JP2001283638A - Resin composition for insulating material and insulating material using the same - Google Patents
Resin composition for insulating material and insulating material using the sameInfo
- Publication number
- JP2001283638A JP2001283638A JP2000095607A JP2000095607A JP2001283638A JP 2001283638 A JP2001283638 A JP 2001283638A JP 2000095607 A JP2000095607 A JP 2000095607A JP 2000095607 A JP2000095607 A JP 2000095607A JP 2001283638 A JP2001283638 A JP 2001283638A
- Authority
- JP
- Japan
- Prior art keywords
- insulating material
- resin
- resin composition
- heat
- precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011810 insulating material Substances 0.000 title claims abstract description 83
- 239000011342 resin composition Substances 0.000 title claims abstract description 45
- 229920006015 heat resistant resin Polymers 0.000 claims abstract description 40
- 239000000412 dendrimer Substances 0.000 claims abstract description 34
- 229920000736 dendritic polymer Polymers 0.000 claims abstract description 34
- 239000002243 precursor Substances 0.000 claims abstract description 33
- 229920001721 polyimide Polymers 0.000 claims abstract description 29
- 229920005989 resin Polymers 0.000 claims abstract description 26
- 239000011347 resin Substances 0.000 claims abstract description 26
- 230000009477 glass transition Effects 0.000 claims abstract description 19
- 239000009719 polyimide resin Substances 0.000 claims abstract description 15
- 239000004642 Polyimide Substances 0.000 claims abstract description 14
- 238000005979 thermal decomposition reaction Methods 0.000 claims abstract description 13
- 229920000587 hyperbranched polymer Polymers 0.000 claims description 21
- 229920002577 polybenzoxazole Polymers 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 abstract description 8
- 239000004065 semiconductor Substances 0.000 abstract description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 abstract 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 14
- 229920000962 poly(amidoamine) Polymers 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 229920005575 poly(amic acid) Polymers 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 8
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229910052715 tantalum Inorganic materials 0.000 description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000013007 heat curing Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000002411 thermogravimetry Methods 0.000 description 4
- 241001073385 Acanthospermum Species 0.000 description 3
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 150000002466 imines Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- -1 polytrimethylene Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- NSGXIBWMJZWTPY-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropane Chemical compound FC(F)(F)CC(F)(F)F NSGXIBWMJZWTPY-UHFFFAOYSA-N 0.000 description 2
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- MSTZGVRUOMBULC-UHFFFAOYSA-N 2-amino-4-[2-(3-amino-4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]phenol Chemical compound C1=C(O)C(N)=CC(C(C=2C=C(N)C(O)=CC=2)(C(F)(F)F)C(F)(F)F)=C1 MSTZGVRUOMBULC-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- NVKGJHAQGWCWDI-UHFFFAOYSA-N 4-[4-amino-2-(trifluoromethyl)phenyl]-3-(trifluoromethyl)aniline Chemical group FC(F)(F)C1=CC(N)=CC=C1C1=CC=C(N)C=C1C(F)(F)F NVKGJHAQGWCWDI-UHFFFAOYSA-N 0.000 description 2
- JVERADGGGBYHNP-UHFFFAOYSA-N 5-phenylbenzene-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(=O)O)=CC(C=2C=CC=CC=2)=C1C(O)=O JVERADGGGBYHNP-UHFFFAOYSA-N 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- XMQHKFGLFALBAX-UHFFFAOYSA-N 4-[4-carbonochloridoyl-2-(trifluoromethyl)phenyl]-3-(trifluoromethyl)benzoyl chloride Chemical compound FC(F)(F)C1=CC(C(Cl)=O)=CC=C1C1=CC=C(C(Cl)=O)C=C1C(F)(F)F XMQHKFGLFALBAX-UHFFFAOYSA-N 0.000 description 1
- VOSZLKUKKWRKQZ-UHFFFAOYSA-N 4-[4-carboxy-2-(trifluoromethyl)phenyl]-3-(trifluoromethyl)benzoic acid Chemical compound FC(F)(F)C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1C(F)(F)F VOSZLKUKKWRKQZ-UHFFFAOYSA-N 0.000 description 1
- 101100074988 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) nmp-1 gene Proteins 0.000 description 1
- 101100074998 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) nmp-2 gene Proteins 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006798 ring closing metathesis reaction Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Landscapes
- Treatments Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Organic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、絶縁材用樹脂組成
物及び絶縁材に関するものであり、更に詳しくは、電気
・電子機器用、半導体装置用として優れた特性を有する
絶縁材用樹脂組成物及びこれを用いた絶縁材に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin composition for an insulating material and an insulating material, and more particularly, to a resin composition for an insulating material having excellent properties for use in electric / electronic devices and semiconductor devices. And an insulating material using the same.
【0002】[0002]
【従来の技術】電気電子機器用、半導体装置用材料に求
められている特性のなかで、電気特性と耐熱性は、最も
重要な特性である。特に、近年、回路の微細化と信号の
高速化に伴い、誘電率の低い絶縁材料が要求されてい
る。この2つの特性を両立させるための材料として、耐
熱性樹脂を用いた絶縁材が、期待されている。例えば、
従来から用いられている二酸化シリコン等の無機の絶縁
材は、高耐熱性を示すが、誘電率が高く、要求特性が高
度化している現在では、前述の特性について、両立が困
難になりつつあり、ポリイミド樹脂に代表される耐熱性
樹脂は、電気特性と耐熱性に優れ、2つの特性の両立が
可能であり、実際にプリント回路のカバーレイや半導体
装置のパッシベーション膜などに用いられている。2. Description of the Related Art Among the characteristics required for materials for electric / electronic devices and semiconductor devices, electric characteristics and heat resistance are the most important characteristics. In particular, in recent years, with miniaturization of circuits and speeding up of signals, an insulating material having a low dielectric constant has been required. An insulating material using a heat-resistant resin is expected as a material for achieving both of these characteristics. For example,
Conventionally, inorganic insulating materials such as silicon dioxide have high heat resistance, but have a high dielectric constant and the required characteristics are now sophisticated. A heat-resistant resin typified by a polyimide resin has excellent electrical characteristics and heat resistance, and can achieve both of the two characteristics, and is actually used for a coverlay of a printed circuit, a passivation film of a semiconductor device, and the like.
【0003】しかしながら、近年の半導体装置の高機能
化、高性能化にともない、電気特性、耐熱性について著
しい向上が必要とされているため、更に高性能な樹脂
が、必要とされるようになっている。特に、誘電率につ
いて、2.5を下回るような低誘電率材料が期待されて
おり、従来の絶縁材では、必要とされる特性に達してい
ない。これに対して、これまでには、例えば、ポリイミ
ド及び溶剤から成る樹脂組成物に、ポリイミド以外の熱
分解性樹脂を加え、加熱工程により、この熱分解性樹脂
を分解させて、空隙を形成することにより、絶縁材の誘
電率を低減させることが試みられている。しかし、ポリ
イミド等の耐熱性樹脂と熱分解性樹脂が相溶するとガラ
ス転移点が低くなってしまうために、熱分解性樹脂を分
解させる際に空隙が潰れていまい、誘電率を低減させる
効果が少ない。また、ポリイミド等の耐熱性樹脂と相溶
しない熱分解性樹脂を用いた場合は、絶縁材用樹脂組成
物が、保存中に不均一になってしまい、使用できないと
いう問題がある。[0003] However, with recent advances in the functions and performance of semiconductor devices, remarkable improvements in electrical characteristics and heat resistance have been required, so that even higher performance resins have been required. ing. In particular, a low dielectric constant material having a dielectric constant of less than 2.5 is expected, and a conventional insulating material does not reach required characteristics. In contrast, heretofore, for example, to a resin composition comprising polyimide and a solvent, a heat-decomposable resin other than polyimide is added, and a heating step is performed to decompose the heat-decomposable resin to form voids. Thus, attempts have been made to reduce the dielectric constant of the insulating material. However, when the heat-resistant resin such as polyimide and the heat-decomposable resin are compatible with each other, the glass transition point is lowered. Few. Further, when a thermally decomposable resin that is incompatible with a heat-resistant resin such as polyimide is used, there is a problem that the resin composition for an insulating material becomes non-uniform during storage and cannot be used.
【0004】[0004]
【発明が解決しようとする課題】本発明は、極めて低い
誘電率と良好な絶縁性を示すとともに、耐熱性にも優れ
た絶縁材用樹脂組成物及びこれを用いた絶縁材を提供す
る事を目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a resin composition for an insulating material which exhibits an extremely low dielectric constant and good insulating properties, and also has excellent heat resistance and an insulating material using the same. Aim.
【0005】[0005]
【課題を解決するための手段】本発明者らは、前記従来
の問題点を鑑み、鋭意検討を重ねた結果、絶縁材用樹脂
組成物中の特定の大きさの多分岐高分子を熱処理するこ
とにより揮散させ、絶縁材中に微細孔を生じさせること
により、優れた誘電率を発現することを見出し、本発明
を完成するに至った。Means for Solving the Problems The present inventors have made intensive studies in view of the above-mentioned conventional problems, and as a result, heat-treated a multi-branched polymer having a specific size in a resin composition for an insulating material. It has been found out that a high dielectric constant can be obtained by volatilization by the formation of fine pores in the insulating material, thereby completing the present invention.
【0006】すなわち、本発明は、 (1)1分子の大きさが0.1〜100nmである多分
岐高分子(A)と、樹脂のガラス転移温度が成分(A)
の熱分解温度より高い耐熱性樹脂またはその前駆体
(B)とを必須成分とする絶縁材用樹脂組成物、That is, the present invention provides: (1) a hyperbranched polymer (A) having a molecular size of 0.1 to 100 nm; and a resin having a glass transition temperature of component (A).
A resin composition for an insulating material comprising a heat-resistant resin or a precursor thereof (B) higher than the thermal decomposition temperature of
【0007】(2)1分子の大きさが0.1〜100n
mである多分岐高分子(A)がデンドリマーである第
(1)項記載の絶縁材用樹脂組成物、(2) The size of one molecule is 0.1 to 100 n
m, wherein the multibranched polymer (A) is a dendrimer;
【0008】(3)1分子の大きさが0.1〜100n
mである多分岐高分子(A)がハイパーブランチポリマ
ーである第(1)項記載の絶縁材用樹脂組成物、(3) The size of one molecule is 0.1 to 100 n
m, wherein the multibranched polymer (A) is a hyperbranched polymer;
【0009】(4)耐熱性樹脂またはその前駆体(B)
がポリイミド樹脂またはポリイミド前駆体である第
(1)項〜第(3)項のいずれか1項に記載の絶縁材用
樹脂組成物、(4) Heat-resistant resin or its precursor (B)
Is a polyimide resin or a polyimide precursor, the resin composition for an insulating material according to any one of the items (1) to (3),
【0010】(5)耐熱性樹脂またはその前駆体(B)
がポリベンゾオキサゾール樹脂またはポリベンゾオキサ
ゾール前駆体である第(1)項〜第(3)項のいずれか
1項に記載の絶縁材用樹脂組成物、(5) Heat-resistant resin or its precursor (B)
Is a polybenzoxazole resin or a polybenzoxazole precursor, the resin composition for an insulating material according to any one of the items (1) to (3),
【0011】(6)第(1)項〜第(5)項のいずれか
1項に記載の絶縁材用樹脂組成物を用いて、成分(A)
の熱分解温度より高い温度、且つ、成分(B)の耐熱性
樹脂もしくはその前駆体を閉環させた樹脂のガラス転移
温度以下で、熱処理する工程を有する方法で製造された
ことを特徴とする絶縁材、である。(6) Using the resin composition for an insulating material according to any one of (1) to (5), the component (A)
Characterized in that the insulation is produced by a method having a step of performing a heat treatment at a temperature higher than the thermal decomposition temperature of the resin and at a temperature equal to or lower than the glass transition temperature of the heat-resistant resin of component (B) or the resin obtained by ring-closing the precursor thereof. Material.
【0012】[0012]
【発明の実施の形態】本発明の絶縁材用樹脂組成物は、
1分子の大きさが0.1〜100nmである多分岐高分
子(A)と、樹脂のガラス転移温度が成分(A)の熱分
解温度よりも高い耐熱性樹脂、または加熱による反応も
しくは化学閉環反応により前記耐熱性樹脂を生成する耐
熱性樹脂前駆体(B)とを必須成分として成るものであ
る。BEST MODE FOR CARRYING OUT THE INVENTION The resin composition for insulating material of the present invention comprises:
A hyperbranched polymer (A) having a molecular size of 0.1 to 100 nm, a heat-resistant resin having a glass transition temperature higher than the thermal decomposition temperature of the component (A), or a reaction or chemical ring closure by heating And a heat-resistant resin precursor (B) that forms the heat-resistant resin by a reaction.
【0013】本発明の絶縁材用樹脂組成物は、基板等の
上に塗布して、加熱・製膜したり、ガラスクロス等に含
浸させて、加熱することにより絶縁材とすることができ
る。1分子の大きさが0.1〜100nmである多分岐
高分子(A)を、耐熱性樹脂またはその前駆体(B)
と、混合又は化学的に結合させることにより、組成物と
することができる。成分(A)は耐熱性樹脂またはその
前駆体(B)中に均一に分散され、相分離を生じること
により、耐熱性樹脂またはその前駆体を閉環させた樹脂
が有する本来の高いガラス転移温度を発現する。さら
に、加熱温度を、成分(A)が熱分解する温度より高い
温度、且つ、成分(B)の樹脂のガラス転移温度以下の
温度に上昇させることにより、成分(B)の樹脂のガラ
ス転移温度に到達する前に、成分(A)が熱分解して揮
散することにより、0.1〜100nmの微細な空隙を
形成する。形成された空隙は、それぞれ非連続であり、
これにより、低い誘電率の絶縁材を得ることが出来るも
のである。The resin composition for an insulating material of the present invention can be applied to a substrate or the like and heated and formed into a film, or impregnated in a glass cloth or the like and heated to form an insulating material. A hyperbranched polymer (A) having a size of one molecule of 0.1 to 100 nm is converted into a heat-resistant resin or its precursor (B).
Can be combined or chemically bonded to form a composition. The component (A) is uniformly dispersed in the heat-resistant resin or its precursor (B) and causes phase separation, thereby reducing the original high glass transition temperature of the heat-resistant resin or the resin obtained by ring-closing the precursor. Express. Further, by increasing the heating temperature to a temperature higher than the temperature at which the component (A) thermally decomposes and a temperature equal to or lower than the glass transition temperature of the resin of the component (B), the glass transition temperature of the resin of the component (B) is increased. Before reaching (1), the component (A) is thermally decomposed and volatilized to form fine voids of 0.1 to 100 nm. The voids formed are each discontinuous,
Thus, an insulating material having a low dielectric constant can be obtained.
