に、鉄損を向上させるために、Sn:0.01〜0.50mass%,
Cu:0.01〜0.50mass%,P:0.005 〜0.50mass%,Cr:
0.01〜1.50mass%を添加することも有効である。この範
囲より添加量が少ない場合には鉄損改善効果がなく、添
加量が多い場合には飽和磁束密度が低下する。Further, in order to improve the magnetic flux density,
Ni can be added. If the addition amount of Ni is less than 0.01 mass%, the amount of improvement in magnetic properties becomes small, while
If the content exceeds ss%, the texture is insufficiently developed and the magnetic properties are deteriorated. Therefore, the addition amount is set to 0.01 to 3.50 mass%. Similarly, in order to improve iron loss, Sn: 0.01 to 0.50 mass%,
Cu: 0.01 to 0.50 mass%, P: 0.005 to 0.50 mass%, Cr:
It is also effective to add 0.01 to 1.50 mass%. When the addition amount is less than this range, there is no effect of improving iron loss, and when the addition amount is large, the saturation magnetic flux density decreases.
【0046】ちなみに、上記した成分を有する溶鋼は、
通常の通常造塊法や連続鋳造法にてスラブとしてもよい
し、100mm 以下の厚さの薄鋳片を直接鋳造法で製造して
もよい。次いで、スラブは通常の方法で加熱して熱間圧
延するが、鋳造後加熱せずに直ちに熱間圧延してもよ
い。薄鋳片の場合には、熱間圧延しても良いし、熱間圧
延を省略してそのまま以後の工程に進んでもよい。引き
続き、熱延板焼鈍を施し、必要に応じて中間焼鈍を挟む
1回以上の冷間圧延を施した後連続焼鈍を行い、必要に
応じて絶縁コーティングを施す。最後に、積層した鋼板
の鉄損を改善するために、鋼板表面に絶縁コーティング
が施されるが、この目的には2種類以上の被膜からなる
多層膜であってもよいし、樹脂等を混合させたコーティ
ングを施してもよい。By the way, molten steel having the above-mentioned components is
The slab may be formed by a normal ordinary ingot making method or a continuous casting method, or a thin slab having a thickness of 100 mm or less may be produced by a direct casting method. Next, the slab is heated and hot-rolled by a usual method, but may be hot-rolled immediately after casting without heating. In the case of a thin slab, hot rolling may be performed, or hot rolling may be omitted and the process may proceed to the subsequent steps. Subsequently, hot-rolled sheet annealing is performed, and if necessary, one or more times of cold rolling sandwiching intermediate annealing is performed, then continuous annealing is performed, and an insulating coating is applied as necessary. Finally, in order to improve the iron loss of the laminated steel sheet, an insulating coating is applied to the steel sheet surface. For this purpose, a multilayer film composed of two or more kinds of films may be used, or a resin or the like may be mixed. A coated coating may be applied.
【0047】[0047]
【実施例】実施例1 C:0.0033mass%,Si:3.33mass%,Mn:0.13mass%,
Al:0.0030mass%,N:0.0020mass%,Sb:0.03mass%
を含み、かつB、O、S、Ti、V、Zr、NbおよびTaの含
有量を各々20ppm 以下に低減した成分組成の鋼スラブ
を、連続鋳造にて製造した。このスラブを、1220℃で50
分加熱し熱間圧延にて2.3 mm厚に仕上げた。次いで、熱
延板焼鈍を表1に示す条件にて行い、熱延板焼鈍後の平
均粒径を測定した。その後、鋼板を酸洗してスケールを
除去した後、220 ℃の温度で冷間圧延を行って0.35mmの
最終板厚に仕上げた。その後、水素雰囲気で1000℃×30
秒の再結晶焼鈍を施し、半有機コーティング液を塗布し
て300 ℃で焼き付けて製品とした。EXAMPLES Example 1 C: 0.0033 mass%, Si: 3.33 mass%, Mn: 0.13 mass%,
Al: 0.0030 mass%, N: 0.0020 mass%, Sb: 0.03 mass%
And a steel slab having a component composition in which the contents of B, O, S, Ti, V, Zr, Nb and Ta were reduced to 20 ppm or less, respectively, was produced by continuous casting. The slab is heated at 1220 ° C for 50
It was heated for 2.3 minutes and finished by hot rolling to a thickness of 2.3 mm. Next, hot-rolled sheet annealing was performed under the conditions shown in Table 1, and the average particle size after hot-rolled sheet annealing was measured. Thereafter, the steel sheet was pickled to remove scale, and then cold-rolled at a temperature of 220 ° C. to finish to a final thickness of 0.35 mm. Then, in a hydrogen atmosphere 1000 ℃ × 30
After recrystallization annealing for 2 seconds, a semi-organic coating solution was applied and baked at 300 ° C. to obtain a product.
【0048】かくして得られた製品板から、圧延方向と
平行におよび圧延方向と直角に、それぞれサンプルを切
り出して、JIS C2550に準拠して磁束密度および鉄損を
測定し、その平均の磁束密度および鉄損を求めた。その
測定結果を表1に併記するように、熱延板焼鈍後の粒径
が0.05〜0.40mmの範囲にある鋼板では、良好な磁気特性
が得られていることがわかる。From the product sheet thus obtained, samples were cut out in parallel to the rolling direction and at right angles to the rolling direction, and the magnetic flux density and iron loss were measured in accordance with JIS C2550. Iron loss was determined. As shown in Table 1, the measurement results show that the steel sheet having a grain size after annealing of the hot-rolled sheet in the range of 0.05 to 0.40 mm has excellent magnetic properties.
【0049】[0049]
【表1】 [Table 1]
【0050】実施例2 C:0.0020mass%、Si:2.04mass%、Mn:0.05mass%、
Al:0.013 mass%およびN 0.0015 mass%を含み、かつ
B、O、S、Ti、V、Zr、NbおよびTaの含有量を各々20
ppm 以下に低減した成分組成の鋼スラブを、連続鋳造に
て製造した。このスラブを、1100℃で30分加熱し熱間圧
延にて2.8 mm厚に仕上げた。次いで、熱延板焼鈍を、10
50℃で30秒間にて行った。この熱延板焼鈍後の平均粒径
は0.15mmであった。次に、鋼板を酸洗してスケールを除
去した後、180 ℃の温度で冷間圧延を行って0.35mmの最
終板厚に仕上げた。その後、水素雰囲気において、表2
に示す昇温速度で昇温して最高温度に到達後冷却する、
再結晶焼鈍を施してから、半有機コーティング液を塗布
して300 ℃で焼き付けて製品とした。Example 2 C: 0.0020 mass%, Si: 2.04 mass%, Mn: 0.05 mass%,
Al: 0.013 mass% and 0.0015 mass% of N, and the content of B, O, S, Ti, V, Zr, Nb and Ta is 20 respectively.
A steel slab having a component composition reduced to less than ppm was manufactured by continuous casting. This slab was heated at 1100 ° C. for 30 minutes and finished to a 2.8 mm thickness by hot rolling. Next, hot-rolled sheet annealing was performed for 10 minutes.
Performed at 50 ° C. for 30 seconds. The average particle size after annealing of the hot-rolled sheet was 0.15 mm. Next, the steel sheet was pickled to remove scale, and then cold-rolled at a temperature of 180 ° C. to a final thickness of 0.35 mm. Then, in a hydrogen atmosphere, Table 2
The temperature is raised at the rate shown in
After recrystallization annealing, a semi-organic coating solution was applied and baked at 300 ° C. to obtain a product.
【0051】かくして得られた製品板から、圧延方向と
平行におよび圧延方向と直角に、それぞれサンプルを切
り出して、JIS C2550に準拠して磁束密度および鉄損を
測定し、その平均の磁束密度および鉄損を求めた。その
測定結果を表2に併記するように、再結晶焼鈍時におけ
る常温から700 ℃までの昇温速度を200 ℃/hとし、70
0 ℃以上での平均昇温速度を1℃〜100 ℃/hとして、
750 ℃以上1200℃以下の温度まで到達させることによ
り、特に磁気特性の良好な製品が得られることがわか
る。From the product sheet thus obtained, samples were cut out in parallel with the rolling direction and at right angles to the rolling direction, and the magnetic flux density and iron loss were measured in accordance with JIS C2550. Iron loss was determined. As shown in Table 2, the rate of temperature increase from normal temperature to 700 ° C. during recrystallization annealing was set to 200 ° C./h.
