JP2001288512A - Method for producing high strength steel with excellent toughness and ductility - Google Patents
Method for producing high strength steel with excellent toughness and ductilityInfo
- Publication number
- JP2001288512A JP2001288512A JP2000103336A JP2000103336A JP2001288512A JP 2001288512 A JP2001288512 A JP 2001288512A JP 2000103336 A JP2000103336 A JP 2000103336A JP 2000103336 A JP2000103336 A JP 2000103336A JP 2001288512 A JP2001288512 A JP 2001288512A
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- transformation point
- temperature
- ductility
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】
【課題】 溶接構造用鋼としての十分な強度を有し、か
つ降伏比が低く、一様伸び等の延性特性に優れるととも
に、低温靱性にも優れた靭性と延性に優れた高張力鋼の
製造方法を提供すること。
【解決手段】 鋼組成とDI 値を適正化するとともに、
加工熱処理あるいは再加熱処理によって前組織を微細化
した上で、靱性を劣化させずに低降伏比化、一様伸び向
上が可能な硬質第二層を適正分散させるために、Ac1
変態点+20℃以上、Ac3 変態点+150℃以下に再
加熱した後、加速冷却停止温度が300〜600℃で、
かつ、冷却速度が1〜100℃/sの加速冷却を行うこ
とを特徴とする熱処理を施す。PROBLEM TO BE SOLVED: To provide sufficient toughness and low ductility such as uniform elongation, as well as excellent low-temperature toughness, and excellent toughness and ductility at low temperatures. To provide a method for producing high strength steel. A while optimizing the steel composition and D I value,
In order to appropriately disperse the hard second layer capable of lowering the yield ratio and improving uniform elongation without deteriorating the toughness without deteriorating the toughness after working heat treatment or reheating treatment, the Ac 1
After reheating to the transformation point + 20 ° C. or higher and the Ac 3 transformation point + 150 ° C. or less, the accelerated cooling stop temperature is 300 to 600 ° C.
In addition, a heat treatment characterized by performing accelerated cooling at a cooling rate of 1 to 100 ° C./s is performed.
Description
【0001】[0001]
【発明の属する技術分野】本発明は溶接構造用鋼として
の十分な強度を有し、かつ降伏比が低く、一様伸び等の
延性特性に優れるとともに、低温靱性にも優れた靭性と
延性に優れた高張力鋼の製造方法に関するものである。
この方法で製造した鋼は、例えば、海洋構造物、圧力容
器、造船、橋梁、建築物、ラインパイプなどの溶接鋼構
造物一般に用いることができるが、低降伏比、高延性と
靭性とが両立できることから、特に耐震性を必要とする
建築、橋梁等の構造物用鋼材として有用である。また、
鋼材の形態としては特に問わないが、構造部材として用
いられ、低温靭性が要求される鋼板、特に厚板、鋼管素
材、あるいは形鋼で特に有用である。BACKGROUND OF THE INVENTION The present invention relates to a steel having sufficient strength as a welding structural steel, a low yield ratio, excellent ductility such as uniform elongation, and excellent toughness and ductility at low temperature toughness. The present invention relates to a method for producing an excellent high-tensile steel.
The steel produced by this method can be used, for example, in general in welded steel structures such as offshore structures, pressure vessels, shipbuilding, bridges, buildings, line pipes, etc., while achieving a low yield ratio, high ductility and toughness at the same time. Because it can be used, it is particularly useful as a steel material for structures such as buildings and bridges that require earthquake resistance. Also,
Although the form of the steel material is not particularly limited, it is particularly useful for a steel plate used as a structural member and requiring low-temperature toughness, particularly a thick plate, a steel pipe material, or a shaped steel.
【0002】[0002]
【従来の技術】降伏比(降伏応力/引張強度)の低下、
延性特性、特に一様伸びの向上には軟質相のフェライト
(α)に適量の、マルテンサイト相等の硬質相を分散さ
せることが有効であることが知られている。この軟質α
と硬質相からなる二相鋼の製造方法は、従来から種々提
案されいるが、焼入れと焼戻し熱処理の間にフェライト
(α)+オーステナイト(γ)二相域に加熱する中間熱
処理を施す方法(以降、QLT処理)に代表されるよう
に、基本的には軟質相としてのαと硬質相としてのベイ
ナイトあるいはマルテンサイトを混在させることを目的
としている。2. Description of the Related Art Reduction in yield ratio (yield stress / tensile strength),
It is known that it is effective to disperse an appropriate amount of a hard phase such as a martensite phase in a soft phase ferrite (α) to improve ductility properties, particularly uniform elongation. This soft α
Various methods for producing a duplex stainless steel comprising a hard phase and a hard phase have heretofore been proposed, but a method of performing an intermediate heat treatment of heating to a ferrite (α) + austenite (γ) dual phase region between quenching and tempering heat treatment (hereinafter, referred to as “hardening and tempering”) , QLT treatment) is basically intended to mix α as a soft phase and bainite or martensite as a hard phase.
【0003】そして、全体の強度レベル及び降伏比、延
性特性はこれらの相の混在比率を変えることによって制
御されてきた。この軟質相と硬質相の混合組織を得るた
めの製造方法は従来から種々提案されており、例えば、
特開昭53−23817号公報には鋼板を再加熱焼入れ
した後、Ac1 変態点とAc3 変態点の間に再加熱して
γとαの二相としてから空冷する方法が示されており、
また、特開平4−314824号公報には同様に二相域
に再加熱した後、焼入れる方法が開示されている。ま
た、再加熱処理を施さずにオンラインで製造する方法と
しては、例えば、特開昭63−286517号公報には
γ域から二相域にかけて熱間圧延を施した後、Ar3 変
態点より20〜100℃低い温度まで空冷してα相を生
成させ、その後、急冷する方法が開示されている。[0003] The overall strength level, yield ratio, and ductility properties have been controlled by changing the mixture ratio of these phases. Various production methods for obtaining a mixed structure of the soft phase and the hard phase have been conventionally proposed, for example,
JP-A-53-23817 discloses a method of reheating and quenching a steel sheet, then reheating between the Ac 1 transformation point and the Ac 3 transformation point to form two phases of γ and α and then air cooling. ,
Japanese Patent Application Laid-Open No. Hei 4-314824 discloses a method of similarly reheating to a two-phase region and then quenching. In addition, as a method for producing online without performing reheating treatment, for example, JP-A-63-286517 discloses a method in which hot rolling is performed from the γ region to the two-phase region, and then the temperature is increased from the Ar 3 transformation point by 20%. A method is disclosed in which air is cooled to a temperature lower by 100100 ° C. to generate an α phase, and then quenched.
【0004】再加熱焼入れした後、さらにAc1 変態点
とAc3 変態点の間に再加熱してγとαの二相としてか
ら空冷または水冷する二相域熱処理を包含するQLT処
理は組織制御が比較的容易であるが、二相域熱処理まま
では靭性が極端に劣化するため、さらにAc1 変態点未
満で焼戻し処理を施すことが必須となる。このため、Q
LT処理は工程が複雑であり、生産性の低下が大きな問
題となる。また、Ac 1 変態点未満で焼戻し処理を施す
と、硬質相の強度低下とα母相での析出強化のために、
低降伏比化の程度が制限される上、二相域熱処理で得ら
れた高い一様伸びがむしろ劣化する。After reheating and quenching, Ac1Transformation point
And AcThreeReheating during the transformation point and as two phases of γ and α?
Process including two-phase zone heat treatment of air-cooling or water-cooling
The structure is relatively easy to control, but the two-phase region heat treatment remains
In this case, the toughness extremely deteriorates.1Transformation point not yet
It is indispensable to perform a tempering process when it is full. For this reason, Q
LT processing is a complicated process, and there is a great
It becomes a title. Also, Ac 1Perform tempering below the transformation point
And, to reduce the strength of the hard phase and strengthen precipitation in the α matrix,
The degree of lowering the yield ratio is limited, and the
High uniform elongation rather deteriorates.
【0005】[0005]
【発明が解決しようとする課題】二相域熱処理に相当す
る、軟質相と硬質相とを分散させる熱処理工程において
靭性劣化が抑制でき、Ac1 変態点未満での焼戻しを省
略できれば、生産性向上、特性向上(降伏比、一様伸
び)とが同時に達成可能となることは明白であり、本発
明では、二相域熱処理を包含する、再加熱処理法により
製造される低降伏比、高延性鋼において靭性を確保する
ための手段を提供することを課題とする。In the heat treatment step of dispersing a soft phase and a hard phase, which corresponds to a two-phase heat treatment, deterioration of toughness can be suppressed, and if tempering below the Ac 1 transformation point can be omitted, productivity can be improved. It is clear that the improvement of properties (yield ratio, uniform elongation) can be achieved at the same time, and in the present invention, the low yield ratio and the high ductility manufactured by the reheating treatment method including the two-phase heat treatment are included. It is an object to provide means for securing toughness in steel.
【0006】[0006]
【課題を解決するための手段】本発明者らは、従来のO
LT処理において、二相域熱処理ままで靭性が劣化する
機構を詳細に検討し、硬質相の組織を靭性に悪影響が小
さく、かつ強度低下の小さい、低温変態ベイナイト主体
組織にすることが靭性確保に重要であることを見出し
た。ただし、構造用鋼としての引張強度を達成できる化
学組成において、低降伏比、延性特性を確保するために
は、硬質相に比べて軟質相であるα相の割合を比較的高
める必要があるが、そのような組織割合とするための二
相域熱処理条件では、加熱段階での逆変態γ相中のC濃
化が著しいために、該γ相の焼入性は平均化学組成から
考えられるよりも非常に高くなっており、均一に低温変
態ベイナイト相とすることは容易でないことから、本発
明者らは、再加熱処理法を基本とした新たな製造方法を
検討し、広い化学組成範囲において、第二相を靭性の良
好なベイナイト相として、靭性を損ねることなく、低降
伏比、高一様伸びを達成できる、下記に示す新たな手段
を見いだし、本発明を完成させたもので、その要旨とす
るところは以下の通りである。Means for Solving the Problems The present inventors have proposed a conventional O.D.
In the LT treatment, the mechanism by which the toughness is degraded by heat treatment in the two-phase region is examined in detail, and it is necessary to make the structure of the hard phase into a low-temperature transformed bainite-based structure that has a small adverse effect on toughness and a small strength decrease. I found it important. However, in a chemical composition that can achieve tensile strength as a structural steel, in order to ensure a low yield ratio and ductility characteristics, it is necessary to relatively increase the proportion of the α phase, which is a soft phase compared to a hard phase. Under the heat treatment conditions in the two-phase region for obtaining such a structure ratio, since the C concentration in the inversely transformed γ phase in the heating stage is remarkable, the hardenability of the γ phase is more than considered from the average chemical composition. Is also very high, it is not easy to uniformly low-temperature transformation bainite phase, the present inventors studied a new manufacturing method based on the reheating treatment method, in a wide chemical composition range As a bainite phase having a good toughness as the second phase, a low yield ratio and a high uniform elongation can be achieved without deteriorating the toughness.The following new means have been found, and the present invention has been completed. The summary is as follows That.
【0007】(1)重量%で、C :0.01〜0.2
5%、Si:0.01〜1%、Mn:0.1〜3%、P
:0.02%以下、S :0.01%以下、Al:
0.001〜0.1%、N :0.001〜0.01%
を含有し、残部Fe及び不可避不純物からなり、かつ、
(1)式で示す理想焼入臨界直径(DI 値)が0.5〜
30である鋼片を、Ac3 変態点〜1300℃に加熱
後、開始温度が950℃以下、終了温度が700℃以上
で、累積圧下率が30〜95%の圧延を含む熱間圧延
後、Ac1 変態点+20℃以上、Ac3 変態点+150
℃以下に再加熱した後、加速冷却停止温度が300〜6
00℃で、かつ、冷却速度が1〜100℃/sの加速冷
却を行うことを特徴とする、靱性と延性に優れた高張力
鋼の製造方法。 DI =0.5・(C%)1/2 ・(1+0.64・Si%)・(1+4.10・ Mn%)・(1+0.27・Cu%)・(1+0.52・Ni%)・(1+2 .33・Cr%)・(1+3.14・Mo%)・(1+1.50・W%) ・・・・・(1) (2)熱間圧延後、650℃以上から開始し、600℃
以下で終了する冷却速度が1〜100℃/sの加速冷却
を行った後に再加熱することを特徴とする、前記(1)
に記載の、靱性と延性に優れた高張力鋼の製造方法。(1) C: 0.01 to 0.2% by weight
5%, Si: 0.01-1%, Mn: 0.1-3%, P
: 0.02% or less, S: 0.01% or less, Al:
0.001-0.1%, N: 0.001-0.01%
And the balance consists of Fe and inevitable impurities, and
(1) Desired Hardening critical diameter (D I value) 0.5 indicated by the formula
After heating the slab which is 30 to the Ac 3 transformation point to 1300 ° C., after hot rolling including rolling with a starting temperature of 950 ° C. or less, an end temperature of 700 ° C. or more, and a cumulative draft of 30 to 95%, Ac 1 transformation point + 20 ° C or higher, Ac 3 transformation point +150
After reheating to below ℃, accelerated cooling stop temperature is 300-6
A method for producing a high-strength steel excellent in toughness and ductility, characterized by performing accelerated cooling at a temperature of 00 ° C and a cooling rate of 1 to 100 ° C / s. D I = 0.5 · (C%) 1/2 · (1 + 0.64 · Si%) · (1 + 4.10 · Mn%) · (1 + 0.27 · Cu%) · (1 + 0.52 · Ni%)・ (1 + 2.33 ・ Cr%) ・ (1 + 3.14 ・ Mo%) ・ (1 + 1.50 ・ W%) (1) (2) After hot rolling, start from 650 ° C. or higher, 600 ° C
The above-mentioned (1), wherein the reheating is performed after performing the accelerated cooling at a cooling rate of 1 to 100 ° C./s which is completed below.
3. The method for producing a high-tensile steel excellent in toughness and ductility according to item 1.
【0008】(3)重量%で、C :0.01〜0.2
5%、Si:0.01〜1%、Mn:0.1〜3%、P
:0.02%以下、S :0.01%以下、Al:
0.001〜0.1%、N :0.002〜0.01%
を含有し、残部Fe及び不可避不純物からなり、かつ、
(1)式で示す理想焼入臨界直径(DI 値)が0.5〜
30である鋼片を熱間圧延後、加熱温度がAc3 変態点
以上、Ac3 変態点+250以下の焼きならしを施し、
その後、Ac1 変態点+20℃以上、Ac3 変態点+1
50℃以下に再加熱した後、加速冷却停止温度が300
〜600℃で、かつ、冷却速度が1〜100℃/sの加
速冷却を行うことを特徴とする、靱性と延性に優れた高
張力鋼の製造方法。 DI =0.5・(C%)1/2 ・(1+0.64・Si%)・(1+4.10・ Mn%)・(1+0.27・Cu%)・(1+0.52・Ni%)・(1+2 .33・Cr%)・(1+3.14・Mo%)・(1+1.50・W%) ・・・・・(1)(3) C: 0.01-0.2% by weight
5%, Si: 0.01-1%, Mn: 0.1-3%, P
: 0.02% or less, S: 0.01% or less, Al:
0.001-0.1%, N: 0.002-0.01%
And the balance consists of Fe and inevitable impurities, and
(1) Desired Hardening critical diameter (D I value) 0.5 indicated by the formula
After hot rolling the slab of No. 30, normalizing the heating temperature to the Ac 3 transformation point or more and the Ac 3 transformation point +250 or less,
Then, Ac 1 transformation point + 20 ° C or higher, Ac 3 transformation point +1
After reheating to 50 ° C or less, accelerated cooling stop temperature is 300
A method for producing a high-strength steel excellent in toughness and ductility, characterized by performing accelerated cooling at a temperature of up to 600 ° C and a cooling rate of 1 to 100 ° C / s. D I = 0.5 · (C%) 1/2 · (1 + 0.64 · Si%) · (1 + 4.10 · Mn%) · (1 + 0.27 · Cu%) · (1 + 0.52 · Ni%)・ (1 + 2.33 ・ Cr%) ・ (1 + 3.14 ・ Mo%) ・ (1 + 1.50 ・ W%) ・ ・ ・ ・ ・ (1)
【0009】(4)重量%で、C :0.01〜0.2
5%、Si:0.01〜1%、Mn:0.1〜3%、P
:0.02%以下、S :0.01%以下、Al:
0.001〜0.1%、N :0.002〜0.01%
を含有し、残部Fe及び不可避不純物からなり、かつ、
(1)式で示す理想焼入臨界直径(DI 値)が0.5〜
30である鋼片を熱間圧延後、加熱温度がAc3 変態点
以上、Ac3 変態点+250以下で、冷却速度が1〜1
00℃/sの焼入れを施し、その後、Ac1 変態点+2
0℃以上、Ac3 変態点+150℃以下に再加熱した
後、加速冷却停止温度が300〜600℃で、かつ、冷
却速度が1〜100℃/sの加速冷却を行うことを特徴
とする、靱性と延性に優れた高張力鋼の製造方法。 DI =0.5・(C%)1/2 ・(1+0.64・Si%)・(1+4.10・ Mn%)・(1+0.27・Cu%)・(1+0.52・Ni%)・(1+2 .33・Cr%)・(1+3.14・Mo%)・(1+1.50・W%) ・・・・・(1)(4) C: 0.01-0.2% by weight
5%, Si: 0.01-1%, Mn: 0.1-3%, P
: 0.02% or less, S: 0.01% or less, Al:
0.001-0.1%, N: 0.002-0.01%
And the balance consists of Fe and inevitable impurities, and
(1) Desired Hardening critical diameter (D I value) 0.5 indicated by the formula
After hot rolling a slab of No. 30 , the heating temperature is higher than the Ac 3 transformation point, lower than the Ac 3 transformation point +250, and the cooling rate is 1 to 1.
After quenching at 00 ° C / s, the Ac 1 transformation point +2
After reheating to 0 ° C. or higher and the Ac 3 transformation point + 150 ° C. or lower, accelerated cooling at an accelerated cooling stop temperature of 300 to 600 ° C. and a cooling rate of 1 to 100 ° C./s is performed. A method for producing high strength steel with excellent toughness and ductility. D I = 0.5 · (C%) 1/2 · (1 + 0.64 · Si%) · (1 + 4.10 · Mn%) · (1 + 0.27 · Cu%) · (1 + 0.52 · Ni%)・ (1 + 2.33 ・ Cr%) ・ (1 + 3.14 ・ Mo%) ・ (1 + 1.50 ・ W%) ・ ・ ・ ・ ・ (1)
【0010】(5)鋼片が重量%で、Ni:0.1〜6
%、Cu:0.05〜1.5%、Cr:0.05〜2
%、Mo:0.1〜2%、W :0.2〜4%、V :
0.005〜0.5%、Ti:0.003〜0.1%、
Nb:0.005〜0.5%、Ta:0.01〜0.5
%、Zr:0.005〜0.1%、B :0.0002
〜0.005%、の1種または2種以上を、さらに含有
することを特徴とする、前記(1)〜(4)のいずれか
に記載の、靱性と延性に優れた高張力鋼の製造方法。 (6)鋼片が重量%で、Y :0.001〜0.1%、
Ca:0.0005〜0.01%、Mg:0.0001
〜0.01%、REM:0.005〜0.1%、のうち
1種または2種以上を、さらに含有することを特徴とす
る前記(1)〜(5)のいずれかに記載の、靱性と延性
に優れた高張力鋼の製造方法。 (7)熱間圧延に先立って、1150〜1300℃で2
h〜48h保持する溶体化処理を施すことを特徴とする
前記(1)〜(6)のいずれかに記載の、靱性と延性に
優れた高張力鋼の製造方法。(5) The steel slab is in weight%, Ni: 0.1 to 6
%, Cu: 0.05 to 1.5%, Cr: 0.05 to 2
%, Mo: 0.1 to 2%, W: 0.2 to 4%, V:
0.005 to 0.5%, Ti: 0.003 to 0.1%,
Nb: 0.005 to 0.5%, Ta: 0.01 to 0.5
%, Zr: 0.005 to 0.1%, B: 0.0002
The production of a high-tensile steel excellent in toughness and ductility according to any one of the above (1) to (4), further comprising one or more of 0.005% to 0.005%. Method. (6) The billet is weight%, Y: 0.001-0.1%,
Ca: 0.0005 to 0.01%, Mg: 0.0001
-0.01%, REM: 0.005-0.1%, one or more of which are further contained, any one of the above (1) to (5), A method for producing high strength steel with excellent toughness and ductility. (7) Prior to hot rolling, 2 at 1150-1300 ° C.
The method for producing a high-strength steel excellent in toughness and ductility according to any one of the above (1) to (6), wherein a solution treatment for holding for h to 48 h is performed.
【0011】[0011]
【発明の実施の形態】高延性、特に一様伸びの向上を図
ることを目的として、硬さの大きく異なる軟質相と硬質
相とを分散させた組織を熱処理によって製造する際の靭
性劣化要因と改善指針とを実験的に詳細に検討した結
果、二相域処理の加熱段階で形成される逆変態オーステ
ナイトとその他の未変態組織とがともに微細で、かつ、
二相域熱処理の冷却中に生じる組織形態が特定の場合に
おいて、低降伏比化、高延性(一様伸び、破断伸び)、
靭性とがともに改善されることが知見された。すなわ
ち、後述するように、化学組成を適正化した上で、二相
域熱処理前の鋼材組織を、加工熱処理あるいは再加熱処
理において微細化した上で、さらに軟質相中に硬質相を
分散させる熱処理を施すこと、及び、該熱処理におい
て、冷却段階の熱履歴を制御することにより、硬質相の
組織を低温変態ベイナイト主体組織とすることで、低降
伏比化、高延性(一様伸び、破断伸び)、及び靭性の改
善が同時に達成される。BEST MODE FOR CARRYING OUT THE INVENTION For the purpose of improving high ductility, particularly uniform elongation, factors that cause deterioration in toughness when a structure in which a soft phase and a hard phase having significantly different hardnesses are dispersed are manufactured by heat treatment. As a result of experimentally examining the improvement guidelines in detail, the reverse transformed austenite and other untransformed structures formed in the heating stage of the two-phase treatment are both fine, and
When the structure morphology generated during cooling in the two-phase heat treatment is specific, lower yield ratio, higher ductility (uniform elongation, elongation at break),
It was found that both toughness was improved. That is, as described below, after the chemical composition is optimized, the steel structure before the heat treatment in the two-phase region is refined in the working heat treatment or the reheating treatment, and then the heat treatment for dispersing the hard phase in the soft phase is further performed. In the heat treatment, the thermal history of the cooling stage is controlled to make the structure of the hard phase a low-temperature transformed bainite-based structure, thereby reducing the yield ratio and increasing the ductility (uniform elongation, elongation at break). ), And improvement in toughness is achieved at the same time.
【0012】具体的には、 鋼片をAc3 変態点〜1300℃に加熱後、開始温度
が950℃以下、終了温度が700℃以上で、累積圧下
率が30〜95%の圧延を含む熱間圧延を行い、必要に
応じて、熱間圧延後の冷却を、650℃以上から開始
し、600℃以下で終了する冷却速度が1〜100℃/
sの加速冷却を行うか、 あるいは、鋼片を熱間圧延後、加熱温度がAc3 変態
点以上、Ac3 変態点+250℃以下で、焼きならしを
施すか、あるいは、冷却速度が1〜100℃/sの焼入
れを施して、前組織を適正に微細化した上で、さらに、
「Ac1 変態点+20℃以上、Ac3 変態点+150℃
以下に再加熱した後、加速冷却停止温度が300〜60
0℃で、かつ、冷却速度が1〜100℃/sの加速冷却
を行う」、ことが本発明の製造方法に関する要件とな
る。Specifically, after heating the slab to the Ac 3 transformation point to 1300 ° C., the heat including rolling at a starting temperature of 950 ° C. or less, an ending temperature of 700 ° C. or more, and a cumulative rolling reduction of 30 to 95%. Cold rolling is performed, and if necessary, cooling after hot rolling is started at 650 ° C. or higher, and ended at 600 ° C. or lower.
whether to s accelerated cooling, or, after hot rolling a slab, heating temperature Ac 3 transformation point or higher, Ac 3 transformation point + 250 ° C. or less, or subjected to normalizing, or the cooling rate is 1 After quenching at 100 ° C / s to properly refine the prestructure,
"Ac 1 transformation point + 20 ° C or higher, Ac 3 transformation point + 150 ° C
After reheating below, accelerated cooling stop temperature is 300-60
Perform accelerated cooling at 0 ° C. and a cooling rate of 1 to 100 ° C./s ”is a requirement for the production method of the present invention.
【0013】以下、上記製造方法の限定理由を先ず述
べ、後に化学組成の限定理由を述べる。先ず、上記ま
たはの方法によって初期組織を微細化する必要があ
る。の方法は加工熱処理による方法であり、の方法
は再加熱処理による方法である。The reasons for limiting the above-mentioned manufacturing method will be described first, and then the reasons for limiting the chemical composition will be described. First, it is necessary to refine the initial structure by the above method or the above method. Is a method based on thermomechanical treatment, and the method is a method based on reheating treatment.
【0014】の加工熱処理によって初期組織微細化を
図る場合、熱間圧延に先立つ鋼片の加熱温度はAc3 変
態点以上、1300℃以下とする。これは、加熱温度が
Ac 3 変態点未満であると、組織が不均一となり、また
析出強化元素の溶体化も不十分となるため、強度・靭性
の劣化が生じる恐れがある。一方、加熱温度が1300
℃超であると、加熱オーステナイト粒径が粗大となって
熱間圧延を施しても前組織の微細化が不十分となり、ま
た鋼片表面状態の劣化が生じるため好ましくない。[0014] The initial heat treatment of
In this case, the heating temperature of the slab prior to hot rolling is AcThreeStrange
The temperature is higher than the state point and equal to or lower than 1300 ° C. This is because the heating temperature
Ac ThreeIf the temperature is below the transformation point, the structure becomes uneven, and
Insufficient solution of precipitation strengthening elements, resulting in strength and toughness
May be deteriorated. On the other hand, when the heating temperature is 1300
If it exceeds ℃, the heated austenite particle size becomes coarse
Even after hot rolling, the microstructure of the pre-structure becomes insufficient,
This is not preferable because the deteriorated state of the billet surface occurs.
【0015】鋼片をAc3 変態点〜1300℃に加熱
後、開始温度が950℃以下、終了温度が700℃以上
で、累積圧下率が30〜95%の圧延を含む熱間圧延を
行う必要がある。これは、変態前のオーステナイト粒径
を微細化し、かつ、該オーステナイトに加工歪を導入す
ることで変態組織を微細化するためである。圧延の開始
温度が950℃超では、オーステナイトが再結晶した
上、微細化が不十分となり、逆に終了温度が700℃未
満では、加工中にフェライトが生成して粗大な不均一組
織となるため、好ましくない。また、該温度域での圧延
の累積圧下率は加工の効果が明確となるために、30%
以上必要である。圧下率は大きいほど組織微細化に有効
であるが、圧下率が90%超では圧延の効果が飽和する
ためと、鋼材の形状に悪影響があることから、本発明で
は圧下率の上限を90%とする。なお、開始温度が95
0℃以下、終了温度が700℃以上で、累積圧下率が3
0〜95%の圧延を含んでいれば、該圧延前の板厚調整
等のために、950℃超での再結晶域での圧延を行うこ
とに問題はない。After heating the slab to the Ac 3 transformation point to 1300 ° C., it is necessary to perform hot rolling including rolling at a starting temperature of 950 ° C. or less, an ending temperature of 700 ° C. or more, and a cumulative rolling reduction of 30 to 95%. There is. This is because the austenite grain size before the transformation is refined and the transformed structure is refined by introducing processing strain into the austenite. If the rolling start temperature is higher than 950 ° C., austenite is recrystallized and the refining becomes insufficient. On the other hand, if the rolling end temperature is lower than 700 ° C., ferrite is formed during processing, resulting in a coarse non-uniform structure. Is not preferred. Further, the cumulative rolling reduction of the rolling in the temperature range is 30% because the effect of the working becomes clear.
It is necessary. The higher the rolling reduction, the more effective for the refinement of the structure. However, if the rolling reduction exceeds 90%, the effect of rolling is saturated and the shape of the steel material is adversely affected. And Note that the starting temperature is 95
0 ° C or less, end temperature is 700 ° C or more, and cumulative rolling reduction is 3
If rolling of 0 to 95% is included, there is no problem in performing rolling in a recrystallization region at a temperature exceeding 950 ° C. for the purpose of adjusting the sheet thickness before the rolling.
【0016】上記熱間圧延後の冷却は放冷でも加速冷却
でも構わないが、より組織を微細化して強度・靭性を向
上させるためには、加速冷却の方が好ましい。加速冷却
を行う場合は、冷却速度を1〜100℃/sの範囲と
し、該加速冷却の開始温度は650℃以上、終了温度は
600℃以下とする必要がある。The cooling after the hot rolling may be either standing cooling or accelerated cooling, but accelerated cooling is more preferable in order to further refine the structure and improve strength and toughness. In the case of performing accelerated cooling, the cooling rate must be in the range of 1 to 100 ° C./s, the starting temperature of the accelerated cooling must be 650 ° C. or more, and the ending temperature must be 600 ° C. or less.
【0017】冷却速度を1〜100℃/sの範囲に限定
するのは、1℃/s未満では、加速冷却による組織微細
化効果が十分発現されないためであり、100/s℃超
では、加速冷却の効果が飽和する一方で、残留応力の増
加や鋼板形状の悪化等、悪影響が生じる懸念があるため
である。また、該加速冷却の開始温度を650℃以上と
するのは、開始温度が650℃未満であると、加速冷却
前に変態が開始して、加速冷却の効果が不十分となるた
めであり、一方、終了温度が600℃以下とする必要が
あるのは、終了温度が600℃超であると、加速冷却を
終了した段階では未変態の割合が過大で、やはり加速冷
却の効果が十分発現されないためである。なお、加速冷
却条件が本発明を満足していれば、その手段は問わな
い。すなわち、水冷以外に油冷、その他冷媒等によって
冷却しても効果は異ならない。The reason why the cooling rate is limited to the range of 1 to 100 ° C./s is that if the cooling rate is less than 1 ° C./s, the structure refining effect by accelerated cooling is not sufficiently exhibited. This is because while the cooling effect is saturated, there is a concern that adverse effects may occur such as an increase in residual stress and deterioration of the steel sheet shape. Further, the reason why the start temperature of the accelerated cooling is set to 650 ° C. or higher is that if the start temperature is lower than 650 ° C., the transformation starts before the accelerated cooling, and the effect of the accelerated cooling becomes insufficient. On the other hand, the end temperature needs to be 600 ° C. or less because if the end temperature is higher than 600 ° C., the rate of untransformed at the stage where accelerated cooling is completed is excessive, and the effect of accelerated cooling is not sufficiently exhibited. That's why. Any means may be used as long as the accelerated cooling conditions satisfy the present invention. That is, the effect is not different even if cooling by oil cooling or other refrigerant other than water cooling.
【0018】次に、の再加熱処理によって初期組織微
細化を図る場合の限定条件を説明する。なお、の再加
熱処理によって初期組織微細化を図る場合、熱間圧延は
形状調整のみを目的とすればよく、加工熱処理のように
圧延温度、圧下率等を特に限定する必要はない。Next, a description will be given of limiting conditions in the case where the initial structure is refined by the reheating treatment. When the initial structure is refined by the reheating treatment, hot rolling may be performed only for shape adjustment, and there is no need to particularly limit the rolling temperature, the rolling reduction, and the like as in the thermomechanical treatment.
【0019】再加熱処理による初期組織微細化は、熱間
圧延等で所望の形状に調整した後に、焼きならしあるい
は焼入れによって行う。焼きならしによる場合、加熱温
度がAc3 変態点以上、Ac3 変態点+250℃以下に
再加熱した後に放冷する。焼きならしの再加熱温度をA
c3 変態点以上、Ac3 変態点+250℃以下に限定す
るのは、再加熱温度がAc3 変態点未満であると、未変
態の組織が残存し、微細化が不十分となるためであり、
一方、Ac3 変態点+250℃超では加熱オーステナイ
ト粒径が粗大となって変態組織の微細化が保証されない
ためである。The refinement of the initial structure by the reheating treatment is performed by normalizing or quenching after adjusting to a desired shape by hot rolling or the like. In the case of normalization, after the heating temperature is reheated to the Ac 3 transformation point or more and the Ac 3 transformation point + 250 ° C. or less, the material is allowed to cool. Set the reheating temperature of normalization to A
The reason why the temperature is limited to the c 3 transformation point or more and the Ac 3 transformation point + 250 ° C. or less is that if the reheating temperature is less than the Ac 3 transformation point, an untransformed structure remains and the refining becomes insufficient. ,
On the other hand, when the Ac 3 transformation point is higher than + 250 ° C., the grain size of the heated austenite becomes coarse, and the refinement of the transformed structure is not guaranteed.
【0020】再加熱後、水冷等によって加速冷却を行う
焼入れは、再加熱後放冷する場合よりも、同一板厚では
冷却速度を大きくできるため、組織微細化に対してより
好ましい手段である。焼入れにって初期組織微細化を図
る場合、再加熱温度は焼きならしと同じ理由により、A
c3 変態点以上、Ac3 変態点+250℃以下に限定す
る。再加熱後の冷却は水冷等によって加速冷却するが、
本発明においては、焼入れ条件を冷却速度によって限定
する。すなわち、本発明においては冷却速度を1〜10
0℃/sに限定する。これは、冷却速度が1℃/s未満
では加速冷却による組織微細化効果が十分でなく、焼入
れを施す意味がないためであり、一方、冷却速度は大き
いほど組織微細化効果は大きいが、100℃/s超では
組織微細化効果が飽和するためと、工業的に実現するこ
とが容易でなくなるためである。なお、焼入れの冷却速
度が本発明の範囲内であれば、その手段は問わない。す
なわち、水冷以外に油冷、その他冷媒等によって冷却し
ても効果は異ならない。Quenching in which accelerated cooling is performed by water cooling or the like after reheating is a more preferable means for refining the structure because the cooling rate can be increased with the same sheet thickness as compared with the case where cooling is performed after reheating. When the initial structure is refined by quenching, the reheating temperature is set to A for the same reason as normalization.
The temperature is limited to the c 3 transformation point or more and the Ac 3 transformation point + 250 ° C. or less. Cooling after reheating is accelerated cooling by water cooling, etc.
In the present invention, the quenching conditions are limited by the cooling rate. That is, in the present invention, the cooling rate is 1 to 10
Limit to 0 ° C / s. This is because if the cooling rate is less than 1 ° C./s, the effect of microstructure refinement by accelerated cooling is not sufficient and there is no point in performing quenching. On the other hand, the higher the cooling rate, the greater the effect of microstructure refinement. If the temperature is higher than ° C./s, the effect of making the structure finer is saturated, and it is not easy to realize industrially. In addition, as long as the cooling rate of the quenching is within the range of the present invention, any means may be used. That is, the effect is not different even if cooling by oil cooling or other refrigerant other than water cooling.
【0021】以上の、の方法によって初期組織の微
細化を図った上で、Ac1 変態点+20℃以上、Ac3
変態点+150℃以下に再加熱した後、加速冷却停止温
度が300〜600℃で、かつ、冷却速度が1〜100
℃/sの加速冷却を行うことを特徴とする熱処理を施
す。本熱処理が本発明の目的とする特性を発現させるた
めに最も重要な要件となる。すなわち、本熱処理によっ
て、靭性劣化の少ない微細な低温変態ベイナイト相を硬
質相として分散させることが可能となり、降伏比が低
く、一様伸び等の延性特性と低温靱性がともに優れた高
張力鋼を製造することが可能となる。After miniaturization of the initial structure by the above method, the Ac 1 transformation point + 20 ° C. or higher, and the Ac 3
After reheating to the transformation point + 150 ° C. or lower, the accelerated cooling stop temperature is 300 to 600 ° C., and the cooling rate is 1 to 100.
Heat treatment is performed by performing accelerated cooling at a rate of ° C./s. This heat treatment is the most important requirement for achieving the properties desired by the present invention. In other words, this heat treatment makes it possible to disperse the fine low-temperature transformed bainite phase with less toughness degradation as a hard phase, to produce a high-strength steel with a low yield ratio, excellent ductility properties such as uniform elongation, and excellent low-temperature toughness. It can be manufactured.
【0022】本熱処理おける再加熱温度はAc1 変態点
+20℃以上、Ac3 変態点+150℃以下に限定する
必要がある。これは、硬質相を生成するためには加熱段
階で逆変態オーステナイト相を一定量以上形成させる必
要があるためで、Ac1 変態点+20℃未満の再加熱温
度では逆変態オーステナイトが生成されないか、生成さ
れてもその量が少ないため、最終的な硬質相の割合も少
なく、強度確保、強度−延性バランス向上が望めない。
また、Ac3 変態点+150℃超の再加熱温度では、加
熱前初期組織を上記のまたはの方法により微細化し
ていても加熱オーステナイト粒径が粗大となり、生成さ
れる硬質相が粗大となって靭性を阻害するため、好まし
くない。従って、本発明では硬質第二相を形成される熱
処理における再加熱温度をAc1 変態点+20℃以上、
Ac3 変態点+150℃以下に限定する。It is necessary to limit the reheating temperature in this heat treatment to not less than Ac 1 transformation point + 20 ° C. and not more than Ac 3 transformation point + 150 ° C. This is because it is necessary to form a certain amount or more of the reverse transformed austenite phase in the heating step in order to generate the hard phase. Therefore, at the reheating temperature lower than the Ac 1 transformation point + 20 ° C., is the reverse transformed austenite not generated? Even if it is produced, its amount is small, so that the final ratio of the hard phase is also small, and it is not possible to secure the strength and improve the strength-ductility balance.
At a reheating temperature of more than the Ac 3 transformation point + 150 ° C., even if the initial structure before heating is refined by the above method or the above method, the heated austenite grain size becomes coarse, and the generated hard phase becomes coarse, resulting in toughness. Is not preferred because it inhibits Therefore, in the present invention, the reheating temperature in the heat treatment for forming the hard second phase is set to the Ac 1 transformation point + 20 ° C. or more,
Ac 3 transformation point is limited to + 150 ° C or lower.
【0023】Ac1 変態点+20℃以上、Ac3 変態点
+150℃以下に再加熱した後、変態によって低温変態
ベイナイト主体組織を形成させるために、加速冷却プロ
セスを施すが、該加速冷却の条件としては、冷却速度を
1〜100℃/s、加速冷却停止温度を300〜600
℃とする必要がある。本発明が目的としている靭性、延
性を両立させる低温変態ベイナイト主体の硬質第二相を
形成させるには、後述するように化学組成を適正化し
て、一定以上の焼入性を確保した上で、加速冷却する必
要がある。該加速冷却速度が1℃/s未満ではフェライ
トや靭性に好ましくない粗大な上部ベイナイトを生成す
る恐れがある。また、冷却速度は大きいほど組織微細化
効果は大きいが、100℃/s超では組織微細化効果が
飽和するためと、工業的に実現することが容易でなくな
るためである。なお、焼入れの冷却速度が本発明の範囲
内であれば、その手段は問わない。すなわち、水冷以外
に油冷、その他冷媒等によって冷却しても効果は異なら
ない。After reheating to an Ac 1 transformation point + 20 ° C. or more and an Ac 3 transformation point + 150 ° C. or less, an accelerated cooling process is performed to form a low-temperature transformed bainite-based structure by transformation. Is a cooling rate of 1 to 100 ° C./s and an accelerated cooling stop temperature of 300 to 600.
° C. In order to form a hard second phase mainly composed of low-temperature transformed bainite that achieves both toughness and ductility, the purpose of the present invention, after optimizing the chemical composition as described below, and ensuring a certain level of hardenability, It is necessary to accelerate cooling. If the accelerated cooling rate is less than 1 ° C./s, ferrite and coarse upper bainite unfavorable in toughness may be formed. Also, the higher the cooling rate, the greater the effect of making the structure finer. However, if the cooling speed is higher than 100 ° C./s, the effect of making the structure finer is saturated, and it is not easy to realize industrially. In addition, as long as the cooling rate of the quenching is within the range of the present invention, any means may be used. That is, the effect is not different even if cooling by oil cooling or other refrigerant other than water cooling.
【0024】該加速冷却によって冷却中に硬質相が形成
されるが、靭性を劣化させる粗大上部ベイナイトやマル
テンサイトの形成を抑制して、硬質相を靭性・延性両立
に好ましい低温変態ベイナイト相主体組織とするために
は、加速冷却を途中で停止する必要もある。すなわち、
300℃未満の低温まで加速冷却を行うと硬質第二相が
マルテンサイト主体組織となる恐れが大であり、逆に6
00℃超では加速冷却を停止した段階で残留オーステナ
イトの割合が高く、加速冷却停止後に粗大な上部ベイナ
イトを生成する恐れが高いため、本発明では、靭性・延
性の両立のために必須の低温変態ベイナイト相の確保の
ために、加速冷却停止温度を300〜600℃に限定す
る。Although the hard phase is formed during the cooling by the accelerated cooling, formation of coarse upper bainite or martensite which deteriorates toughness is suppressed, and the hard phase is transformed into a low-temperature transformed bainite phase main structure which is preferable for achieving both toughness and ductility. Therefore, it is necessary to stop accelerated cooling in the middle. That is,
When accelerated cooling to a low temperature of less than 300 ° C., the hard second phase is likely to become a martensite-based structure.
If the temperature exceeds 00 ° C., the proportion of retained austenite is high at the stage when the accelerated cooling is stopped, and there is a high possibility that coarse upper bainite is formed after the accelerated cooling is stopped. In order to secure the bainite phase, the accelerated cooling stop temperature is limited to 300 to 600C.
【0025】以上の本発明によれば、同一強度で比較し
た場合、既存の方法により製造した鋼に比べて優れた延
性、特に一様伸びを達成することができる。すなわち、
既存の方法によれば、一様伸びは平均的には、一様伸び
(U−El)を%、引張強度(T.S)をMPa で表した
場合、 U−El(%)≦20−0.017・T.S(MPa ) ・・・・・・(2) 上記(2)式で表されれるレベルであるのに対して、本
発明によれば、(3)式で表される一様伸びが達成され
る。すなわち、同一強度でみて、既存の方法に比べて平
均4%以上一様伸びが良好である。 U−El(%)≧24−0.017・T.S(MPa ) ・・・・・・(3)According to the present invention described above, when compared at the same strength, superior ductility, particularly uniform elongation, can be achieved as compared with steel produced by the existing method. That is,
According to the existing method, the uniform elongation is, on average, the uniform elongation (U-El) in% and the tensile strength (TS) in MPa, U-El (%) ≦ 20− 0.017 · T. S (MPa) (2) In contrast to the level represented by the above equation (2), according to the present invention, the uniform elongation represented by the equation (3) is achieved. You. That is, when viewed at the same strength, the uniform elongation is better by 4% or more on average than the existing method. U-El (%) ≧ 24−0.017 · T. S (MPa) ... (3)
【0026】本発明によれば、上記(3)式の一様伸び
レベルが達成され、かつ降伏比(降伏応力/引張強度)
を80%以下にできるとともに、後続の焼戻し処理を施
さなくとも、靭性を、2mmVノッチシャルピー衝撃試験
の破面遷移温度で−40℃以下と良好にすることが可能
である。According to the present invention, the uniform elongation level of the above equation (3) is achieved, and the yield ratio (yield stress / tensile strength) is obtained.
Can be reduced to 80% or less, and the toughness can be improved to -40 ° C. or less at a fracture surface transition temperature in a 2 mmV notch Charpy impact test without performing a subsequent tempering treatment.
【0027】なお、本発明の中で、硬質第二相形成のた
めの最終の熱処理の再加熱温度をAc1 変態点+20℃
以上、Ac3 変態点−50℃以下にさらに限定すれば、
降伏比を75%以下でかつ、一様伸びレベルを(4)式
で示す程度に向上させることができる。 U−El(%)≧27−0.017・T.S(MPa ) ・・・・・・(4)In the present invention, the reheating temperature of the final heat treatment for forming the hard second phase is set to the Ac 1 transformation point + 20 ° C.
As described above, if further limited to the Ac 3 transformation point −50 ° C. or less,
The yield ratio can be improved to 75% or less and the uniform elongation level can be improved to the extent shown by the expression (4). U-El (%) ≧ 27−0.017 · T. S (MPa) ... (4)
【0028】さらに、靭性と、延性の改善のためには、
必要に応じて、熱間圧延に先立って、1150〜130
0℃で2h〜48h保持する溶体化処理を施すことがで
きる。すなわち、鋼片は不可避的に合金成分が濃化した
ミクロ偏析部を有するが、該偏析部は加熱変態点が低
く、かつ焼入性が高いため、優先的に硬質相の生成箇所
となる。従って、ミクロ偏析部が広く、及び/あるいは
該偏析部の成分濃化が大きいと、最終の熱処理段階にお
いて、粗大なマルテンサイト相を生成して、靭性や延性
の劣化につながる。そのため、鋼片のミクロ偏析状態に
よっては、熱間圧延に先立ってミクロ偏析部の縮小、濃
化低減を目的とした溶体化処理を施すことによって靭
性、延性が改善される。Further, in order to improve toughness and ductility,
If necessary, prior to hot rolling, 1150-130
A solution treatment in which the solution is held at 0 ° C. for 2 hours to 48 hours can be performed. That is, although the slab has inevitably a micro-segregated portion in which the alloy component is enriched, the segregated portion has a low heating transformation point and high hardenability, so that it preferentially becomes a hard phase generation portion. Therefore, if the micro segregation part is wide and / or the component concentration of the segregation part is large, a coarse martensite phase is generated in the final heat treatment step, which leads to deterioration of toughness and ductility. Therefore, depending on the micro-segregation state of the steel slab, toughness and ductility are improved by performing a solution treatment for reducing the micro-segregated portion and reducing the concentration prior to hot rolling.
【0029】本発明では、溶体化条件を、加熱温度:1
150〜1300℃、保持時間:2h〜48hに限定す
る。加熱温度が1150℃未満では、長時間保持しても
Mn等の偏析元素の拡散が十分でなく、1300℃超で
は表面の酸化が著しくなるため、好ましくない。ただ
し、保持時間が2h未満では加熱温度が1300℃でも
溶体化が十分でないため、保持時間の下限を2hとす
る。保持時間は長いほど偏析の減少に有効であるが、長
時間高温に保持することは経済上好ましくなく、表面酸
化の問題もあるため、1150℃の加熱でも靭性、延性
の向上に効果が明確な保持時間として48hを上限とす
る。溶体化処理の加熱・保持段階で溶体化が十分達成さ
れ、組織調整は、鋼片組織によらず、その後の本発明の
製造工程で達成されるため、溶体化処理の加熱・保持後
の冷却条件は特に問わない。In the present invention, the solutionizing condition is set at a heating temperature of 1: 1.
150-1300 ° C, holding time: limited to 2h-48h. If the heating temperature is lower than 1150 ° C., even if the heating temperature is maintained for a long time, the diffusion of segregated elements such as Mn is not sufficient, and if the temperature is higher than 1300 ° C., oxidation of the surface becomes remarkable, which is not preferable. However, if the holding time is less than 2 hours, the solution is not enough even at a heating temperature of 1300 ° C., so the lower limit of the holding time is 2 hours. A longer holding time is more effective in reducing segregation, but holding at a high temperature for a long time is economically unfavorable, and there is a problem of surface oxidation. Therefore, even at 1150 ° C., the effect of improving toughness and ductility is clear. The upper limit of the holding time is 48 h. Since the solution treatment is sufficiently achieved in the heating and holding stage of the solution treatment and the structure adjustment is achieved in the subsequent manufacturing process of the present invention regardless of the steel slab structure, cooling after heating and holding in the solution treatment is performed. The conditions are not particularly limited.
【0030】以上が製造方法に関わる本発明の限定理由
であるが、溶接構造用鋼として十分な製造を発揮し、低
降伏比が低く塑性変形能に優れた低降伏比高張力鋼板を
製造するためには、化学成分も併せて規定する必要があ
る。以下に、それぞれの化学成分の限定理由を述べる。The above is the reason for limiting the present invention relating to the production method. The production of a steel for welded structures is sufficiently performed, and a low yield ratio high tensile strength steel sheet having a low low yield ratio and excellent plastic deformability is produced. Therefore, it is necessary to define the chemical components as well. The reasons for limiting each chemical component are described below.
【0031】先ず、Cは鋼の強度を向上させる有効な成
分として添加するもので、0.01%未満では構造用鋼
に必要な強度の確保が困難であり、また、0.25%を
超える過剰の添加は、硬質相が低温変態ベイナイト相で
あっても、該ベイナイト中のC量が過大となって靭性が
顕著に劣化し、また、耐溶接割れ性なども著しく低下さ
せるので、0.01〜0.25%の範囲とした。First, C is added as an effective component for improving the strength of steel. If it is less than 0.01%, it is difficult to secure the strength required for structural steel, and more than 0.25%. If the hard phase is a low-temperature-transformed bainite phase, excessive addition causes an excessive amount of C in the bainite to remarkably deteriorate toughness and remarkably reduce weld cracking resistance. The range was 01 to 0.25%.
【0032】次に、Siは脱酸元素として、また、母材
の強度確保に有効な元素である。0.01%未満の添加
では脱酸が不十分となり、また強度確保に不利である。
逆に1%を超える過剰の添加は粗大な酸化物を形成して
延性や靭性劣化を招く。そこで、Siの範囲は0.01
〜1%とした。Next, Si is an element effective as a deoxidizing element and for ensuring the strength of the base material. Addition of less than 0.01% results in insufficient deoxidation and is disadvantageous for securing strength.
Conversely, an excessive addition exceeding 1% forms a coarse oxide and causes deterioration in ductility and toughness. Therefore, the range of Si is 0.01
11%.
【0033】また、Mnは母材の強度、靭性の確保に必
要な元素であり、最低限0.1%以上添加する必要があ
る。しかし、3%を超える過剰な添加は、過剰なC含有
と同様、硬質相による靭性劣化を生じ、溶接部の靭性、
割れ性なども劣化させるため、上限を3%とした。Mn is an element necessary for securing the strength and toughness of the base material, and must be added at least 0.1% or more. However, excessive addition of more than 3% causes toughness degradation due to the hard phase as well as excessive C content, and the toughness of the welded portion,
The upper limit is set to 3% because the cracking property is also deteriorated.
【0034】Pは不純物元素であり、極力低減すること
が好ましいが、溶接熱影響部の靭性確保の点から許容で
きる量として上限を0.02%とした。P is an impurity element and is preferably reduced as much as possible, but the upper limit is set to 0.02% as an allowable amount from the viewpoint of securing the toughness of the heat affected zone.
【0035】SはMnSを形成して延性値を劣化せるた
め、本発明が対象としているような、延性を確保する必
要のある鋼板では特に低減が必要な元素である。ただ
し、延性の劣化が大きくなく、実用的に許容できる上限
として、その含有量を0.01%以下とする。Since S forms MnS and degrades the ductility value, S is an element that needs to be particularly reduced in a steel sheet that is required to ensure ductility as in the present invention. However, the content is set to 0.01% or less as a practically allowable upper limit where ductility is not significantly deteriorated.
【0036】Alは脱酸、γ粒径の細粒化等に有効な元
素であり、効果を発揮するためには0.001%以上含
有する必要があるが、0.1%を超えて過剰に添加する
と、粗大な酸化物を形成して延性を極端に劣化させるた
め、0.001%〜0.1%の範囲に限定する必要があ
る。Al is an element effective for deoxidation and refining of γ particle size, and it is necessary to contain 0.001% or more in order to exhibit the effect. , A coarse oxide is formed and the ductility is extremely deteriorated, so it is necessary to limit the range to 0.001% to 0.1%.
【0037】NはAlやTiと結びついてγ粒微細化に
有効に働くが、その効果が明確になるためには0.00
1%以上含有させる必要がある一方、過剰に添加すると
固溶Nが増加して降伏比の増加や靭性の劣化につなが
る。溶接熱影響部の靭性確保の観点から許容できる範囲
として上限を0.01%とする。N is effective in refining γ grains in combination with Al and Ti.
On the other hand, it is necessary to contain 1% or more. On the other hand, if it is added excessively, the amount of dissolved N increases, leading to an increase in yield ratio and deterioration in toughness. The upper limit is set to 0.01% as an allowable range from the viewpoint of securing the toughness of the weld heat affected zone.
【0038】以上が本発明鋼の基本成分であるが、硬質
第二相を延性・靭性の両立に有効な低温変態ベイナイト
相とするために、前記の本発明の製造方法を前提とした
上で、鋼の焼入性を適正化する必要がある。鋼の焼入性
に対する化学成分の影響は、理想焼入れ臨界直径(DI
値)で一般的に表される。本発明者らは、本発明の製造
方法における最終熱処理段階での第二相の焼入性を精度
良く表すことができるDI 値を下記(1)式に示すよう
に実験的に求め、該DI 値と延性、靭性に好ましい第二
相の出現条件との関係を詳細に検討した。その結果か
ら、(1)式で示されるDI 値を0.5〜30の範囲に
限定することとした。すなわち、DI 値が0.5〜30
の範囲であれば、本発明の製造方法によって、材質に好
ましくないマルテンサイトや粗大な上部ベイナイト相を
抑制し、一様伸びが優れ、靭性も確保できる低温変態ベ
イナイト相を確実に形成できる。DI 値が0.5未満で
あると、焼入性が過小のため、低降伏比化、強度−一様
伸びバランス向上に重要な役割を担う硬質相が形成され
ないため好ましくなく、一方、30超であると、焼入性
が過大となり、靭性の劣るマルテンサイト相を本発明の
方法によっても抑制できず、延性、靭性に好ましい第二
相を形成することが困難となるため、好ましくない。 DI =0.5・(C%)1/2 ・(1+0.64・Si%)・(1+4.10・ Mn%)・(1+0.27・Cu%)・(1+0.52・Ni%)・(1+2 .33・Cr%)・(1+3.14・Mo%)・(1+1.50・W%) ・・・・・(1)The above are the basic components of the steel of the present invention. However, in order to make the hard second phase a low-temperature transformed bainite phase effective for achieving both ductility and toughness, the above-mentioned production method of the present invention is premised. It is necessary to optimize the hardenability of steel. The effect of chemical composition on the hardenability of steel is determined by the ideal hardening critical diameter (D I
Value). The present inventors have determined the D I value hardenability of the second phase in the final heat treatment stage can be expressed accurately experimentally as shown in the following equation (1) in the production method of the present invention, the D I value and ductility was investigated in detail the relationship between the appearance condition of toughness preferred second phase. From the results, it was decided to limit the scope of 0.5 to 30 and D I value represented by the equation (1). That, D I value 0.5 to 30
Within this range, the production method of the present invention can suppress the formation of martensite and a coarse upper bainite phase, which are unfavorable for the material, and can reliably form a low-temperature transformed bainite phase that is excellent in uniform elongation and can ensure toughness. When D I value is less than 0.5, since hardenability is excessively small, low yield ratio, strength - not preferable because the hard phase is not formed play an important role in the uniform elongation balance improved, whereas, 30 If it is more than that, the hardenability becomes excessive, and the martensite phase having poor toughness cannot be suppressed even by the method of the present invention, and it is difficult to form a second phase which is favorable in ductility and toughness, which is not preferable. D I = 0.5 · (C%) 1/2 · (1 + 0.64 · Si%) · (1 + 4.10 · Mn%) · (1 + 0.27 · Cu%) · (1 + 0.52 · Ni%)・ (1 + 2.33 ・ Cr%) ・ (1 + 3.14 ・ Mo%) ・ (1 + 1.50 ・ W%) ・ ・ ・ ・ ・ (1)
【0039】以上が本発明鋼の基本成分であるが、所望
の強度レベルに応じて母材強度の上昇の目的で、必要に
応じてNi、Cu、Cr、Mo、W、V、Ti、Nb、
Ta、Zr、Bの1種または2種以上を含有することが
できる。The above are the basic components of the steel of the present invention. Ni, Cu, Cr, Mo, W, V, Ti, and Nb may be used, if necessary, for the purpose of increasing the base metal strength according to the desired strength level. ,
One, two or more of Ta, Zr, and B can be contained.
【0040】先ず、Niは母材の強度と靭性を同時に向
上でき、非常に有効な元素であるが、効果を発揮させる
ためには0.1%以上含有させる必要がある。含有量が
多くなると強度、靭性は向上するが6%を超えて添加し
ても効果が飽和するため、経済性も考慮して、上限を6
%とする。次に、CuもほぼNiと同様の効果を有する
が、1.5%超の添加では熱間加工性に問題を生じるた
め、0.05〜1.5%の範囲に限定する。また、Cr
は母材の強度向上に有効な元素であるが、明瞭な効果を
生じるためには0.05%以上必要であり、一方、2%
を超えて添加すると、靭性が劣化する傾向を有するた
め、0.05〜2%の範囲とする。Moも母材の強度向
上に有効な元素であるが、明瞭な効果を生じるためには
0.1%以上必要であり、一方、2%を超えて添加する
と、靭性が劣化する傾向を有するため、0.1〜2%の
範囲とする。WもMoと同様に、母材の強度向上に有効
な元素であるが、明瞭な効果を生じるためには0.2%
以上必要であり、一方、4%を超えて添加すると、靭性
が劣化する傾向を有するため、0.2〜4%の範囲とす
る。V及びNbはいずれも主として析出強化により母材
の強度向上に寄与するが、過剰の添加で靭性が劣化す
る。従って、靭性の劣化を招かずに、効果を発揮できる
範囲として、Vは0.005〜0.5%、Nbは0.0
05〜0.5%とする。TiはTiNの形成によりγ粒
を微細化して靭性向上に有効な元素であるが、効果を発
揮できるためには0.003%以上の添加が必要であ
る。一方、0.1%を超えると、Alと同様、粗大な酸
化物を形成して靭性や延性を劣化させるため、上限を
0.1%とする。Taも同様に析出強化や細粒化に有効
であるが、効果を発揮するためには0.01%以上必要
であり、0.5%超では逆に靱性劣化を生じるため、そ
の範囲を0.01%〜0.5%とする。Zrは析出強化
や細粒化に効果を発揮する元素であるが、効果を発揮す
るためには0.005%以上の添加が必要である。一
方、0.1%超の過剰の添加で析出物の粗大化による靱
性の劣化を生じるため、0.005%〜01%の範囲に
限定する。Bは0.0002%以上のごく微量添加で鋼
材の焼入性を高めて強度上昇に非常に有効であるが、過
剰に添加するとBNを形成して、逆に焼入性を落とした
り、靭性を大きく劣化させるため、上限を0.005%
とする。First, Ni is a very effective element that can simultaneously improve the strength and toughness of the base material, but it is necessary to contain 0.1% or more in order to exert the effect. When the content is increased, the strength and toughness are improved, but the effect is saturated even if added in excess of 6%.
%. Next, Cu has almost the same effect as Ni, but since addition of more than 1.5% causes a problem in hot workability, it is limited to the range of 0.05 to 1.5%. In addition, Cr
Is an element effective for improving the strength of the base material, but is required to be 0.05% or more in order to produce a clear effect, while 2%
If added in excess of, the toughness tends to deteriorate, so the content is made 0.05 to 2%. Mo is also an effective element for improving the strength of the base material, but it needs to be 0.1% or more in order to produce a clear effect. On the other hand, if added over 2%, the toughness tends to deteriorate. , 0.1 to 2%. W is an element effective for improving the strength of the base material, similarly to Mo. However, in order to produce a clear effect, W is 0.2%.
On the other hand, if added in excess of 4%, the toughness tends to deteriorate, so the content is set in the range of 0.2 to 4%. Both V and Nb mainly contribute to the improvement of the strength of the base material by precipitation strengthening, but the toughness is deteriorated by excessive addition. Therefore, V is 0.005 to 0.5% and Nb is 0.0% as a range in which the effect can be exhibited without inducing the deterioration of toughness.
0.5 to 0.5%. Ti is an element effective for improving the toughness by refining γ grains by forming TiN, but it is necessary to add 0.003% or more to exhibit the effect. On the other hand, if it exceeds 0.1%, as in the case of Al, a coarse oxide is formed to deteriorate toughness and ductility, so the upper limit is made 0.1%. Ta is also effective for precipitation strengthening and grain refinement, but is required to be 0.01% or more in order to exhibit the effect. If it exceeds 0.5%, the toughness is adversely deteriorated. 0.01% to 0.5%. Zr is an element that exerts an effect on precipitation strengthening and grain refinement, but in order to exhibit the effect, 0.005% or more must be added. On the other hand, since an excessive addition of more than 0.1% causes deterioration of toughness due to coarsening of precipitates, the content is limited to the range of 0.005% to 01%. B is very effective in increasing the strength by increasing the hardenability of steel by adding a very small amount of 0.0002% or more, but when added excessively, it forms BN and conversely reduces the hardenability and decreases the toughness. The upper limit is 0.005% to greatly deteriorate
And
【0041】さらに、本発明においては、延性や溶接部
の靱性(HAZ靱性)を向上させることを目的として、
Y、Ca、Mg、REMの1種または2種以上を含有す
ることができる。いずれも酸化物、硫化物の微細分散に
より延性特性を改善するとともに、溶接熱影響部(HA
Z)の組織を微細化してHAZ靱性を向上せしめるが、
その効果を発揮するためには、Yは0.001%以上、
Caは0.0005%以上、Mgは0.0001%以
上、REMは0.005%以上含有させる必要がある。
一方、過剰に添加すると、酸化物、硫化物が粗大化し
て、それ自身が脆性破壊の起点となってHAZ靱性を逆
に劣化させるため、上限をMgおよびCaは0.01
%、YおよびREMは0.1%に限定する。Further, in the present invention, for the purpose of improving ductility and toughness of a welded portion (HAZ toughness),
One, two or more of Y, Ca, Mg, and REM can be contained. In each case, the ductility is improved by fine dispersion of oxides and sulfides, and the heat affected zone (HA)
Although the structure of Z) is refined to improve the HAZ toughness,
In order to exhibit the effect, Y is 0.001% or more,
Ca must be contained 0.0005% or more, Mg is contained 0.0001% or more, and REM is contained 0.005% or more.
On the other hand, if added in excess, the oxides and sulfides coarsen and themselves become the starting point of brittle fracture, deteriorating the HAZ toughness.
%, Y and REM are limited to 0.1%.
【0042】[0042]
【実施例】次に、本発明の効果を実施例によってさらに
具体的に述べる。実施例に用いた供試鋼の化学組成を表
1に示す。本発明の化学成分を有する鋼片番号1〜10
と、本発明の化学組成範囲を逸脱している鋼片番号11
〜15の鋼片を用いて、表2、表3に示す製造条件によ
り鋼板を製造し、機械的性質を調査した。いずれも板厚
中心部より試験片を採取した。採取方向はいずれも熱間
圧延方向に平行な方向とした(L方向)。機械試験結果
も合わせて表2、表3に示す。なお、表2に示す鋼板
は、本発明のうちの加工熱処理による方法とその比較法
によるものであり、表3に示す鋼板は、本発明のうちの
再加熱処理による方法とその比較法によるものである。Next, the effects of the present invention will be described more specifically with reference to examples. Table 1 shows the chemical compositions of the test steels used in the examples. Slab numbers 1 to 10 having the chemical components of the present invention
And slab number 11 deviating from the chemical composition range of the present invention.
A steel sheet was manufactured using the slabs Nos. To 15 under the manufacturing conditions shown in Tables 2 and 3, and the mechanical properties were investigated. In each case, a test piece was collected from the center of the plate thickness. The sampling directions were all parallel to the hot rolling direction (L direction). Tables 2 and 3 also show the results of the mechanical tests. The steel sheets shown in Table 2 are based on the method by the thermomechanical treatment of the present invention and the comparative method. The steel sheets shown in Table 3 are based on the method based on the reheating treatment of the present invention and the comparative method. It is.
【0043】表2、表3のうちの、鋼材No.A1〜A
20は本発明により製造したものであり、鋼材No.B
1〜B11は本発明のいずれかの要件を満足していない
比較例である。表2、表3に示すように、本発明により
製造した鋼はいずれの強度レベルにおいても、低降伏比
と良好な靭性が達成されており、かつ、延性特性、特に
一様伸びも同一強度レベルで比較して、比較法に比べて
顕著に向上していることが明らかである。一方、比較例
である、鋼材No.B1〜B11は、本発明の要件を満
足していないため、降伏比、一様伸び、靭性のいずれ
か、あるいは全てが本発明に比べて明らかに劣ってい
る。In Tables 2 and 3, the steel material No. A1 to A
No. 20 was manufactured according to the present invention, B
1 to B11 are comparative examples that do not satisfy any of the requirements of the present invention. As shown in Tables 2 and 3, the steels manufactured according to the present invention achieved a low yield ratio and good toughness at any strength level, and had the same level of ductility, especially uniform elongation, at the same strength level. , It is clear that it is significantly improved as compared with the comparative method. On the other hand, steel material No. Since B1 to B11 do not satisfy the requirements of the present invention, any or all of the yield ratio, uniform elongation, and toughness are clearly inferior to those of the present invention.
【0044】比較例のうち、鋼材No.B1〜B5は、
本発明の要件のうち、化学組成が本発明を満足していな
い例である。鋼材No.B1は、Cが過剰に含有されて
いるため、靭性が劣る。鋼材No.B2は、Mnが過剰
であるため、やはり靭性が劣る。鋼材No.B3は、焼
入性の指標であるDI 値が過小であるため、本発明の製
造方法によっても、硬質相の焼入性が不足であり、降伏
比及び一様伸びが十分でない。一方、鋼材No.B4お
よびB5は、焼入性の指標であるDI 値が過大であるた
め、本発明の製造方法によっても、硬質相が靭性に好ま
しくない硬質のマルテンサイト相になること避けられな
いため、靭性の劣化が著しい。Among the comparative examples, steel material No. B1 to B5 are
In the requirements of the present invention, the chemical composition does not satisfy the present invention. Steel No. B1 is inferior in toughness because C is excessively contained. Steel No. B2 is also inferior in toughness because Mn is excessive. Steel No. B3, since D I value which is an index of hardenability is too small, even by the production method of the present invention, a hardenability lack of hard phase, yield ratio and uniform elongation is not sufficient. On the other hand, when the steel material No. B4 and B5, since D I value which is an index of hardenability is excessively high, even by the production method of the present invention, since the hard phase inevitably becomes martensite phase undesirable hard toughness, toughness Is significantly deteriorated.
【0045】鋼材No.B6〜B11は、製造方法が本
発明の要件を満足していない例である。鋼材No.B6
〜B8は加工熱処理による製造方法における比較例であ
り、鋼材No.B6は、最終の熱処理の加熱温度が過大
であるために一様伸びと降伏比が劣り、鋼材No.B7
は、最終熱処理の加速冷却の停止温度が低すぎるため
に、一様伸びと靭性が劣り、鋼材No.B8は、最終熱
処理の加速冷却の停止温度が高すぎるために、硬質相の
形成が十分でなく、一様伸びと降伏比が劣り、かつ、靭
性も若干劣る。一方、鋼材No.B9〜B11は再加熱
処理による製造方法の比較例である。鋼材No.B9
は、焼きならし温度が高すぎるため、靭性の劣化が大き
く、鋼材No.B10は、最終熱処理の加熱温度が低す
ぎるため、加熱時に逆変態オーステナイト相が形成され
ないため、強度も低く、降伏比、一様伸びが劣り、鋼材
No.B11は、最終熱処理の加速冷却の停止温度が低
すぎるために、靭性の劣化が著しい。Steel material No. B6 to B11 are examples in which the manufacturing method does not satisfy the requirements of the present invention. Steel No. B6
Nos. To B8 are comparative examples in the manufacturing method by thermomechanical treatment. B6 is inferior in uniform elongation and yield ratio because the heating temperature in the final heat treatment is too high. B7
In the case of the steel material No., the uniform elongation and the toughness were poor because the stop temperature of the accelerated cooling in the final heat treatment was too low. In B8, since the stop temperature of the accelerated cooling in the final heat treatment is too high, formation of a hard phase is not sufficient, uniform elongation and yield ratio are inferior, and toughness is slightly inferior. On the other hand, when the steel material No. B9 to B11 are comparative examples of the manufacturing method by the reheating treatment. Steel No. B9
In steel No. 2, since the normalizing temperature was too high, the deterioration of toughness was large. In B10, since the heating temperature in the final heat treatment was too low, no reverse transformed austenite phase was formed during heating, so that the strength was low, the yield ratio and the uniform elongation were poor, and In B11, since the stop temperature of the accelerated cooling in the final heat treatment is too low, the toughness is significantly deteriorated.
【0046】以上の実施例から分かるように、本発明に
係る製造方法により、低降伏比と優れた一様伸び特性
を、靭性を劣化させることなく達成できることが明らか
である。As can be seen from the above examples, it is clear that the production method according to the present invention can achieve a low yield ratio and excellent uniform elongation characteristics without deteriorating toughness.
【0047】[0047]
【表1】 [Table 1]
【0048】[0048]
【表2】 [Table 2]
【0049】[0049]
【表3】 [Table 3]
【0050】[0050]
【表4】 [Table 4]
【0051】[0051]
【表5】 [Table 5]
【0052】[0052]
【発明の効果】本発明により、溶接構造用鋼としての十
分な強度を有し、かつ降伏比が低く、一様伸び等の延性
特性に優れるとともに、低温靱性にも優れた靭性と延性
に優れた高張力鋼を提供することが可能となる。本発明
により製造した鋼は、例えば、海洋構造物、圧力容器、
造船、橋梁、建築物、ラインパイプなどの溶接鋼構造物
一般に用いることができるが、低降伏比、高延性と靭性
とが両立できることから、特に耐震性を必要とする建
築、橋梁等の構造物用鋼材として特に有用であり、本発
明の、産業上の価値は極めて高い。According to the present invention, the steel has sufficient strength as a welded structural steel, has a low yield ratio, has excellent ductility properties such as uniform elongation, and has excellent toughness and ductility excellent in low-temperature toughness. It is possible to provide high-strength steel. Steel produced according to the present invention, for example, offshore structures, pressure vessels,
It can be used in general for welded steel structures such as ships, bridges, buildings, and line pipes.However, because it can achieve both low yield ratio, high ductility and toughness, structures such as buildings and bridges that require earthquake resistance in particular It is particularly useful as a steel material for use, and the industrial value of the present invention is extremely high.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA20 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA33 AA35 AA36 AA37 AA39 AA40 BA01 CA01 CA02 CA03 CB02 CC03 CD02 CD03 CF02 CF03 ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA20 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA33 AA35 AA36 AA37 CAA03 CD02 CA03 CD02
Claims (7)
%、Si:0.01〜1%、Mn:0.1〜3%、P
:0.02%以下、S :0.01%以下、Al:
0.001〜0.1%、N :0.001〜0.01%
を含有し、残部Fe及び不可避不純物からなり、かつ、
(1)式で示す理想焼入臨界直径(DI 値)が0.5〜
30である鋼片を、Ac3 変態点〜1300℃に加熱
後、開始温度が950℃以下、終了温度が700℃以上
で、累積圧下率が30〜95%の圧延を含む熱間圧延
後、Ac1 変態点+20℃以上、Ac3 変態点+150
℃以下に再加熱した後、加速冷却停止温度が300〜6
00℃で、かつ、冷却速度が1〜100℃/sの加速冷
却を行うことを特徴とする、靱性と延性に優れた高張力
鋼の製造方法。 DI =0.5・(C%)1/2 ・(1+0.64・Si%)・(1+4.10・ Mn%)・(1+0.27・Cu%)・(1+0.52・Ni%)・(1+2 .33・Cr%)・(1+3.14・Mo%)・(1+1.50・W%) ・・・・・(1)1. C: 0.01 to 0.25% by weight
%, Si: 0.01-1%, Mn: 0.1-3%, P
: 0.02% or less, S: 0.01% or less, Al:
0.001-0.1%, N: 0.001-0.01%
And the balance consists of Fe and inevitable impurities, and
(1) Desired Hardening critical diameter (D I value) 0.5 indicated by the formula
After heating the slab which is 30 to the Ac 3 transformation point to 1300 ° C., after hot rolling including rolling with a starting temperature of 950 ° C. or less, an end temperature of 700 ° C. or more, and a cumulative draft of 30 to 95%, Ac 1 transformation point + 20 ° C or higher, Ac 3 transformation point +150
After reheating to below ℃, accelerated cooling stop temperature is 300-6
A method for producing a high-strength steel excellent in toughness and ductility, characterized by performing accelerated cooling at a temperature of 00 ° C and a cooling rate of 1 to 100 ° C / s. D I = 0.5 · (C%) 1/2 · (1 + 0.64 · Si%) · (1 + 4.10 · Mn%) · (1 + 0.27 · Cu%) · (1 + 0.52 · Ni%)・ (1 + 2.33 ・ Cr%) ・ (1 + 3.14 ・ Mo%) ・ (1 + 1.50 ・ W%) ・ ・ ・ ・ ・ (1)
600℃以下で終了する冷却速度が1〜100℃/sの
加速冷却を行った後に再加熱することを特徴とする、請
求項1に記載の、靱性と延性に優れた高張力鋼の製造方
法。2. Starting from 650 ° C. or higher after hot rolling,
The method for producing a high-strength steel excellent in toughness and ductility according to claim 1, wherein the reheating is performed after performing accelerated cooling at a cooling rate of 1 to 100 ° C / s, which ends at 600 ° C or lower. .
%、Si:0.01〜1%、Mn:0.1〜3%、P
:0.02%以下、S :0.01%以下、Al:
0.001〜0.1%、N :0.002〜0.01%
を含有し、残部Fe及び不可避不純物からなり、かつ、
(1)式で示す理想焼入臨界直径(DI 値)が0.5〜
30である鋼片を熱間圧延後、加熱温度がAc3 変態点
以上、Ac3 変態点+250以下の焼きならしを施し、
その後、Ac1 変態点+20℃以上、Ac3 変態点+1
50℃以下に再加熱した後、加速冷却停止温度が300
〜600℃で、かつ、冷却速度が1〜100℃/sの加
速冷却を行うことを特徴とする、靱性と延性に優れた高
張力鋼の製造方法。 DI =0.5・(C%)1/2 ・(1+0.64・Si%)・(1+4.10・ Mn%)・(1+0.27・Cu%)・(1+0.52・Ni%)・(1+2 .33・Cr%)・(1+3.14・Mo%)・(1+1.50・W%) ・・・・・(1)3. C: 0.01 to 0.25% by weight
%, Si: 0.01-1%, Mn: 0.1-3%, P
: 0.02% or less, S: 0.01% or less, Al:
0.001-0.1%, N: 0.002-0.01%
And the balance consists of Fe and inevitable impurities, and
(1) Desired Hardening critical diameter (D I value) 0.5 indicated by the formula
After hot rolling the slab of No. 30, normalizing the heating temperature to the Ac 3 transformation point or more and the Ac 3 transformation point +250 or less,
Then, Ac 1 transformation point + 20 ° C or higher, Ac 3 transformation point +1
After reheating to 50 ° C or less, accelerated cooling stop temperature is 300
A method for producing a high-strength steel excellent in toughness and ductility, characterized by performing accelerated cooling at a temperature of up to 600 ° C and a cooling rate of 1 to 100 ° C / s. D I = 0.5 · (C%) 1/2 · (1 + 0.64 · Si%) · (1 + 4.10 · Mn%) · (1 + 0.27 · Cu%) · (1 + 0.52 · Ni%)・ (1 + 2.33 ・ Cr%) ・ (1 + 3.14 ・ Mo%) ・ (1 + 1.50 ・ W%) ・ ・ ・ ・ ・ (1)
%、Si:0.01〜1%、Mn:0.1〜3%、P
:0.02%以下、S :0.01%以下、Al:
0.001〜0.1%、N :0.002〜0.01%
を含有し、残部Fe及び不可避不純物からなり、かつ、
(1)式で示す理想焼入臨界直径(DI 値)が0.5〜
30である鋼片を熱間圧延後、加熱温度がAc3 変態点
以上、Ac3 変態点+250以下で、冷却速度が1〜1
00℃/sの焼入れを施し、その後、Ac1 変態点+2
0℃以上、Ac3 変態点+150℃以下に再加熱した
後、加速冷却停止温度が300〜600℃で、かつ、冷
却速度が1〜100℃/sの加速冷却を行うことを特徴
とする、靱性と延性に優れた高張力鋼の製造方法。 DI =0.5・(C%)1/2 ・(1+0.64・Si%)・(1+4.10・ Mn%)・(1+0.27・Cu%)・(1+0.52・Ni%)・(1+2 .33・Cr%)・(1+3.14・Mo%)・(1+1.50・W%) ・・・・・(1)4. C: 0.01 to 0.25 by weight%
%, Si: 0.01-1%, Mn: 0.1-3%, P
: 0.02% or less, S: 0.01% or less, Al:
0.001-0.1%, N: 0.002-0.01%
And the balance consists of Fe and inevitable impurities, and
(1) Desired Hardening critical diameter (D I value) 0.5 indicated by the formula
After hot rolling a slab of No. 30 , the heating temperature is higher than the Ac 3 transformation point, lower than the Ac 3 transformation point +250, and the cooling rate is 1 to 1.
After quenching at 00 ° C / s, the Ac 1 transformation point +2
After reheating to 0 ° C. or higher and the Ac 3 transformation point + 150 ° C. or lower, accelerated cooling at an accelerated cooling stop temperature of 300 to 600 ° C. and a cooling rate of 1 to 100 ° C./s is performed. A method for producing high strength steel with excellent toughness and ductility. D I = 0.5 · (C%) 1/2 · (1 + 0.64 · Si%) · (1 + 4.10 · Mn%) · (1 + 0.27 · Cu%) · (1 + 0.52 · Ni%)・ (1 + 2.33 ・ Cr%) ・ (1 + 3.14 ・ Mo%) ・ (1 + 1.50 ・ W%) ・ ・ ・ ・ ・ (1)
Cu:0.05〜1.5%、Cr:0.05〜2%、M
o:0.1〜2%、W :0.2〜4%、V :0.0
05〜0.5%、Ti:0.003〜0.1%、Nb:
0.005〜0.5%、Ta:0.01〜0.5%、Z
r:0.005〜0.1%、B :0.0002〜0.
005%、の1種または2種以上を、さらに含有するこ
とを特徴とする、請求項1〜4のいずれかに記載の、靱
性と延性に優れた高張力鋼の製造方法。5. A steel slab in weight%, Ni: 0.1-6%,
Cu: 0.05 to 1.5%, Cr: 0.05 to 2%, M
o: 0.1 to 2%, W: 0.2 to 4%, V: 0.0
05-0.5%, Ti: 0.003-0.1%, Nb:
0.005 to 0.5%, Ta: 0.01 to 0.5%, Z
r: 0.005-0.1%, B: 0.0002-0.
The method for producing a high-strength steel excellent in toughness and ductility according to any one of claims 1 to 4, further comprising at least one of 005% and 005%.
0.1%、Ca:0.0005〜0.01%、Mg:
0.0001〜0.01%、REM:0.005〜0.
1%、のうち1種または2種以上を、さらに含有するこ
とを特徴とする請求項1〜5のいずれかに記載の、靱性
と延性に優れた高張力鋼の製造方法。6. The steel slab in weight%, Y: 0.001 to 0.001
0.1%, Ca: 0.0005 to 0.01%, Mg:
0.0001-0.01%, REM: 0.005-0.
The method for producing a high-tensile steel having excellent toughness and ductility according to any one of claims 1 to 5, further comprising 1% or more of 1%.
0℃で2h〜48h保持する溶体化処理を施すことを特
徴とする請求項1〜6のいずれかに記載の、靱性と延性
に優れた高張力鋼の製造方法。7. Prior to hot rolling, 1150 to 130
The method for producing a high-strength steel excellent in toughness and ductility according to any one of claims 1 to 6, wherein a solution treatment is performed at 0 ° C for 2 hours to 48 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000103336A JP2001288512A (en) | 2000-04-05 | 2000-04-05 | Method for producing high strength steel with excellent toughness and ductility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000103336A JP2001288512A (en) | 2000-04-05 | 2000-04-05 | Method for producing high strength steel with excellent toughness and ductility |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001288512A true JP2001288512A (en) | 2001-10-19 |
Family
ID=18617070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000103336A Withdrawn JP2001288512A (en) | 2000-04-05 | 2000-04-05 | Method for producing high strength steel with excellent toughness and ductility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001288512A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1516938A4 (en) * | 2002-06-19 | 2005-07-13 | Nippon Steel Corp | STEEL FOR RAW OIL TANK AND METHOD OF MANUFACTURE, RAW OIL TANK OBTAINED AND CORROSION PROTECTION METHOD |
JP2007063603A (en) * | 2005-08-30 | 2007-03-15 | Jfe Steel Kk | 780 MPa class high strength steel sheet and method for producing the same |
WO2011148755A1 (en) * | 2010-05-27 | 2011-12-01 | 新日本製鐵株式会社 | Process for producing high-strength steel plate for welded structure |
WO2011148754A1 (en) * | 2010-05-27 | 2011-12-01 | 新日本製鐵株式会社 | Process for production of thick steel sheet |
US8070887B2 (en) | 2002-04-09 | 2011-12-06 | Nippon Steel Corporation | High-strength steel sheet and high-strength steel pipe excellent in deformability and method for producing the same |
CN103147004A (en) * | 2013-03-21 | 2013-06-12 | 宝山钢铁股份有限公司 | Hot-rolled low-alloy high-strength steel plate and preparation method for same |
US8641836B2 (en) | 2009-10-28 | 2014-02-04 | Nippon Steel & Sumitomo Metal Corporation | Steel plate for line pipe excellent in strength and ductility and method of production of same |
EP2278035A4 (en) * | 2008-05-13 | 2014-07-02 | Japan Steel Works Ltd | LOW-STRENGTHALLY HIGH-STRENGTH STEEL HAVING EXCELLENT FRAGILIZATION RESISTANCE IN HIGH-PRESSURE HYDROGEN MEDIA AND METHOD OF MANUFACTURING THE SAME |
KR101444750B1 (en) * | 2012-08-31 | 2014-09-26 | 한국원자력연구원 | the Ni-Cr-Mo low alloy steel improved resistance of temper embrittleness and the manufacturing method thereof |
JP2015155645A (en) * | 2015-04-23 | 2015-08-27 | Jfeスチール株式会社 | Steel pipe pile type pier and steel pipe pile |
CN106467951A (en) * | 2016-09-12 | 2017-03-01 | 武汉钢铁股份有限公司 | For 70 DEG C of high intensity, high tenacity, low yield strength ratio low-temperature steel and its manufacture method |
EP3130687A4 (en) * | 2014-04-08 | 2017-08-30 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Thick steel plate having exceptional haz toughness at very low temperatures |
CN112912527A (en) * | 2018-10-26 | 2021-06-04 | 株式会社Posco | Steel plate for pressure vessel with excellent low temperature toughness and excellent ductility and method for producing the same |
CN113462986A (en) * | 2021-07-16 | 2021-10-01 | 鞍钢股份有限公司 | 2000MPa environment-friendly heat-resistant steel for agricultural machinery and manufacturing method thereof |
KR20220051686A (en) * | 2020-10-19 | 2022-04-26 | 현대제철 주식회사 | Steel having excellent strength and low-temperature toughness after PWHT and method of manufacturing the same |
KR20220089109A (en) * | 2020-12-21 | 2022-06-28 | 주식회사 포스코 | High-strength steel plate for pressure vessels with excellent impact toughness and manufacturing method thereof |
JP2023067193A (en) * | 2021-10-29 | 2023-05-16 | 株式会社神戸製鋼所 | High strength steel sheet and method for producing the same |
WO2023126506A1 (en) * | 2021-12-29 | 2023-07-06 | Voestalpine Grobblech Gmbh | Heavy plate and thermomechanical handling method for a starting material for the production of a heavy plate |
JP7493138B2 (en) | 2021-08-23 | 2024-05-31 | Jfeスチール株式会社 | Ultra-low yield ratio high tensile steel plate and its manufacturing method |
JP7635793B2 (en) | 2022-03-07 | 2025-02-26 | Jfeスチール株式会社 | Heavy steel plate and its manufacturing method |
-
2000
- 2000-04-05 JP JP2000103336A patent/JP2001288512A/en not_active Withdrawn
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8070887B2 (en) | 2002-04-09 | 2011-12-06 | Nippon Steel Corporation | High-strength steel sheet and high-strength steel pipe excellent in deformability and method for producing the same |
US7875130B2 (en) | 2002-06-19 | 2011-01-25 | Nippon Steel Corporation | Crude oil tank comprising a corrosion resistant steel alloy |
US7922838B2 (en) | 2002-06-19 | 2011-04-12 | Nippon Steel Corporation | Crude oil tank fabricated from steel plate |
EP1516938A4 (en) * | 2002-06-19 | 2005-07-13 | Nippon Steel Corp | STEEL FOR RAW OIL TANK AND METHOD OF MANUFACTURE, RAW OIL TANK OBTAINED AND CORROSION PROTECTION METHOD |
JP2007063603A (en) * | 2005-08-30 | 2007-03-15 | Jfe Steel Kk | 780 MPa class high strength steel sheet and method for producing the same |
US10227682B2 (en) | 2008-05-13 | 2019-03-12 | The Japan Steel Works, Ltd. | High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same |
US8974612B2 (en) | 2008-05-13 | 2015-03-10 | The Japan Steel Works, Ltd. | High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same |
EP2278035A4 (en) * | 2008-05-13 | 2014-07-02 | Japan Steel Works Ltd | LOW-STRENGTHALLY HIGH-STRENGTH STEEL HAVING EXCELLENT FRAGILIZATION RESISTANCE IN HIGH-PRESSURE HYDROGEN MEDIA AND METHOD OF MANUFACTURING THE SAME |
US8641836B2 (en) | 2009-10-28 | 2014-02-04 | Nippon Steel & Sumitomo Metal Corporation | Steel plate for line pipe excellent in strength and ductility and method of production of same |
JP4897127B2 (en) * | 2010-05-27 | 2012-03-14 | 新日本製鐵株式会社 | Manufacturing method of high strength steel sheet for welded structure |
JP4897126B2 (en) * | 2010-05-27 | 2012-03-14 | 新日本製鐵株式会社 | Thick steel plate manufacturing method |
WO2011148754A1 (en) * | 2010-05-27 | 2011-12-01 | 新日本製鐵株式会社 | Process for production of thick steel sheet |
WO2011148755A1 (en) * | 2010-05-27 | 2011-12-01 | 新日本製鐵株式会社 | Process for producing high-strength steel plate for welded structure |
KR101444750B1 (en) * | 2012-08-31 | 2014-09-26 | 한국원자력연구원 | the Ni-Cr-Mo low alloy steel improved resistance of temper embrittleness and the manufacturing method thereof |
CN103147004A (en) * | 2013-03-21 | 2013-06-12 | 宝山钢铁股份有限公司 | Hot-rolled low-alloy high-strength steel plate and preparation method for same |
EP3130687A4 (en) * | 2014-04-08 | 2017-08-30 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Thick steel plate having exceptional haz toughness at very low temperatures |
JP2015155645A (en) * | 2015-04-23 | 2015-08-27 | Jfeスチール株式会社 | Steel pipe pile type pier and steel pipe pile |
CN106467951B (en) * | 2016-09-12 | 2019-06-18 | 武汉钢铁有限公司 | For -70 DEG C of high intensity, high tenacity, low yield strength ratio low-temperature steel and its manufacturing method |
CN106467951A (en) * | 2016-09-12 | 2017-03-01 | 武汉钢铁股份有限公司 | For 70 DEG C of high intensity, high tenacity, low yield strength ratio low-temperature steel and its manufacture method |
US12234526B2 (en) | 2018-10-26 | 2025-02-25 | Posco Holdings Inc. | Steel plate for pressure vessel with excellent cryogenic toughness and excellent ductility and manufacturing method thereof |
CN112912527A (en) * | 2018-10-26 | 2021-06-04 | 株式会社Posco | Steel plate for pressure vessel with excellent low temperature toughness and excellent ductility and method for producing the same |
KR20220051686A (en) * | 2020-10-19 | 2022-04-26 | 현대제철 주식회사 | Steel having excellent strength and low-temperature toughness after PWHT and method of manufacturing the same |
KR102413841B1 (en) * | 2020-10-19 | 2022-06-28 | 현대제철 주식회사 | Steel having excellent strength and low-temperature toughness after PWHT and method of manufacturing the same |
KR20220089109A (en) * | 2020-12-21 | 2022-06-28 | 주식회사 포스코 | High-strength steel plate for pressure vessels with excellent impact toughness and manufacturing method thereof |
KR102493979B1 (en) | 2020-12-21 | 2023-01-31 | 주식회사 포스코 | High-strength steel plate for pressure vessels with excellent impact toughness and manufacturing method thereof |
CN113462986A (en) * | 2021-07-16 | 2021-10-01 | 鞍钢股份有限公司 | 2000MPa environment-friendly heat-resistant steel for agricultural machinery and manufacturing method thereof |
JP7493138B2 (en) | 2021-08-23 | 2024-05-31 | Jfeスチール株式会社 | Ultra-low yield ratio high tensile steel plate and its manufacturing method |
JP7535028B2 (en) | 2021-10-29 | 2024-08-15 | 株式会社神戸製鋼所 | High strength steel plate and method for manufacturing same |
JP2023067193A (en) * | 2021-10-29 | 2023-05-16 | 株式会社神戸製鋼所 | High strength steel sheet and method for producing the same |
WO2023126506A1 (en) * | 2021-12-29 | 2023-07-06 | Voestalpine Grobblech Gmbh | Heavy plate and thermomechanical handling method for a starting material for the production of a heavy plate |
JP7635793B2 (en) | 2022-03-07 | 2025-02-26 | Jfeスチール株式会社 | Heavy steel plate and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102666897B (en) | High-toughness abrasion-resistant steel | |
JP2001288512A (en) | Method for producing high strength steel with excellent toughness and ductility | |
CN109628836A (en) | A kind of high-strength building structure anti-seismic refractory steel and preparation method thereof | |
JP2008208454A (en) | High strength steel material with excellent delayed fracture resistance and method for producing the same | |
JP4085826B2 (en) | Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same | |
KR20240099374A (en) | High-strength steel with excellent weather resistance and its manufacturing method | |
JP2003253331A (en) | Manufacturing method of high toughness, high ductility and high strength steel | |
JP2003160811A (en) | Manufacturing method of tempered high-strength steel sheet with excellent toughness | |
EP2623625A2 (en) | Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof | |
JP2000345281A (en) | Low alloy heat-resistant steel excellent in weldability and low-temperature toughness and its manufacturing method | |
JPH10168542A (en) | High-strength steel excellent in low-temperature toughness and fatigue strength and method for producing the same | |
JP3247908B2 (en) | High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same | |
JP2001115233A (en) | High strength steel sheet excellent in weldability and stress corrosion cracking resistance and method for producing the same | |
JPH10306316A (en) | Method for producing low yield ratio high strength steel with excellent low temperature toughness | |
JP2001207220A (en) | Method for producing hot-rolled steel sheet for high-strength ERW steel pipe with excellent low-temperature toughness and weldability | |
JP2001226741A (en) | High-strength cold-rolled steel sheet excellent in stretch flangeability and its manufacturing method | |
JP2002020832A (en) | High tensile steel excellent in high temperature strength and method for producing the same | |
JP2001234238A (en) | Manufacturing method of high wear and high toughness rail | |
JP4405026B2 (en) | Method for producing high-tensile strength steel with fine grain | |
JP2002173734A (en) | Steel with excellent weldability and method for producing the same | |
JP2000008123A (en) | Manufacturing method of high strength steel with excellent low temperature toughness | |
JP2001123222A (en) | Manufacturing method of high toughness and high strength steel | |
JP2002115022A (en) | Steel having excellent high temperature strength and its production method | |
JP2002003985A (en) | High tensile steel excellent in high temperature strength and method for producing the same | |
JP2002363685A (en) | Low yield ratio high strength cold rolled steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070605 |