【0014】本発明に用いる1分子の大きさが0.1〜
100nmである多分岐高分子(A)の例を挙げると、
第1世代ポリアミドアミンデンドリマー、第2世代ポリ
アミドアミンデンドリマー、第3世代ポリアミドアミン
デンドリマー、第4世代ポリアミドアミンデンドリマ
ー、第5世代ポリアミドアミンデンドリマー、第1世代
ポリトリメチレンイミンデンドリマー、第2世代ポリト
リメチレンイミンデンドリマー、第3世代ポリトリメチ
レンイミンデンドリマー、第4世代ポリトリメチレンイ
ミンデンドリマー、第5世代ポリトリメチレンイミンデ
ンドリマー、ポリアミド系デンドリマー、ポリアミン系
デンドリマー、ポリエーテル系デンドリマー、ポリエス
テル系デンドリマー、ポリフェニルアセチレン系デンド
リマー、ポリアミド系ハイパーブランチポリマー、ポリ
アミン系ハイパーブランチポリマー、ポリエーテル系ハ
イパーブランチポリマー、ポリエステル系ハイパーブラ
ンチポリマー、ポリフェニルアセチレン系ハイパーブラ
ンチポリマー等がある。また、これらデンドリマー、ハ
イパーブランチポリマーの末端基にはアミノ基、イミノ
基、エステル基、カルボキシル基、水酸基、シアノ基、
フェニル基等が存在したものを用いるがこれらに限られ
るものではない。これらのなかで、ポリアミドアミンデ
ンドリマー、ポリトリメチレンイミンデンドリマー、ア
ミン系ハイパーブランチポリマーが、特に好ましい。場
合によっては、デンドリマー、ハイパーブランチポリマ
ーの末端官能基に化学修飾を施し、表面改質を行うこと
も可能である。また、これらのうち一種のみを用いても
よく、2種以上を混合して用いてもよい。1分子の大き
さは、絶縁材の厚みにより選択され、少なくとも絶縁材
の厚みより小さいものでなければならない。より好まし
くは絶縁材の厚みの10分の1以下の大きさのものが好
ましい。The size of one molecule used in the present invention is from 0.1 to
As an example of the hyperbranched polymer (A) having a thickness of 100 nm,
1st generation polyamidoamine dendrimer, 2nd generation polyamidoamine dendrimer, 3rd generation polyamidoamine dendrimer, 4th generation polyamidoamine dendrimer, 5th generation polyamidoamine dendrimer, 1st generation polytrimethyleneimine dendrimer, 2nd generation polytrimethylene Imine dendrimer, 3rd generation polytrimethyleneimine dendrimer, 4th generation polytrimethyleneimine dendrimer, 5th generation polytrimethyleneimine dendrimer, polyamide dendrimer, polyamine dendrimer, polyether dendrimer, polyester dendrimer, polyphenylacetylene Dendrimer, polyamide hyperbranched polymer, polyamine hyperbranched polymer, polyether hyperbranched poly Chromatography, polyester hyperbranched polymer, there is a polyphenyl acetylene hyperbranched polymers. The terminal groups of these dendrimers and hyperbranched polymers include amino groups, imino groups, ester groups, carboxyl groups, hydroxyl groups, cyano groups,
Those having a phenyl group or the like are used, but are not limited thereto. Among these, polyamidoamine dendrimers, polytrimethyleneimine dendrimers, and amine-based hyperbranched polymers are particularly preferred. In some cases, it is also possible to perform surface modification by chemically modifying the terminal functional groups of the dendrimer and the hyperbranched polymer. Further, only one of these may be used, or two or more thereof may be used in combination. The size of one molecule is selected by the thickness of the insulating material, and must be at least smaller than the thickness of the insulating material. More preferably, the insulating material has a size of 1/10 or less of the thickness of the insulating material.
【0015】本発明に用いる耐熱性樹脂またはその前駆
体(B)の例を挙げると、ポリイミド、ポリアミド酸、
ポリアミド酸エステル、ポリイソイミド、ポリアミドイ
ミド、ポリアミド、ビスマレイミド、ポリベンゾオキサ
ゾール、ポリヒドロキシアミド、ポリベンゾチアゾール
等であるがこれらに限られるものではない。これらのな
かで、ポリイミド樹脂と、ポリアミド酸、ポリアミド酸
エステル及びポリイソイミドなどのポリイミド前駆体、
ポリベンゾオキサゾール樹脂と、ポリヒドロキシアミド
などのポリベンゾオキサゾール前駆体は、耐熱性が高く
好ましく、また、誘電率の2.5を下回る絶縁材を得る
上でもこれらの成分との組み合わせが好ましい。また、
これらを単独で用いても良いし、混合あるいは共重合さ
せてもよい。Examples of the heat-resistant resin or its precursor (B) used in the present invention include polyimide, polyamic acid,
Examples include, but are not limited to, polyamic acid esters, polyisoimides, polyamideimides, polyamides, bismaleimides, polybenzoxazoles, polyhydroxyamides, polybenzothiazoles, and the like. Among these, a polyimide resin, a polyamic acid, a polyimide precursor such as a polyamic acid ester and a polyisoimide,
A polybenzoxazole resin and a polybenzoxazole precursor such as polyhydroxyamide are preferable because of high heat resistance, and a combination with these components is also preferable for obtaining an insulating material having a dielectric constant of less than 2.5. Also,
These may be used alone, or may be mixed or copolymerized.
【0016】本発明の絶縁材用樹脂組成物の成分とし
て、上記以外に溶剤を用いることができるが、その場合
に好ましいものの例を挙げると、N,N-ジメチルアセトア
ミド、N-メチル-2-ピロリドン、テトラヒドロフラン、
プロピレングリコールモノメチルエーテル、プロピレン
グリコールモノメチルエーテルアセテート、ジエチレン
グリコールモノメチルエーテル、γ-ブチロラクトン、
1,1,2,2-テトラクロロエタン等であるが、これ
らに限定されるものではない。また、これらを2種以上
同時に用いても良い。さらに、塗布性や含浸性を向上さ
せるために、界面活性剤等の添加剤を使用しても良い。Solvents other than those described above can be used as components of the resin composition for insulating materials of the present invention. In such a case, preferred examples include N, N-dimethylacetamide and N-methyl-2- Pyrrolidone, tetrahydrofuran,
Propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, γ-butyrolactone,
1,1,2,2-tetrachloroethane and the like, but not limited thereto. Further, two or more of these may be used simultaneously. Further, an additive such as a surfactant may be used in order to improve applicability and impregnation.
【0017】本発明の絶縁材用樹脂組成物は、各成分
を、絶縁材の空隙率が1〜70体積%となるように配合
され、これらを均一に混合または化学的に結合させて得
られる。成分(A)と成分(B)との配合割合として
は、重量比(A)/(B)が、5/95から90/1
0、より好ましくは10/90から70/30である。
下限値より小さいと誘電率の低減効果がなく、上限値よ
り大きいと絶縁材の機械的強度が低下する。The resin composition for an insulating material of the present invention is obtained by blending the components so that the porosity of the insulating material is 1 to 70% by volume, and uniformly mixing or chemically bonding them. . The mixing ratio of the component (A) and the component (B) is such that the weight ratio (A) / (B) is 5/95 to 90/1.
0, more preferably 10/90 to 70/30.
If it is smaller than the lower limit, there is no effect of reducing the dielectric constant, and if it is larger than the upper limit, the mechanical strength of the insulating material is reduced.
【0018】本発明の絶縁材の製造方法の例としては、
本発明の絶縁材用樹脂組成物を用い、上記溶剤に溶解し
ワニスとした後、適当な支持体、例えば、ガラス、金
属、シリコーンウエハーやセラミック基盤などに塗布し
て塗膜を形成する。具体的な塗布の方法としては、スピ
ンナーを用いた回転塗布、スプレーコーターを用いた噴
霧塗布、浸漬、印刷、ロールコーティングなどが挙げら
れる。次に成分(B)として耐熱性樹脂の前駆体を用い
る場合には、成分(A)の熱分解温度より低く、且つ前
駆体の閉環反応温度より高い温度で熱処理し閉環させて
樹脂に変換し、樹脂を硬化させる。最後に成分(A)の
熱分解温度より高く、且つ成分(B)の耐熱性樹脂もし
くはその前駆体を閉環させた樹脂のガラス転移温度以下
で塗膜を熱処理し、成分(A)が熱分解して揮散するこ
とにより、微細な空隙を有した誘電率の低い絶縁材を形
成することができる。またこれらの熱処理は、揮散した
成分を排気できる加熱装置で行うことが好ましい。Examples of the method for producing an insulating material of the present invention include:
The resin composition for an insulating material of the present invention is dissolved in the above-mentioned solvent to form a varnish, and then applied to an appropriate support, for example, glass, metal, a silicon wafer or a ceramic substrate to form a coating film. Specific coating methods include spin coating using a spinner, spray coating using a spray coater, dipping, printing, roll coating, and the like. Next, when a precursor of a heat-resistant resin is used as the component (B), the precursor is heat-treated at a temperature lower than the thermal decomposition temperature of the component (A) and higher than the ring-closure reaction temperature of the precursor, and is converted into a resin. And cure the resin. Finally, the coating film is heat-treated at a temperature higher than the thermal decomposition temperature of the component (A) and lower than the glass transition temperature of the heat-resistant resin of the component (B) or the resin obtained by ring-closing the precursor thereof. By volatilization, an insulating material having fine voids and a low dielectric constant can be formed. These heat treatments are preferably performed with a heating device capable of exhausting the volatilized components.