Assuming that the average heating rate at 0 ° C. or higher is 1 ° C. to 100 ° C./h,
It can be seen that by reaching a temperature of 750 ° C. or more and 1200 ° C. or less, a product having particularly good magnetic properties can be obtained.
【0052】[0052]
【表2】 [Table 2]
【0053】実施例3 C:0.0019mass%、Si:3.43mass%、Mn:0.03mass%,
Al:0.0030mass%、N:0.0015mass%、Sb:0.05mass%
を含み、かつB、O、S、Ti、V、Zr、NbおよびTaの含
有量を各々20ppm 以下に低減した成分組成の鋼スラブ
を、連続鋳造により製造した。このスラブを1150℃で30
分加熱し熱間圧延にて2.8 mm厚に仕上げた。次いで、熱
延板焼鈍を1120℃10秒間で行った。熱延板焼鈍後の平均
粒径は0.32mmであった。次に、鋼板を酸洗してスケール
を除去してから、室温での冷間圧延にて1.6 mmに仕上げ
た。中間焼鈍を1000℃で60秒間行ったのち通常室温での
冷間圧延で0.20mm厚に仕上げた。その後、Ar雰囲気に
て、表3に示す条件に従って1次再結晶焼鈍を行い、70
0 ℃以下の温度に冷却後、引き続いて2次再結晶焼鈍を
施して製品とした。Example 3 C: 0.0019 mass%, Si: 3.43 mass%, Mn: 0.03 mass%,
Al: 0.0030 mass%, N: 0.0015 mass%, Sb: 0.05 mass%
And a steel slab having a component composition in which the contents of B, O, S, Ti, V, Zr, Nb, and Ta were each reduced to 20 ppm or less was produced by continuous casting. This slab is heated at 1150 ° C for 30
And heated to a thickness of 2.8 mm by hot rolling. Next, hot-rolled sheet annealing was performed at 1120 ° C. for 10 seconds. The average particle size after annealing of the hot-rolled sheet was 0.32 mm. Next, the steel sheet was pickled to remove the scale, and then finished by cold rolling at room temperature to 1.6 mm. Intermediate annealing was performed at 1000 ° C. for 60 seconds, and then cold rolling was performed at room temperature to finish to a thickness of 0.20 mm. Thereafter, primary recrystallization annealing was performed in an Ar atmosphere according to the conditions shown in Table 3,
After cooling to a temperature of 0 ° C. or lower, the product was subsequently subjected to secondary recrystallization annealing to obtain a product.
【0054】かくして得られた製品板から、圧延方向と
平行におよび圧延方向と直角に、それぞれサンプルを切
り出して、JIS C2550に準拠して磁束密度および鉄損を
測定し、その平均の磁束密度および鉄損を求めた。その
測定結果を表3に併記するように、再結晶焼鈍における
1次焼鈍で500 〜700 ℃を2℃/s以上とし、続く2次
焼鈍で700 ℃以上での昇温速度を1℃〜100 ℃/hとし
て750 ℃以上1200℃以下の温度まで到達させることによ
り、特に磁気特性の良好な製品が得られることがわか
る。From the product sheet thus obtained, samples were cut out in parallel with the rolling direction and at right angles to the rolling direction, and the magnetic flux density and iron loss were measured in accordance with JIS C2550. Iron loss was determined. As shown in Table 3, the measurement results are as follows: the primary annealing in recrystallization annealing is performed at a temperature of 500 to 700 ° C. at 2 ° C./s or more, and the subsequent secondary annealing is performed at a temperature increasing rate of 700 ° C. or more at 1 ° C. to 100 ° C. It is understood that a product having particularly good magnetic properties can be obtained by reaching a temperature of 750 ° C. or more and 1200 ° C. or less as ° C./h.
【0055】[0055]
【表3】 [Table 3]
【0056】実施例4 表4に示す成分の鋼スラブを、連続鋳造にて製造した。
このスラブを、1220℃で50分加熱し熱間圧延にて1.8 mm
厚に仕上げた。次いで、熱延板焼鈍を表1に示した条件
にて行い、熱延板焼鈍後の平均粒径を測定した。その
後、鋼板を酸洗してスケールを除去してから、冷間圧延
を行って0.50mmの最終板厚に仕上げた。次に、水素雰囲
気で1020℃×30秒の再結晶焼鈍を施し、半有機コーティ
ング液を塗布して300 ℃で焼き付けて製品とした。Example 4 Steel slabs having the components shown in Table 4 were produced by continuous casting.
This slab is heated at 1220 ° C for 50 minutes and hot-rolled to 1.8 mm
Finished thick. Next, hot-rolled sheet annealing was performed under the conditions shown in Table 1, and the average particle size after hot-rolled sheet annealing was measured. Thereafter, the steel sheet was pickled to remove scale, and then cold-rolled to a final thickness of 0.50 mm. Next, recrystallization annealing was performed at 1020 ° C. for 30 seconds in a hydrogen atmosphere, and a semi-organic coating solution was applied and baked at 300 ° C. to obtain a product.
【0057】かくして得られた製品板から、圧延方向と
平行におよび圧延方向と直角に、それぞれサンプルを切
り出して、JIS C2550に準拠して磁束密度および鉄損を
測定し、その平均の磁束密度および鉄損を求めた。その
測定結果を表4に併記するように、Al含有量を0.017 ma
ss%以下かつN含有量を0.0030mass%以下にした成分系
で、熱延板焼鈍後の粒径が0.05〜0.40mmの範囲におい
て、磁気特性の良好な製品が得られていることがわか
る。From the product sheet thus obtained, samples were cut out in parallel with the rolling direction and at right angles to the rolling direction, and the magnetic flux density and iron loss were measured in accordance with JIS C2550. Iron loss was determined. As shown in Table 4, the Al content was 0.017 ma.
It can be seen that a product having excellent magnetic properties is obtained in a component system in which the ss% or less and the N content are 0.0030 mass% or less and the particle diameter after annealing of the hot-rolled sheet is in the range of 0.05 to 0.40 mm.
【0058】[0058]
【表4】 [Table 4]
【0059】[0059]
【発明の効果】この発明によれば、従来技術で得られる
磁気特性を凌駕した、優れた磁束密度並びに鉄損を有す
る無方向性電磁鋼板を得ることができる。According to the present invention, it is possible to obtain a non-oriented electrical steel sheet having excellent magnetic flux density and iron loss, which surpasses the magnetic properties obtained by the prior art.
【図1】 熱延板焼鈍後の平均粒径と磁束密度B50との
関係を示す図である。1 is a diagram showing the relationship between the average particle diameter and the magnetic flux density B 50 after the hot rolled sheet annealing.
【図2】 熱延板焼鈍後の平均粒径と鉄損 W15/50 との
関係を示す図である。FIG. 2 is a view showing the relationship between the average grain size after hot-rolled sheet annealing and iron loss W 15/50 .
【図3】 熱延板焼鈍後の平均粒径と製品板平均粒径と
の関係を示す図である。FIG. 3 is a diagram showing a relationship between an average particle size after annealing of a hot-rolled sheet and an average particle size of a product sheet.
【図4】 熱延板焼鈍後の平均粒径と製品板における(1
00) 面強度との関係を示す図である。Fig. 4 Average grain size after annealing of hot rolled sheet and (1
FIG. 10 is a diagram showing a relationship with surface strength.
【図5】 熱延板焼鈍板平均粒径と製品板における(11
1)面強度との関係を示す図である。FIG. 5 shows the average grain size of annealed hot rolled sheet and (11
It is a figure which shows the relationship with 1) surface strength.
【図6】 素材のAlおよびN量と磁束密度B50との関係
を示す図である。6 is a diagram showing the relationship between the Al and N contents and magnetic flux density B 50 of the material.
【図7】 素材のAlおよびN量と鉄損 W15/50 との関係
を示す図である。FIG. 7 is a diagram showing the relationship between the amounts of Al and N of a material and iron loss W 15/50 .
【図8】 仕上焼鈍条件と製品板磁気特性との関係を示
す図である。FIG. 8 is a graph showing the relationship between finish annealing conditions and product sheet magnetic properties.
【図9】 仕上焼鈍条件と製品板粒径との関係を示す図
である。FIG. 9 is a graph showing the relationship between finish annealing conditions and product sheet grain size.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/60 C22C 38/60 (72)発明者 小森 ゆか 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 河野 正樹 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K033 AA01 CA01 CA02 CA03 CA07 CA08 CA09 EA02 HA01 HA03 KA01 5E041 AA02 AA19 CA02 HB07 HB11 NN01 NN18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/60 C22C 38/60 (72) Inventor Yuka Komori 1-chome Mizushima Kawasaki-dori Kurashiki City, Okayama Prefecture (M) Kawasaki Steel Corporation Mizushima Works (72) Inventor Masaki Kono 1-chome, Mizushima Kawasaki-dori, Kurashiki City, Okayama Pref. EA02 HA01 HA03 KA01 5E041 AA02 AA19 CA02 HB07 HB11 NN01 NN18
Claims (5)
〜1.50mass%を含有する鋼スラブに熱間圧延を施し、次
いで熱延板焼鈍を施してから、1回もしくは中間焼鈍を
挟む2回以上の冷間圧延を施して最終板厚に仕上げ、そ
の後再結晶焼鈍を行い、必要に応じて絶縁コーティング
を施す、無方向性電磁鋼板の製造方法において、鋼スラ
ブに含まれるAl量を0.017 mass%以下かつN量を0.0030
mass%以下に調整するとともに、熱延板焼鈍後の平均粒
径を0.050 〜0.40mmに制御することを特徴とする、鉄損
が低くかつ磁束密度の高い無方向性電磁鋼板の製造方
法。1. Si: 1.5 to 4.0 mass% and Mn: 0.005
Hot rolling is performed on a steel slab containing 1.51.50 mass%, then hot-rolled sheet annealing is performed, and then cold rolling is performed once or twice or more with intermediate annealing to finish to a final sheet thickness. A method for producing a non-oriented electrical steel sheet, comprising performing recrystallization annealing and applying an insulating coating as necessary, wherein the Al content in the steel slab is 0.017 mass% or less and the N content is 0.0030% or less.
A method for producing a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density, wherein the non-oriented electrical steel sheet has a low iron loss and a high average magnetic flux density.
る、B、O、S、Ti、V、Zr、NbおよびTaの量を各々20
ppm 以下に抑制することを特徴とする鉄損が低くかつ磁
束密度の高い無方向性電磁鋼板の製造方法。2. The steel slab according to claim 1, wherein the amounts of B, O, S, Ti, V, Zr, Nb and Ta are each 20.
A method for producing a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density, characterized in that the steel sheet has a core loss of not more than ppm.
は、700 ℃以上の温度域での昇温速度を100 ℃/h以下
として750 ℃以上1200℃以下の温度域まで到達させるこ
とを特徴とする鉄損が低くかつ磁束密度の高い無方向性
電磁鋼板の製造方法。3. The recrystallization annealing according to claim 1, wherein the recrystallization annealing is performed at a temperature rising rate of 100 ° C./h or less in a temperature range of 700 ° C. or more to reach a temperature range of 750 ° C. or more and 1200 ° C. or less. A method for producing a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density.
は、500 〜700 ℃の温度域での昇温速度を2℃/s以上
として700 ℃以上に昇温して再結晶を完了させた後、70
0 ℃以下の温度域まで冷却し、再び700 ℃以上の温度域
での昇温速度を100 ℃/h以下として750 ℃以上1200℃
以下の温度域まで到達させることを特徴とする鉄損が低
くかつ磁束密度の高い無方向性電磁鋼板の製造方法。4. The recrystallization annealing according to claim 1, wherein the recrystallization annealing is performed at a temperature rising rate of 2 ° C./s or more in a temperature range of 500 to 700 ° C. to 700 ° C. or more to complete recrystallization. Later, 70
Cool to a temperature range of 0 ° C or lower, and again set the heating rate in a temperature range of 700 ° C or higher to 100 ° C / h or less and 750 ° C to 1200 ° C.
A method for producing a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density, characterized by reaching the following temperature range.
鋼スラブが、さらにCr:0.01〜1.50mass%、Ni: 0.01
〜3.50mass%、Cu: 0.01 〜0.50mass%、Sb: 0.005〜
0.50mass%、Sn: 0.005〜0.50mass%およびP: 0.005
〜0.5 mass%のいずれか少なくとも1種を含有すること
を特徴とする鉄損が低くかつ磁束密度の高い無方向性電
磁鋼板の製造方法。5. The method according to claim 1, wherein
Steel slab further contains Cr: 0.01-1.50 mass%, Ni: 0.01
~ 3.50mass%, Cu: 0.01 ~ 0.50mass%, Sb: 0.005 ~
0.50 mass%, Sn: 0.005 to 0.50 mass% and P: 0.005
A method for producing a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density, characterized by containing at least one of 0.5 to 0.5 mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000129677A JP4126479B2 (en) | 2000-04-28 | 2000-04-28 | Method for producing non-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000129677A JP4126479B2 (en) | 2000-04-28 | 2000-04-28 | Method for producing non-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001316729A true JP2001316729A (en) | 2001-11-16 |
JP4126479B2 JP4126479B2 (en) | 2008-07-30 |
Family
ID=18638914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000129677A Expired - Fee Related JP4126479B2 (en) | 2000-04-28 | 2000-04-28 | Method for producing non-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4126479B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011155183A1 (en) * | 2010-06-09 | 2011-12-15 | Jfeスチール株式会社 | Process for production of non-oriented electromagnetic steel sheet, and continuous annealing facility |
WO2012055223A1 (en) * | 2010-10-25 | 2012-05-03 | 宝山钢铁股份有限公司 | High strength non-oriented electric steel having higher magnetic flux density and manufacture method thereof |
WO2012086534A1 (en) * | 2010-12-22 | 2012-06-28 | Jfeスチール株式会社 | Process for production of non-oriented electromagnetic steel sheet |
JP2013010982A (en) * | 2011-06-28 | 2013-01-17 | Jfe Steel Corp | Method for manufacturing non-oriented electromagnetic steel sheet |
JP2014195818A (en) * | 2013-03-29 | 2014-10-16 | Jfeスチール株式会社 | Method of producing hot-rolled steel sheet for non-oriented electromagnetic steel sheet and method of producing non-oriented electromagnetic steel sheet |
CN104674136A (en) * | 2013-11-28 | 2015-06-03 | Posco公司 | Non-oriented electrical steel sheet excellent in magnetic permeability and method for manufacturing the same |
EP2886667A4 (en) * | 2012-08-17 | 2015-09-30 | Jfe Steel Corp | Method for manufacturing non-oriented electromagnetic steel sheet |
WO2017086036A1 (en) * | 2015-11-20 | 2017-05-26 | Jfeスチール株式会社 | Process for producing non-oriented electromagnetic steel sheet |
JP2017101315A (en) * | 2015-11-20 | 2017-06-08 | Jfeスチール株式会社 | Method for producing non-oriented electrical steel sheet |
WO2017122761A1 (en) * | 2016-01-15 | 2017-07-20 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for producing same |
US9920393B2 (en) | 2012-03-15 | 2018-03-20 | Jfe Steel Corporation | Method of producing non-oriented electrical steel sheet |
US9978488B2 (en) | 2013-02-21 | 2018-05-22 | Jfe Steel Corporation | Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties |
WO2020090156A1 (en) * | 2018-10-31 | 2020-05-07 | Jfeスチール株式会社 | Method for manufacturing non-oriented electromagnetic steel sheet |
US11056256B2 (en) * | 2016-10-27 | 2021-07-06 | Jfe Steel Corporation | Non-oriented electrical steel sheet and method of producing same |
CN113165033A (en) * | 2018-11-26 | 2021-07-23 | 杰富意钢铁株式会社 | Method for producing non-oriented electromagnetic steel sheet |
US11286537B2 (en) | 2017-01-17 | 2022-03-29 | Jfe Steel Corporation | Non-oriented electrical steel sheet and method of producing same |
CN118127289A (en) * | 2024-05-08 | 2024-06-04 | 华誉智造(上海)新材料有限公司 | Manufacturing method of ultrathin oriented silicon steel with excellent and stable magnetic performance |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102794301B (en) * | 2012-08-03 | 2014-07-09 | 莱芜市泰山冷轧板有限公司 | Manufacture method of cold-rolled electrolytic tin substrate |
EP2883975B1 (en) | 2012-08-08 | 2019-09-18 | JFE Steel Corporation | High-strength non-oriented electricomagnetic steel sheet and method for producing same |
JP6127440B2 (en) | 2012-10-16 | 2017-05-17 | Jfeスチール株式会社 | Hot rolled steel sheet for manufacturing non-oriented electrical steel sheet and method for manufacturing the same |
