[go: up one dir, main page]

JP2001313082A - Power supply system for traveling vehicles - Google Patents

Power supply system for traveling vehicles

Info

Publication number
JP2001313082A
JP2001313082A JP2000128741A JP2000128741A JP2001313082A JP 2001313082 A JP2001313082 A JP 2001313082A JP 2000128741 A JP2000128741 A JP 2000128741A JP 2000128741 A JP2000128741 A JP 2000128741A JP 2001313082 A JP2001313082 A JP 2001313082A
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous secondary
battery group
power supply
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2000128741A
Other languages
Japanese (ja)
Inventor
Ichiro Shimoura
一朗 下浦
Yoshinari Morimoto
佳成 森本
Imakichi Hirasawa
今吉 平沢
Tetsuo Ogoshi
哲郎 大越
Satoshi Minoura
敏 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000128741A priority Critical patent/JP2001313082A/en
Priority to US09/816,145 priority patent/US6366055B1/en
Priority to EP01108083A priority patent/EP1138554B1/en
Priority to DE60136237T priority patent/DE60136237D1/en
Publication of JP2001313082A publication Critical patent/JP2001313082A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】 【課題】自動車等の走行車輌の減速時におけるエネルギ
ーを回生エネルギーとして充分に受け入れることができ
る走行車輌用電源システムを提供する。 【解決手段】非水系二次電池群1と水溶液系二次電池群
2とを組み合わせた走行車輌用電源システムで、前記非
水系二次電池群1の充電状態を基準にして前記水溶液系
二次電池群2の充電状態を制御するバッテリコントロー
ラ5を備えた。
(57) [Problem] To provide a power supply system for a traveling vehicle that can sufficiently receive energy as deceleration energy when the traveling vehicle such as an automobile is decelerated. A power supply system for a traveling vehicle combining a non-aqueous secondary battery group (1) and an aqueous secondary battery group (2), wherein the aqueous secondary battery is based on the state of charge of the non-aqueous secondary battery group (1). A battery controller 5 for controlling the state of charge of the battery group 2 was provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自動車等に使用され
る走行車輌用電源システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply system for a traveling vehicle used for an automobile or the like.

【0002】[0002]

【従来の技術】従来、自動車には12V系鉛蓄電池が搭
載される電源システム(14Vシステム)が用いられて
きた。該14Vシステムでは、12V系鉛蓄電池から自
動車のエンジンを始動する起動装置(スターターモー
タ)に電流を供給(放電)し、前記エンジンが始動した
後は、該エンジンの回転力によって作動する発電機から
12V系鉛蓄電池に電流が常時供給される(充電)。と
ころが、自動車の減速時のエネルギーは、熱として消費
されていた。近年、12V系鉛蓄電池に代って、36V
系鉛蓄電池を搭載する新しい電源システム(42Vシス
テム)が提案されている。該42Vシステムでは、自動
車のエンジンを始動する車輌起動装置として、高出力な
モータジェネレータを使用することが可能になり、該モ
ータジェネレータにより、従来、熱として消費されてい
た自動車の減速時におけるエネルギーを、回生エネルギ
ーとして電気エネルギーに変換して36V系鉛蓄電池に
電流を供給(充電)し、エネルギー効率を高め、自動車
の燃費向上を可能にしようとするものである。
2. Description of the Related Art Conventionally, a power supply system (14V system) equipped with a 12V lead storage battery has been used in automobiles. In the 14V system, a current is supplied (discharged) to a starting device (starter motor) for starting an automobile engine from a 12V lead storage battery. After the engine is started, a generator operated by the rotational force of the engine is used. Current is constantly supplied (charged) to the 12V lead storage battery. However, the energy when the vehicle decelerated was consumed as heat. In recent years, instead of 12V lead-acid batteries, 36V
A new power supply system (42V system) equipped with a system lead storage battery has been proposed. In the 42V system, a high-output motor generator can be used as a vehicle starting device for starting an engine of the vehicle, and the motor generator can use the energy that is conventionally consumed as heat during deceleration of the vehicle. It is intended to convert (convert) electric energy into regenerative energy to supply (charge) current to a 36V-based lead-acid battery, thereby improving energy efficiency and improving fuel efficiency of automobiles.

【0003】[0003]

【発明が解決しようとする課題】しかし、該42Vシス
テムに使用されるモータジェネレータは、3〜4kWと高
出力であり、回生時の電流値は40〜80A(2〜4C
A相当)に達するが、従来の鉛蓄電池で、このような大
電流充電を受け入れることは難しい。即ち、鉛蓄電池
は、1CA以上になると、充電時の副反応である水の分
解反応が促進され、充電効率が落ちて電池の寿命に悪影
響を及ぼすためである。特に、エンジンルームへの搭載
(雰囲気温度60℃)を前提とされる自動車においては
短寿命になる惧れがある。本発明は、自動車等の走行車
輌の減速時におけるエネルギーを、回生エネルギーとし
て充分に受け入れることができる走行車輌用電源システ
ムを提供することを目的とする。
However, the motor generator used in the 42V system has a high output of 3 to 4 kW, and the current value during regeneration is 40 to 80 A (2 to 4 C).
A), but it is difficult for conventional lead-acid batteries to accept such high-current charging. That is, when the lead storage battery becomes 1 CA or more, the decomposition reaction of water, which is a side reaction at the time of charging, is promoted, and the charging efficiency is reduced, thereby adversely affecting the life of the battery. In particular, there is a possibility that the life of an automobile which is assumed to be mounted in an engine room (atmospheric temperature of 60 ° C.) may be short. SUMMARY OF THE INVENTION It is an object of the present invention to provide a power supply system for a traveling vehicle that can sufficiently accept energy during deceleration of a traveling vehicle such as an automobile as regenerative energy.

【0004】[0004]

【発明が解決するための手段】本発明は、上記目的を達
成するためになされたもので、非水系二次電池群と水溶
液系二次電池群とを組み合わせた走行車輌用電源システ
ムであって、前記非水系二次電池群の充電状態を制御す
るバッテリコントローラを備えたことを特徴とする。前
記非水系二次電池群の充電状態を基準にして前記水溶液
系二次電池群の充電状態を制御するバッテリコントロー
ラを備えていることが望ましく、ここで、該バッテリコ
ントローラは、前記非水系二次電池の充電状態と電池電
圧との関係に基づき、前記水溶液系二次電池の充電状態
を制御するものであることが望ましい。また、前記水溶
液系二次電池群は、鉛蓄電池で構成されていることが望
ましく、鉛蓄電池として、36V系制御弁式鉛蓄電池を
用いるのが望ましい。更に前記非水系二次電池群は、リ
チウム二次電池で構成されていることが望ましく、リチ
ウム2次電池として、36V系リチウム二次電池を用い
ても良い。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above object, and is a power supply system for a traveling vehicle that combines a non-aqueous secondary battery group and an aqueous secondary battery group. And a battery controller for controlling a state of charge of the non-aqueous secondary battery group. It is preferable to include a battery controller that controls the state of charge of the aqueous secondary battery group based on the state of charge of the non-aqueous secondary battery group, wherein the battery controller includes the non-aqueous secondary battery. It is desirable to control the state of charge of the aqueous secondary battery based on the relationship between the state of charge of the battery and the battery voltage. The aqueous secondary battery group is preferably composed of a lead storage battery, and it is desirable to use a 36V control valve type lead storage battery as the lead storage battery. Further, the non-aqueous secondary battery group is preferably composed of a lithium secondary battery, and a 36 V lithium secondary battery may be used as the lithium secondary battery.

【0005】ここで、前記非水系二次電池群と前記水溶
液系二次電池群は並列に接続されており、非水系二次電
池群側に、DC/DCコンバータを付加して、前記水溶
液系二次電池の電池電圧と合わせており、また、前記水
溶液系二次電池群は、車輌起動装置に至る放電経路を有
することができる。
Here, the non-aqueous secondary battery group and the aqueous secondary battery group are connected in parallel, and a DC / DC converter is added to the non-aqueous secondary battery group side to form the aqueous secondary battery group. The aqueous solution-based secondary battery group is adjusted to the battery voltage of the secondary battery, and may have a discharge path to the vehicle starting device.

【0006】[0006]

【発明の実施の形態】以下、本発明を実施例に基づいて
更に詳細に説明するが、本発明は下記実施例に何ら限定
されるものではなく、その要旨を変更しない範囲におい
て、適宜変更して実施することができる。ここで、前記
非水系二次電池群又は前記水溶液系二次電池群とは、非
水系二次電池又は前記水溶液系二次電池のそれぞれ単電
池もしくは単電池を複数個結合した組電池を意味する。 〔非水系二次電池の説明〕本発明で使用する非水系二次
電池としては、いわゆるリチウム二次電池、特にリチウ
ムイオン二次電池が使用可能である。この電池は次のよ
うにして準備される。正極にはリチウムを含んだマンガ
ン酸化物、負極には活物質である炭素粉末を使用し、こ
の正、負極及びセパレータを用いて、捲回式の電極体を
作製し、円筒型電池缶に挿入する。これに電解液を注入
し、正極端子を兼ねる封口体にて密閉する。図1に、リ
チウムイオン電池の充電状態(SOC)と電池電圧の関
係を示す。SOC(X)と電池電圧(Y)の間には、次
の三次式で表わされる関係があり、Y=−5E−0.7
3+6E−0.6X2+0.0168X+2.897
1、相関係数R2も0.9994と高い。また、この電池は自
己放電が小さいことから、この電池を水溶液系二次電池
の充電状態(SOC)のインジケータとして利用するこ
とが可能になっている。 〔水溶液系二次電池の説明〕本発明で使用する水溶液系
二次電池としては、いわゆる鉛蓄電池、特に制御弁式鉛
蓄電池を例示することができる。この電池は次のように
して準備される。正極には二酸化鉛、負極には海面状鉛
を使用し、正、負極及びガラス繊維セパレータを用い
て、積層した極板群を作製し、角型電槽内に挿入する。
これに制御弁を開放した蓋をつけ、電解液である希硫酸
を注入し、前記制御弁を取付けて電池を密閉化する。 〔走行車輌用電源システム1の構成〕バッテリコントロ
ーラ5付きの非水系二次電池群1と水溶液系二次電池群
2が並列に接続され、モータジェネレータ3とDIV
(電流分配器)4と負荷6とを組み合わせた走行車輌用
電源システム1を図2に示す。図2中、非水系二次電池
群1にはリチウムイオン二次電池(3.6V−3.5A
h)が10本直列で使用され、非水系二次電池群1の電
池電圧としては36Vである。該非水系二次電池群1の
充電状態はバッテリコントローラ5によって常に制御さ
れている。また、水溶液系二次電池群2には、18セル
からなる36V系制御弁式鉛蓄電池(36V−18A
h)が使用されている。 〔走行車輌用電源システム2の構成〕バッテリコントロ
ーラ5付きの非水系二次電池群1と水溶液系二次電池群
2が並列に接続され、モータジェネレータ3とDIV
(電流分配器)4と非水系二次電池1側に付加したDC
/DCコンバータ7と負荷6とを組み合わせた走行車輌
用電源システム2を図3に示す。DC/DCコンバータ
7により、前記非水系二次電池群1側の電圧を前記水溶
液系二次電池群2の電池電圧と合せている。図3中、非
水系二次電池群1にはリチウムイオン二次電池(3.6
V−3.5Ah)が1〜9本直列で使用され、非水系二
次電池群1の電池電圧としては3.6×nV(nはリチ
ウムイオン二次電池の本数)である。該非水系二次電池
群1の充電状態はバッテリコントローラ5によって常に
制御されている。また、水溶液系二次電池群2には18
セルからなる36V系制御弁式鉛蓄電池(36V−18
Ah)が使用されている。 〔走行車輌用電源システム3の構成〕非水系二次電池群
1と水溶液系二次電池群2が並列に接続され、これにバ
ッテリコントローラ5が付加されたものとモータジェネ
レータ3とDIV(電流分配器)4と負荷6とを組み合
わせた走行車輌用電源システム3を図4に示す。図4
中、非水系二次電池群1にはリチウムイオン二次電池
(3.6V−3.5Ah)が10本直列で使用され、非
水系二次電池群1の電池電圧としては36Vである。該
非水系二次電池群1の充電状態はバッテリコントローラ
5によって常に制御されている。また、水溶液系二次電
池群2には、18セルからなる36V系制御弁式鉛蓄電
池(36V−18Ah)が使用され、該水溶液系二次電
池群2の充電状態は、図1に示した非水系二次電池群1
の電池電圧とSOCの関係に基づき、非水系二次電池群
1の充電状態を基準にして、バッテリコントローラ5で
制御されている。 〔走行車輌用電源システム4の構成〕非水系二次電池群
1と水溶液系二次電池群2が並列に接続され、これにバ
ッテリコントローラ5が付加されたものとモータジェネ
レータ3とDIV(電流分配器)4と非水系二次電池1
側に付加したDC/DCコンバータ7と負荷6とを組み
合わせた走行車輌用電源システム4を図5に示す。DC
/DCコンバータ7により、前記非水系二次電池群1側
の電圧を前記水溶液系二次電池群2の電池電圧と合せて
いる。図5中、非水系二次電池群1にはリチウムイオン
二次電池(3.6V−3.5Ah)が1〜9本直列で使
用され、非水系二次電池群1の電池電圧としては3.6
×nV(nはリチウムイオン二次電池の本数)である。
該非水系二次電池群1の充電状態はバッテリコントロー
ラ5によって常に制御されている。また、水溶液系二次
電池群2には18セルからなる36V系制御弁式鉛蓄電
池(36V−18Ah)が使用され、該水溶液系二次電
池群2の充電状態は、図1に示した非水系二次電池群1
の電池電圧とSOCの関係に基づき、非水系二次電池群
1の充電状態を基準にして、バッテリコントローラ5で
制御されている。 〔走行車輌用電源システムの作動方法〕車輌起動時にお
いては、水溶液系二次電池群2からの出力によって起動
させる。一方、制動時に生じる回生エネルギーは、電気
エネルギーとして該水溶液系二次電池群2に一部が回生
(充電)されるが、より回生能力の大きい非水系二次電
池群1にも回生(充電)されるため、走行車輌用電源シ
ステムとしてのエネルギー効率を高めている。また、非
水系二次電池群1の充電状態は、バッテリコントローラ
5によって制御されているため、非水系二次電池群1が
満充電に近づくと、負荷6へ電気エネルギーを提供して
充電状態が調整される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be appropriately changed within the scope of the invention. Can be implemented. Here, the non-aqueous secondary battery group or the aqueous secondary battery group means a non-aqueous secondary battery or an aqueous secondary battery, or an assembled battery in which a plurality of single cells are combined, respectively. . [Description of Nonaqueous Secondary Battery] As the nonaqueous secondary battery used in the present invention, a so-called lithium secondary battery, particularly a lithium ion secondary battery, can be used. This battery is prepared as follows. A manganese oxide containing lithium is used for the positive electrode, and a carbon powder, which is an active material, is used for the negative electrode. Using the positive electrode, the negative electrode, and the separator, a wound electrode body is manufactured and inserted into a cylindrical battery can. I do. An electrolytic solution is injected into this, and the container is sealed with a sealing member also serving as a positive electrode terminal. FIG. 1 shows the relationship between the state of charge (SOC) of a lithium ion battery and the battery voltage. There is a relationship expressed by the following cubic equation between SOC (X) and battery voltage (Y), and Y = −5E−0.7
X 3 + 6E-0.6X 2 + 0.0168X + 2.897
1, a high correlation coefficient R 2 is also 0.9994. In addition, since this battery has a small self-discharge, it is possible to use this battery as an indicator of the state of charge (SOC) of the aqueous secondary battery. [Description of Aqueous Solution Secondary Battery] As the aqueous solution secondary battery used in the present invention, a so-called lead storage battery, particularly a control valve type lead storage battery can be exemplified. This battery is prepared as follows. Using a positive electrode, a negative electrode, and a glass fiber separator, using lead dioxide for the positive electrode and sea-surface lead for the negative electrode, a laminated electrode group is prepared and inserted into a rectangular battery case.
A lid with an open control valve is attached thereto, dilute sulfuric acid as an electrolyte is injected, and the control valve is attached to seal the battery. [Configuration of Power System for Traveling Vehicle 1] A non-aqueous secondary battery group 1 with a battery controller 5 and an aqueous secondary battery group 2 are connected in parallel, and a motor generator 3 and a DIV are connected.
FIG. 2 shows a power supply system 1 for a traveling vehicle in which a (current distributor) 4 and a load 6 are combined. In FIG. 2, the non-aqueous secondary battery group 1 includes a lithium ion secondary battery (3.6 V-3.5 A).
h) are used in series, and the battery voltage of the non-aqueous secondary battery group 1 is 36V. The state of charge of the non-aqueous secondary battery group 1 is constantly controlled by the battery controller 5. The aqueous secondary battery group 2 includes a 36V controlled valve-type lead storage battery (36V-18A) comprising 18 cells.
h) is used. [Configuration of Power System 2 for Running Vehicle] A non-aqueous secondary battery group 1 with a battery controller 5 and an aqueous secondary battery group 2 are connected in parallel, and a motor generator 3 and a DIV are connected.
(Current distributor) 4 and DC added to non-aqueous secondary battery 1 side
FIG. 3 shows a power supply system 2 for a traveling vehicle in which a / DC converter 7 and a load 6 are combined. The DC / DC converter 7 matches the voltage of the non-aqueous secondary battery group 1 with the battery voltage of the aqueous secondary battery group 2. In FIG. 3, a non-aqueous secondary battery group 1 includes a lithium ion secondary battery (3.6
V-3.5Ah) are used in series, and the battery voltage of the non-aqueous secondary battery group 1 is 3.6 × nV (n is the number of lithium ion secondary batteries). The state of charge of the non-aqueous secondary battery group 1 is constantly controlled by the battery controller 5. The aqueous secondary battery group 2 has 18
36V system control valve type lead-acid battery (36V-18
Ah) is used. [Structure of the power supply system 3 for a traveling vehicle] The non-aqueous secondary battery group 1 and the aqueous secondary battery group 2 are connected in parallel, and a battery controller 5 is added to this. FIG. 4 shows a power supply system 3 for a traveling vehicle in which a combination of a power supply 4 and a load 6 are combined. FIG.
Medium, 10 lithium ion secondary batteries (3.6V-3.5Ah) are used in series for the non-aqueous secondary battery group 1, and the battery voltage of the non-aqueous secondary battery group 1 is 36V. The state of charge of the non-aqueous secondary battery group 1 is constantly controlled by the battery controller 5. The aqueous secondary battery group 2 used was a 36V-controlled valve-type lead storage battery (36V-18Ah) composed of 18 cells, and the charged state of the aqueous secondary battery group 2 was as shown in FIG. Non-aqueous secondary battery group 1
Is controlled by the battery controller 5 based on the charge state of the non-aqueous secondary battery group 1 based on the relationship between the battery voltage and the SOC. [Configuration of power supply system 4 for traveling vehicle] A non-aqueous secondary battery group 1 and an aqueous secondary battery group 2 are connected in parallel, and a battery controller 5 is added to this. Device) 4 and non-aqueous secondary battery 1
FIG. 5 shows a traveling vehicle power supply system 4 in which a DC / DC converter 7 and a load 6 added to the side are combined. DC
The voltage of the non-aqueous secondary battery group 1 is matched with the battery voltage of the aqueous secondary battery group 2 by the / DC converter 7. In FIG. 5, 1 to 9 lithium ion secondary batteries (3.6 V to 3.5 Ah) are used in series for the non-aqueous secondary battery group 1, and the battery voltage of the non-aqueous secondary battery group 1 is 3 .6
× nV (n is the number of lithium ion secondary batteries).
The state of charge of the non-aqueous secondary battery group 1 is constantly controlled by the battery controller 5. The aqueous secondary battery group 2 is a 36V-controlled valve-type lead storage battery (36V-18Ah) composed of 18 cells. The charged state of the aqueous secondary battery group 2 is as shown in FIG. Aqueous secondary battery group 1
Is controlled by the battery controller 5 based on the charge state of the non-aqueous secondary battery group 1 based on the relationship between the battery voltage and the SOC. [Operation method of power supply system for traveling vehicle] When the vehicle is started, it is started by the output from the aqueous secondary battery group 2. On the other hand, the regenerative energy generated during braking is partially regenerated (charged) as electric energy in the aqueous secondary battery group 2, but also regenerated (charged) in the non-aqueous secondary battery group 1 having a higher regenerative capacity. Therefore, the energy efficiency as a power supply system for a traveling vehicle is enhanced. Also, since the state of charge of the non-aqueous secondary battery group 1 is controlled by the battery controller 5, when the non-aqueous secondary battery group 1 approaches full charge, electric energy is provided to the load 6 to change the state of charge. Adjusted.

【0007】[0007]

【実施例】上記走行車輌用電源システム1を本発明品1
とし、上記走行車輌用電源システム2で非水系二次電池
群1としてリチウムイオン二次電池(3.6V−3.5
Ah)1本を用いたものを本発明品2として充電試験を
行った。比較例として、18セルからなる36V系制御
弁式鉛蓄電池(36V−18Ah)のみを用いた従来提
案の電源システムについても充電試験を行った。図6に
は、本発明品1、本発明品2、比較例のそれぞれの5秒
目電池電圧と36V系制御弁式鉛蓄電池を基準とした充
電率との関係を示す。本発明品1及び本発明品2は、リ
チウムイオン二次電池の回生能力が大きいために、充電
率が12Cを超えても5秒目電池電圧は、42V以下に
抑えられて36V系制御弁式鉛蓄電池から水素発生しな
いため、充電が可能で走行車輌用電源システムとして回
生エネルギーを充分に受け入れることができる。一方、
比較例は、充電率が2Cを超えると5秒目電池電圧が4
7V以上となり、36V系制御弁式鉛蓄電池から水素発
生して充電が不可能となった。上記走行車輌用電源シス
テム3,4は、走行車輌用電源システム1,2と同様に
充電が可能で走行車輌用電源システムとして回生エネル
ギーを充分に受け入れることができるだけでなく、リチ
ウムイオン二次電池を36V系制御弁式鉛蓄電池の充電
状態(SOC)のインジケータとして利用し、バッテリ
コントローラ5によって、非水系二次電池群1の充電状
態を制御しながら、水溶液系二次電池群2の充電状態を
制御できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The above-mentioned power supply system 1 for a traveling vehicle is a
The lithium-ion secondary battery (3.6 V-3.5) is used as the non-aqueous secondary battery group 1 in the traveling vehicle power supply system 2.
Ah) A charging test was performed using one of the batteries as a product 2 of the present invention. As a comparative example, a charging test was also performed on a conventionally proposed power supply system using only a 36V-system control valve-type lead storage battery (36V-18Ah) composed of 18 cells. FIG. 6 shows the relationship between the battery voltage at the 5th second and the charging rate based on the 36V system control valve type lead storage battery of each of the product of the present invention 1, the product of the present invention 2, and the comparative example. The product 1 of the present invention and the product 2 of the present invention have a large regenerative ability of the lithium ion secondary battery. Therefore, even if the charging rate exceeds 12C, the battery voltage at the 5th second is suppressed to 42V or less, and the 36V control valve type is used. Since hydrogen is not generated from the lead storage battery, it can be charged and can sufficiently receive regenerative energy as a power supply system for a running vehicle. on the other hand,
In the comparative example, when the charging rate exceeds 2C, the battery voltage becomes 4 at 5 seconds.
The voltage became 7 V or more, and hydrogen was generated from the 36 V control valve type lead storage battery, and charging became impossible. The traveling vehicle power supply systems 3 and 4 can be charged similarly to the traveling vehicle power supply systems 1 and 2 and can sufficiently receive regenerative energy as a traveling vehicle power supply system. It is used as an indicator of the state of charge (SOC) of the 36V-system control valve type lead-acid battery. Can control.

【0008】[0008]

【発明の効果】上述したように、本発明は、非水系二次
電池群と水溶液系二次電池群との効果的な組み合わせに
よって、自動車等の走行車輌の制動時におけるエネルギ
ーを回生エネルギーとして効率よく利用することがで
き、その工業的価値は極めて大きい。
As described above, according to the present invention, by effectively combining a non-aqueous secondary battery group and an aqueous secondary battery group, energy during braking of a running vehicle such as an automobile is converted into regenerative energy. It can be used well and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】リチウムイオン電池のSOCと電池電圧の関係
を示すグラフである。
FIG. 1 is a graph showing a relationship between SOC and battery voltage of a lithium ion battery.

【図2】本発明の走行車輌用電源システム1のブロック
図である。
FIG. 2 is a block diagram of a traveling vehicle power supply system 1 of the present invention.

【図3】本発明の走行車輌用電源システム2のブロック
図である。
FIG. 3 is a block diagram of a traveling vehicle power supply system 2 of the present invention.

【図4】本発明の走行車輌用電源システム3のブロック
図である。
FIG. 4 is a block diagram of a traveling vehicle power supply system 3 of the present invention.

【図5】本発明の走行車輌用電源システム4のブロック
図である。
FIG. 5 is a block diagram of a power supply system 4 for a traveling vehicle according to the present invention.

【図6】本発明の走行車輌用電源システムにおける5秒
目電池電圧と充電率との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the battery voltage at 5 seconds and the charging rate in the traveling vehicle power supply system of the present invention.

【符号の説明】[Explanation of symbols]

1:非水系二次電池群、2:水溶液系二次電池群、3:
モータジェネレータ、4:DIV(電流分配器)、5:
バッテリコントローラ、6:負荷、7:DC/DCコン
バータ
1: non-aqueous secondary battery group, 2: aqueous secondary battery group, 3:
Motor generator, 4: DIV (current distributor), 5:
Battery controller, 6: load, 7: DC / DC converter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大越 哲郎 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 (72)発明者 箕浦 敏 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 Fターム(参考) 3D035 AA00 AA05 5H030 AA02 AS08 BB10  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tetsuro Ogoshi 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo Inside Shin-Kobe Electric Co., Ltd. (72) Inventor Satoshi Minoura 2-87 Nihonbashi Honcho, Chuo-ku, Tokyo Shin Kobe Electric Co., Ltd. F term (reference) 3D035 AA00 AA05 5H030 AA02 AS08 BB10

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】非水系二次電池群と水溶液系二次電池群と
を組み合わせた走行車輌用電源システムであって、前記
非水系二次電池群の充電状態を制御するバッテリコント
ローラを備えたことを特徴とする走行車輌用電源システ
ム。
1. A power supply system for a traveling vehicle combining a non-aqueous secondary battery group and an aqueous secondary battery group, comprising a battery controller for controlling a state of charge of the non-aqueous secondary battery group. A power supply system for a traveling vehicle.
【請求項2】前記非水系二次電池群の充電状態を基準に
して前記水溶液系二次電池群の充電状態を制御するバッ
テリコントローラを備えたことを特徴とする請求項1記
載の走行車輌用電源システム。
2. A traveling vehicle according to claim 1, further comprising a battery controller for controlling a state of charge of said aqueous secondary battery group based on a state of charge of said non-aqueous secondary battery group. Power system.
【請求項3】前記バッテリコントローラは、前記非水系
二次電池群の充電状態と電池電圧との関係に基づき、前
記水溶液系二次電池群の充電状態を制御するものである
ことを特徴とする請求項2記載の走行車輌用電源システ
ム。
3. The battery controller according to claim 1, wherein the battery controller controls the state of charge of the aqueous secondary battery group based on the relationship between the state of charge of the non-aqueous secondary battery group and the battery voltage. The power supply system for a traveling vehicle according to claim 2.
【請求項4】前記水溶液系二次電池群が、鉛蓄電池で構
成されていることを特徴とする請求項1,2,3のうち
いずれか1項記載の走行車輌用電源システム。
4. The power supply system for a running vehicle according to claim 1, wherein said aqueous secondary battery group is constituted by a lead storage battery.
【請求項5】前記鉛蓄電池が、36V系制御弁式鉛蓄電
池であることを特徴とする請求項4記載の走行車輌用電
源システム。
5. The power supply system for a running vehicle according to claim 4, wherein said lead storage battery is a 36V control valve type lead storage battery.
【請求項6】前記非水系二次電池群が、リチウム二次電
池で構成されていることを特徴とする請求項1,2,3
のうちいずれか1項記載の走行車輌用電源システム。
6. The non-aqueous secondary battery group is constituted by a lithium secondary battery.
The power supply system for a traveling vehicle according to claim 1.
【請求項7】前記リチウム二次電池が、36V系リチウ
ム二次電池であることを特徴とする請求項6記載の走行
車輌用電源システム。
7. The power supply system for a traveling vehicle according to claim 6, wherein said lithium secondary battery is a 36V lithium secondary battery.
【請求項8】前記非水系二次電池群と前記水溶液系二次
電池群が並列に接続されていることを特徴とする請求項
1,2,3のうちいずれか1項記載の走行車輌用電源シ
ステム。
8. The traveling vehicle according to claim 1, wherein the non-aqueous secondary battery group and the aqueous secondary battery group are connected in parallel. Power system.
【請求項9】前記非水系二次電池群の電池電圧は、DC
/DCコンバータを付加して、前記水溶液系二次電池群
の電池電圧と合わせていることを特徴とする請求項8記
載の走行車輌用電源システム。
9. The battery voltage of the non-aqueous secondary battery group is DC
9. The power supply system for a running vehicle according to claim 8, wherein a / DC converter is added to match the battery voltage of the aqueous secondary battery group.
【請求項10】前記水溶液系二次電池群は、車輌起動装
置に至る放電経路を有することを特徴とする請求項1,
2,3,4,8,9のうちいずれか1項記載の走行車輌
用電源システム。
10. The aqueous secondary battery group has a discharge path to a vehicle starting device.
The power supply system for a traveling vehicle according to any one of 2, 3, 4, 8, and 9.
JP2000128741A 2000-03-30 2000-04-28 Power supply system for traveling vehicles Abandoned JP2001313082A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000128741A JP2001313082A (en) 2000-04-28 2000-04-28 Power supply system for traveling vehicles
US09/816,145 US6366055B1 (en) 2000-03-30 2001-03-26 Power supply system and state of charge estimating method
EP01108083A EP1138554B1 (en) 2000-03-30 2001-03-29 Power system and state of charge estimating method
DE60136237T DE60136237D1 (en) 2000-03-30 2001-03-29 Power system and method for providing the state of charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000128741A JP2001313082A (en) 2000-04-28 2000-04-28 Power supply system for traveling vehicles

Publications (1)

Publication Number Publication Date
JP2001313082A true JP2001313082A (en) 2001-11-09

Family

ID=18638136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000128741A Abandoned JP2001313082A (en) 2000-03-30 2000-04-28 Power supply system for traveling vehicles

Country Status (1)

Country Link
JP (1) JP2001313082A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042115B2 (en) 2002-02-26 2006-05-09 Toyota Jidosha Kabushiki Kaisha Power supply control system for vehicle and method
KR101223623B1 (en) * 2011-01-05 2013-01-17 삼성에스디아이 주식회사 Energy storage device
JP2014096873A (en) * 2012-11-08 2014-05-22 Unicarriers Corp Power supply device for cargo-handling vehicle
JP2016052879A (en) * 2014-09-04 2016-04-14 住友ナコ マテリアル ハンドリング株式会社 Vehicle for cargo handling work
JPWO2017122631A1 (en) * 2016-01-12 2018-10-25 日産自動車株式会社 Power supply system and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042115B2 (en) 2002-02-26 2006-05-09 Toyota Jidosha Kabushiki Kaisha Power supply control system for vehicle and method
KR101223623B1 (en) * 2011-01-05 2013-01-17 삼성에스디아이 주식회사 Energy storage device
JP2014096873A (en) * 2012-11-08 2014-05-22 Unicarriers Corp Power supply device for cargo-handling vehicle
JP2016052879A (en) * 2014-09-04 2016-04-14 住友ナコ マテリアル ハンドリング株式会社 Vehicle for cargo handling work
JPWO2017122631A1 (en) * 2016-01-12 2018-10-25 日産自動車株式会社 Power supply system and control method thereof

Similar Documents

Publication Publication Date Title
US11594777B2 (en) Dual energy storage system and starter battery module
EP3089893B1 (en) Micro-hybrid battery module for a vehicle
US20140186659A1 (en) Hybrid battery system for electric and hybrid electric vehicles
JP2004025979A (en) Power supply system for running vehicles
JP2010539635A (en) Vehicle hybrid energy system
JP2004032871A (en) Power supply system for running vehicles
JP3716776B2 (en) Power system
CN110635169B (en) Battery pack, vehicle, and method for manufacturing battery pack
JP2003174734A (en) Hybrid secondary battery
US6366055B1 (en) Power supply system and state of charge estimating method
JP2002025630A (en) Power supply system for traveling vehicles
CN111092463A (en) Secondary battery system and charging control method for secondary battery
JP3702763B2 (en) Secondary battery for traveling vehicle
JP2001286004A (en) Power supply system for traveling vehicles
JP2001313082A (en) Power supply system for traveling vehicles
JP3707349B2 (en) Power supply system for traveling vehicles
JP2018156791A (en) Operation control method and operation control system for fuel cell vehicle
JP2003219575A (en) Power system
WO2014184861A1 (en) Battery system, mobile body and power storage system provided with battery system, and control method for battery system
JP2007037291A (en) Power storage system for automobile
Crouch Battery technology for automotive applications
JP2003086254A (en) Hybrid secondary battery
JP2001313085A (en) Power supply system for traveling vehicles
JP2002051471A (en) Power supply system for traveling vehicle and method of estimating state of charge in the system
JP2002042900A (en) Power supply system for traveling vehicles

Legal Events

Date Code Title Description
A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20050106