【0019】[0019]
【実施例】以下に、実施例により、本発明を具体的に説
明するが、本発明は、実施例の内容になんら限定される
ものではない。EXAMPLES The present invention will be described in more detail with reference to the following Examples, which by no means limit the present invention.
【0020】「実施例1」 (1)ポリイミド樹脂の合成 攪拌装置、窒素導入管、原料投入口を備えたセパラブル
フラスコ中、2,2−ビス(4−(4,4’−アミノフ
ェノキシ)フェニル)ヘキサフルオロプロパン5.18
g(0.01mol)と2,2’−ビス(トリフルオロ
メチル)−4,4’−ジアミノビフェニル9.60g
(0.03mol)を、乾燥したN−メチル−2−ピロ
リドン(以下NMPと略す)200gに溶解する。乾燥
窒素下、10℃に溶液を冷却して、ビフェニルテトラカ
ルボン酸二無水物2.94g(0.01mol)とヘキ
サフルオロイソプロピリデン−2,2’−ビス(フタル
酸無水物)13.32g(0.03mol)を添加し
た。添加してから5時間後に室温まで戻し、室温で2時
間攪拌し、ポリイミド前駆体であるポリアミド酸の溶液
を得た。このポリアミド酸溶液に、ピリジン50gを加
えた後、無水酢酸5.1g(0.05mol)を滴下
し、系の温度を70℃に保って、7時間イミド化反応を
行った。この溶液を20倍量の水中に滴下して沈殿を回
収し、60℃で72時間真空乾燥して耐熱性樹脂である
ポリイミド樹脂の固形物を得た。ポリイミド樹脂の分子
量は数平均分子量26,000,重量平均分子量54,
000であった。Example 1 (1) Synthesis of polyimide resin 2,2-bis (4- (4,4'-aminophenoxy)) was placed in a separable flask equipped with a stirrer, a nitrogen inlet tube, and a raw material inlet. Phenyl) hexafluoropropane 5.18
g (0.01 mol) and 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl 9.60 g
(0.03 mol) is dissolved in 200 g of dried N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). The solution was cooled to 10 ° C. under dry nitrogen, and 2.94 g (0.01 mol) of biphenyltetracarboxylic dianhydride and 13.32 g of hexafluoroisopropylidene-2,2′-bis (phthalic anhydride) ( 0.03 mol) was added. Five hours after the addition, the temperature was returned to room temperature, and the mixture was stirred at room temperature for 2 hours to obtain a solution of polyamic acid as a polyimide precursor. After 50 g of pyridine was added to this polyamic acid solution, 5.1 g (0.05 mol) of acetic anhydride was added dropwise, and an imidization reaction was carried out for 7 hours while maintaining the temperature of the system at 70 ° C. This solution was dropped into a 20-fold amount of water to collect a precipitate, followed by vacuum drying at 60 ° C. for 72 hours to obtain a solid polyimide resin as a heat-resistant resin. The molecular weight of the polyimide resin is number average molecular weight 26,000, weight average molecular weight 54,
000.
【0021】(2)耐熱性樹脂のガラス転移温度の測定 上記により合成したポリイミド樹脂5.0gをNMP1
5.0gに溶解し、離型処理したガラス基板上に塗布し
た後、オーブン中120℃で4分間、300℃で60分
間保持して成膜し、基板から膜を剥がした後、さらに4
00℃で60分間加熱し、ポリイミド樹脂のフィルムと
した。このポリイミド樹脂のガラス転移温度を示差走査
熱量計により測定したところ、335℃であった。(2) Measurement of Glass Transition Temperature of Heat Resistant Resin 5.0 g of the polyimide resin synthesized above was added to NMP1.
After melt | dissolving in 5.0 g and apply | coating on the glass substrate which carried out the release processing, it hold | maintained at 120 degreeC for 4 minutes and 300 degreeC for 60 minutes in an oven, and formed a film.
Heating was performed at 00 ° C. for 60 minutes to obtain a polyimide resin film. The glass transition temperature of the polyimide resin measured by a differential scanning calorimeter was 335 ° C.
【0022】(3)1分子の大きさが0.1〜100n
mである多分岐高分子成分の熱分解温度の測定 1分子の直径が約7nmである第3世代ポリアミドアミ
ンデンドリマー(Aldrich社製Starburs
t(PAMAM−OH),Gen3)の熱分解温度を、
窒素雰囲気下で熱重量分析により測定したところ、30
0℃であった。(3) The size of one molecule is 0.1 to 100 n
Measurement of Thermal Decomposition Temperature of Multi-branched Polymer Component of m Third-generation polyamidoamine dendrimer having a diameter of about 7 nm per molecule (Starburs manufactured by Aldrich)
t (PAMAM-OH), Gen3)
When measured by thermogravimetry under a nitrogen atmosphere, 30
It was 0 ° C.
【0023】(4)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリイミド樹脂10.0gをNMP
50.0gに溶解した後、上記第3世代ポリアミドアミ
ンデンドリマー(Aldrich社製Starburs
t(PAMAM−OH ),Gen3)4.0gを加え
て攪拌し、均一に混合して、絶縁材用樹脂組成物を得
た。厚さ200nmのタンタルを成膜したシリコンウエ
ハ上に、この絶縁材用樹脂組成物をスピンコートした
後、窒素雰囲気のオーブン中で加熱硬化した。加熱硬化
の際は、120℃で4分間保持した後、300℃で60
分間保持した。このようにして、厚さ0.8μmの絶縁
材の被膜を得た。この絶縁材の皮膜上に、面積0.1c
m2のアルミの電極を蒸着により形成し、基板のタンタ
ルとの間のキャパシタンスをLCRメーターにより測定
した。膜厚、電極面積、キャパシタンスから絶縁材の誘
電率を算出したところ、2.4であった。さらにTEM
で絶縁材皮膜の断面を観察したところ、得られた空隙
は、平均孔径7nmで非連続であった。(4) Preparation of Resin Composition for Insulating Material and Production of Insulating Material 10.0 g of the polyimide resin synthesized as described above was NMP
After dissolution in 50.0 g, the third generation polyamidoamine dendrimer (Starburs manufactured by Aldrich) was used.
4.0 g of t (PAMAM-OH), Gen3) was added, stirred, and uniformly mixed to obtain a resin composition for an insulating material. This resin composition for an insulating material was spin-coated on a silicon wafer on which a 200-nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere. At the time of heat curing, after holding at 120 ° C. for 4 minutes,
Hold for minutes. Thus, a 0.8 μm thick insulating film was obtained. On this insulating material film, an area of 0.1 c
An m2 aluminum electrode was formed by vapor deposition, and the capacitance between the electrode and tantalum on the substrate was measured by an LCR meter. The dielectric constant of the insulating material calculated from the film thickness, the electrode area, and the capacitance was 2.4. Further TEM
Observation of the cross section of the insulating material film showed that the obtained voids were discontinuous with an average pore diameter of 7 nm.
【0024】「実施例2」 (1)ポリイミド前駆体の合成 実施例1のポリイミド樹脂の合成においてポリイミド前
駆体の合成に用いた2,2−ビス(4−(4,4’−ア
ミノフェノキシ)フェニル)ヘキサフルオロプロパン
5.18g(0.01mol)と2,2’−ビス(トリ
フルオロメチル)−4,4’−ジアミノビフェニル9.
60g(0.03mol)とを4,4’−ジアミノジフ
ェニルエーテル8.01g(0.04mol)に、ビフ
ェニルテトラカルボン酸二無水物2.94g(0.01
mol)とヘキサフルオロイソプロピリデン−2,2’
−ビス(フタル酸無水物)13.32g(0.03mo
l)とをピロメリット酸二無水物8.72g(0.04
mol)に代えた以外は、実施例1と同様にして、ポリ
イミド前駆体であるポリアミド酸の溶液を得た。この溶
液を20倍量の水中に滴下して沈殿を回収し、25℃で
72時間真空乾燥して耐熱性樹脂であるポリイミドの前
駆体であるポリアミド酸の固形物を得た。得られたポリ
アミド酸の数平均分子量は27,000,重量平均分子
量は55,000であった。Example 2 (1) Synthesis of Polyimide Precursor The 2,2-bis (4- (4,4'-aminophenoxy)) used in the synthesis of the polyimide precursor in the synthesis of the polyimide resin of Example 1 was used. 8.18 g (0.01 mol) of phenyl) hexafluoropropane and 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl
60 g (0.03 mol) and 4,01′-diaminodiphenyl ether (8.01 g, 0.04 mol) and biphenyltetracarboxylic dianhydride 2.94 g (0.01
mol) and hexafluoroisopropylidene-2,2 '
13.32 g of bis (phthalic anhydride) (0.03 mol
l) and 8.72 g (0.04 g) of pyromellitic dianhydride
mol), a solution of a polyamic acid as a polyimide precursor was obtained in the same manner as in Example 1. This solution was dropped into 20 times the volume of water to collect a precipitate, which was then vacuum-dried at 25 ° C. for 72 hours to obtain a solid of polyamic acid, which is a precursor of polyimide as a heat-resistant resin. The number average molecular weight of the obtained polyamic acid was 27,000, and the weight average molecular weight was 55,000.
【0025】(2)耐熱性樹脂のガラス転移温度の測定 上記により合成したポリアミド酸5.0gをNMP2
0.0gに溶解し、離型処理したガラス基板上に塗布し
た後、オーブン中120℃で4分間、300℃で60分
間保持して成膜し、基板から膜を剥がした後、さらに4
00℃で60分間加熱し、耐熱性樹脂であるポリイミド
樹脂のフィルムとした。このポリイミド樹脂のガラス転
移温度を示差走査熱量計により測定したところ、419
℃であった。(2) Measurement of Glass Transition Temperature of Heat-Resistant Resin 5.0 g of the polyamic acid synthesized above was added to NMP2
After dissolving it in 0.0 g and applying it on a release-treated glass substrate, a film was formed by holding it in an oven at 120 ° C. for 4 minutes and at 300 ° C. for 60 minutes.
Heating was performed at 00 ° C. for 60 minutes to obtain a polyimide resin film which is a heat-resistant resin. When the glass transition temperature of this polyimide resin was measured by a differential scanning calorimeter, it was 419.
° C.
【0026】(3)1分子の大きさが0.1〜100n
mである多分岐高分子成分の熱分解温度の測定 1分子の直径が約9nmである第4世代ポリアミドアミ
ンデンドリマー(Aldrich社製Starburs
t(PAMAM−OH),Gen4)の熱分解温度を、
窒素雰囲気下で熱重量分析により測定したところ、33
0℃であった。(3) The size of one molecule is 0.1 to 100 n
Measurement of the Thermal Decomposition Temperature of the Hyperbranched Polymer Component of m 4th Generation Polyamidoamine Dendrimer (Aldrich Starburs) with a diameter of about 9 nm per molecule
t (PAMAM-OH), Gen4)
When measured by thermogravimetry under a nitrogen atmosphere, 33
It was 0 ° C.
【0027】(4)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリアミド酸10.0gをNMP5
0.0gに溶解した後、上記第4世代ポリアミドアミン
デンドリマー(Aldrich社製Starburst
(PAMAM−OH),Gen4)4.0gを加えて攪
拌し、均一に混合して、絶縁材用樹脂組成物を得た。厚
さ200nmのタンタルを成膜したシリコンウエハ上
に、この絶縁材用樹脂組成物をスピンコートした後、窒
素雰囲気のオーブン中で加熱硬化した。加熱硬化の際
は、120℃で4分間、300℃で60分間保持した
後、400℃で60分間保持した。このようにして、厚
さ0.9μmの絶縁材の被膜を得た。以下実施例1と同
様にして、この耐熱性樹脂の誘電率を測定したところ
2.3であった。さらにTEMで絶縁材皮膜の断面を観
察したところ、得られた空隙は、平均孔径9nmで非連
続であった。(4) Preparation of Resin Composition for Insulating Material and Production of Insulating Material 10.0 g of the polyamic acid synthesized as described above was added to NMP5
After dissolving in 0.0 g, the fourth-generation polyamidoamine dendrimer (Starburst manufactured by Aldrich) was used.
(PAMAM-OH), Gen4) (4.0 g) was added, stirred, and uniformly mixed to obtain a resin composition for an insulating material. This resin composition for an insulating material was spin-coated on a silicon wafer on which a 200-nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere. In the case of heat curing, the film was held at 120 ° C. for 4 minutes, at 300 ° C. for 60 minutes, and then at 400 ° C. for 60 minutes. Thus, a 0.9 μm-thick insulating material film was obtained. Thereafter, the dielectric constant of this heat-resistant resin was measured in the same manner as in Example 1, and was 2.3. Further, when the cross section of the insulating material film was observed with a TEM, the obtained voids were discontinuous with an average pore diameter of 9 nm.
【0028】「実施例3」 (1)ポリベンゾオキサゾール樹脂の合成 4,4’−ヘキサフルオロイソプロピリデンジフェニル
−1,1’−ジカルボン酸25g、塩化チオニル45m
l及び乾燥ジメチルホルムアミド0.5mlを反応容器
に入れ、60℃で2時間反応させた。反応終了後、過剰
の塩化チオニルを加熱及び減圧により留去した。残査
を、ヘキサンを用いて再結晶を行い、4,4’−ヘキサ
フルオロイソプロピリデンジフェニル−1,1’−ジカ
ルボン酸クロリドを得た。攪拌装置、窒素導入管、滴下
漏斗を付けたセパラブルフラスコ中、2,2−ビス(3
ーアミノ−4−ヒドロキシフェニル)ヘキサフルオロプ
ロパン7.32g(0.02mol)を、乾燥したジメ
チルアセトアミド100gに溶解し、ピリジン3.96
g(0.05mol)を添加後、乾燥窒素導入下、−1
5℃でジメチルアセトアミド50gに、上記により合成
した4,4’−ヘキサフルオロイソプロピリデンジフェ
ニル−1,1’−ジカルボン酸クロリド8.58g
(0.02mol)を溶解したものを30分間掛けて滴
下した。滴下終了後、室温まで戻し、室温で5時間攪拌
した。その後、反応液を水1000ml中に滴下し、沈
殿物を集め、40℃で48時間真空乾燥することにより
ポリベンゾオキサゾール前駆体であるポリヒドロキシア
ミドの固形物を得た。このポリヒドロキシアミドをNM
P200gに溶解した溶液にピリジン50gを加えた
後、無水酢酸3.1g(0.03mol)を滴下し、系
の温度を70℃に保って、7時間オキサゾール化反応を
行った。この溶液を20倍量の水中に滴下して沈殿を回
収し、60℃で72時間真空乾燥して、耐熱性樹脂であ
るポリベンゾオキサゾール樹脂の固形物を得た。得られ
たポリベンゾオキサゾール樹脂の数平均分子量は20,
000、重量平均分子量は40,000であった。Example 3 (1) Synthesis of polybenzoxazole resin 25 g of 4,4'-hexafluoroisopropylidenediphenyl-1,1'-dicarboxylic acid, 45 m of thionyl chloride
l and 0.5 ml of dry dimethylformamide were placed in a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The residue was recrystallized using hexane to obtain 4,4′-hexafluoroisopropylidenediphenyl-1,1′-dicarboxylic acid chloride. In a separable flask equipped with a stirrer, a nitrogen inlet tube and a dropping funnel, 2,2-bis (3
-Amino-4-hydroxyphenyl) hexafluoropropane (7.32 g, 0.02 mol) was dissolved in dry dimethylacetamide (100 g), and pyridine (3.96 g) was dissolved.
g (0.05 mol), and then dry nitrogen was introduced.
8.55 g of 4,4'-hexafluoroisopropylidenediphenyl-1,1'-dicarboxylic acid chloride synthesized above was added to 50 g of dimethylacetamide at 5 ° C.
(0.02 mol) was added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was returned to room temperature and stirred at room temperature for 5 hours. Thereafter, the reaction solution was dropped into 1000 ml of water, and the precipitate was collected and vacuum-dried at 40 ° C. for 48 hours to obtain a solid substance of polyhydroxyamide, a polybenzoxazole precursor. This polyhydroxyamide is NM
After adding 50 g of pyridine to a solution dissolved in 200 g of P, 3.1 g (0.03 mol) of acetic anhydride was added dropwise, and the oxazole-forming reaction was carried out for 7 hours while maintaining the temperature of the system at 70 ° C. This solution was dropped into a 20-fold amount of water to collect a precipitate, followed by vacuum drying at 60 ° C. for 72 hours to obtain a solid substance of a polybenzoxazole resin as a heat-resistant resin. The number average molecular weight of the obtained polybenzoxazole resin is 20,
000 and the weight average molecular weight was 40,000.
【0029】(2)耐熱性樹脂のガラス転移温度の測定 上記により合成したポリベンゾオキサゾール樹脂5.0
gをNMP8.0gとテトラヒドロフラン12.0gの
混合溶媒に溶解し、離型処理したガラス基板上に塗布し
た後、オーブン中120℃で4分間、300℃で60分
間保持して成膜し、基板から膜を剥がした後、さらに4
00℃で60分間加熱し、耐熱性樹脂であるポリベンゾ
オキサゾール樹脂のフィルムとした。このポリベンゾオ
キサゾール樹脂のガラス転移温度を示差走査熱量計によ
り測定したところ、360℃であった。(2) Measurement of glass transition temperature of heat-resistant resin Polybenzoxazole resin 5.0 synthesized as described above
g was dissolved in a mixed solvent of 8.0 g of NMP and 12.0 g of tetrahydrofuran, and applied on a release-treated glass substrate, and then held in an oven at 120 ° C. for 4 minutes and at 300 ° C. for 60 minutes to form a film. After removing the film from
Heating was performed at 00 ° C. for 60 minutes to obtain a film of a polybenzoxazole resin which is a heat-resistant resin. The glass transition temperature of this polybenzoxazole resin measured by a differential scanning calorimeter was 360 ° C.
【0030】(3)1分子の大きさが0.1〜100n
mである多分岐高分子成分の熱分解温度の測定 1分子の直径が約2nmである第4世代ポリトリメチレ
ンイミンデンドリマー(Aldrich社製DAB(A
M)32,Gen4.0)の熱分解温度を、窒素雰囲気
下で熱重量分析により測定したところ、340℃であっ
た。(3) The size of one molecule is 0.1 to 100 n
Measurement of the Thermal Decomposition Temperature of the Multibranched Polymer Component of m The fourth generation polytrimethylene imine dendrimer (Aldrich DAB (A
M) 32, Gen4.0) was 340 ° C. as measured by thermogravimetric analysis under a nitrogen atmosphere.
【0031】(4)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリベンゾオキサゾール樹脂5.0
gをNMP8.0gとテトラヒドロフラン12.0gの
混合溶媒に溶解した後、上記第4世代ポリトリメチレン
イミンデンドリマー(Aldrich社製DAB(A
M)32,Gen4.0)2.0gを加えて攪拌し、均
一に混合して、絶縁材用樹脂組成物を得た。厚さ200
nmのタンタルを成膜したシリコンウエハ上に、この絶
縁材用樹脂組成物をスピンコートした後、窒素雰囲気の
オーブン中で加熱硬化した。加熱硬化の際は、120℃
で4分間保持した後、350℃で60分間保持した。こ
のようにして、厚さ0.7μmの絶縁材の被膜を得た。
以下実施例1と同様にして、この耐熱性樹脂の誘電率を
測定したところ2.2であった。さらにTEMで絶縁材
皮膜の断面を観察したところ、得られた空隙は、平均孔
径2nmで非連続であった。(4) Preparation of Resin Composition for Insulating Material and Production of Insulating Material Polybenzoxazole resin 5.0 synthesized as described above.
g was dissolved in a mixed solvent of 8.0 g of NMP and 12.0 g of tetrahydrofuran, and then the fourth-generation polytrimethyleneimine dendrimer (DAB (A
2.0 g of M) 32, Gen4.0) was added, stirred, and uniformly mixed to obtain a resin composition for insulating materials. Thickness 200
This resin composition for an insulating material was spin-coated on a silicon wafer on which a tantalum film having a thickness of nm was formed, and then cured by heating in an oven in a nitrogen atmosphere. 120 ° C for heat curing
And then kept at 350 ° C. for 60 minutes. Thus, a coating of an insulating material having a thickness of 0.7 μm was obtained.
Thereafter, the dielectric constant of this heat-resistant resin was measured in the same manner as in Example 1, and was found to be 2.2. Further, when the cross section of the insulating material film was observed by TEM, the obtained voids were discontinuous with an average pore diameter of 2 nm.
【0032】「実施例4」 (1)ポリヒドロキシアミドの合成 2,2’−ビス(トリフルオロメチル)ビフェニル−
4,4’−ジカルボン酸22g、塩化チオニル45ml
及び乾燥ジメチルホルムアミド0.5mlを反応容器に
入れ、60℃で2時間反応させた。反応終 了後、過剰
の塩化チオニルを加熱及び減圧により留去した。残査を
ヘキサンを用いて再結晶を行い、2,2’−ビス(トリ
フルオロメチル)ビフェニル−4,4’−ジカルボン酸
クロリドを得た。攪拌装置、窒素導入管、滴下漏斗を付
けたセパラブルフラスコ中、2,2−ビス(3ーアミノ
−4−ヒドロキシフェニル)ヘキサフルオロプロパン
7.32g(0.02mol)を、乾燥したジメチルア
セトアミド100gに溶解し、ピリジン3.96g
(0.05mol)を添加後、乾燥窒素導入下、−15
℃でジメチルアセトアミド50gに、上記により合成し
た2,2’−ビス(トリフルオロメチル)ビフェニル−
4,4’−ジカルボン酸クロリド8.30g(0.02
mol)を溶解したものを、30分間掛けて滴下した。
滴下終了後、室温まで戻し、室温で5時間攪拌した。そ
の後、反応液を水1000ml中に滴下し、沈殿物を集
め、40℃で48時間真空乾燥することにより、耐熱性
樹脂であるポリベンゾオキサゾール前駆体であるポリヒ
ドロキシアミドの固形物を得た。得られたポリヒドロキ
シアミドの数平均分子量は、20,000、重量平均分
子量は、40,000であった。Example 4 (1) Synthesis of polyhydroxyamide 2,2'-bis (trifluoromethyl) biphenyl-
4,4'-dicarboxylic acid 22g, thionyl chloride 45ml
And 0.5 ml of dry dimethylformamide was put into a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The residue was recrystallized using hexane to obtain 2,2′-bis (trifluoromethyl) biphenyl-4,4′-dicarboxylic acid chloride. In a separable flask equipped with a stirrer, a nitrogen inlet tube and a dropping funnel, 7.32 g (0.02 mol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was added to 100 g of dried dimethylacetamide. Dissolved and 3.96 g of pyridine
(0.05 mol), and then -15 under dry nitrogen introduction.
At 50 ° C., 50 g of dimethylacetamide was added to 2,2′-bis (trifluoromethyl) biphenyl-
8.30 g of 4,4'-dicarboxylic acid chloride (0.02
mol) was dropped over 30 minutes.
After completion of the dropwise addition, the mixture was returned to room temperature and stirred at room temperature for 5 hours. Thereafter, the reaction solution was dropped into 1,000 ml of water, and the precipitate was collected and vacuum-dried at 40 ° C. for 48 hours to obtain a solid substance of polyhydroxyamide, which is a polybenzoxazole precursor which is a heat-resistant resin. The number average molecular weight of the obtained polyhydroxyamide was 20,000, and the weight average molecular weight was 40,000.
【0033】(2)耐熱性樹脂のガラス転移温度の測定 上記により合成したポリヒドロキシアミド5.0gをN
MP20.0gに溶解し、離型処理したガラス基板上に
塗布した後、オーブン中120℃で4分間、300℃で
60分間保持して成膜し、基板から膜を剥がした後、さ
らに400℃で60分間加熱し、耐熱性樹脂であるポリ
ベンゾオキサゾールのフィルムとした。このポリベンゾ
オキサゾールのガラス転移温度を示差走査熱量計により
測定したところ、410℃であった。(2) Measurement of Glass Transition Temperature of Heat-Resistant Resin
After dissolving in 20.0 g of MP and applying it on a glass substrate subjected to a mold release treatment, the film was formed by holding it in an oven at 120 ° C. for 4 minutes and at 300 ° C. for 60 minutes. For 60 minutes to obtain a film of polybenzoxazole, which is a heat-resistant resin. The glass transition temperature of this polybenzoxazole was measured by a differential scanning calorimeter, and was 410 ° C.
【0034】(3)1分子の大きさが0.1〜100n
mである多分岐高分子成分の熱分解温度の測定 1分子の直径が約3nmである第5世代ポリトリメチレ
ンイミンデンドリマー(Aldrich社製DAB(A
M)64,Gen5.0)の熱分解温度を、窒素雰囲気
下で熱重量分析により測定したところ、370℃であっ
た。(3) The size of one molecule is 0.1 to 100 n
Measurement of the Thermal Decomposition Temperature of the Hyperbranched Polymer Component of m The fifth generation polytrimethylene imine dendrimer (Aldrich DAB (A
M) 64, Gen5.0) was found to have a thermal decomposition temperature of 370 ° C. by thermogravimetric analysis under a nitrogen atmosphere.
【0035】(4)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリヒドロキシアミド10.0gを
NMP50.0gに溶解した後、上記第5世代ポリトリ
メチレンイミンデンドリマー(Aldrich社製DA
B(AM)64,Gen5.0)2.0gを加えて攪拌
し、均一に混合して、絶縁材用樹脂組成物を得た。厚さ
200nmのタンタルを成膜したシリコンウエハ上に、
この絶縁材用樹脂組成物をスピンコートした後、窒素雰
囲気のオーブン中で加熱硬化した。加熱硬化の際は、1
20℃で4分間、300℃で60分間保持した後、40
0℃で60分間保持した。このようにして、厚さ0.8
μmの絶縁材の被膜を得た。以下実施例1と同様にし
て、この耐熱性樹脂絶縁材の誘電率を測定したところ
2.1であった。さらにTEMで絶縁材皮膜の断面を観
察したところ、得られた空隙は、平均孔径3nmで非連
続であった。(4) Preparation of Resin Composition for Insulating Material and Production of Insulating Material After dissolving 10.0 g of the polyhydroxyamide synthesized as above in 50.0 g of NMP, the fifth-generation polytrimethyleneimine dendrimer (Aldrich) DA
B (AM) 64, Gen5.0) (2.0 g) was added, stirred, and uniformly mixed to obtain a resin composition for an insulating material. On a silicon wafer with a 200 nm thick tantalum film,
After spin-coating this resin composition for an insulating material, it was heated and cured in an oven in a nitrogen atmosphere. In the case of heat curing, 1
After holding at 20 ° C. for 4 minutes and at 300 ° C. for 60 minutes, 40
Hold at 0 ° C. for 60 minutes. Thus, a thickness of 0.8
A μm coating of insulating material was obtained. Thereafter, the dielectric constant of this heat-resistant resin insulating material was measured in the same manner as in Example 1, and it was 2.1. Further, when the cross section of the insulating material film was observed with a TEM, the obtained voids were discontinuous with an average pore diameter of 3 nm.
【0036】「比較例1」実施例1の絶縁材用樹脂組成
物の調整において、用いた第3世代ポリアミドアミンデ
ンドリマー(Aldrich社製Starburst
(PAMAM),Gen4)4.0gを添加しない以外
は、全て実施例1と同様にして、絶縁材用樹脂組成物の
調整と絶縁材の製造を行った。得られた耐熱性樹脂絶縁
材の誘電率は3.0であり、TEMによる絶縁材皮膜の
断面観察で、空隙は観察されなかった。Comparative Example 1 In the preparation of the insulating resin composition of Example 1, the third generation polyamidoamine dendrimer (Starburst manufactured by Aldrich) was used.
(PAMAM), Gen4) Except not adding 4.0 g, adjustment of the resin composition for insulating materials and production of insulating materials were performed in the same manner as in Example 1. The dielectric constant of the obtained heat-resistant resin insulating material was 3.0, and no void was observed in the cross-section of the insulating film by TEM.
【0037】「比較例2」実施例2の絶縁材用樹脂組成
物の調整において用いた、第4世代ポリアミドアミンデ
ンドリマー(Aldrich社製Starburst
(PAMAM−OH),Gen4)2.0gの変わりに
分子量20000のポリスチレン2.0gを添加した以
外は、全て実施例2と同様にして、絶縁材用樹脂組成物
の調整と絶縁材の製造を行った。これは大きく相分離し
て、均一な膜とならなかった。Comparative Example 2 A fourth-generation polyamidoamine dendrimer (Starburst manufactured by Aldrich) used in the preparation of the resin composition for insulating material of Example 2.
(PAMAM-OH), Gen4) Preparation of insulating resin composition and production of insulating material were performed in the same manner as in Example 2 except that 2.0 g of polystyrene having a molecular weight of 20,000 was added instead of 2.0 g. went. This largely separated the phase and did not result in a uniform film.
【0038】「比較例3」実施例3の絶縁材用樹脂組成
物の調整において、用いた第4世代ポリトリメチレンイ
ミンデンドリマー(Aldrich社製DAB(AM)
32,Gen4.0)2.0gの変わりに分子量100
00のポリエチレンイミン2.0gを添加した以外は、
全て実施例3と同様にして、絶縁材用樹脂組成物の調整
と絶縁材の製造を行った。得られた耐熱性樹脂の誘電率
は2.7であり、 TEMによる絶縁材皮膜の断面観察
で、空隙は観察されなかった。Comparative Example 3 In the preparation of the resin composition for insulating material of Example 3, the fourth-generation polytrimethyleneimine dendrimer (DAB (AM) manufactured by Aldrich) was used.
32, Gen 4.0) molecular weight 100 instead of 2.0 g
Except that 2.0 g of polyethyleneimine was added.
Preparation of an insulating resin composition and production of an insulating material were performed in the same manner as in Example 3. The dielectric constant of the obtained heat-resistant resin was 2.7, and no void was observed in the cross-section of the insulating film by TEM.
【0039】「比較例4」実施例4の絶縁材用樹脂組成
物の調整において、用いた第5世代ポリトリメチレンイ
ミンデンドリマー(Aldrich社製DAB(AM)
64,Gen5.0)2.0gの変わりに分子量100
00のポリメチルメタクリレート2.0gを添加した以
外は、全て実施例4と同様にして、絶縁材用樹脂組成物
の調整と絶縁材の製造を行った。得られた耐熱性樹脂の
誘電率は2.7であり、 TEMによる絶縁材皮膜の断
面観察で、空隙は観察されなかった。Comparative Example 4 In preparing the insulating resin composition of Example 4, the fifth-generation polytrimethyleneimine dendrimer (DAB (AM) manufactured by Aldrich) was used.
64, Gen 5.0) 2.0 g instead of 100
Preparation of an insulating resin composition and production of an insulating material were performed in the same manner as in Example 4 except that 2.0 g of polymethyl methacrylate of No. 00 was added. The dielectric constant of the obtained heat-resistant resin was 2.7, and no void was observed in the cross-section of the insulating film by TEM.
【0040】実施例1〜4においては、誘電率が2.1
〜2.4と非常に低い耐熱性樹脂を得ることが出来た。In Examples 1 to 4, the dielectric constant was 2.1.
A very low heat-resistant resin of ~ 2.4 was obtained.
【0041】比較例1では、1分子の大きさが0.1〜
100nmである多分岐高分子成分(A)を、組成物成
分中に有していないために、誘電率を低減できなかっ
た。In Comparative Example 1, the size of one molecule is 0.1 to
Since the multi-branched polymer component (A) having a thickness of 100 nm was not contained in the composition component, the dielectric constant could not be reduced.
【0042】比較例2では、添加したポリスチレンが多
分岐高分子ではないために、誘電率を低減できなかっ
た。In Comparative Example 2, since the added polystyrene was not a hyperbranched polymer, the dielectric constant could not be reduced.
【0043】比較例3では、添加したポリエチレンイミ
ンが多分岐高分子ではないために、誘電率を低減できな
かった。In Comparative Example 3, the dielectric constant could not be reduced because the added polyethyleneimine was not a hyperbranched polymer.
【0044】比較例4では、添加したポリメチルメタク
リレートが多分岐高分子ではないために、誘電率を低減
できなかった。In Comparative Example 4, the dielectric constant could not be reduced because the added polymethyl methacrylate was not a hyperbranched polymer.
【発明の効果】本発明の絶縁材用樹脂組成物及びこれを
用いた絶縁材は、電気特性および耐熱性に優れたもので
あり、これらの特性が要求される様々な分野、例えば、
半導体用の層間絶縁膜、多層回路の層間絶縁膜などとし
て有用な合成樹脂である。Industrial Applicability The resin composition for insulating material of the present invention and the insulating material using the same are excellent in electrical properties and heat resistance, and are used in various fields where these properties are required, for example,
Synthetic resin useful as an interlayer insulating film for semiconductors, an interlayer insulating film for multilayer circuits, and the like.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 79/04 C08L 79/04 101/00 101/00 Fターム(参考) 4F073 AA23 BA29 BA31 BA34 GA01 HA04 4J002 AA03W BC01W BG02W BH02X BJ00W BM00W CF00W CH05W CL00X CL09W CM01W CM03X CM04W CM04X CN06X FD310 GH00 GQ01 HA05 5G305 AA06 AA07 AA11 AB01 AB24 BA09 CA21 CA32 DA22 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) C08L 79/04 C08L 79/04 101/00 101/00 F term (reference) 4F073 AA23 BA29 BA31 BA34 GA01 HA04 4J002 AA03W BC01W BG02W BH02X BJ00W BM00W CF00W CH05W CL00X CL09W CM01W CM03X CM04W CM04X CN06X FD310 GH00 GQ01 HA05 5G305 AA06 AA07 AA11 AB01 AB24 BA09 CA21 CA32 DA22
Claims (6)
ある多分岐高分子(A)と、樹脂のガラス転移温度が前
記成分(A)の熱分解温度より高い耐熱性樹脂またはそ
の前駆体(B)とを必須成分とする絶縁材用樹脂組成
物。1. A hyperbranched polymer (A) having a molecular size of 0.1 to 100 nm, a heat-resistant resin having a glass transition temperature higher than the thermal decomposition temperature of the component (A) or a precursor thereof. A resin composition for an insulating material, comprising a body (B) as an essential component.
ある多分岐高分子(A)がデンドリマーである請求項1
記載の絶縁材用樹脂組成物。2. The hyperbranched polymer (A) having a size of one molecule of 0.1 to 100 nm is a dendrimer.
The resin composition for an insulating material as described in the above.
ある多分岐高分子(A)がハイパーブランチポリマーで
ある請求項1記載の絶縁材用樹脂組成物。3. The resin composition for an insulating material according to claim 1, wherein the hyperbranched polymer (A) having a size of one molecule of 0.1 to 100 nm is a hyperbranched polymer.
リイミド樹脂またはポリイミド前駆体である請求項1〜
3のいずれか1項に記載の絶縁材用樹脂組成物。4. The heat-resistant resin or its precursor (B) is a polyimide resin or a polyimide precursor.
4. The resin composition for an insulating material according to any one of 3.
リベンゾオキサゾール樹脂またはポリベンゾオキサゾー
ル前駆体である請求項1〜3のいずれか1項に記載の絶
縁材用樹脂組成物。5. The resin composition for an insulating material according to claim 1, wherein the heat-resistant resin or its precursor (B) is a polybenzoxazole resin or a polybenzoxazole precursor.
縁材用樹脂組成物を用いて、成分(A)の熱分解温度よ
り高い温度、且つ、成分(B)の耐熱性樹脂もしくはそ
の前駆体を閉環させた樹脂のガラス転移温度以下で、熱
処理する工程を有する方法で製造されたことを特徴とす
る絶縁材。6. A heat-resistant resin having a temperature higher than the thermal decomposition temperature of the component (A) and the component (B), using the resin composition for an insulating material according to any one of claims 1 to 5. Alternatively, an insulating material manufactured by a method having a step of performing a heat treatment at a temperature equal to or lower than a glass transition temperature of a resin obtained by ring-closing a precursor thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000095607A JP2001283638A (en) | 2000-03-30 | 2000-03-30 | Resin composition for insulating material and insulating material using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000095607A JP2001283638A (en) | 2000-03-30 | 2000-03-30 | Resin composition for insulating material and insulating material using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001283638A true JP2001283638A (en) | 2001-10-12 |
Family
ID=18610494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000095607A Pending JP2001283638A (en) | 2000-03-30 | 2000-03-30 | Resin composition for insulating material and insulating material using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001283638A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002024788A1 (en) * | 2000-09-22 | 2002-03-28 | Sumitomo Bakelite Company, Ltd. | Material for insulating film, coating varnish for insulating film, and insulating film and semiconductor device using the same |
CN110892003A (en) * | 2017-05-10 | 2020-03-17 | 杜邦电子公司 | Low-color polymers for flexible substrates in electronic devices |
-
2000
- 2000-03-30 JP JP2000095607A patent/JP2001283638A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002024788A1 (en) * | 2000-09-22 | 2002-03-28 | Sumitomo Bakelite Company, Ltd. | Material for insulating film, coating varnish for insulating film, and insulating film and semiconductor device using the same |
US7049371B2 (en) | 2000-09-22 | 2006-05-23 | Sumitomo Bakelite Company, Ltd. | Material for an insulating film, coating varnish for an insulating film, and insulating film and semiconductor device using the same |
KR100787265B1 (en) * | 2000-09-22 | 2007-12-21 | 스미토모 베이클리트 컴퍼니 리미티드 | Insulation materials, coating varnishes for insulating films and insulating films and semiconductor devices using them |
CN110892003A (en) * | 2017-05-10 | 2020-03-17 | 杜邦电子公司 | Low-color polymers for flexible substrates in electronic devices |
CN110892003B (en) * | 2017-05-10 | 2023-02-28 | 杜邦电子公司 | Low-color polymers for flexible substrates in electronic devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4896309B2 (en) | Method for producing porous polyimide resin | |
JP5928705B2 (en) | Method for producing polyimide precursor solution, polyimide precursor solution using the same, and porous polyimide | |
JP2001098160A (en) | Resin composition for insulating material and insulating material using the same | |
JP2002003724A (en) | Insulating material and method of manufacturing the same | |
JP2987820B2 (en) | Polyimide multilayer film and method of manufacturing the same | |
US6410677B1 (en) | Resin composition for insulating material, and insulating material produced from said resin composition | |
JP2001189109A (en) | Resin composition for insulator, and insulator using the same | |
JP2001283638A (en) | Resin composition for insulating material and insulating material using the same | |
US6680363B2 (en) | Process for producing polyimide | |
JPH09227697A (en) | Preparation of heat-resistant polyimide film through gel | |
JP2001291712A (en) | Organic insulating film material, organic insulating film, and its manufacturing method | |
JP4590690B2 (en) | Resin composition for insulating material and insulating material using the same | |
JP4483008B2 (en) | Resin composition for insulating material and insulating material using the same | |
JP2002220564A (en) | Coating varnish for insulation film and insulation film by using the same | |
JP2001011181A (en) | Resin composition for electrical insulation material and electrical insulation material using the same | |
US20020198277A1 (en) | Composition and process for the production of a porous layer using the composition | |
JP3714848B2 (en) | Organic insulating film material, organic insulating film and manufacturing method thereof | |
JP2005179480A (en) | Resin composition for insulating material and insulating material using the same | |
JP2001226599A (en) | Resin composition for forming multi-layered wiring with void and multi-layered wiring with void using the same | |
JP2001217234A (en) | Insulation material and its manufacturing method | |
JP2001332544A (en) | Method of manufacturing insulating material | |
JP4128380B2 (en) | Insulating film material, insulating film coating varnish, insulating film, and semiconductor device using the same | |
JP3724785B2 (en) | Resin composition for insulating film and insulating film using the same | |
JP2001011180A (en) | Resin composition for electrical insulation material and electrical insulation material using the same | |
JP2002245855A (en) | Resin component for insulation material, and insulation material using the same |