JP6057082B2 (en) | 2013-03-13 | 2017-01-11 | Jfeスチール株式会社 | Non-oriented electrical steel sheet with excellent magnetic properties |
JP5995002B2 (en) | 2013-08-20 | 2016-09-21 | Jfeスチール株式会社 | High magnetic flux density non-oriented electrical steel sheet and motor |
JP5790953B2 (en) | 2013-08-20 | 2015-10-07 | Jfeスチール株式会社 | Non-oriented electrical steel sheet and its hot-rolled steel sheet |
BR112017003178B1 (en) | 2014-08-21 | 2021-04-13 | Jfe Steel Corporation | ELECTROMAGNETIC STEEL SHEET NOT ORIENTED AND METHOD FOR MANUFACTURING THE SAME |
JP6020863B2 (en) | 2015-01-07 | 2016-11-02 | Jfeスチール株式会社 | Non-oriented electrical steel sheet and manufacturing method thereof |
JP6048699B2 (en) | 2015-02-18 | 2016-12-21 | Jfeスチール株式会社 | Non-oriented electrical steel sheet, manufacturing method thereof and motor core |
KR101977510B1 (en) | 2017-12-26 | 2019-08-28 | 주식회사 포스코 | Non-oriented electrical steel sheet having exelleant magnetic properties low deviation of thickness and method of manufacturing the same |
KR102109241B1 (en) | 2017-12-26 | 2020-05-11 | 주식회사 포스코 | Non-oriented electrical steel sheet having excellent shape property and method of manufacturing the same |
KR102164113B1 (en) | 2018-11-29 | 2020-10-13 | 주식회사 포스코 | Non-oriented electrical steel sheet having low iron loss property and excellent surface quality and method of manufacturing the same |
KR102218470B1 (en) | 2019-06-17 | 2021-02-19 | 주식회사 포스코 | Non-oriented electrical steel sheet having excellent magnetic and shape properties, and method for manufacturing the same |
-
2000
- 2000-04-28 JP JP2000129677A patent/JP4126479B2/en not_active Expired - Fee Related
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011155183A1 (en) * | 2010-06-09 | 2011-12-15 | Jfeスチール株式会社 | Process for production of non-oriented electromagnetic steel sheet, and continuous annealing facility |
JP2011256437A (en) * | 2010-06-09 | 2011-12-22 | Jfe Steel Corp | Method for manufacturing non-oriented electromagnetic steel sheet |
WO2012055223A1 (en) * | 2010-10-25 | 2012-05-03 | 宝山钢铁股份有限公司 | High strength non-oriented electric steel having higher magnetic flux density and manufacture method thereof |
JP2012132070A (en) * | 2010-12-22 | 2012-07-12 | Jfe Steel Corp | Method for manufacturing non-oriented electromagnetic steel plate |
KR101508082B1 (en) | 2010-12-22 | 2015-04-07 | 제이에프이 스틸 가부시키가이샤 | Method of producing non-oriented electrical steel sheet |
WO2012086534A1 (en) * | 2010-12-22 | 2012-06-28 | Jfeスチール株式会社 | Process for production of non-oriented electromagnetic steel sheet |
JP2013010982A (en) * | 2011-06-28 | 2013-01-17 | Jfe Steel Corp | Method for manufacturing non-oriented electromagnetic steel sheet |
US9920393B2 (en) | 2012-03-15 | 2018-03-20 | Jfe Steel Corporation | Method of producing non-oriented electrical steel sheet |
EP2886667A4 (en) * | 2012-08-17 | 2015-09-30 | Jfe Steel Corp | Method for manufacturing non-oriented electromagnetic steel sheet |
US9748027B2 (en) | 2012-08-17 | 2017-08-29 | Jfe Steel Corporation | Method for manufacturing non-oriented electromagnetic steel sheet |
US9978488B2 (en) | 2013-02-21 | 2018-05-22 | Jfe Steel Corporation | Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties |
JP2014195818A (en) * | 2013-03-29 | 2014-10-16 | Jfeスチール株式会社 | Method of producing hot-rolled steel sheet for non-oriented electromagnetic steel sheet and method of producing non-oriented electromagnetic steel sheet |
CN104674136A (en) * | 2013-11-28 | 2015-06-03 | Posco公司 | Non-oriented electrical steel sheet excellent in magnetic permeability and method for manufacturing the same |
WO2017086036A1 (en) * | 2015-11-20 | 2017-05-26 | Jfeスチール株式会社 | Process for producing non-oriented electromagnetic steel sheet |
JP2017101315A (en) * | 2015-11-20 | 2017-06-08 | Jfeスチール株式会社 | Method for producing non-oriented electrical steel sheet |
US11225699B2 (en) | 2015-11-20 | 2022-01-18 | Jfe Steel Corporation | Method for producing non-oriented electrical steel sheet |
WO2017122761A1 (en) * | 2016-01-15 | 2017-07-20 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for producing same |
CN108463569A (en) * | 2016-01-15 | 2018-08-28 | 杰富意钢铁株式会社 | Non orientation electromagnetic steel plate and its manufacturing method |
US11008633B2 (en) | 2016-01-15 | 2021-05-18 | Jfe Steel Corporation | Non-oriented electrical steel sheet and production method thereof |
JPWO2017122761A1 (en) * | 2016-01-15 | 2018-01-18 | Jfeスチール株式会社 | Non-oriented electrical steel sheet and manufacturing method thereof |
US11056256B2 (en) * | 2016-10-27 | 2021-07-06 | Jfe Steel Corporation | Non-oriented electrical steel sheet and method of producing same |
US11286537B2 (en) | 2017-01-17 | 2022-03-29 | Jfe Steel Corporation | Non-oriented electrical steel sheet and method of producing same |
WO2020090156A1 (en) * | 2018-10-31 | 2020-05-07 | Jfeスチール株式会社 | Method for manufacturing non-oriented electromagnetic steel sheet |
JPWO2020090156A1 (en) * | 2018-10-31 | 2021-02-15 | Jfeスチール株式会社 | Manufacturing method of non-oriented electrical steel sheet |
CN113165033A (en) * | 2018-11-26 | 2021-07-23 | 杰富意钢铁株式会社 | Method for producing non-oriented electromagnetic steel sheet |
CN118127289A (en) * | 2024-05-08 | 2024-06-04 | 华誉智造(上海)新材料有限公司 | Manufacturing method of ultrathin oriented silicon steel with excellent and stable magnetic performance |
Also Published As
Publication number | Publication date |
---|---|
JP4126479B2 (en) | 2008-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4126479B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP6767687B1 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
JP5854182B2 (en) | Method for producing non-oriented electrical steel sheet | |
WO2013137092A1 (en) | Method for producing non-oriented magnetic steel sheet | |
JP6813014B2 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
JP2023052264A (en) | Non-oriented electromagnetic steel plate and its manufacturing method | |
JP2012207278A (en) | Method for manufacturing grain-oriented electromagnetic steel sheet | |
WO2013024894A1 (en) | Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate | |
JP7253054B2 (en) | Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method | |
JP2001303214A (en) | Grain-oriented electrical steel sheet excellent in high-frequency magnetic properties and method for producing the same | |
JP2008150697A (en) | Manufacturing method of electrical steel sheet | |
JP3855554B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP2024517690A (en) | Non-oriented electrical steel sheet and its manufacturing method | |
JP2003171718A (en) | Method for producing electrical steel sheet with excellent average magnetic properties in the rolling plane | |
JP4123629B2 (en) | Electrical steel sheet and manufacturing method thereof | |
JP7245325B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2022545025A (en) | Cu-containing non-oriented electrical steel sheet and manufacturing method thereof | |
JP2001335897A (en) | Non-oriented electrical steel sheet with excellent workability and recyclability, low iron loss and high magnetic flux density | |
JP2005002401A (en) | Method for producing non-oriented electrical steel sheet | |
JP4259269B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2560579B2 (en) | Method for manufacturing high silicon steel sheet having high magnetic permeability | |
JP2002105537A (en) | Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with small edge cracks and excellent coating properties and excellent magnetic properties | |
JP2001247943A (en) | Non-oriented electrical steel sheet with low iron loss and high magnetic flux density and method of manufacturing the same | |
JP4259002B2 (en) | Method for producing grain-oriented electrical steel sheet | |
CN115003845B (en) | Non-oriented electrical steel sheet and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20040401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070925 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071122 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20071122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080415 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080428 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4126479 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140523 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |