[go: up one dir, main page]

JP2001307768A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2001307768A
JP2001307768A JP2000118065A JP2000118065A JP2001307768A JP 2001307768 A JP2001307768 A JP 2001307768A JP 2000118065 A JP2000118065 A JP 2000118065A JP 2000118065 A JP2000118065 A JP 2000118065A JP 2001307768 A JP2001307768 A JP 2001307768A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
volume
battery
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000118065A
Other languages
Japanese (ja)
Inventor
Shigehiro Kawauchi
滋博 川内
Toru Shiga
亨 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000118065A priority Critical patent/JP2001307768A/en
Publication of JP2001307768A publication Critical patent/JP2001307768A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

(57)【要約】 【課題】 難燃性効果が十分に作用し,さらに,高温充
放電サイクル特性に優れた非水電解液二次電池を提供す
ること。 【解決手段】 リチウム遷移金属複合酸化物を含有する
正極と,リチウムイオンを挿入,脱離することができる
負極と,非水電解液とを備えた非水電解液二次電池にお
いて,非水電解液は,溶媒の20〜40体積%がリン酸
トリブチル(TBP)またはリン酸トリフェニル(TP
P)である。
(57) [Problem] To provide a non-aqueous electrolyte secondary battery in which a flame-retardant effect is sufficiently exerted and which is excellent in high-temperature charge / discharge cycle characteristics. SOLUTION: In a non-aqueous electrolyte secondary battery including a positive electrode containing a lithium transition metal composite oxide, a negative electrode capable of inserting and removing lithium ions, and a non-aqueous electrolyte, The solution contains 20-40% by volume of the solvent, tributyl phosphate (TBP) or triphenyl phosphate (TP).
P).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,安全性と充放電特性に優れる非
水電解液二次電池に関し,特に非水電解液における溶媒
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having excellent safety and charge / discharge characteristics, and more particularly to improvement of a solvent in a non-aqueous electrolyte.

【0002】[0002]

【従来技術】非水電解液を用いた電池,特に,リチウム
イオン二次電池は,高エネルギー密度を有するため,民
生用電子機器の電源に広く利用されている。リチウムイ
オン二次電池に使用する非水電解液には,炭酸エチレン
(EC)や炭酸ジエチル(DEC)などの炭酸エステル
系溶媒に電解質としてLiPF6を溶解したものが一般
的に用いられる。しかしながら,これらの溶媒は,可燃
性であり,引火点が比較的低いため,発火の危険性があ
る。そこで,良好な充放電サイクル特性を持ち,かつ,
難燃化を実現するために,高引火点溶媒のリン酸エステ
ルを電解液に用いる例が報告されている。
2. Description of the Related Art A battery using a non-aqueous electrolyte, particularly a lithium ion secondary battery has a high energy density and is therefore widely used as a power source for consumer electronic devices. As a non-aqueous electrolyte used for a lithium ion secondary battery, a solution in which LiPF 6 is dissolved as an electrolyte in a carbonate-based solvent such as ethylene carbonate (EC) or diethyl carbonate (DEC) is generally used. However, these solvents are flammable and have a relatively low flash point, so there is a risk of ignition. Therefore, it has good charge / discharge cycle characteristics and
It has been reported that a phosphoric acid ester, which is a high flash point solvent, is used as an electrolyte in order to achieve flame retardancy.

【0003】特開平8−88023号公報には,リン酸
エステルを電解液に対して1〜20体積%用いることが
提案されている。しかし,この例は,良好な充放電サイ
クル特性を満足するために混合比を20体積%以下に限
定したものであり,実際問題として難燃性の効果を期待
することはできない。
[0003] Japanese Patent Application Laid-Open No. 8-88023 proposes that a phosphate ester be used in an amount of 1 to 20% by volume based on an electrolytic solution. However, in this example, the mixing ratio is limited to 20% by volume or less in order to satisfy good charge / discharge cycle characteristics, and the effect of flame retardancy cannot be expected as a practical problem.

【0004】特開平11−40193号公報には,リン
酸エステルを1〜50体積%用いた電解液に,ハロゲン
置換した芳香族環を有するエーテルを微量添加する例が
報告されている。これは,多量のリン酸エステルを用い
ることで難燃性の効果を期待し,添加剤により電極表面
に安定な被膜を形成して電解液と電極との反応を抑制す
ることで,電池特性の向上を図ったものと考えられる。
しかしながら,上記電解液について発明者らが検討した
ところ,この電解液では,初期不可逆容量(初回の充放
電時における充電容量と放電容量の差)が大きく放電容
量が小さくなり,添加剤による電池特性向上の効果はほ
とんど認められなかった。
Japanese Patent Application Laid-Open No. 11-40193 reports an example in which a trace amount of an ether having a halogen-substituted aromatic ring is added to an electrolytic solution containing 1 to 50% by volume of a phosphoric ester. This is because the use of a large amount of phosphoric acid ester is expected to have the effect of flame retardancy. The additive forms a stable film on the electrode surface and suppresses the reaction between the electrolyte and the electrode. It is considered that this was improved.
However, the inventors examined the above electrolyte, and found that this electrolyte had a large initial irreversible capacity (difference between charge capacity and discharge capacity at the time of first charge / discharge) and a small discharge capacity. The improvement effect was hardly recognized.

【0005】[0005]

【解決しようとする課題】本発明は,かかる従来の問題
点に鑑みてなされたもので,難燃性効果が十分に作用
し,さらに,高温充放電サイクル特性に優れた非水電解
液二次電池を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and provides a non-aqueous electrolyte secondary battery having a sufficient flame retardancy effect and excellent high-temperature charge / discharge cycle characteristics. It is intended to provide a battery.

【0006】[0006]

【課題の解決手段】本発明は,リチウム遷移金属複合酸
化物を含有する正極と,リチウムイオンを挿入,脱離す
ることができる負極と,非水電解液とを備えた非水電解
液二次電池において,上記非水電解液は,溶媒の20〜
40体積%がリン酸トリブチル(TBP)またはリン酸
トリフェニル(TPP)であることを特徴とする非水電
解液二次電池にある。
The present invention provides a non-aqueous electrolyte secondary comprising a positive electrode containing a lithium transition metal composite oxide, a negative electrode capable of inserting and removing lithium ions, and a non-aqueous electrolyte. In the battery, the non-aqueous electrolyte contains 20 to 20
A nonaqueous electrolyte secondary battery characterized in that 40% by volume is tributyl phosphate (TBP) or triphenyl phosphate (TPP).

【0007】本発明において最も注目すべきことは,上
記非水電解液の溶媒として,その20〜40体積%を上
記リン酸トリブチル(TBP)またはリン酸トリフェニ
ル(TPP)という特定の成分としたことである。上記
TBPとTPPとは,それぞれ単独で含有させることも
できるし,両者を混合して含有させることもできる。
The most remarkable point in the present invention is that the solvent of the non-aqueous electrolyte contains 20 to 40% by volume of a specific component such as tributyl phosphate (TBP) or triphenyl phosphate (TPP). That is. The above TBP and TPP can be contained alone, or both can be mixed and contained.

【0008】上記TBP,TPPの引火点は,それぞ
れ,146℃,210℃であり,比較的高いという特徴
を有している。そのため,これらの含有量を多くするほ
ど難燃性効果を高めることができる。そして,上記のT
BPとTPPという特定成分の含有量が溶媒の20体積
%未満の場合には,十分な難燃性効果が得られないとい
う問題がある。一方,40体積%を超える場合には,非
水電解液の粘度が高くなり,電池の高温充放電サイクル
特性が非常に悪化するという問題がある。
The flash points of the TBP and TPP are 146 ° C. and 210 ° C., respectively, which are relatively high. Therefore, the flame retardant effect can be enhanced as the content of these components is increased. And the above T
When the content of the specific components BP and TPP is less than 20% by volume of the solvent, there is a problem that a sufficient flame retardant effect cannot be obtained. On the other hand, if it exceeds 40% by volume, there is a problem that the viscosity of the non-aqueous electrolyte becomes high and the high-temperature charge / discharge cycle characteristics of the battery are extremely deteriorated.

【0009】上記電解液の溶媒としては,上記特定成分
の他の60〜80体積%の部分に,に例えばEC,DE
C等を用いることができる。また,電界液の支持塩とし
ては,例えばLiPF6,LiBF4,LiClO4,L
iAsF6等,あるいはこれらの複合塩を用いることが
できる。
As a solvent of the above-mentioned electrolytic solution, for example, EC, DE,
C or the like can be used. Examples of the supporting electrolyte for the electrolytic solution include LiPF 6 , LiBF 4 , LiClO 4 , L
iAsF 6 or the like, or a complex salt thereof can be used.

【0010】上記正極においては,その活物質として,
公知のリチウムマンガンスピネル,リチウム過剰のリチ
ウムマンガンスピネル,Mnの一部をNi,Al,C
o,Fe,Mg等の異種金属で置換したリチウムマンガ
ンスピネル,およびそれらの混合物などを用いることが
できる。また,層状構造のLiCoO2やLiNiO2
適用することもできる。負極としては,例えば炭素材料
を用いることができる。この場合の炭素材料としては,
公知の天然黒鉛,人造黒鉛,コークス類,生コークスを
焼成したカーボン類などを用いることができる。
In the above positive electrode, as an active material,
Known lithium manganese spinel, lithium manganese spinel in excess of lithium, part of Mn is Ni, Al, C
Lithium manganese spinel substituted with a different metal such as o, Fe, Mg, and the like, and a mixture thereof can be used. Alternatively, a layered structure of LiCoO 2 or LiNiO 2 can be applied. As the negative electrode, for example, a carbon material can be used. In this case, as the carbon material,
Known natural graphite, artificial graphite, cokes, carbons obtained by calcining raw coke, and the like can be used.

【0011】次に,本発明の作用効果につき説明する。
本発明の非水電解液二次電池においては,上記のごとく
TBPあるいはTPPという特定の成分を,上記特定量
だけ含有した溶媒を有する非水電解液を用いている。そ
のため,後述するごとく,非常に優れた難燃性効果と高
温充放電サイクル特性を得ることができる。この高温充
放電サイクル特性の向上理由は必ずしも明らかではない
が,電池の充放電に伴い,リン酸エステルの分解反応が
P−O−R(R:アルキル基,フェニル基)のP−O結
合で起きているとすると,Rの炭素数が4〜6ぐらいで
P−O結合が切れにくくなり,電気化学的に安定な構造
をとるのではないかと推察される。
Next, the operation and effect of the present invention will be described.
In the non-aqueous electrolyte secondary battery of the present invention, as described above, a non-aqueous electrolyte having a solvent containing the specific amount of the specific component TBP or TPP is used. Therefore, as described later, it is possible to obtain a very excellent flame retardant effect and high-temperature charge / discharge cycle characteristics. Although the reason for the improvement of the high-temperature charge / discharge cycle characteristics is not necessarily clear, as the battery is charged / discharged, the decomposition reaction of the phosphate ester is caused by the PO bond of POR (R: alkyl group, phenyl group). If so, it is presumed that when the carbon number of R is about 4 to 6, the PO bond becomes difficult to be broken, and an electrochemically stable structure may be obtained.

【0012】[0012]

【発明の実施の形態】実施形態例1 本発明の実施形態例にかかる非水電解液二次電池につ
き,非水電解液の構成を変更した複数の実施例と比較例
とを作製し,これらの難燃性試験及び高温充放電サイク
ル試験を行った。まず,準備した実施例と比較例につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 A non-aqueous electrolyte secondary battery according to an embodiment of the present invention is manufactured by a plurality of examples and a comparative example in which the configuration of the non-aqueous electrolyte is changed. Was subjected to a flame retardancy test and a high temperature charge / discharge cycle test. First, the prepared examples and comparative examples will be described.

【0013】(実施例A1)実施例A1の非水電解液
は,溶媒にEC(富山薬品工業製,電池グレード,以下
同様),DEC(富山薬品工業製,電池グレード,以下
同様),蒸留したTBP(東京化成製,以下同様)を用
い,混合比は,それぞれ33体積%,42体積%,25
体積%にした。電解質にはLiPF6を用い,1mo1
/Lになるように溶解した。この非水電解液を用いて後
述の難燃性試験を行った。
(Example A1) The non-aqueous electrolyte of Example A1 was subjected to solvent distillation using EC (manufactured by Toyama Pharmaceutical Co., Ltd., battery grade, hereinafter the same), DEC (manufactured by Toyama Pharmaceutical Co., battery grade, the same as the following) Using TBP (manufactured by Tokyo Chemical Industry, the same applies hereinafter), the mixing ratio was 33% by volume, 42% by volume, and 25% by volume, respectively.
% By volume. LiPF 6 is used for the electrolyte,
/ L. Using this non-aqueous electrolyte, a flame retardancy test described below was performed.

【0014】また,高温充放電サイクル試験のための非
水電解液二次電池を,上記非水電解液を用いて,下記の
ように作製した。正極材料には市販試薬Li2CO3とM
34,およびAl(NO33を所定の割合で混合し,
大気中900℃で10時間加熱して合成したAl置換M
n系スピネル粉末LiAl0.22Mn1.784(発明者が
合成,以下同様)とLiNiO2(富士化学製,Linilit
eCA-5,以下同様)粉末のブレンド材(80:20重量
%)を用いた。そして,ブレンド材と人造黒鉛粉末(ロ
ンザ製,KS8)とPVdFが84:10:6の重量比
になるように,LiNiO2粉末と人造黒鉛粉末にPV
dFのNMP溶液を加え,3時間混練し,スラリーを得
た。次に,そのスラリーをアルミニウム箔に両面塗工
し,200℃で10時間真空乾燥したものを正極シート
とした。
A non-aqueous electrolyte secondary battery for a high-temperature charge / discharge cycle test was prepared as follows using the above-mentioned non-aqueous electrolyte. The commercially available reagents Li 2 CO 3 and M
n 3 O 4 and Al (NO 3 ) 3 are mixed at a predetermined ratio,
Al-substituted M synthesized by heating at 900 ° C for 10 hours in air
n-type spinel powder LiAl 0.22 Mn 1.78 O 4 (synthesized by the inventor, the same applies hereinafter) and LiNiO 2 (manufactured by Fuji Chemical, Linilit
eCA-5, the same applies hereinafter) A powder blend material (80: 20% by weight) was used. Then, the PVA is added to the LiNiO 2 powder and the artificial graphite powder so that the weight ratio of the blend material, the artificial graphite powder (KS8, manufactured by Lonza) and PVdF is 84: 10: 6.
An NMP solution of dF was added and kneaded for 3 hours to obtain a slurry. Next, the slurry was coated on both sides of an aluminum foil, and vacuum-dried at 200 ° C. for 10 hours to obtain a positive electrode sheet.

【0015】負極材料には,球状人造黒鉛(大阪ガスケ
ミカル製,以下同様)粉末を用い,この黒鉛粉末とPV
dFが95:5の重量比になるように,黒鉛粉末にPV
dFのNMP溶液を加え,3時間混練し,スラリーを得
た。そのスラリーを銅箔に両面塗工し,120℃で10
時間真空乾燥したものを負極シートとした。
As the negative electrode material, spherical artificial graphite (manufactured by Osaka Gas Chemical Co., Ltd .; the same applies hereinafter) powder was used.
PVD is added to the graphite powder so that dF becomes a weight ratio of 95: 5.
An NMP solution of dF was added and kneaded for 3 hours to obtain a slurry. The slurry was coated on both sides of a copper foil.
After vacuum drying for a period of time, a negative electrode sheet was obtained.

【0016】上記正極シート,負極シート,電解液を用
いて,直径18mm,高さ65mmの円筒型電池を次の
ように作製した。まず,厚さ25μmのポリエチレン微
多孔質膜からなるセパレータを介して,上記正極シート
と負極シートとを積層し,渦捲き状に捲回した。そし
て,その捲回体を電池缶に収納し,負極と電池缶底とを
ニッケル製のリード線,正極と電池缶蓋とをアルミニウ
ム製のリード線を介して溶接した。次に,上記電解液を
電池缶に注入し,電池蓋をし,電池缶をかしめて密封し
た。これにより試験用の電池が得られた。
A cylindrical battery having a diameter of 18 mm and a height of 65 mm was manufactured as follows using the above-mentioned positive electrode sheet, negative electrode sheet and electrolyte solution. First, the above-described positive electrode sheet and negative electrode sheet were laminated via a separator made of a 25 μm-thick polyethylene microporous membrane, and spirally wound. Then, the wound body was accommodated in a battery can, and the negative electrode and the bottom of the battery can were welded through a nickel lead wire, and the positive electrode and the battery can lid were welded through an aluminum lead wire. Next, the above-mentioned electrolyte was poured into a battery can, the battery lid was closed, and the battery can was caulked and sealed. As a result, a test battery was obtained.

【0017】(実施例A2)実施例A2の非水電解液
は,溶媒にEC,DEC,蒸留したTPP(東京化成
製,以下同様)を用い,混合比は,それぞれ33体積
%,42体積%,25体積%にした。その他は実施例A
1と同様にした。また,この非水電解液を用いた電池も
実施例A1と同様に作製した。
Example A2 The non-aqueous electrolyte solution of Example A2 used as a solvent was EC, DEC, or distilled TPP (manufactured by Tokyo Chemical Industry, the same applies hereinafter), and the mixing ratio was 33% by volume and 42% by volume, respectively. , 25% by volume. Others are Example A
Same as 1. Also, a battery using this non-aqueous electrolyte was produced in the same manner as in Example A1.

【0018】(比較例A1)比較例A1の非水電解液
は,溶媒にEC,DEC,蒸留したリン酸トリメチル
(TMP)(東京化成製,以下同様)を用い,混合比
は,それぞれ33体積%,42体積%,25体積%にし
た。その他は実施例A1と同様とした。また,この非水
電解液を用いた電池も実施例A1と同様に作製した。
(Comparative Example A1) The non-aqueous electrolyte of Comparative Example A1 used as a solvent was EC, DEC, and distilled trimethyl phosphate (TMP) (manufactured by Tokyo Kasei). %, 42% by volume, and 25% by volume. Others were the same as Example A1. Also, a battery using this non-aqueous electrolyte was produced in the same manner as in Example A1.

【0019】(比較例A2)比較例A2の非水電解液
は,溶媒にEC,DEC,蒸留したリン酸トリオクチル
(TOP)(東京化成製,以下同様)を用い,混合比
は,それぞれ33体積%,42体積%,25体積%にし
た。これ以外は,実施例A1と同様とした。また,この
非水電解液を用いた電池も実施例A1と同様に作製し
た。
(Comparative Example A2) The non-aqueous electrolyte of Comparative Example A2 used EC, DEC, and distilled trioctyl phosphate (TOP) (manufactured by Tokyo Chemical Industry, hereinafter the same) as the solvent, and the mixing ratio was 33 vol. %, 42% by volume, and 25% by volume. Except for this, it was the same as Example A1. Also, a battery using this non-aqueous electrolyte was produced in the same manner as in Example A1.

【0020】(比較例B1)比較例B1の非水電解液
は,溶媒にEC,DEC,蒸留したTMPを用い,混合
比は,それぞれ33体積%,33体積%,33体積%に
した。その他は実施例A1と同様とした。また,この非
水電解液を用いた電池は,次のように作製した。まず,
正極材料には市販試薬Li2CO3とMn34,およびN
i(NO32を所定の割合で混合し,大気中900℃に
て10時間加熱して得たNi置換Mn系スピネル粉末L
1.05Ni0.10Mn1.854とLiNiO2粉末のブレン
ド材(80:20重量%)を用いた。そして,ブレンド
材と人造黒鉛粉末とPVdFが84:10:6の重量比
になるように,LiNiO2粉末と人造黒鉛粉末にPV
dFのNMP溶液を加え,3時間混練し,スラリーを得
た。次に,そのスラリーをアルミニウム箔に両面塗工
し,200℃で10時間真空乾燥したものを正極シート
とした。これ以外は,実施例A1と同様とした。
(Comparative Example B1) The nonaqueous electrolyte solution of Comparative Example B1 used EC, DEC, and distilled TMP as solvents, and the mixing ratio was 33% by volume, 33% by volume, and 33% by volume, respectively. Others were the same as Example A1. A battery using this non-aqueous electrolyte was manufactured as follows. First,
The cathode materials include commercially available reagents Li 2 CO 3 and Mn 3 O 4 , and N 2
i (NO 3 ) 2 mixed at a predetermined ratio and heated in the air at 900 ° C. for 10 hours to obtain a Ni-substituted Mn-based spinel powder L
i 1.05 Ni 0.10 Mn 1.85 O 4 and LiNiO 2 powder blend material of (80:20 wt%) was used. Then, the PVA is added to the LiNiO 2 powder and the artificial graphite powder so that the weight ratio of the blend material, the artificial graphite powder, and PVdF is 84: 10: 6.
An NMP solution of dF was added and kneaded for 3 hours to obtain a slurry. Next, the slurry was coated on both sides of an aluminum foil, and vacuum-dried at 200 ° C. for 10 hours to obtain a positive electrode sheet. Except for this, it was the same as Example A1.

【0021】(比較例B2)比較例b2の非水電解液
は,溶媒にEC,DEC,蒸留したTMPを用い,混合
比は,それぞれ33体積%,33体積%,33体積%に
した。電解液に対して,4−フルオロアニソール(4F
A)(東京化成製,以下同様)を1重量%添加した。こ
れ以外は,比較例B1と同様とした。また,この非水電
解液を用いた電池も実施例B1と同様に作製した。
(Comparative Example B2) The non-aqueous electrolyte of Comparative Example b2 used EC, DEC, and distilled TMP as solvents, and the mixing ratio was 33% by volume, 33% by volume, and 33% by volume, respectively. For the electrolyte, 4-fluoroanisole (4F
A) (manufactured by Tokyo Kasei, hereinafter the same) was added at 1% by weight. Except for this, it was the same as Comparative Example B1. Also, a battery using this non-aqueous electrolyte was produced in the same manner as in Example B1.

【0022】(比較例B3)比較例B3の非水電解液
は,溶媒にEC,DEC,蒸留したTMPを用い,混合
比は,それぞれ33体積%,33体積%,33体積%に
した。電解液に対して,4FAを5重量%添加した。こ
れ以外は,比較例B1と同様とした。また,この非水電
解液を用いた電池も実施例B1と同様に作製した。
(Comparative Example B3) The nonaqueous electrolyte of Comparative Example B3 used EC, DEC, and distilled TMP as solvents, and the mixing ratio was 33% by volume, 33% by volume, and 33% by volume, respectively. 5% by weight of 4FA was added to the electrolyte. Except for this, it was the same as Comparative Example B1. Also, a battery using this non-aqueous electrolyte was produced in the same manner as in Example B1.

【0023】<難燃性試験>難燃性試験は,次のように
行った。ポリエチレン製セパレータ{厚さ25μm,幅
6mm,長さ12cm}を上記各非水電解液に浸漬し
た。非水電解液を含浸したセパレータの上端をピンセッ
トで挟んで大気中にぶら下げ,下端にマッチの火を近づ
けた。着火の有無,着火した場合のセパレータの燃焼状
況を観察した。判断評価基準として,着火しなかった場
合を○,着火したがセパレータのほとんどが焼け残った
場合を△,着火してセパレータの大半が焼け落ちた場合
を×とした。試験結果を表1に示す。
<Flame Retardancy Test> The flame retardancy test was performed as follows. A polyethylene separator {thickness 25 μm, width 6 mm, length 12 cm} was immersed in each of the above nonaqueous electrolytes. The upper end of the separator impregnated with the non-aqueous electrolyte was hung in the atmosphere with tweezers, and the match fire was brought closer to the lower end. The presence or absence of ignition and the combustion state of the separator when ignited were observed. The evaluation criteria were as follows: 場合 when no ignition occurred, △ when ignition occurred but most of the separator remained unburned, and X when ignition ignited and most of the separator burned off. Table 1 shows the test results.

【0024】<高温充放電サイクル試験>高温充放電サ
イクル試験は,60℃下,電流密度1.1mA/cm2
の定居流充電を上限4.1Vまで行い,その後,電流密
度1.1mA/cm2の定電流充電を下限3.0Vまで
行うものを1サイクルとし,このサイクルを繰り返し
て,サイクル毎の放電容量を測定するものである。表1
に,正極活物質当たりの初期放電容量,100サイクル
時の放電容量維持率を示す。放電容量維持率とは,その
サイクル時での放電容量を1サイクル目での放電容量で
割った値である。
<High Temperature Charge / Discharge Cycle Test> The high temperature charge / discharge cycle test was conducted at 60 ° C. under a current density of 1.1 mA / cm 2.
Is performed up to an upper limit of 4.1 V, and then a constant current charge at a current density of 1.1 mA / cm 2 is performed up to a lower limit of 3.0 V. This cycle is defined as one cycle, and this cycle is repeated. Is measured. Table 1
Table 2 shows the initial discharge capacity per positive electrode active material and the discharge capacity retention rate at 100 cycles. The discharge capacity retention ratio is a value obtained by dividing the discharge capacity in the cycle by the discharge capacity in the first cycle.

【0025】[0025]

【表1】 [Table 1]

【0026】表1より知られるごとく,電解液にリン酸
エステルを20体積%以上混合したことにより,すべて
の試料において,難燃性の効果がみられた。本発明の電
解液は,難燃性の効果を持ち,かつ,電池特性が非常に
優れていることがわかった。
As can be seen from Table 1, the flame retardant effect was observed in all the samples when the phosphate was mixed with the electrolyte at 20% by volume or more. It has been found that the electrolyte of the present invention has a flame-retardant effect and has extremely excellent battery characteristics.

【0027】実施形態例2 本例では,実施形態例1に加えてあらたに複数の実施例
と比較例とを準備し,これらの難燃性試験及び高温充放
電サイクル試験を行った。まず,準備した実施例と比較
例について説明する。
Embodiment 2 In this embodiment, a plurality of examples and comparative examples were newly prepared in addition to the embodiment 1, and a flame retardancy test and a high-temperature charge / discharge cycle test were performed. First, the prepared examples and comparative examples will be described.

【0028】(実施例C1)実施例C1の非水電解液
は,溶媒にEC,DEC,TPPを用い,混合比は,そ
れぞれ33体積%,27体積%,40体積%にした。そ
の他は実施例A1と同様とした。また,高温充放電サイ
クル試験のための非水電解液二次電池を,上記非水電解
液を用いて,下記のようなに作製した。正極材料には,
LiNiO2粉末を用いた。そして,LiNiO2粉末と
人造黒鉛粉末とポリフッ化ビニリデン(PVdF)が8
4:10:6の重量比になるように,LiNiO2粉末
と人造黒鉛粉末にPVdFのN−メチル−2−ピロリド
ン(NMP)溶液を加え,3時間混練し,スラリーを得
た。次に,そのスラリーをアルミニウム箔に両面塗工
し,200℃で10時間真空乾燥したものを正極シート
とした。
(Example C1) The nonaqueous electrolytic solution of Example C1 used EC, DEC, and TPP as solvents, and the mixing ratio was 33% by volume, 27% by volume, and 40% by volume, respectively. Others were the same as Example A1. Further, a non-aqueous electrolyte secondary battery for a high-temperature charge / discharge cycle test was prepared as follows using the above-described non-aqueous electrolyte. For the cathode material,
LiNiO 2 powder was used. Then, LiNiO 2 powder, artificial graphite powder and polyvinylidene fluoride (PVdF)
An N-methyl-2-pyrrolidone (NMP) solution of PVdF was added to the LiNiO 2 powder and the artificial graphite powder so that the weight ratio became 4: 10: 6, and the mixture was kneaded for 3 hours to obtain a slurry. Next, the slurry was coated on both sides of an aluminum foil, and vacuum-dried at 200 ° C. for 10 hours to obtain a positive electrode sheet.

【0029】負極材料には,人造黒鉛粉末を用い,この
黒鉛粉末とPVdFが96:4の重量比になるように,
黒鉛粉末にPVdFのNMP溶液を加え,3時間混練
し,スラリーを得た。そのスラリーを銅箔に両面塗工
し,120℃で10時間真空乾燥したものを負極シート
とした。これ以外は,実施例A1と同様とした。
As the negative electrode material, artificial graphite powder was used. The graphite powder was mixed with PVdF in a weight ratio of 96: 4.
An NMP solution of PVdF was added to the graphite powder and kneaded for 3 hours to obtain a slurry. The slurry was coated on both sides of a copper foil and vacuum dried at 120 ° C. for 10 hours to obtain a negative electrode sheet. Except for this, it was the same as Example A1.

【0030】(実施例C2)実施例C2の非水電解液
は,溶媒にEC,DEC,TPPを用い,混合比は,そ
れぞれ33体積%,33体積%,33体積%にした。こ
れ以外は,実施例C1と同様とした。また,この非水電
解液を用いた電池も実施例C1と同様に作製した。
(Example C2) The non-aqueous electrolyte of Example C2 used EC, DEC, and TPP as solvents, and the mixing ratio was 33% by volume, 33% by volume, and 33% by volume, respectively. Except for this, it was the same as Example C1. Also, a battery using this non-aqueous electrolyte was produced in the same manner as in Example C1.

【0031】(実施例C3)実施例C3の非水電解液
は,溶媒にEC,DEC,TPPを用い,混合体は,そ
れぞれ33体積%,47体積%,20体積%にした。こ
れ以外は,実施例C1と同様とした。また,この非水電
解液を用いた電池も実施例C1と同様に作製した。
(Example C3) The nonaqueous electrolyte of Example C3 used EC, DEC, and TPP as solvents, and the mixture was 33% by volume, 47% by volume, and 20% by volume, respectively. Except for this, it was the same as Example C1. Also, a battery using this non-aqueous electrolyte was produced in the same manner as in Example C1.

【0032】(比較例C1)比較例C1の非水電解液
は,溶媒にEC,DEC,蒸留したTMPを用い,混合
比は,それぞれ33体積%,33体積%,33体積%に
した。これ以外は,実施例C1と同様とした。また,こ
の非水電解液を用いた電池も実施例C1と同様に作製し
た。
(Comparative Example C1) The non-aqueous electrolyte of Comparative Example C1 used EC, DEC, and distilled TMP as solvents, and the mixing ratio was 33% by volume, 33% by volume, and 33% by volume, respectively. Except for this, it was the same as Example C1. Also, a battery using this non-aqueous electrolyte was produced in the same manner as in Example C1.

【0033】(比較例C2)比較例C2の非水電解液
は,溶媒にEC,DEC,蒸留したTMPを用い,混合
比は,それぞれ33体積%,42体積%,25体積%に
した。これ以外は,実施例C1と同様とした。また,こ
の非水電解液を用いた電池も実施例C1と同様に作製し
た。
(Comparative Example C2) The nonaqueous electrolytic solution of Comparative Example C2 used EC, DEC, and distilled TMP as solvents, and the mixing ratio was 33% by volume, 42% by volume, and 25% by volume, respectively. Except for this, it was the same as Example C1. Also, a battery using this non-aqueous electrolyte was produced in the same manner as in Example C1.

【0034】(比較例C3)比較例C3の非水電解液
は,溶媒にEC,DEC,蒸留したTMPを用い,混合
比は,それぞれ33体積%,47体積%,20体積%に
した。これ以外は,実施例C1と同様とした。また,こ
の非水電解液を用いた電池も実施例C1と同様に作製し
た。
(Comparative Example C3) The nonaqueous electrolytic solution of Comparative Example C3 used EC, DEC, and distilled TMP as solvents, and the mixing ratio was 33% by volume, 47% by volume, and 20% by volume, respectively. Except for this, it was the same as Example C1. Also, a battery using this non-aqueous electrolyte was produced in the same manner as in Example C1.

【0035】(比較例C4)比較例C4の非水電解液
は,溶媒にEC,DEC,蒸留したTMPを用い,混合
比は,それぞれ33体積%,52体積%,15体積%に
した。これ以外は,実施例C1と同様とした。また,こ
の非水電解液を用いた電池も実施例C1と同様に作製し
た。
(Comparative Example C4) The non-aqueous electrolyte of Comparative Example C4 used EC, DEC, and distilled TMP as solvents, and the mixing ratio was 33% by volume, 52% by volume, and 15% by volume, respectively. Except for this, it was the same as Example C1. Also, a battery using this non-aqueous electrolyte was produced in the same manner as in Example C1.

【0036】次に,これらの実施例及び比較例に対し
て,実施形態例1と同様の難燃性試験及び高温充放電サ
イクル試験を行った。その結果を表2に示す。
Next, a flame retardancy test and a high-temperature charge / discharge cycle test similar to those of the first embodiment were performed on these examples and comparative examples. Table 2 shows the results.

【0037】[0037]

【表2】 [Table 2]

【0038】表2より知られるごとく,TMPを15%
混合しただけでは,難燃性効果が認められなかった。T
PPの混合比を20〜40体積%まで変えても,電池特
性は非常に優れていることがわかった。
As can be seen from Table 2, the TMP was 15%
The flame retardant effect was not recognized only by mixing. T
Even when the mixing ratio of PP was changed from 20 to 40% by volume, the battery characteristics were found to be very excellent.

【0039】[0039]

【発明の効果】上述のごとく,本発明によれば,難燃性
効果が十分に作用し,さらに,高温充放電サイクル特性
に優れた非水電解液二次電池を提供することができる。
As described above, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery in which the flame retardant effect is sufficiently exerted and which is excellent in high-temperature charge / discharge cycle characteristics.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウム遷移金属複合酸化物を含有する
正極と,リチウムイオンを挿入,脱離することができる
負極と,非水電解液とを備えた非水電解液二次電池にお
いて,上記非水電解液は,溶媒の20〜40体積%がリ
ン酸トリブチル(TBP)またはリン酸トリフェニル
(TPP)であることを特徴とする非水電解液二次電
池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode containing a lithium transition metal composite oxide, a negative electrode into which lithium ions can be inserted and desorbed, and a non-aqueous electrolyte. A non-aqueous electrolyte secondary battery, wherein 20 to 40% by volume of the aqueous electrolyte is tributyl phosphate (TBP) or triphenyl phosphate (TPP).
JP2000118065A 2000-04-19 2000-04-19 Non-aqueous electrolyte secondary battery Pending JP2001307768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000118065A JP2001307768A (en) 2000-04-19 2000-04-19 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000118065A JP2001307768A (en) 2000-04-19 2000-04-19 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2001307768A true JP2001307768A (en) 2001-11-02

Family

ID=18629273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000118065A Pending JP2001307768A (en) 2000-04-19 2000-04-19 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2001307768A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228683A (en) * 2004-02-16 2005-08-25 Yuasa Corp Non-aqueous electrolyte flame retardant, non-aqueous electrolyte and non-aqueous electrolyte battery
JP2005347240A (en) * 2004-05-31 2005-12-15 Samsung Sdi Co Ltd Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same
KR20060045257A (en) * 2004-11-12 2006-05-17 주식회사 나래나노텍 Gel polymer electrolyte for lithium polymer battery to which alkyl phosphate compound is added
CN1306645C (en) * 2004-02-10 2007-03-21 中国科学院上海微系统与信息技术研究所 Lithium ion battery electrolyte containing organophosphorus compounds and battery formed thereby
JP2007141760A (en) * 2005-11-22 2007-06-07 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
EP3131152A1 (en) * 2015-08-10 2017-02-15 LANXESS Deutschland GmbH Flame retardant battery electrolytes containing phosphoric acid esters
WO2022255224A1 (en) 2021-06-04 2022-12-08 三井化学株式会社 Non-aqueous electrolyte for battery, lithium secondary battery precursor, method for manufacturing lithium secondary battery, and lithium secondary battery
WO2023079988A1 (en) 2021-11-05 2023-05-11 国立大学法人京都大学 Flame-retardant non-aqueous electrolytic solution and secondary battery using same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306645C (en) * 2004-02-10 2007-03-21 中国科学院上海微系统与信息技术研究所 Lithium ion battery electrolyte containing organophosphorus compounds and battery formed thereby
JP2005228683A (en) * 2004-02-16 2005-08-25 Yuasa Corp Non-aqueous electrolyte flame retardant, non-aqueous electrolyte and non-aqueous electrolyte battery
JP2005347240A (en) * 2004-05-31 2005-12-15 Samsung Sdi Co Ltd Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same
KR100670448B1 (en) 2004-05-31 2007-01-16 삼성에스디아이 주식회사 Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising same
US7981551B2 (en) 2004-05-31 2011-07-19 Samsung Sdi Co., Ltd. Electrolyte for lithium ion rechargeable battery and lithium ion rechargeable battery comprising the same
KR20060045257A (en) * 2004-11-12 2006-05-17 주식회사 나래나노텍 Gel polymer electrolyte for lithium polymer battery to which alkyl phosphate compound is added
JP2007141760A (en) * 2005-11-22 2007-06-07 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
EP3131152A1 (en) * 2015-08-10 2017-02-15 LANXESS Deutschland GmbH Flame retardant battery electrolytes containing phosphoric acid esters
WO2022255224A1 (en) 2021-06-04 2022-12-08 三井化学株式会社 Non-aqueous electrolyte for battery, lithium secondary battery precursor, method for manufacturing lithium secondary battery, and lithium secondary battery
KR20230169345A (en) 2021-06-04 2023-12-15 미쓰이 가가쿠 가부시키가이샤 Non-aqueous electrolyte for batteries, lithium secondary battery precursor, manufacturing method of lithium secondary battery, and lithium secondary battery
WO2023079988A1 (en) 2021-11-05 2023-05-11 国立大学法人京都大学 Flame-retardant non-aqueous electrolytic solution and secondary battery using same
KR20240055899A (en) 2021-11-05 2024-04-29 고쿠리츠 다이가쿠 호진 교토 다이가쿠 Flame-retardant non-aqueous electrolyte and secondary battery using the same

Similar Documents

Publication Publication Date Title
JP7232359B2 (en) SO2-based electrolyte for rechargeable battery cells and rechargeable battery cells
US10535879B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CA2196493C (en) Additives for improving cycle life of non-aqueous rechargeable lithium batteries
EP2382683B1 (en) Battery electrolyte solutions containing aromatic phosphorus compounds
JP4804686B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6198684B2 (en) Lithium secondary battery
WO2008007734A1 (en) Electrochemical device
KR20180044389A (en) Method for forming a cell of a lithium-ion battery provided with a positive electrode comprising a sacrificial salt
EP3346540B1 (en) Flame-resistant electrolyte for secondary cell, and secondary cell including said electrolyte
JP2002141110A (en) Electrolyte for non-aqueous battery and secondary battery using the same
JP2013110022A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JPH10255839A (en) Non-aqueous electrolyte secondary battery
JP2000195544A (en) Nonaqueous electrolyte and secondary battery using it
JP4190672B2 (en) Battery electrolyte and non-aqueous electrolyte secondary battery
JP3768127B2 (en) Non-aqueous electrolyte battery
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
WO2014119249A1 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2001307768A (en) Non-aqueous electrolyte secondary battery
JP2009021040A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte battery equipped with it
JP3373978B2 (en) Non-aqueous electrolyte secondary battery
JP2003109659A (en) Nonaqueous electrolyte secondary battery
JP2002298915A (en) Nonaqueous electrolyte secondary battery
JPH1131527A (en) Non-aqueous electrolyte secondary battery
JP2002110229A (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2007141496A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202