[go: up one dir, main page]

JP2001298145A - Spherical semiconductor device - Google Patents

Spherical semiconductor device

Info

Publication number
JP2001298145A
JP2001298145A JP2000110370A JP2000110370A JP2001298145A JP 2001298145 A JP2001298145 A JP 2001298145A JP 2000110370 A JP2000110370 A JP 2000110370A JP 2000110370 A JP2000110370 A JP 2000110370A JP 2001298145 A JP2001298145 A JP 2001298145A
Authority
JP
Japan
Prior art keywords
spherical semiconductor
semiconductor element
semiconductor device
spherical
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000110370A
Other languages
Japanese (ja)
Inventor
Toru Shimamori
融 島森
Hisato Kashima
壽人 加島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2000110370A priority Critical patent/JP2001298145A/en
Publication of JP2001298145A publication Critical patent/JP2001298145A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1017Shape being a sphere

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spherical semiconductor device with good reliability for preventing a break at a micro bump junction part through sharing stress caused by a difference of thermal expansion between the mounting board and the spherical semiconductor device. SOLUTION: A spherical semiconductor element is connected to a side face connecting terminal on the board, and a space between the board and the spherical semiconductor element is filled with an underfill material in the spherical semiconductor device. A relay board for relaxing stress is preferably inserted between the board and the spherical semiconductor device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、球面半導体素子を実装
した球面半導体装置に関する。更に詳しくは、球面半導
体素子をマザーボード等の基板上に実装した球面半導体
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spherical semiconductor device on which a spherical semiconductor element is mounted. More specifically, the present invention relates to a spherical semiconductor device in which a spherical semiconductor element is mounted on a substrate such as a motherboard.

【0002】[0002]

【従来の技術】現在の2次元の平面を利用して作る現在
の集積回路においては、新工場設立のための投資金額が
1000億円以上必要と言われている。将来、1G D
RAM以上の量産工場を想定すると、新工場設立のため
の投資金額は1兆円以上とも言われている。それに加え
て微細加工化が進んで工程が複雑化するため、最終製品
を得るまでのサイクルタイムも120日以上と、極端に
長くなる問題もある。
2. Description of the Related Art It is said that a current integrated circuit manufactured using a two-dimensional plane requires an investment of 100 billion yen or more for establishing a new factory. Future 1G D
Assuming a mass-production factory larger than RAM, the investment amount for establishing a new factory is said to be more than 1 trillion yen. In addition, the fine processing is advanced and the process is complicated, so that there is a problem that the cycle time until obtaining the final product is extremely long, such as 120 days or more.

【0003】半導体産業が抱えるこれらの問題を解決す
る方法として、近年、球面半導体(Ball Semi
conductor)という新しいコンセプトが提案さ
れている。ここにいう「球面半導体」とは、従来の2次
元の平面を利用して作る現在の集積回路をチップと称す
るのに対して、3次元の球面上に作る集積回路の呼称で
ある。
[0003] As a method for solving these problems in the semiconductor industry, a ball semiconductor (Ball Semi) has recently been used.
A new concept has been proposed. The term "spherical semiconductor" as used herein refers to an integrated circuit formed on a three-dimensional spherical surface, whereas a current integrated circuit formed using a conventional two-dimensional plane is referred to as a chip.

【0004】球状半導体を用いることで、.従来のチ
ップに対して、同じ投影面積当たりの表面積が約3倍で
ある。.クリーンルームが不要になり、初期投資コス
トが1/10程度に削減できる。.最終製品を得るま
でのサイクルタイムが従来の120日から1週間以内に
削減できる。、等のメリットが得られる。
[0004] By using a spherical semiconductor,. The surface area per projected area is about three times that of the conventional chip. . A clean room becomes unnecessary, and the initial investment cost can be reduced to about 1/10. . The cycle time required to obtain the final product can be reduced from the conventional 120 days to less than one week. , Etc. are obtained.

【0005】係る球面半導体には金等からなるマイクロ
バンプからなる接続端子が形成されており、基板への実
装形態としては、.マイクロバンプによる直接接続
(いわゆる「On PCB」)と、.球面半導体同士
をマイクロバンプを介して接合した状態での接続(いわ
ゆる「クラスタリング」)がある。球面半導体同士のク
ラスタリングを用いた球面半導体装置が、電子材料、1
998年11月号、p.21〜26に開示されている。
[0005] The spherical semiconductor has connection terminals formed of microbumps made of gold or the like. Direct connection by micro-bumps (so-called “On PCB”); There is a connection (so-called "clustering") in a state where spherical semiconductors are joined via micro bumps. Spherical semiconductor devices using clustering of spherical semiconductors can be used for electronic materials,
November 998, p. 21 to 26.

【0006】[0006]

【発明が解決しようとする課題】しかし、球面半導体と
実装基板とのマイクロバンプ接合部においては、構造上
その接合部の面積割合が従来と比較して小さくなる。そ
のため、温度変化が繰返し負荷された場合、球面半導体
と実装基板との熱膨張差に起因するせん断応力によって
マイクロバンプ接合部の破断が発生しやすくなる問題が
ある。
However, at the micro-bump junction between the spherical semiconductor and the mounting substrate, the area ratio of the junction is structurally smaller than in the prior art. Therefore, when a temperature change is repeatedly applied, there is a problem that the micro-bump bonding portion is easily broken due to shear stress caused by a difference in thermal expansion between the spherical semiconductor and the mounting substrate.

【0007】また、クラスタリングした球面半導体同士
のマイクロバンプ接合部についても、上記の球面半導体
と実装基板との熱膨張差に起因するせん断応力の影響を
受けるため、球面半導体同士のマイクロバンプ接合部で
も破断が発生しやすくなる問題がある。
[0007] Also, the microbump junction between the clustered spherical semiconductors is affected by the shear stress caused by the difference in thermal expansion between the spherical semiconductor and the mounting substrate. There is a problem that the fracture is likely to occur.

【0008】本発明は、球面半導体と実装基板との熱膨
張差に起因するせん断応力によって発生するマイクロバ
ンプ接合部の破断を防止した、接続信頼性に優れた球面
半導体装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a spherical semiconductor device which is excellent in connection reliability and prevents breakage of a micro-bump joint caused by shear stress caused by a difference in thermal expansion between a spherical semiconductor and a mounting substrate. And

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、該基
板と該球面半導体素子の間にアンダーフィル材が充填さ
れている球面半導体装置を要旨とする。球面半導体装置
は、その端面が略同一面上に揃うように形成された接続
端子を有する。球面半導体装置は、接続端子が確保でき
る接続面積が非常に狭いため、基板上に直接実装する
と、接続信頼性の確保が難しい問題がある。この球面半
導体装置と基板の間に、実装部周辺の応力集中を緩和す
るためのアンダーフィル材させることで、実装部の応力
集中を効果的に緩和して、高い接続信頼性を得ることが
できる。
The gist of the present invention resides in a spherical semiconductor device in which an underfill material is filled between the substrate and the spherical semiconductor element. The spherical semiconductor device has connection terminals formed so that the end faces thereof are substantially flush with each other. Since the spherical semiconductor device has a very small connection area in which connection terminals can be secured, there is a problem that it is difficult to secure connection reliability when directly mounted on a substrate. By providing an underfill material between the spherical semiconductor device and the substrate to alleviate the stress concentration around the mounting portion, the stress concentration at the mounting portion can be effectively alleviated, and high connection reliability can be obtained. .

【0010】アンダーフィル材としては、そのヤング率
が5GPa以上であるのがよい。ここにいう「ヤング
率」とは、アンダーフィル材の硬化体に超微小硬度計を
用いて測定される見かけヤング率をいう。具体的には、
アンダーフィル材の硬化体に超微小硬度計(Fisch
er社製 フィッシャースコープ H−100)を用い
て測定される見かけヤング率{E/(1−ν2)}(単
位;GPa)をいう。ここで、Eはヤング率(単位;G
Pa)、νはポアソン比である。測定方法はDIN50
359−1に準じて行えばよい。そのヤング率が5GP
a以上のヤング率を有するアンダーフィル材を用いるこ
とで、球面半導体素子の実装部周辺の応力集中をさらに
効果的に緩和して、より高い接続信頼性を発揮すること
が可能となる。
The underfill material preferably has a Young's modulus of 5 GPa or more. The term "Young's modulus" as used herein refers to an apparent Young's modulus measured on a cured body of an underfill material using an ultra-micro hardness tester. In particular,
Ultra-fine hardness tester (Fisch)
It refers to the apparent Young's modulus {E / (1-ν2)} (unit: GPa) measured using a Fisherscope H-100 manufactured by ER Co., Ltd. Here, E is Young's modulus (unit; G
Pa) and ν are Poisson's ratios. Measurement method is DIN50
What is necessary is just to carry out according to 359-1. The Young's modulus is 5GP
By using an underfill material having a Young's modulus equal to or more than a, stress concentration around the mounting portion of the spherical semiconductor element can be more effectively reduced, and higher connection reliability can be exhibited.

【0011】面接続端子を有する基板は、C4パッドや
Auバンプに代表される面接続端子を有する。マザーボ
ード等のプリント配線板、多層配線基板等を用いること
ができる。材質は、FR−4等のガラス−エポキシ複合
材料、PTFE等のフッ素系樹脂やフッ素系樹脂とシア
ネートエステル系樹脂との複合材料といった有機系材料
や、アルミナ、窒化アルミニウム、ムライト、ガラスセ
ラミック複合材料といった無機系材料を用いることがで
きる。
A substrate having surface connection terminals has surface connection terminals typified by C4 pads and Au bumps. A printed wiring board such as a motherboard, a multilayer wiring board, or the like can be used. The material is an organic material such as a glass-epoxy composite material such as FR-4, a fluorine resin such as PTFE, or a composite material of a fluorine resin and a cyanate ester resin, or an alumina, aluminum nitride, mullite, or glass ceramic composite material. Such inorganic materials can be used.

【0012】請求項2の発明は、アンダーフィル材の充
填高さと実装時における球面半導体素子の高さとの関係
を規定した球面半導体装置を要旨とする。球面半導体素
子の高さに対するアンダーフィル材の充填高さを調整す
ることで、球面半導体素子にかかる応力集中を緩和し
て、球面半導体装置の信頼性を高めることができる。球
面半導体素子の中心線以上の部分を露出させることで、
球面半導体素子からの放熱性を高めて、実装部周辺の応
力集中を効果的に緩和できる。
A second aspect of the present invention provides a spherical semiconductor device which defines a relationship between a filling height of an underfill material and a height of a spherical semiconductor element at the time of mounting. By adjusting the filling height of the underfill material with respect to the height of the spherical semiconductor element, stress concentration on the spherical semiconductor element can be reduced, and the reliability of the spherical semiconductor device can be improved. By exposing the portion above the center line of the spherical semiconductor element,
The heat radiation from the spherical semiconductor element is enhanced, and the stress concentration around the mounting portion can be effectively reduced.

【0013】ここにいう「実装時における球面半導体自
体の垂直方向の寸法の中心点」とは、実装状態にある球
面半導体素子のうち、接続端子の高さを除いた球面半導
体のみの部分の垂直方向に引いた仮想寸法線の中心点、
つまり、球面半導体のみの部分の垂直方向における中心
点をいう。
The "central point of the vertical dimension of the spherical semiconductor itself at the time of mounting" as used herein means the vertical portion of the spherical semiconductor element alone in the mounted semiconductor device excluding the height of the connection terminals. The center point of the virtual dimension line drawn in the direction,
That is, it refers to the center point in the vertical direction of only the spherical semiconductor.

【0014】この中心点に仮想の中心線を水平方向に引
いた場合において、アンダーフィル材の少なくとも一部
がこの中心線以上、かつ、実装時における球面半導体素
子の高さ未満の高さまで充填されていることが必要であ
る。ここにいう「実装時における球面半導体素子の高
さ」とは、基板等の上に実装された状態の球面半導体素
子の高さ、つまり、基板等の面から実装された状態の球
面半導体素子の最上部までの高さをいう。
When an imaginary center line is drawn in the horizontal direction at the center point, at least a part of the underfill material is filled up to the height of the center line and less than the height of the spherical semiconductor element at the time of mounting. It is necessary to be. The “height of the spherical semiconductor element at the time of mounting” here is the height of the spherical semiconductor element mounted on a substrate or the like, that is, the height of the spherical semiconductor element mounted from the surface of the substrate or the like. The height to the top.

【0015】尚、球面半導体素子が隣り合う球面半導体
素子と接続端子で接合されている場合があるが、この場
合は、垂直方向の最上部に位置する接続端子部が埋設さ
れるようにアンダーフィル材を充填するのがよい。隣り
合う球面半導体素子を繋ぐ接続端子にかかる応力集中を
効果的に緩和できる。
In some cases, a spherical semiconductor element is joined to an adjacent spherical semiconductor element by a connection terminal. In this case, the underfill is formed so that the connection terminal located at the top in the vertical direction is buried. It is good to fill the material. The stress concentration applied to the connection terminals connecting the adjacent spherical semiconductor elements can be effectively reduced.

【0016】ここにいう「実装された状態の球面半導体
素子の最上部」とは、基板等の上に球面半導体素子を単
層で実装した状態のみならず、いわゆる「クラスター」
状に実装した場合も含まれる。このクラスター状に実装
した場合の「実装時における球面半導体素子の高さ」と
は、クラスターの最上層の球面半導体素子における中心
線を基準とする。したがって、クラスターの最上層以外
の球面半導体素子は、アンダーフィル材の中に埋設され
た状態になっている。
The "top of the mounted spherical semiconductor element" as used herein means not only a state in which the spherical semiconductor element is mounted in a single layer on a substrate or the like, but also a so-called "cluster".
This includes the case of mounting in the form. The “height of the spherical semiconductor element at the time of mounting” when mounted in a cluster is based on the center line of the spherical semiconductor element in the uppermost layer of the cluster. Therefore, the spherical semiconductor elements other than the top layer of the cluster are buried in the underfill material.

【0017】尚、クラスターの最上層以外の球面半導体
素子が隣り合う球面半導体素子と接続端子で接合されて
いる場合があるが、この場合は、垂直方向の最上部に位
置する接続端子部が埋設されるようにアンダーフィル材
を充填するのがよい。隣り合う球面半導体素子を繋ぐ接
続端子にかかる応力集中を効果的に緩和できる。
In some cases, a spherical semiconductor element other than the uppermost layer of the cluster is joined to an adjacent spherical semiconductor element at a connection terminal. In this case, the connection terminal part located at the top in the vertical direction is buried. It is better to fill the underfill material so that The stress concentration applied to the connection terminals connecting the adjacent spherical semiconductor elements can be effectively reduced.

【0018】[0018]

【実施例】本発明を、以下に実施例を用いて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0019】図1に基づいて、基板に直接球状半導体素
子を実装した実施例を以下に説明する。球状半導体素子
(3)は、Si製の球状半導体(1)にAuパンプから
なる接続端子(2)が形成されている。基板(6)は、
プリント配線板(4)にCuメッキからなる面接続端子
(5)が形成されている。面接続端子(5)の表面に
は、Snメッキ層が形成されている。球状半導体素子
(3)と基板(6)とをリフロー炉により接合されてい
る。接合部は、Au/Sn系合金が形成されているの
で、その後チップ部品をハンダ実装しても再び融解する
ことはない。
An embodiment in which a spherical semiconductor element is directly mounted on a substrate will be described below with reference to FIG. In the spherical semiconductor element (3), a connection terminal (2) made of Au pump is formed on a spherical semiconductor (1) made of Si. The substrate (6)
Surface connection terminals (5) made of Cu plating are formed on the printed wiring board (4). An Sn plating layer is formed on the surface of the surface connection terminal (5). The spherical semiconductor element (3) and the substrate (6) are joined by a reflow furnace. Since the bonding portion is formed of an Au / Sn-based alloy, it does not melt again even when the chip component is solder-mounted thereafter.

【0020】実装部を覆うようにアンダーフィル材
(7)が充填されている。アンダーフィル材(7)は、
球状半導体素子を構成する球状半導体の仮想の中心線よ
りも高くなるように充填されている。図1では、アンダ
ーフィル材(7)のフィレット(8)が中心線以上に形
成されている。一方、図3では、アンダーフィル材
(7)のフィレット(8)が中心線以下に形成されてい
る。このような構成であると、接続端子周辺の応力緩和
を効果的に向上できなくなる。
An underfill material (7) is filled so as to cover the mounting portion. The underfill material (7)
The filling is performed so as to be higher than the virtual center line of the spherical semiconductor constituting the spherical semiconductor element. In FIG. 1, the fillet (8) of the underfill material (7) is formed above the center line. On the other hand, in FIG. 3, the fillet (8) of the underfill material (7) is formed below the center line. With such a configuration, stress relaxation around the connection terminal cannot be effectively improved.

【0021】図2は、隣り合う球面半導体素子同士が接
続端子により接続される実施例である。この場合、アン
ダーフィル材(7)のフィレット(8)は、垂直方向の
最上部にある接続端子を覆うように充填するのがよい。
接続端子間の信頼性を高めることができるからである。
FIG. 2 shows an embodiment in which adjacent spherical semiconductor elements are connected by connection terminals. In this case, the fillet (8) of the underfill material (7) is preferably filled so as to cover the connection terminal at the top in the vertical direction.
This is because the reliability between the connection terminals can be improved.

【0022】次に、図4及び図5に基づいて、クラスタ
ー状に実装した場合の球状半導体装置を説明する。図4
では、クラスターの最上層の球状半導体素子における中
心線よりも上にアンダーフィル材(7)のフィレット
(8)が形成されている。図5は、隣り合う球面半導体
素子同士が接続端子で接合されている場合である。垂直
方向の最上部に位置する接続端子部が埋設されるように
アンダーフィル材を充填している。
Next, a spherical semiconductor device when mounted in a cluster will be described with reference to FIGS. FIG.
In the figure, the fillet (8) of the underfill material (7) is formed above the center line of the spherical semiconductor element in the uppermost layer of the cluster. FIG. 5 shows a case in which adjacent spherical semiconductor elements are joined by connection terminals. The underfill material is filled so that the connection terminal located at the top in the vertical direction is embedded.

【0023】[0023]

【発明の効果】本発明によれば、球面半導体と実装基板
との熱膨張差に起因するせん断応力によって発生するマ
イクロバンプ接合部の破断を防止した、接続信頼性に優
れた球面半導体装置を提供することができる。
According to the present invention, there is provided a spherical semiconductor device excellent in connection reliability which prevents breakage of a micro-bump joint caused by shear stress caused by a difference in thermal expansion between a spherical semiconductor and a mounting substrate. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基板に直接球状半導体素子を実装した実施例で
ある球状半導体装置の説明図。
FIG. 1 is an explanatory view of a spherical semiconductor device which is an embodiment in which a spherical semiconductor element is directly mounted on a substrate.

【図2】基板に直接球状半導体素子を実装するととも
に、隣接する球状半導体素子同士を接合した実施例であ
る球状半導体装置の説明図。
FIG. 2 is an explanatory view of a spherical semiconductor device which is an embodiment in which a spherical semiconductor element is directly mounted on a substrate and adjacent spherical semiconductor elements are joined to each other.

【図3】基板に直接球状半導体素子を実装した比較例で
ある球状半導体装置の説明図。
FIG. 3 is an explanatory view of a spherical semiconductor device as a comparative example in which a spherical semiconductor element is directly mounted on a substrate.

【図4】基板に直接クラスター状の球状半導体素子を実
装した実施例である球状半導体装置の説明図。
FIG. 4 is an explanatory view of a spherical semiconductor device which is an embodiment in which a cluster-like spherical semiconductor element is directly mounted on a substrate.

【図5】基板に直接クラスター状の球状半導体素子を実
装した実施例である球状半導体装置の説明図。
FIG. 5 is an explanatory view of a spherical semiconductor device which is an embodiment in which a cluster-like spherical semiconductor element is directly mounted on a substrate.

【符号の説明】[Explanation of symbols]

1 球状半導体 2 接続端子 3 球状半導体素子 4 プリント配線板 5 面接続端子 6 基板 7 アンダーフィル材 8 フィレット DESCRIPTION OF SYMBOLS 1 Spherical semiconductor 2 Connection terminal 3 Spherical semiconductor element 4 Printed wiring board 5 Surface connection terminal 6 Substrate 7 Underfill material 8 Fillet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 面接続端子を有する基板と、接続端子を
有する球面半導体素子と、該球面半導体素子の実装部周
辺の応力集中を緩和するためのアンダーフィル材とから
構成される球面半導体装置であって、 前記球面半導体素子が前記接続端子によって前記基板の
面接続端子に接続されるとともに、該基板と該球面半導
体素子の間に前記アンダーフィル材が充填されているこ
とを特徴とする球面半導体装置。
1. A spherical semiconductor device comprising: a substrate having surface connection terminals; a spherical semiconductor element having connection terminals; and an underfill material for alleviating stress concentration around a mounting portion of the spherical semiconductor element. Wherein the spherical semiconductor element is connected to the surface connection terminal of the substrate by the connection terminal, and the underfill material is filled between the substrate and the spherical semiconductor element. apparatus.
【請求項2】 前記球面半導体素子の実装時における球
面半導体自体の垂直方向の寸法の中心点に仮想の中心線
を水平方向に引いた場合において、 前記アンダーフィル材の少なくとも一部が前記中心線以
上、かつ、実装時における球面半導体素子の高さ未満の
高さまで充填されていることを特徴とする請求項1に記
載の球面半導体装置。
2. When a virtual center line is drawn in a horizontal direction at a center point of a vertical dimension of the spherical semiconductor itself when the spherical semiconductor element is mounted, at least a part of the underfill material is the center line. 2. The spherical semiconductor device according to claim 1, wherein the spherical semiconductor element is filled to a height less than the height of the spherical semiconductor element at the time of mounting.
JP2000110370A 2000-04-12 2000-04-12 Spherical semiconductor device Pending JP2001298145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110370A JP2001298145A (en) 2000-04-12 2000-04-12 Spherical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110370A JP2001298145A (en) 2000-04-12 2000-04-12 Spherical semiconductor device

Publications (1)

Publication Number Publication Date
JP2001298145A true JP2001298145A (en) 2001-10-26

Family

ID=18622892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110370A Pending JP2001298145A (en) 2000-04-12 2000-04-12 Spherical semiconductor device

Country Status (1)

Country Link
JP (1) JP2001298145A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407833B2 (en) 2004-04-27 2008-08-05 Advanced Semiconductor Engineering, Inc. Process for fabricating chip package structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407833B2 (en) 2004-04-27 2008-08-05 Advanced Semiconductor Engineering, Inc. Process for fabricating chip package structure

Similar Documents

Publication Publication Date Title
US7692278B2 (en) Stacked-die packages with silicon vias and surface activated bonding
US6657311B1 (en) Heat dissipating flip-chip ball grid array
US6780675B2 (en) Flip-chip technique for chip assembly
US6657134B2 (en) Stacked ball grid array
JP6686040B2 (en) Semiconductor assembly having bridge module for die-to-die interconnection
US20160079214A1 (en) Bva interposer
US7566649B2 (en) Compressible films surrounding solder connectors
US10396114B2 (en) Method of fabricating low CTE interposer without TSV structure
US20070158856A1 (en) Gap control between interposer and substrate in electronic assemblies
GB2356083A (en) Interposer for mounting semiconductor dice on substrates
US6410861B1 (en) Low profile interconnect structure
WO2011086613A1 (en) Semiconductor device and method for fabricating same
JP2000100986A (en) Mounting semiconductor part, mounting structure and method
EP0852395A3 (en) Method of multiplexed joining of solder bumps to a substrate during assembly of an integrated circuit package
US20070222053A1 (en) Semiconductor constructions having interconnect structures, methods of forming interconnect structures, and methods of forming semiconductor constructions
JP2004327951A (en) Semiconductor device
US20050139389A1 (en) Method of mounting electronic component on substrate without generation of voids in bonding material
US6757968B2 (en) Chip scale packaging on CTE matched printed wiring boards
US20180190620A1 (en) Interconnect structures with intermetallic palladium joints and associated systems and methods
JP2001298145A (en) Spherical semiconductor device
WO2015153296A1 (en) Fabrication of microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation
JP2001298148A (en) Spherical semiconductor device
US20020081771A1 (en) Flip chip process
JPS6057957A (en) Connecting construction
JP2004055660A (en) Wiring board and semiconductor device