JP2001302373A - Carbon fiber reinforced carbon composite and method for producing the same - Google Patents
Carbon fiber reinforced carbon composite and method for producing the sameInfo
- Publication number
- JP2001302373A JP2001302373A JP2000113571A JP2000113571A JP2001302373A JP 2001302373 A JP2001302373 A JP 2001302373A JP 2000113571 A JP2000113571 A JP 2000113571A JP 2000113571 A JP2000113571 A JP 2000113571A JP 2001302373 A JP2001302373 A JP 2001302373A
- Authority
- JP
- Japan
- Prior art keywords
- composite
- fiber reinforced
- carbon fiber
- composite material
- calcium boride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5006—Boron compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
(57)【要約】
【課題】本発明は、耐酸化性及び持久力に優れた炭素繊
維強化炭素強化炭素複合体を得ることを課題とする。
【解決手段】炭素繊維強化炭素複合材料12の表面に、
高温酸化時にCaB4O 7もしくはCaB2O4の耐酸
化膜を生成するホウ化カルシウム13を形成させたこと
を特徴とする炭素繊維強化炭素複合体11。
(57) [Summary]
The present invention relates to a carbon fiber excellent in oxidation resistance and endurance.
It is an object to obtain a fiber-reinforced carbon composite.
The surface of a carbon fiber reinforced carbon composite material (12) is
CaB during high temperature oxidation4O 7Or CaB2O4Acid resistance
Formation of calcium boride 13 that forms a fluoride film
A carbon fiber reinforced carbon composite 11 characterized by the following.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、特にコンコルドの
摺動材、スペースシャトルのノーズコーンやリーディン
グエッジ、燃料機関の構造材料、人工歯根、骨、間接等
の医用材料等の分野に適用可能な耐酸化性に優れた炭素
繊維強化炭素複合体及びその製造方法に関する。The present invention is particularly applicable to the fields of sliding materials of Concorde, nose cones and leading edges of space shuttles, structural materials of fuel engines, medical materials such as artificial roots, bones, joints and the like. The present invention relates to a carbon fiber reinforced carbon composite having excellent oxidation resistance and a method for producing the same.
【0002】[0002]
【従来の技術】周知の如く、炭素繊維強化炭素複合材料
は、優れた高温強度を持つので、高温強度材料として期
待されている。しかし、この材料は、構成物質が全て炭
素であるため、500℃以上の酸化雰囲気中で酸化され
てしまい、超高温下においてはその特性を生かすことが
できなかった。2. Description of the Related Art As is well known, carbon fiber reinforced carbon composite materials have excellent high-temperature strength and are therefore expected as high-temperature strength materials. However, since this material is composed entirely of carbon, it is oxidized in an oxidizing atmosphere of 500 ° C. or higher, and its characteristics cannot be utilized at an ultra-high temperature.
【0003】そこで、従来、耐酸化性、耐薬品性等を向
上させるために、炭素繊維強化炭素複合材料へセラミッ
クスを被覆することが行われていた。ところで、このセ
ラミックスの被覆は、気相化学蒸着法(CVD:Che
mical VapourDeposition法)が
最も主たる方法の一つである。しかし、このCVD法に
は一長一短があり、厚い膜を得ることができるが、複雑
な形状をした素材に対して適用が困難である。[0003] Therefore, in order to improve oxidation resistance, chemical resistance and the like, conventionally, ceramics have been coated on a carbon fiber reinforced carbon composite material. By the way, this ceramic coating is performed by a vapor phase chemical vapor deposition (CVD: Che).
physical vapor deposition method) is one of the most main methods. However, although this CVD method has advantages and disadvantages and can obtain a thick film, it is difficult to apply it to a material having a complicated shape.
【0004】近年、宇宙空間への進出に対する国際的な
取り組みがなされる中、今後ますます耐酸化を有する炭
素繊維強化炭素強化炭素複合材料の需要が高まってい
る。[0004] In recent years, as international efforts have been made to advance into space, demand for carbon fiber reinforced carbon reinforced carbon composite materials having oxidation resistance has been increasing.
【0005】[0005]
【発明が解決しようとする課題】第1の発明は、こうし
た事情を考慮してなされたので、炭素繊維強化炭素複合
材料の少なくとも表面に、高温酸化時にCaB4O7も
しくはCaB2O4の耐酸化膜を形成するホウ化カルシ
ウムを形成させた構成とすることにより、耐酸化性及び
持久力に優れた炭素繊維強化炭素強化炭素複合体を提供
することを目的とする。SUMMARY OF THE INVENTION Since the first invention has been made in view of such circumstances, the acid resistance of CaB 4 O 7 or CaB 2 O 4 on at least the surface of the carbon fiber reinforced carbon composite material during high-temperature oxidation. An object of the present invention is to provide a carbon fiber reinforced carbon reinforced carbon composite having excellent oxidation resistance and endurance by adopting a structure in which calcium boride that forms a oxidized film is formed.
【0006】第2の発明は、炭素繊維強化炭素複合材料
を、CaB6粉末を有機溶媒に分散させた液に浸漬さ
せ、含浸処理を行った後、脱脂処理を行い炭素繊維強化
炭素複合材料の表面にホウ化カルシウムを形成させるこ
とにより、第1の発明と同様な効果が得られる炭素繊維
強化炭素強化炭素複合体を製造する方法を提供すること
を目的とする。In a second aspect of the present invention, the carbon fiber reinforced carbon composite material is immersed in a solution of CaB 6 powder dispersed in an organic solvent, impregnated, degreased, and baked. An object of the present invention is to provide a method for producing a carbon fiber reinforced carbon reinforced carbon composite in which the same effect as in the first invention is obtained by forming calcium boride on the surface.
【0007】第3の発明は、炭素繊維強化炭素複合材料
を、ホウ化カルシウム粉末を有機溶媒に分散させた液を
収容した容器内にセットした後、冷間静水圧成形法によ
り前記複合材料の少なくとも表面にホウ化カルシウムを
形成することにより、耐酸化性及び持久力に優れるとと
もに、複雑な形状な素材に対しても適用可能な炭素繊維
強化炭素強化炭素複合体を製造する方法を提供すること
を目的とする。In a third aspect of the present invention, a carbon fiber reinforced carbon composite material is set in a container containing a liquid in which calcium boride powder is dispersed in an organic solvent, and then the composite material is subjected to cold isostatic pressing. Provided is a method for producing a carbon fiber reinforced carbon reinforced carbon composite which is excellent in oxidation resistance and endurance by forming calcium boride at least on the surface and which can be applied to a material having a complicated shape. With the goal.
【0008】第4の発明は、炭素繊維強化炭素複合材料
の表面に、ホウ化カルシウムにクロム化合物を加えたホ
ウ化カルシウム複合試料を形成させた構成にすることに
より、第1の発明と同様な効果が得られる炭素繊維強化
炭素強化複合体を提供することを目的とする。[0008] A fourth aspect of the present invention is the same as the first aspect of the invention in that a calcium boride composite sample obtained by adding a chromium compound to calcium boride is formed on the surface of a carbon fiber reinforced carbon composite material. It is an object of the present invention to provide a carbon fiber reinforced carbon reinforced composite that provides an effect.
【0009】第5の発明は、炭素繊維強化炭素複合材料
を、CaB6複合試料を有機溶媒に分散させた液に浸漬
させて含浸処理を行った後、脱脂処理を行い炭素繊維強
化炭素複合材料の表面にホウ化カルシウム複合試料を形
成させることにより、第1の発明と同様な効果が得られ
る炭素繊維強化炭素強化複合体を製造する方法を提供す
ることを目的とする。[0009] A fifth invention is a carbon fiber reinforced carbon composite material, after impregnated by immersion in a liquid dispersed in an organic solvent CaB 6 composite sample, the carbon fiber reinforced carbon composite material subjected to degreasing treatment An object of the present invention is to provide a method for producing a carbon fiber reinforced carbon reinforced composite having the same effects as in the first invention by forming a calcium boride composite sample on the surface of the composite.
【0010】第6の発明は、炭素繊維強化炭素複合材料
を、ホウ化カルシウムにクロム化合物を加えてたホウ化
カルシウム複合試料粉末を有機溶媒に分散させた液を収
容した容器内にセットした後、冷間静水圧成形法により
前記複合試料粉末の少なくとも表面にホウ化カルシウム
複合試料を形成することにより、第3の発明と同様な効
果が得られる炭素繊維強化炭素強化複合体を製造する方
法を提供することを目的とする。A sixth aspect of the present invention is a method of setting a carbon fiber-reinforced carbon composite material in a container containing a liquid in which a calcium boride composite sample powder obtained by adding a chromium compound to calcium boride is dispersed in an organic solvent. Forming a calcium boride composite sample on at least the surface of the composite sample powder by cold isostatic pressing to produce a carbon fiber reinforced carbon reinforced composite having the same effect as the third invention. The purpose is to provide.
【0011】[0011]
【課題を解決するための手段】第1の発明に係る炭素繊
維強化炭素複合体は、炭素繊維強化炭素複合材料の少な
くとも表面に、高温酸化時にCaB4O7もしくはCa
B2O4の少なくともいずれかからなる耐酸化膜を形成
するホウ化カルシウムを形成させた構成であることを特
徴とする。The carbon fiber reinforced carbon composite according to the first invention is characterized in that at least the surface of the carbon fiber reinforced carbon composite material is exposed to CaB 4 O 7 or Ca
It is characterized in that it has a structure in which calcium boride for forming an oxidation-resistant film made of at least one of B 2 O 4 is formed.
【0012】第2の発明に係る炭素繊維強化炭素複合体
の製造方法は、炭素繊維強化炭素複合材料を、ホウ化カ
ルシウム粉末を有機溶媒に分散させた液に浸漬させて含
浸処理を行った後、脱脂処理を行い炭素繊維強化炭素複
合材料の表面にホウ化カルシウムを形成することを特徴
とする。[0012] The method for producing a carbon fiber reinforced carbon composite according to the second invention is characterized in that the carbon fiber reinforced carbon composite material is impregnated by immersing it in a liquid in which calcium boride powder is dispersed in an organic solvent. And decalcifying to form calcium boride on the surface of the carbon fiber reinforced carbon composite material.
【0013】第3の発明に係る炭素繊維強化炭素複合体
の製造方法は、炭素繊維強化炭素複合材料を、ホウ化カ
ルシウム粉末を有機溶媒に分散させた液を収容した容器
内にセットした後、冷間静水圧成形法により前記複合材
料の少なくとも表面にホウ化カルシウムを形成すること
を特徴とする。[0013] The method for producing a carbon fiber reinforced carbon composite according to a third aspect of the invention is a method of setting a carbon fiber reinforced carbon composite material in a container containing a liquid in which calcium boride powder is dispersed in an organic solvent. Calcium boride is formed on at least the surface of the composite material by cold isostatic pressing.
【0014】第4の発明に係る炭素繊維強化炭素複合体
は、炭素繊維強化炭素複合材料の表面に、ホウ化カルシ
ウムにクロム化合物を加えたホウ化カルシウム複合試料
を形成させた構成であることを特徴とする炭素繊維強化
炭素複合体ことを特徴とする。According to a fourth aspect of the present invention, there is provided a carbon fiber reinforced carbon composite having a structure in which a calcium boride composite sample obtained by adding a chromium compound to calcium boride is formed on the surface of a carbon fiber reinforced carbon composite material. It is a carbon fiber reinforced carbon composite characterized by the following.
【0015】第5の発明に係る炭素繊維強化炭素複合体
の製造方法は、炭素繊維強化炭素複合材料を、CaB6
複合試料を有機溶媒に分散させた液に浸漬させて含浸処
理を行った後、脱脂処理を行い炭素繊維強化炭素複合材
料の表面にホウ化カルシウム複合試料を形成させること
を特徴とする。[0015] The method of producing a carbon fiber-reinforced carbon composite according to the fifth invention, the carbon fiber reinforced carbon composite material, CaB 6
The composite sample is immersed in a liquid dispersed in an organic solvent to perform impregnation, followed by degreasing to form a calcium boride composite sample on the surface of the carbon fiber reinforced carbon composite material.
【0016】第6の発明に係る炭素繊維強化炭素複合体
の製造方法は、炭素繊維強化炭素複合材料を、ホウ化カ
ルシウムにクロム化合物を加えてたホウ化カルシウム複
合試料粉末を有機溶媒に分散させた液を収容した容器内
にセットした後、冷間静水圧成形法により前記複合試料
粉末の少なくとも表面にホウ化カルシウム複合試料を形
成することを特徴とする炭素繊維強化炭素複合体の製造
方法である。In a sixth aspect of the present invention, there is provided a method of manufacturing a carbon fiber reinforced carbon composite, comprising: dispersing a carbon fiber reinforced carbon composite material in an organic solvent by mixing a calcium boride composite powder obtained by adding a chromium compound to calcium boride; After setting in a container containing the mixed solution, a method for producing a carbon fiber reinforced carbon composite, comprising forming a calcium boride composite sample on at least the surface of the composite sample powder by cold isostatic pressing. is there.
【0017】[0017]
【発明の実施の形態】以下、本発明について更に詳しく
説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.
【0018】本発明において、炭素繊維強化炭素複合材
料(以下、単に複合材料と呼ぶ)は、次のようにして作
られる。まず、平織り、朱子織り、綾織り等の二方向織
布、一方向配向材、三方向配向材、n方向配向材、フェ
ルト、藤(トウ)等の炭素繊維に、フェノール樹脂、尿
素樹脂、メラミン樹脂、フラン樹脂等の熱硬化性樹脂、
カーボンブラック、タール、ピッチのような熱可塑性樹
脂からなるバインダーを含浸、塗布する等の方法により
プリプレグを形成する。つづいて、加熱加圧して成形体
とし、この成形体を熱処理によってバインダーを完全に
硬化させる。次に、常法により焼成、更に必要に応じて
黒鉛化して複合材料を形成する。In the present invention, a carbon fiber reinforced carbon composite material (hereinafter, simply referred to as a composite material) is produced as follows. First, two-way woven fabric such as plain weave, satin weave, twill weave, one-way oriented material, three-way oriented material, n-directional oriented material, carbon fiber such as felt, rattan (tow), phenol resin, urea resin, melamine Thermosetting resin such as resin and furan resin,
A prepreg is formed by impregnating and applying a binder made of a thermoplastic resin such as carbon black, tar or pitch. Subsequently, the molded body is formed by heating and pressing, and the binder is completely cured by heat treatment of the molded body. Next, the composite material is formed by firing using a conventional method and, if necessary, graphitizing.
【0019】本発明において、炭素繊維強化炭素複合体
(以下、単に複合体と呼ぶ)は、複合材料の少なくとも
表面に、ホウ化カルシウムを形成させたことを特徴とす
る。ここで、ホウ化カルシウムは、高温酸化時にCaB
4O7、あるいはCaB2O 4、あるいはCaB4O7
及びCaB2O4の両者からなる耐酸化膜を生成する性
質を有している。本発明において、前記耐酸化膜は、複
合材料の表面にのみに形成されている場合、あるいは複
合材料の表面に含浸されて形成されている場合、あるい
は複合材料の表面のみならず複合材料内にも含浸されて
形成されている場合を含む。従って、上記形成とは、複
合材料の表面に被覆あるいは含浸の少なくともいずれか
一方を意味する。In the present invention, the carbon fiber reinforced carbon composite
(Hereinafter simply referred to as a composite) is at least a composite material.
Characterized by having calcium boride formed on the surface
You. Here, calcium boride is CaB at the time of high temperature oxidation.
4O7Or CaB2O 4Or CaB4O7
And CaB2O4Of forming an oxidation resistant film consisting of both
Have quality. In the present invention, the oxidation resistant film includes
If it is formed only on the surface of the composite material,
If it is formed by impregnating the surface of the composite material,
Is impregnated not only on the surface of the composite material but also inside the composite material
Including the case where it is formed. Therefore, the above formation is
At least one of coated and impregnated on the surface of the composite material
Mean one.
【0020】本発明(第1の発明)において、高温酸化
時における「高温」とは、大体500℃〜1500℃の
範囲の温度を意味するが、CaB2O4の場合、一般に
1気圧で800℃までを示し、1気圧を超えた場合は8
00℃〜1000℃を意味する。また、Cr2O3の場
合、「高温」とは1000℃〜1200℃の範囲の温度
を意味する。従って、温度によってCaB2O4のみに
よる耐酸化膜が形成される場合、Cr2O3のみからな
る耐酸化膜が形成される場合、あるいは両者からなる耐
酸化膜が形成される場合がある。In the present invention (first invention), “high temperature” during high-temperature oxidation means a temperature in the range of approximately 500 ° C. to 1500 ° C. In the case of CaB 2 O 4 , the pressure is generally 800 at 1 atmosphere. ° C, and 8 if the pressure exceeds 1 atm
Means 00 ° C to 1000 ° C. In the case of Cr 2 O 3 , “high temperature” means a temperature in the range of 1000 ° C. to 1200 ° C. Therefore, depending on the temperature, an oxidation resistant film made of only CaB 2 O 4 may be formed, an oxidation resistant film made of only Cr 2 O 3 may be formed, or an oxidation resistant film made of both may be formed.
【0021】本発明において、有機溶媒としては、例え
ばポリエチレングリコールが挙げられる。また、脱脂処
理の温度は有機溶媒の種類により異なるが、例えばポリ
エチレングリコールの場合で言えば、300〜800℃
であり、好ましくは400〜600℃である。ここで、
300℃未満では複合材料中に炭化物が残る可能性があ
り、800℃を超えると有機成分が急激に揮発して複合
材料中に空孔ができる可能性がある。In the present invention, examples of the organic solvent include polyethylene glycol. The temperature of the degreasing treatment varies depending on the type of the organic solvent. For example, in the case of polyethylene glycol, 300 to 800 ° C.
And preferably 400 to 600 ° C. here,
If the temperature is lower than 300 ° C., carbides may remain in the composite material. If the temperature is higher than 800 ° C., the organic component may rapidly evaporate and pores may be formed in the composite material.
【0022】本発明によれば、構成物質が全て炭素であ
るが故に、500℃以上の酸化雰囲気中で酸化されてし
まう複合材料に、ホウ化カルシウムを形成することで、
超高温環境下で問題となる酸化を防止できる耐酸化性に
優れた複合体を得ることができる。また、複合材料にホ
ウ化カルシウム等を含浸させるのに、冷間静水圧成形
(CIP:Cold Isostatic Pres
s)法を用いれば、複合材料がたとえ複雑な形状をして
いても、ホウ化カルシウムが複合材料に等方的に含浸す
るため、まんべんなくホウ化カルシウムによる層を形成
することができる。According to the present invention, calcium boride is formed in a composite material which is oxidized in an oxidizing atmosphere of 500 ° C. or more because the constituent materials are all carbon.
A composite having excellent oxidation resistance can be obtained which can prevent oxidation which is a problem in an ultra-high temperature environment. Further, in order to impregnate the composite material with calcium boride or the like, cold isostatic pressing (CIP: Cold Isostatic Pres) is used.
By using the method s), even if the composite material has a complicated shape, the calcium boride isotropically impregnates the composite material, so that the calcium boride layer can be formed evenly.
【0023】[0023]
【実施例】以下、本発明の実施例について製造方法を併
記して説明する。なお、以下の実施例で述べる各部材の
材料、数値等は一例を示すもので、本発明の権利範囲を
特定するものではない。EXAMPLES Examples of the present invention will be described below together with the manufacturing method. It should be noted that the materials, numerical values, and the like of each member described in the following examples are merely examples, and do not specify the scope of the present invention.
【0024】(実施例1)図1は、本発明の実施例1に
係る炭素繊維強化炭素複合体(複合体)1を示す。この
複合体1は、炭素繊維強化炭素複合材料(複合材料)2
と、この複合材料2の表面に形成されたホウ化カルシウ
ム3とから構成されている。ここで、ホウ化カルシウム
3は、高温酸化時にCaB4O7、あるいはCaB2O
4、あるいはCaB4O7及びCaB2O4の両者から
なる耐酸化膜を形成する性質を有している。Example 1 FIG. 1 shows a carbon fiber reinforced carbon composite (composite) 1 according to Example 1 of the present invention. The composite 1 includes a carbon fiber reinforced carbon composite material (composite material) 2
And the calcium boride 3 formed on the surface of the composite material 2. Here, the calcium boride 3 is converted to CaB 4 O 7 or CaB 2 O during high-temperature oxidation.
4 or a property of forming an oxidation-resistant film composed of both CaB 4 O 7 and CaB 2 O 4 .
【0025】このように、上記実施例1に係る複合体
は、複合材料と、複合材料2の表面に形成され、高温酸
化時にCaB4O7、あるいはCaB2O4、あるいは
CaB 4O7及びCaB2O4の両者からなる耐酸化膜
を形成するホウ化カルシウム3とから構成されている。
従って、超高温環境下で問題となる酸化を防止できる耐
酸化性に優れた複合体を得ることができる。As described above, the composite according to the first embodiment is
Is formed on the surface of the composite material and the composite material 2, and
CaB at the time of conversion4O7Or CaB2O4Or
CaB 4O7And CaB2O4Oxidation resistant film consisting of both
And calcium boride 3 forming
Therefore, oxidation resistance which can be a problem in an ultra-high temperature environment can be prevented.
A composite having excellent oxidizability can be obtained.
【0026】次に、上記実施例1に係る複合体の製造方
法について説明する。Next, a method for producing the composite according to the first embodiment will be described.
【0027】まず、予め複合材料2を用意する。この複
合材料2は、例えば、平織りの二方向織布の炭素繊維
に、フェノール樹脂、カーボンブラック、タール、ピッ
チからなるバインダーを含浸、塗布する等の方法により
プリプレグを形成し、加熱加圧して成形体とし、この成
形体を熱処理によってバインダーを完全に硬化させた
後、常法により焼成して製作する。First, a composite material 2 is prepared in advance. The composite material 2 is formed, for example, by forming a prepreg by impregnating and applying a binder composed of phenol resin, carbon black, tar, and pitch to carbon fibers of a plain weave bidirectional woven fabric, and molding by heating and pressing. After the binder is completely cured by heat treatment, the molded body is fired by a conventional method.
【0028】次に、粘性率6〜9Pa・sのポリエチレ
ングリコール(有機溶媒)に、粒径約10.0μmのホ
ウ化カルシウム粉末を分散させて、分散液を得た。次
に、この分散液中に最高処理温度2000℃で焼成され
た複合材料2を含浸させ、真空デシケータ中で真空含浸
処理を行った。つづいて、ポリエチレングリコールが完
全に蒸発するように300℃で脱脂処理をし、全表面に
均一にホウ化カルシウム粉末3で被覆された複合体1を
作製した。Next, calcium boride powder having a particle size of about 10.0 μm was dispersed in polyethylene glycol (organic solvent) having a viscosity of 6 to 9 Pa · s to obtain a dispersion. Next, this dispersion was impregnated with the composite material 2 fired at a maximum processing temperature of 2000 ° C., and vacuum impregnation was performed in a vacuum desiccator. Subsequently, a degreasing treatment was performed at 300 ° C. so that the polyethylene glycol was completely evaporated, and a composite 1 in which the entire surface was uniformly coated with the calcium boride powder 3 was prepared.
【0029】上記方法で作製された耐酸化性膜の被覆を
持ち合わせた複合材料の耐酸化能力の評価は、示差熱分
析器を用いての昇温酸化、および電気炉を用いての定温
酸化実験を行い、加熱温度、加熱時間と質量変化との関
係から評価した。昇温酸化実験における昇温速度は、図
2に示すように、500℃に至るまでを15℃/mi
n、以降の温度を2℃/minとした。定温酸化実験に
おける温度範囲は700〜1500℃で行った。The evaluation of the oxidation resistance of the composite material provided with the coating of the oxidation resistant film produced by the above method was carried out by a temperature increase oxidation using a differential thermal analyzer and a constant temperature oxidation experiment using an electric furnace. And evaluated from the relationship between the heating temperature, the heating time, and the change in mass. As shown in FIG. 2, the heating rate in the heating oxidation experiment was 15 ° C./mi up to 500 ° C.
n, and the subsequent temperature was 2 ° C./min. The temperature range in the constant temperature oxidation experiment was 700 to 1500 ° C.
【0030】上記実施例1に係る炭素繊維強化炭素複合
体は、図1に示すように合材料1の表面に、高温酸化時
にCaB4O7もしくはCaB2O4の耐酸化膜を生成
するホウ化カルシウム2を被覆させた構成となってい
る。こうした構成の複合体においては、500℃以上の
酸化雰囲気中で酸化されてしまう複合材料1を、ホウ化
カルシウム粉末を有機溶媒に分散させた液に浸漬させ、
含浸処理させた後その有機溶媒を完全に蒸発させること
によってホウ化カルシウムを被覆させることができる。
この被覆が酸化して生ずるCaB4O7もしくはCaB
2O4(高温時)の耐酸化バリアによって、複合体の耐
酸化性を大幅に向上させることが可能である。As shown in FIG. 1, the carbon fiber reinforced carbon composite according to the first embodiment forms a oxidized film of CaB 4 O 7 or CaB 2 O 4 on the surface of the composite material 1 during high-temperature oxidation. It is configured to be coated with calcium chloride 2. In the composite having such a configuration, the composite material 1 that is oxidized in an oxidizing atmosphere of 500 ° C. or more is immersed in a liquid in which calcium boride powder is dispersed in an organic solvent,
The calcium boride can be coated by completely evaporating the organic solvent after the impregnation.
CaB 4 O 7 or CaB produced by oxidation of this coating
The oxidation resistance of 2 O 4 (at high temperature) can greatly improve the oxidation resistance of the composite.
【0031】事実、実施例に係る炭素繊維強化炭素複合
体(C/C複合体)及びホウ化カルシウムを含まない従
来のC/C複合体について温度上昇に伴う重量の変化を
調べたところ、図3に示す結果が得られた。図3におい
て、曲線(イ)は本発明のC/C複合体の場合、曲線
(ロ)は従来のC/C複合体の場合を示す。図1より、
本発明のように複合材料の表面にホウ化カルシウムが形
成されたものは、従来と比べ重量の減少が少ないことが
明らかである。これにより、本発明によるC/C複合体
は従来と比べ耐酸化性が向上していることが判明した。In fact, when the change in weight of the carbon fiber reinforced carbon composite (C / C composite) according to the example and the conventional C / C composite not containing calcium boride with increase in temperature was examined, the figure shows that: The result shown in FIG. 3 was obtained. In FIG. 3, curve (a) shows the case of the C / C complex of the present invention, and curve (b) shows the case of the conventional C / C complex. From FIG.
It is clear that the weight of the composite material having calcium boride formed on the surface thereof is less than that of the conventional material. As a result, it has been found that the C / C composite according to the present invention has improved oxidation resistance as compared with the related art.
【0032】(実施例2)図3は、本発明の実施例2に
係る炭素繊維強化炭素複合体(複合体)11を示す。こ
の複合体11は、炭素繊維強化炭素複合材料(複合材
料)12と、この複合材料12の表面に形成されたホウ
化カルシウム複合試料13とから構成されている。ここ
で、ホウ化カルシウム複合試料13は、ホウ化カルシウ
ムにクロム化合物を加えたものである。Example 2 FIG. 3 shows a carbon fiber reinforced carbon composite (composite) 11 according to Example 2 of the present invention. The composite 11 includes a carbon fiber reinforced carbon composite material (composite material) 12 and a calcium boride composite sample 13 formed on the surface of the composite material 12. Here, the calcium boride composite sample 13 is obtained by adding a chromium compound to calcium boride.
【0033】このように、上記実施例2に係る複合体1
1は、複合材料12と、複合材料12の表面に形成さ
れ、ホウ化カルシウムにクロム化合物を加えた複合試料
13とから構成されている。従って、超高温環境下で問
題となる酸化を防止できる耐酸化性に優れた複合体を得
ることができる。As described above, the composite 1 according to the above-mentioned Example 2 was used.
Reference numeral 1 denotes a composite material 12 and a composite sample 13 formed on the surface of the composite material 12 and obtained by adding a chromium compound to calcium boride. Therefore, it is possible to obtain a composite having excellent oxidation resistance which can prevent oxidation which is a problem in an ultra-high temperature environment.
【0034】次に、上記実施例2に係る複合体の製造方
法について説明する。Next, a method for producing the composite according to the second embodiment will be described.
【0035】まず、予め複合材料12を用意する。この
複合材料12は、例えば、平織りの二方向織布の炭素繊
維に、フェノール樹脂、カーボンブラック、タール、ピ
ッチからなるバインダーを含浸、塗布する等の方法によ
りプリプレグを形成し、加熱加圧して成形体とし、この
成形体を熱処理によってバインダーを完全に硬化させた
後、常法により焼成して製作する。First, the composite material 12 is prepared in advance. The composite material 12 is formed by, for example, forming a prepreg by impregnating and applying a binder made of phenol resin, carbon black, tar, and pitch to carbon fibers of a plain weave bidirectional woven fabric, and applying heat and pressure. After the binder is completely cured by heat treatment, the molded body is fired by a conventional method.
【0036】次に、粘性率6〜9Pa・sのポリエチレ
ングリコール(有機溶媒)に、粒径約10.0μmのホ
ウ化カルシウム複合試料を分散させて、分散液を得た。
次に、この分散液中に細孔処理温度2000℃で焼成さ
れた複合材料12を含浸させ、真空デシケータ中で真空
含浸処理を行った。つづいて、ポリエチレングリコール
が完全に蒸発するように300℃で脱脂処理をし、全表
面に均一にホウ化カルシウム粉末からなる被覆層で被覆
された複合体11を作製した。Next, a calcium boride composite sample having a particle size of about 10.0 μm was dispersed in polyethylene glycol (organic solvent) having a viscosity of 6 to 9 Pa · s to obtain a dispersion.
Next, this dispersion was impregnated with the composite material 12 fired at a pore treatment temperature of 2000 ° C., and vacuum impregnation was performed in a vacuum desiccator. Subsequently, a degreasing treatment was performed at 300 ° C. so that the polyethylene glycol was completely evaporated, and a composite 11 in which the entire surface was uniformly coated with a coating layer made of calcium boride powder was produced.
【0037】上記方法で作製された耐酸化性の被覆を持
ち合わせた複合体11の耐酸化能力の評価は、示差熱分
析器を用いての昇温酸化、および電気炉を用いての定温
酸化実験を行い、加熱温度、加熱時間と質量変化との関
係から評価した。昇温酸化実験における昇温速度は、5
00℃に至るまでを15℃/min、以降の温度を2℃
/cmとした。定温酸化実験における温度範囲は700
〜1500℃で行った。The evaluation of the oxidation resistance of the composite 11 provided with the oxidation-resistant coating produced by the above method was carried out by performing a temperature-rise oxidation using a differential thermal analyzer and a constant-temperature oxidation experiment using an electric furnace. And evaluated from the relationship between the heating temperature, the heating time, and the change in mass. The heating rate in the heating oxidation experiment was 5
15 ° C / min up to 00 ° C and 2 ° C thereafter
/ Cm. The temperature range in the constant temperature oxidation experiment was 700
Performed at ~ 1500C.
【0038】上記実施例2に係る炭素繊維強化炭素複合
体11は、図3に示すように複合材料12の表面に、ホ
ウ化カルシウムにクロム化合物を加えた複合試料13を
形成した構成となっている。こうした構成の複合体11
においては、500℃以上の酸化雰囲気中で酸化されて
しまう複合材料12を、ホウ化カルシウム粉末を有機溶
媒に分散させた液に浸漬させ、含浸処理させた後その有
機溶媒を完全に蒸発させることによってホウ化カルシウ
ムを被覆させることができる。この被覆が酸化して生ず
るCaB4O7、CaB2O4、Cr2O3の耐酸化バ
リアによって、複合体11の耐酸化性を大幅に上昇させ
ることが可能である。The carbon fiber reinforced carbon composite 11 according to the second embodiment has a configuration in which a composite sample 13 obtained by adding a chromium compound to calcium boride is formed on the surface of a composite material 12 as shown in FIG. I have. Composite 11 having such a configuration
In the above, the composite material 12, which is oxidized in an oxidizing atmosphere of 500 ° C. or more, is immersed in a liquid in which calcium boride powder is dispersed in an organic solvent, impregnated, and then the organic solvent is completely evaporated. Can coat calcium boride. The oxidation resistance of the composite 11 can be greatly increased by the oxidation-resistant barrier of CaB 4 O 7 , CaB 2 O 4 , and Cr 2 O 3 generated by oxidation of the coating.
【0039】(実施例3)図5を参照する。本実施例3
は、CIP法により炭素繊維強化炭素複合材料の表面に
ホウ化カルシウムを形成する例を示す。(Embodiment 3) Referring to FIG. Example 3
Shows an example of forming calcium boride on the surface of a carbon fiber reinforced carbon composite material by the CIP method.
【0040】まず、予め図示しない容器内の粘性率6〜
9Pa・sのポリエチレングリコール(有機溶媒)に、
例えば粒径約10.0μm、濃度3%のホウ化カルシウ
ム(CaB6)を入れ、充分に混ぜる。次に、この混合
溶液を炭素繊維強化炭素複合材料(複合材料)ととも
に、水21を収容した圧力容器22内のラテックスゴム
製の袋23内に入れ、真空脱気の後、袋23の口を閉じ
る。つづいて、バルブ24を介装した配管25付きシリ
ンダ26をバルブ24を閉じた状態で矢印Xの方向に移
動し、袋23内の混合溶液に等方に圧を加え、複合体を
製造した。ここで、加圧条件は、例えば圧力:1〜2t
on/cm2、時間:1〜10分(好ましくは2〜5
分)とした。First, the viscosity in the container (not shown) of 6 to
9 Pa · s polyethylene glycol (organic solvent)
For example, calcium boride (CaB 6 ) having a particle size of about 10.0 μm and a concentration of 3% is added and mixed well. Next, this mixed solution is put together with a carbon fiber reinforced carbon composite material (composite material) in a latex rubber bag 23 in a pressure vessel 22 containing water 21, and after vacuum degassing, the mouth of the bag 23 is closed. close. Subsequently, the cylinder 26 with the pipe 25 interposed with the valve 24 was moved in the direction of arrow X with the valve 24 closed, and pressure was applied isotropically to the mixed solution in the bag 23 to produce a composite. Here, the pressurizing condition is, for example, pressure: 1 to 2 t.
on / cm 2 , time: 1 to 10 minutes (preferably 2 to 5 minutes)
Min).
【0041】このように、実施例3によれば、CIP法
により炭素繊維強化炭素複合材料の表面にホウ化カルシ
ウムを形成するため、例えば前記複合材料が複雑な形状
をしていてもその表面にホウ化カルシウムがまんべんな
く浸透し、複合材料の表面にホウ化カルシウムを形成す
ることができる。As described above, according to Example 3, since calcium boride is formed on the surface of the carbon fiber reinforced carbon composite material by the CIP method, for example, even if the composite material has a complicated shape, The calcium boride can penetrate evenly and form calcium boride on the surface of the composite material.
【0042】なお、上記実施例3では、ラテックスの袋
の中にホウ化カルシウム、エチレングリコール及び複合
材料を収容して複合体を製造する場合について述べた
が、これに限らず、圧力容器内に直接エチレングリコー
ル及び複合材料を入れても、複合体の製造が実現可能で
ある。In the third embodiment, the case where calcium boride, ethylene glycol and a composite material are contained in a bag of latex to produce a composite has been described. However, the present invention is not limited to this. Even if ethylene glycol and the composite material are directly charged, the production of the composite can be realized.
【0043】(実施例4)本実施例4は、ホウ化カルシ
ウムの代りにホウ化カルシウムにクロム化合物を加えた
ホウ化カルシウム複合試料を用いた以外は、実施例3と
同じようにして炭素繊維強化炭素複合材料の表面に前記
複合試料を形成した。(Example 4) This Example 4 is similar to Example 3 except that a calcium boride composite sample obtained by adding a chromium compound to calcium boride was used instead of calcium boride. The composite sample was formed on the surface of the reinforced carbon composite material.
【0044】実施例4によれば、実施例3と同様、複雑
な形状の複合材料表面に前記複合試料をまんべんなく形
成することができる。According to the fourth embodiment, similarly to the third embodiment, the composite sample can be uniformly formed on the surface of the composite material having a complicated shape.
【0045】[0045]
【発明の効果】以上詳述したように、本発明によれば、
炭素繊維強化炭素複合材料の表面にホウ化カルシウムも
しくはホウ化カルシウム複合試料を形成した構成とする
ことにより、耐酸化性及び持久力に優れた炭素繊維強化
炭素強化炭素複合体を提供できる。As described in detail above, according to the present invention,
By employing a structure in which calcium boride or a calcium boride composite sample is formed on the surface of a carbon fiber reinforced carbon composite material, a carbon fiber reinforced carbon reinforced carbon composite having excellent oxidation resistance and endurance can be provided.
【0046】また、本発明によれば、CIP法により炭
素繊維強化炭素複合材料の表面にホウ化カルシウムもし
くはホウ化カルシウム複合試料を含浸させることによ
り、耐酸化性及び持久力に優れるとともに、複雑な形状
の素材に対しても適用可能な炭素繊維強化炭素強化炭素
複合体を製造する方法を提供できる。Further, according to the present invention, by impregnating the surface of a carbon fiber reinforced carbon composite material with calcium boride or a calcium boride composite sample by the CIP method, it is excellent in oxidation resistance and endurance, and is complicated. It is possible to provide a method for producing a carbon fiber reinforced carbon reinforced carbon composite applicable to a shape material.
【図1】本発明の実施例1に係る炭素繊維強化炭素強化
炭素複合体の断面図。FIG. 1 is a cross-sectional view of a carbon fiber reinforced carbon composite according to a first embodiment of the present invention.
【図2】本発明に係る複合体の耐酸化能力の評価試験に
おける複合体の温度と時間との関係を示す特性図。FIG. 2 is a characteristic diagram showing a relationship between temperature and time of the composite in an evaluation test of the oxidation resistance of the composite according to the present invention.
【図3】図1の炭素繊維強化炭素強化炭素複合体及び従
来の複合体に係る温度による重量変化特性図。FIG. 3 is a graph showing a weight change characteristic with temperature of the carbon fiber reinforced carbon composite of FIG. 1 and a conventional composite.
【図4】本発明の実施例2に係る炭素繊維強化炭素強化
炭素複合体の断面図。FIG. 4 is a sectional view of a carbon fiber reinforced carbon composite according to a second embodiment of the present invention.
【図5】本発明の実施例3に係る炭素繊維強化炭素強化
複合体の製造方法の説明図。FIG. 5 is an explanatory view of a method for producing a carbon fiber-reinforced carbon-reinforced composite according to Example 3 of the present invention.
1、11…炭素繊維強化炭素複合体、 2、12…炭素繊維強化炭素複合材料、 3…ホウ化カルシウム、 13…ホウ化カルシウム複合試料、 22…圧力容器、 24…バルブ、 26…シリンダー。 1, 11: carbon fiber reinforced carbon composite, 2, 12: carbon fiber reinforced carbon composite, 3: calcium boride, 13: calcium boride composite sample, 22: pressure vessel, 24: valve, 26: cylinder.
Claims (6)
表面に、高温酸化時にCaB4O7もしくはCaB2O
4の少なくともいずれかからなる耐酸化膜を形成するホ
ウ化カルシウムを形成させた構成であることを特徴とす
る炭素繊維強化炭素複合体。At least a surface of a carbon fiber reinforced carbon composite material is subjected to CaB 4 O 7 or CaB 2 O during high-temperature oxidation.
4. A carbon fiber reinforced carbon composite having a structure in which calcium boride for forming an oxidation-resistant film is formed.
ルシウム粉末を有機溶媒に分散させた液に浸漬させて含
浸処理を行った後、脱脂処理を行い炭素繊維強化炭素複
合材料の表面にホウ化カルシウムを形成することを特徴
とする炭素繊維強化炭素複合体の製造方法。2. A carbon fiber reinforced carbon composite material is immersed in a liquid in which calcium boride powder is dispersed in an organic solvent to be impregnated, and then degreased to form a borane on the surface of the carbon fiber reinforced carbon composite material. A method for producing a carbon fiber reinforced carbon composite, wherein calcium fluoride is formed.
ルシウム粉末を有機溶媒に分散させた液を収容した容器
内にセットした後、冷間静水圧成形法により前記複合材
料の少なくとも表面にホウ化カルシウムを形成すること
を特徴とする炭素繊維強化炭素複合体の製造方法。3. A carbon fiber-reinforced carbon composite material is set in a container containing a liquid in which a calcium boride powder is dispersed in an organic solvent, and then a cold isostatic pressing method is applied to at least the surface of the composite material. A method for producing a carbon fiber reinforced carbon composite, wherein calcium fluoride is formed.
ウ化カルシウムにクロム化合物を加えたホウ化カルシウ
ム複合試料を形成させた構成であることを特徴とする炭
素繊維強化炭素複合体。4. A carbon fiber reinforced carbon composite, wherein a calcium boride composite sample obtained by adding a chromium compound to calcium boride is formed on the surface of a carbon fiber reinforced carbon composite material.
ルシウム複合試料粉末を有機溶媒に分散させた液に浸漬
させて含浸処理を行った後、脱脂処理を行い炭素繊維強
化炭素複合材料の表面にホウ化カルシウム複合試料を形
成することを特徴とする炭素繊維強化炭素複合体の製造
方法。5. The carbon fiber reinforced carbon composite material is immersed in a liquid obtained by dispersing a calcium boride composite sample powder in an organic solvent, impregnated, and then degreased to obtain a surface of the carbon fiber reinforced carbon composite material. A method for producing a carbon fiber reinforced carbon composite, comprising forming a calcium boride composite sample on a substrate.
ルシウムにクロム化合物を加えてたホウ化カルシウム複
合試料粉末を有機溶媒に分散させた液を収容した容器内
にセットした後、冷間静水圧成形法により前記複合試料
粉末の少なくとも表面にホウ化カルシウム複合試料を形
成することを特徴とする炭素繊維強化炭素複合体の製造
方法。6. A carbon fiber reinforced carbon composite material is set in a container containing a liquid in which a calcium boride composite sample powder obtained by adding a chromium compound to calcium boride is dispersed in an organic solvent, and then cooled in a cold state. A method for producing a carbon fiber reinforced carbon composite, comprising forming a calcium boride composite sample on at least the surface of the composite sample powder by a hydraulic molding method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000113571A JP4545876B2 (en) | 2000-04-14 | 2000-04-14 | Carbon fiber reinforced carbon composite and method for producing the same |
US09/613,097 US6670040B1 (en) | 1999-07-14 | 2000-07-10 | Carbon fiber-reinforced carbon composite body and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000113571A JP4545876B2 (en) | 2000-04-14 | 2000-04-14 | Carbon fiber reinforced carbon composite and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001302373A true JP2001302373A (en) | 2001-10-31 |
JP4545876B2 JP4545876B2 (en) | 2010-09-15 |
Family
ID=18625511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000113571A Expired - Fee Related JP4545876B2 (en) | 1999-07-14 | 2000-04-14 | Carbon fiber reinforced carbon composite and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4545876B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5617311B1 (en) * | 1971-03-11 | 1981-04-21 | ||
JPS6452687A (en) * | 1987-08-25 | 1989-02-28 | Toshiba Ceramics Co | Impregnation of ceramic form |
JPH0345553A (en) * | 1989-07-14 | 1991-02-27 | Kawasaki Refract Co Ltd | Carbon-containing refractory |
-
2000
- 2000-04-14 JP JP2000113571A patent/JP4545876B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5617311B1 (en) * | 1971-03-11 | 1981-04-21 | ||
JPS6452687A (en) * | 1987-08-25 | 1989-02-28 | Toshiba Ceramics Co | Impregnation of ceramic form |
JPH0345553A (en) * | 1989-07-14 | 1991-02-27 | Kawasaki Refract Co Ltd | Carbon-containing refractory |
Also Published As
Publication number | Publication date |
---|---|
JP4545876B2 (en) | 2010-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1004559B1 (en) | Ceramic matrix composites | |
US5067999A (en) | Method for providing a silicon carbide matrix in carbon-fiber reinforced composites | |
CN109437956A (en) | The carbon carbon composite plate and preparation method thereof quickly prepared suitable for pressure sintering | |
CN105367106B (en) | Fibre reinforced carbonization zirconium composite material and preparation method thereof | |
JP3034084B2 (en) | Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same | |
JP2002510596A (en) | Reinforcing fiber and fiber strand used for fiber-reinforced composite material, etc., method for producing such reinforcing fiber, method for producing such fiber strand, and method for producing fiber-reinforced composite material using reinforcing fiber | |
CN108690322A (en) | A kind of preparation method at carbon fiber interface | |
JP2001302373A (en) | Carbon fiber reinforced carbon composite and method for producing the same | |
CN106007761A (en) | Preparation method of boron-containing pyrolytic carbon layer on fiber surface | |
JPH02111679A (en) | Method for manufacturing oxidation-resistant carbon fiber reinforced carbon material | |
JP4309515B2 (en) | Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same | |
WO2021206168A1 (en) | C/c composite and method for producing same, and heat-treatment jig and method for producing same | |
JPH01188468A (en) | Carbon fiber-reinforced carbon composite material and its production | |
US6670040B1 (en) | Carbon fiber-reinforced carbon composite body and method of manufacturing the same | |
JP4309516B2 (en) | Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same | |
JP2001181062A (en) | Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same | |
EP1004558A2 (en) | Coated ceramic fibers | |
CN115611645B (en) | A kind of carbon-ceramic hybrid matrix gradient structure composite material and its preparation method | |
JPH04187583A (en) | Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof | |
JP3548597B2 (en) | Oxidation-resistant treatment method of carbon fiber reinforced carbon composite | |
JPS6126563A (en) | Manufacture of oxidation-resistant carbon fiber reinforced carbon material | |
JPH0524921A (en) | Method for producing oxidation resistant C / C composite material | |
JPH05170537A (en) | Carbon fiber-reinforced composite carbon material and its production | |
JP3033042B2 (en) | Oxidation resistant C / C composite and method for producing the same | |
JPH0269382A (en) | Oxidation-resistant carbon fiber-reinforced carbon composite material and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100330 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100622 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100701 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |