JP2001269544A - Membrane separation device and method for separating highly concentrated solution - Google Patents
Membrane separation device and method for separating highly concentrated solutionInfo
- Publication number
- JP2001269544A JP2001269544A JP2001068121A JP2001068121A JP2001269544A JP 2001269544 A JP2001269544 A JP 2001269544A JP 2001068121 A JP2001068121 A JP 2001068121A JP 2001068121 A JP2001068121 A JP 2001068121A JP 2001269544 A JP2001269544 A JP 2001269544A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- module unit
- membrane module
- reverse osmosis
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 293
- 238000000926 separation method Methods 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims description 44
- 238000001223 reverse osmosis Methods 0.000 claims abstract description 116
- 239000013535 sea water Substances 0.000 claims abstract description 61
- 239000000243 solution Substances 0.000 claims abstract description 41
- 230000004907 flux Effects 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 133
- 150000003839 salts Chemical class 0.000 claims description 32
- 239000002455 scale inhibitor Substances 0.000 claims description 14
- 239000008400 supply water Substances 0.000 claims description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- 239000011780 sodium chloride Substances 0.000 claims description 8
- 238000000108 ultra-filtration Methods 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 5
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 4
- 239000012266 salt solution Substances 0.000 claims description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 2
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 2
- 238000011084 recovery Methods 0.000 abstract description 50
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 18
- 229910052796 boron Inorganic materials 0.000 abstract description 17
- 239000013505 freshwater Substances 0.000 abstract description 16
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 239000012267 brine Substances 0.000 abstract 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 abstract 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000011033 desalting Methods 0.000 abstract 1
- 238000010612 desalination reaction Methods 0.000 description 22
- 239000012510 hollow fiber Substances 0.000 description 19
- 150000002500 ions Chemical class 0.000 description 18
- 239000000126 substance Substances 0.000 description 17
- 239000007788 liquid Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 239000012466 permeate Substances 0.000 description 11
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 9
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 9
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 9
- 239000002131 composite material Substances 0.000 description 8
- 230000003204 osmotic effect Effects 0.000 description 8
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 7
- 239000004327 boric acid Substances 0.000 description 7
- -1 heavy metal ions Chemical class 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 6
- 239000012527 feed solution Substances 0.000 description 6
- 239000002346 layers by function Substances 0.000 description 6
- 229920002647 polyamide Polymers 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000009287 sand filtration Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 229920000388 Polyphosphate Polymers 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 229920002301 cellulose acetate Polymers 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000001205 polyphosphate Substances 0.000 description 4
- 235000011176 polyphosphates Nutrition 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 235000020188 drinking water Nutrition 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 239000003899 bactericide agent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 229920000831 ionic polymer Polymers 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 235000015424 sodium Nutrition 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- JHUFGBSGINLPOW-UHFFFAOYSA-N 3-chloro-4-(trifluoromethoxy)benzoyl cyanide Chemical compound FC(F)(F)OC1=CC=C(C(=O)C#N)C=C1Cl JHUFGBSGINLPOW-UHFFFAOYSA-N 0.000 description 1
- MOMKYJPSVWEWPM-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methylphenyl)-1,3-thiazole Chemical compound C1=CC(C)=CC=C1C1=NC(CCl)=CS1 MOMKYJPSVWEWPM-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical group 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Chemical group 0.000 description 1
- 150000001342 alkaline earth metals Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 150000004697 chelate complex Chemical class 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 229940109262 curcumin Drugs 0.000 description 1
- 235000012754 curcumin Nutrition 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 235000019820 disodium diphosphate Nutrition 0.000 description 1
- GYQBBRRVRKFJRG-UHFFFAOYSA-L disodium pyrophosphate Chemical compound [Na+].[Na+].OP([O-])(=O)OP(O)([O-])=O GYQBBRRVRKFJRG-UHFFFAOYSA-L 0.000 description 1
- 229940038485 disodium pyrophosphate Drugs 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000019983 sodium metaphosphate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- XFTALRAZSCGSKN-UHFFFAOYSA-M sodium;4-ethenylbenzenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=C(C=C)C=C1 XFTALRAZSCGSKN-UHFFFAOYSA-M 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高濃度溶液を逆浸
透分離するための新規な膜分離装置及び高濃度溶液の逆
浸透分離方法に関するものである。本発明の装置および
方法は、かん水の脱塩、海水の淡水化、また排水の処
理、有用物の回収などに用いることができる。特に本発
明は、炭酸カルシウムや硫酸カルシウム、シリカなどの
スケール成分を多く含有する高濃度溶液、さらにはホウ
素を多く含有する高濃度溶液から低濃度溶液を得る場合
や高濃度溶液をさらに高い濃度に濃縮する場合に有効で
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel membrane separation device for reverse osmosis separation of a highly concentrated solution and a method for reverse osmosis separation of a highly concentrated solution. The apparatus and method of the present invention can be used for desalination of brackish water, desalination of seawater, treatment of wastewater, recovery of useful substances, and the like. In particular, the present invention is a high-concentration solution containing a lot of scale components such as calcium carbonate, calcium sulfate, and silica, and a case where a low-concentration solution is obtained from a high-concentration solution containing a large amount of boron or a high-concentration solution is further increased in concentration. It is effective when concentrating.
【0002】[0002]
【従来の技術】混合物の分離に関して、溶媒(例えば
水)に溶解した物質(例えば塩類)を除くための技術に
は様々なものがあるが、近年、省エネルギーおよび省資
源のためのプロセスとして膜分離法が利用されてきてい
る。膜分離法のなかには、精密濾過(MF;Micro
filtration)法、限外濾過(UF;Ultr
afiltration)法、逆浸透(RO;Reve
rse Osmosis)法がある。さらに近年になっ
て逆浸透と限外濾過の中間に位置する膜分離(ルースR
OあるいはNF;Nanofiltration)とい
う概念の膜分離法も現われ使用されるようになってき
た。例えば逆浸透法は海水または低濃度の塩水(カン
水)を脱塩して工業用、農業用または家庭用の水を提供
することに利用されている。逆浸透法によれば、塩分を
含んだ水を浸透圧以上の圧力をもって逆浸透膜を透過さ
せることで、脱塩された水を製造することができる。こ
の技術は例えば海水、カン水、有害物を含んだ水から飲
料水を得ることも可能であるし、また、工業用超純水の
製造、排水処理、有価物の回収などにも用いられてき
た。特に逆浸透膜による海水淡水化は、蒸発のような相
変化がないという特徴を有しており、エネルギー的に有
利である上に運転管理が容易であり、広く普及を始めて
いる。2. Description of the Related Art With respect to separation of a mixture, there are various techniques for removing substances (eg, salts) dissolved in a solvent (eg, water). In recent years, however, membrane separation has been used as a process for saving energy and resources. The law is being used. Microfiltration (MF; Micro)
Filtration method, ultrafiltration (UF; Ultr)
afiltration method, reverse osmosis (RO; Rev)
rse Osmosis) method. More recently, a membrane separation (Loose R) located between reverse osmosis and ultrafiltration
A membrane separation method of the concept of O or NF (Nanofiltration) has appeared and has been used. For example, reverse osmosis is used to desalinate seawater or low-concentration saline water (canned water) to provide industrial, agricultural, or domestic water. According to the reverse osmosis method, desalinated water can be produced by permeating water containing salt through a reverse osmosis membrane at a pressure higher than the osmotic pressure. This technology can be used, for example, to obtain drinking water from seawater, can water, and water containing harmful substances, and has also been used in the production of industrial ultrapure water, wastewater treatment, and recovery of valuable resources. Was. In particular, seawater desalination using a reverse osmosis membrane has a feature that there is no phase change such as evaporation, is advantageous in energy, is easy in operation management, and has begun to spread widely.
【0003】逆浸透膜で溶液を分離する場合は、膜の両
面に接する各溶液の溶質濃度によって定まる溶液自身の
持つ化学ポテンシャル(これを浸透圧で表わすことがで
きる)の差以上の圧力で溶液を逆浸透膜面に供給する必
要があり、たとえば海水を逆浸透膜モジュールで分離し
て真水を得る場合は、最低30atm程度以上、実用性
を考慮すると少なくとも50から60atm程度以上の
圧力が必要となり、供給液は加圧ポンプでこれ以上の圧
力に加圧されないと充分な逆浸透分離性能は発現されな
い。When a solution is separated by a reverse osmosis membrane, the solution is separated by a pressure higher than the difference between the chemical potentials of the solution itself (which can be expressed by osmotic pressure) determined by the solute concentration of each solution in contact with both sides of the membrane. Must be supplied to the reverse osmosis membrane surface. For example, when seawater is separated by a reverse osmosis membrane module to obtain fresh water, a pressure of at least about 30 atm or more and at least about 50 to 60 atm is necessary in consideration of practicality. If the supply liquid is not pressurized to a pressure higher than that by a pressure pump, sufficient reverse osmosis separation performance will not be exhibited.
【0004】逆浸透膜による海水淡水化の場合を例にと
ると、通常の海水淡水化技術では海水から真水を回収す
る割合(回収率)は高々40%であり、海水供給量に対
して40%相当量の真水が膜を透過して得られる結果、
逆浸透膜モジュールの中で海水濃度が3.5%から6%
程度にまで濃縮されることになる。このように海水から
回収率40%の真水を得るという逆浸透分離操作を行う
ためには、濃縮水の濃度に対応する浸透圧(海水濃縮水
濃度6%に対しては約45atm)以上の圧力が必要で
ある。真水の水質がいわゆる飲料水レベルに対応でき、
かつ充分な水量を得るためには、実際には、濃縮水濃度
に対応する浸透圧よりも約20atm(この圧力を有効
圧力と呼ぶ)程度高めの圧力を逆浸透膜に加えることが
必要であり、海水淡水化用逆浸透膜モジュールは60か
ら65atm程度の圧力をかけて回収率40%という条
件で運転されるのがふつうであった。[0004] Taking the case of seawater desalination using a reverse osmosis membrane as an example, in a normal seawater desalination technique, the rate of recovering fresh water from seawater (recovery rate) is at most 40%, which is 40% of the supplied amount of seawater. % Equivalent of fresh water is obtained through the membrane,
Seawater concentration of 3.5% to 6% in reverse osmosis membrane module
It will be concentrated to a degree. In order to perform the reverse osmosis separation operation of obtaining fresh water with a recovery rate of 40% from seawater in this manner, a pressure higher than the osmotic pressure corresponding to the concentration of concentrated water (about 45 atm for a 6% concentration of concentrated seawater). is necessary. The quality of fresh water can correspond to the so-called drinking water level,
In order to obtain a sufficient amount of water, it is actually necessary to apply a pressure higher than the osmotic pressure corresponding to the concentration of the concentrated water by about 20 atm (this pressure is called an effective pressure) to the reverse osmosis membrane. In general, a reverse osmosis membrane module for seawater desalination is operated under a condition of a recovery rate of 40% under a pressure of about 60 to 65 atm.
【0005】海水供給量に対する真水の回収率は、直接
コストに寄与するものであり、回収率は高いほど好まし
いが、実際に回収率を上げることについては運転操作面
で限度があった。すなわち、回収率を上げると濃縮水中
の海水成分の濃度が高くなり、ある回収率以上では炭酸
カルシウムや硫酸カルシウムなどの塩、いわゆるスケー
ル成分の濃度が溶解度以上になって逆浸透膜の膜面に析
出して膜の目詰りを生じさせる問題があるからである。[0005] The recovery rate of fresh water with respect to the supplied amount of seawater directly contributes to the cost. The higher the recovery rate, the better, but there is a limit in terms of operation and operation to actually increase the recovery rate. In other words, when the recovery rate is increased, the concentration of the seawater component in the concentrated water increases, and at a certain recovery rate or higher, the concentration of salts such as calcium carbonate and calcium sulfate, the so-called scale component, becomes higher than the solubility and the concentration on the surface of the reverse osmosis membrane increases. This is because there is a problem of deposition and clogging of the film.
【0006】現在の(最高回収率として広く認識されて
いる)回収率40%程度においては、供給水のpHを7
以下に保つならば、これらのスケール成分の析出の心配
は小さく特に対応は不要であるが、それ以上の回収率、
あるいはpHがアルカリ側で逆浸透膜の運転操作を行お
うとすると、これらのスケール成分の析出防止のため
に、塩の溶解性を高めるスケール防止剤を添加すること
が必要となる。代表的なスケール防止剤としては、エチ
レンジアミン四酢酸やヘキサメタ燐酸ナトリウムなどが
挙げられる。エチレンジアミン四酢酸は2個の窒素原子
と4個の酸素原子が二価の陽イオンと安定なキレート錯
体を形成してスケールの発生を防ぐものである。一方、
ヘキサメタ燐酸ナトリウムの効果は限界処理効果と呼ば
れ、これはヘキサメタ燐酸ナトリウム中の酸素−燐−酸
素結合がスケール結晶格子と幾何学的に一致するため、
スケール表面に吸着して核発生面を不活性化させること
で、スケールの成長を抑制するとされている。[0006] At a current recovery rate of about 40% (which is widely recognized as the highest recovery rate), the pH of feed water is reduced to 7%.
If kept below, there is little concern about precipitation of these scale components and no special measures are required, but a higher recovery rate,
Alternatively, when the operation of the reverse osmosis membrane is to be performed at an alkaline pH, it is necessary to add a scale inhibitor that enhances the solubility of the salt in order to prevent precipitation of these scale components. Representative scale inhibitors include ethylenediaminetetraacetic acid and sodium hexametaphosphate. In ethylenediaminetetraacetic acid, two nitrogen atoms and four oxygen atoms form a stable chelate complex with a divalent cation to prevent the generation of scale. on the other hand,
The effect of sodium hexametaphosphate is called the marginal treatment effect, because the oxygen-phosphorus-oxygen bonds in sodium hexametaphosphate are geometrically consistent with the scale crystal lattice.
It is said that the growth of the scale is suppressed by inactivating the nucleation surface by being adsorbed on the scale surface.
【0007】しかしながら、スケール防止剤を添加した
としても上記のスケール成分の析出を抑制できるのはp
H7以下の場合、濃縮水濃度で10から11%程度であ
り、またこれは供給水のpHが7より大きくなるにつれ
低下していく。このため、海水濃度3.5%、pH7以
下の海水を海水淡水化する場合では、物質収支的に回収
率は65から68%程度が限度であり、また原海水の変
動異種成分の影響などを考慮すると、逆浸透膜海水淡水
化プラントを安定に運転できうる可能性のある実際の回
収率限度は60%程度であると認識される。通常の逆浸
透膜を用いて実用的に海水淡水化を行う場合は、前述の
ように、濃縮水濃度によって決まる濃縮水浸透圧よりも
20atm程度高い圧力を逆浸透膜モジュールに付与す
る必要がある。海水濃度3.5%の場合の、回収率60
%に相当する濃縮水濃度は8.8%であり、この浸透圧
は約70atmとなる。その結果、逆浸透膜には90a
tm程度の圧力を付与する必要がある。However, even if a scale inhibitor is added, the precipitation of the above scale components can be suppressed by p
In the case of H7 or less, the concentration of the concentrated water is about 10 to 11%, and this decreases as the pH of the supply water becomes larger than 7. Therefore, when desalinating seawater with a seawater concentration of 3.5% and a pH of 7 or less, the recovery rate is limited to about 65 to 68% in terms of material balance. In consideration of this, it is recognized that the actual recovery limit at which the reverse osmosis membrane seawater desalination plant can be operated stably is about 60%. When seawater desalination is practically performed using a normal reverse osmosis membrane, as described above, it is necessary to apply a pressure about 20 atm higher than the concentrated water osmotic pressure determined by the concentrated water concentration to the reverse osmosis membrane module. . Recovery rate 60 when the seawater concentration is 3.5%
% Is 8.8% and the osmotic pressure is about 70 atm. As a result, 90a
It is necessary to apply a pressure of about tm.
【0008】一方、逆浸透法の中でもカン水淡水化や超
純水製造の分野では、近年低圧化が進み、20atm以
下の圧力で運転される低圧逆浸透膜が上市され、使用さ
れている。これら低圧逆浸透膜としては架橋全芳香族ポ
リアミドを分離機能層とする複合逆浸透膜が主流であ
り、有効圧力が数atm〜10数atmで高造水量、高
塩排除率を実現している。さらに最近では、逆浸透膜と
限外濾過膜の中間に位置するルースRO膜が現われ、使
用されるようになってきた。ルースRO膜は分子量数百
〜数千程度以上の中〜高分子量の分子や、カルシウム、
マグネシウムなどの二価イオン、重金属イオンなどの多
価イオンの排除率は高いが、一価のイオンや低分子量物
質は透過する性質をもった膜であり、二価イオンを多く
含む硬水の軟水化などに使用されている。また、このル
ースRO膜は膜の透過速度が大きく、0.1%程度の低
濃度の水溶液では10atm以下の超低圧で分離を行な
うことができるのも特徴であり、軟水化以外にも応用展
開が考案されてきている。特開平4−150923号公
報にはルースRO膜を用いて高濃度原液をさらに濃度の
高い溶液と中濃度の溶液に分離する方法が示されてい
る。しかしながら、ルースRO膜はその分離特性のゆえ
に高濃度溶液から1段で真水を得ることは困難である。
そのためルースRO膜の使用方法として、他の分離方法
と組合せたり、多段で膜分離を行なう方法が提案されて
いる。例えば、特開昭61−200810号公報、同6
1−200813号公報にはルースRO膜を2段にした
分離装置が開示されている。特開平3−278818号
公報には1%以下の希薄有機物水溶液を濃縮するため
に、有機物の排除率が20−70%である低排除率膜を
多段にして用いる方法が開示されている。また、特開昭
53−58974号公報には後段に前段よりも排除性能
の低い逆浸透膜モジュールを多段に配置した濃縮方法が
開示されている。特開昭54−124875号公報にも
1段目に高排除率の逆浸透膜を用いて濃縮を行ない、2
段目にルースRO膜を用いて更に濃縮液を濃縮する方
法、特開平3−21326号公報にも逆浸透膜モジュー
ルユニットを直列に配置し、上流側に排除性能の高い逆
浸透膜を、下流側にルースRO膜を配置する装置が開示
されている。これらルースRO膜モジュールを多段にす
る分離方法は、低い圧力での運転が可能であり比較的低
圧で高濃度濃縮液が得られるという利点があるが、透過
液として真水を得るような使用方法で、透過水の水質を
向上するためには非常にたくさんの段数が必要となって
効率が上がりにくいなどの問題がある。On the other hand, among the reverse osmosis methods, in the fields of canned water desalination and ultrapure water production, the pressure has been reduced in recent years, and low-pressure reverse osmosis membranes operated at a pressure of 20 atm or less have been marketed and used. As these low pressure reverse osmosis membranes, composite reverse osmosis membranes using a crosslinked wholly aromatic polyamide as a separation functional layer are mainstream, and achieve high water production and high salt rejection at an effective pressure of several atm to several tens atm. . More recently, loose RO membranes located between the reverse osmosis membrane and the ultrafiltration membrane have emerged and are being used. Loose RO membrane has a molecular weight of several hundred to several thousand or more medium to high molecular weight, calcium,
High rejection of divalent ions such as magnesium and polyvalent ions such as heavy metal ions, but it is a membrane that has the property of permeating monovalent ions and low molecular weight substances, and softens hard water containing a large amount of divalent ions. It is used for Another characteristic of this loose RO membrane is that the membrane has a high permeation rate and can be separated at an ultra-low pressure of 10 atm or less with an aqueous solution having a low concentration of about 0.1%. Has been devised. Japanese Patent Application Laid-Open No. 4-150923 discloses a method of separating a high-concentration stock solution into a higher-concentration solution and a middle-concentration solution using a loose RO membrane. However, it is difficult for a loose RO membrane to obtain fresh water from a highly concentrated solution in one step because of its separation characteristics.
Therefore, as a method of using the loose RO membrane, a method of combining with another separation method or performing multi-stage membrane separation has been proposed. For example, JP-A-61-200810, 6
Japanese Patent Application Laid-Open No. 1-200813 discloses a separation apparatus having a loose RO membrane in two stages. Japanese Patent Application Laid-Open No. 3-278818 discloses a method for concentrating a dilute aqueous solution of an organic substance of 1% or less by using a multi-stage film having a low rejection rate of 20 to 70% for rejection of an organic substance. Japanese Patent Application Laid-Open No. 53-58974 discloses a concentration method in which a reverse osmosis membrane module having a lower rejection performance than the preceding stage is arranged in multiple stages in the latter stage. Japanese Patent Application Laid-Open No. 54-124875 also discloses that concentration is performed using a high exclusion rate reverse osmosis membrane in the first stage.
In the method of further concentrating a concentrated solution using a loose RO membrane at the stage, Japanese Patent Application Laid-Open No. 3-21326 discloses a reverse osmosis membrane module unit arranged in series, and a reverse osmosis membrane having high rejection performance is provided on the upstream side. An apparatus for disposing a loose RO film on the side is disclosed. The separation method in which these loose RO membrane modules are multistage has the advantage that operation at a low pressure is possible and a high concentration concentrate can be obtained at a relatively low pressure. However, there is a problem that a very large number of stages are required to improve the quality of the permeated water, and it is difficult to increase the efficiency.
【0009】ルースRO膜を組合せて真水を得る方法と
しては、特開昭62−91287号公報に供給液をまず
1価イオンよりも2価イオンの排除率の高い膜で処理
し、得られた透過液のpHを調整した後さらに通常の逆
浸透膜で処理する純水の製造装置が開示されている。As a method for obtaining fresh water by combining a loose RO membrane, Japanese Patent Application Laid-Open No. 62-91287 discloses a method in which a feed solution is first treated with a membrane having a higher rejection rate of divalent ions than monovalent ions. An apparatus for producing pure water in which the pH of a permeate is adjusted and then treated with a normal reverse osmosis membrane is disclosed.
【0010】また、特開昭62−102887号公報に
はルースRO膜を用いて海水を分離すると透過水側にス
ケール成分の濃度の低い溶液が得られることが開示され
ている。Japanese Patent Application Laid-Open No. 62-102887 discloses that separation of seawater using a loose RO membrane results in a solution having a low concentration of scale components on the permeate side.
【0011】一方、最近の逆浸透膜海水淡水化プラント
においては、高回収率運転を指向する以外にも技術的課
題としてホウ素の除去が注目されるようになってきてい
る。ホウ素は海水中ではホウ酸として存在し、およそ4
〜5ppm含まれている。ホウ酸は解離定数がpKaで
9であり、海水中ではほとんど非解離状態である。現在
上市されている海水淡水化用逆浸透膜は従来の海水淡水
化条件ではいずれもホウ酸の排除率を十分満足するもの
がなく、そのため水道水質監視項目で定められているホ
ウ素濃度の指針値(0.2mg/L)以下にすることが
困難であった。On the other hand, in a recent reverse osmosis membrane seawater desalination plant, removal of boron has been attracting attention as a technical problem in addition to aiming at high recovery operation. Boron exists as boric acid in seawater, and is
-5 ppm. Boric acid has a dissociation constant of 9 at pKa, and is almost non-dissociated in seawater. None of the reverse osmosis membranes for seawater desalination currently on the market can satisfy the rejection rate of boric acid sufficiently under conventional seawater desalination conditions, and therefore the guideline value of boron concentration specified in the tap water quality monitoring item (0.2 mg / L) or less.
【0012】ホウ素の除去方法としては、逆浸透法以外
にも強塩基性陰イオン交換樹脂による吸着除去やスチレ
ン−ジビニルベンゼン共重合体にN−メチルグルカミン
を結合させた樹脂により吸着除去する方法が知られてい
る。前者の場合、ホウ酸以外に多量の塩分が存在する
と、イオン交換樹脂のホウ素吸着量は著しく減少するの
で、大量の海水をイオン交換樹脂で処理することは経済
的に不可能である。一方、後者の方法では、樹脂に結合
したグルカミン中の水酸基2個とホウ素とがキレートを
形成して吸着するため、非常に選択性の高い分離ができ
るという特徴を有し、高濃度のホウ素を含有する廃水か
らのホウ素の回収などに使用されている。しかしなが
ら、グルカミンを結合した樹脂を用いて海水中のホウ素
を除去する場合には、樹脂の再生費用を含めた処理費用
が高くなるために、海水淡水化に本方法を適用するには
経済性の点から問題がある。As a method for removing boron, other than the reverse osmosis method, a method of removing by adsorption with a strongly basic anion exchange resin or a method of absorbing and removing with a resin obtained by bonding N-methylglucamine to a styrene-divinylbenzene copolymer is used. It has been known. In the former case, if a large amount of salt other than boric acid is present, the amount of boron adsorbed on the ion exchange resin is significantly reduced, and it is economically impossible to treat a large amount of seawater with the ion exchange resin. On the other hand, the latter method has the characteristic that two highly hydroxyl groups in glucamine bound to the resin and boron form a chelate and are adsorbed, so that separation with very high selectivity can be performed. It is used for the recovery of boron from contained wastewater. However, when boron is removed from seawater using a glucamine-bound resin, the treatment cost including the cost of resin regeneration is high, so that applying this method to seawater desalination is economical. There is a problem from the point.
【0013】一方、現在上市されている逆浸透膜として
代表的な、架橋全芳香族ポリアミドを分離機能層に持つ
複合逆浸透膜は、分離機能層に未反応のカルボキシル基
およびアミノ基を末端基として有するので、中性物質よ
りもイオン性物質をよく排除するという特性を有してい
る。従って、逆浸透膜への供給液を、ホウ酸が解離して
イオン化するpH9以上に調製して逆浸透分離を行なえ
ば、pHがホウ酸がまだ解離していない中性領域で分離
を行なうよりもホウ素の排除率を大きく向上させること
が期待できる。On the other hand, a composite reverse osmosis membrane having a cross-linked wholly aromatic polyamide as a separation functional layer, which is a typical reverse osmosis membrane currently on the market, has an unreacted carboxyl group and amino group in the separation functional layer. As such, it has the property of better removing ionic substances than neutral substances. Therefore, if the reverse osmosis separation is performed by adjusting the supply liquid to the reverse osmosis membrane to a pH of 9 or more at which boric acid is dissociated and ionized, the pH is higher than that in a neutral region where boric acid is not yet dissociated. Can also be expected to greatly improve the rejection of boron.
【0014】しかしながら、海水のようにスケール成分
を多く含む高濃度溶液を、pH9以上のアルカリ性領域
で逆浸透分離を行なう場合には、前述したようなスケー
ルの生成や水酸化マグネシウムなどの二価陽イオンの水
酸化物の析出による膜の目詰りが起こり、造水量を低下
させるなどの問題が生じる。従って、本方法でホウ素の
除去を行なう場合も、前述したように高回収率での運転
を行なう場合と同様、スケールの生成防止が重要な課題
となる。However, when performing a reverse osmosis separation of a highly concentrated solution containing a large amount of scale components such as seawater in an alkaline region of pH 9 or more, formation of scale as described above and divalent cations such as magnesium hydroxide are performed. Clogging of the film due to precipitation of the hydroxide of ions occurs, causing problems such as lowering the amount of fresh water. Therefore, also in the case of removing boron by the present method, as in the case of operating at a high recovery rate as described above, prevention of scale generation is an important issue.
【0015】[0015]
【発明が解決しようとする課題】逆浸透膜海水淡水化プ
ラントを従来の最高回収率レベルの約40%で運転する
場合は、単にモジュールを複数本並列に配列させて圧力
65atm(供給水温度20℃の場合)、供給水pH7
以下の条件で運転し、透過水の全量に対して供給海水量
を2.5倍に設定することで、上記のファウリングおよ
び濃度分極の防止条件を十分に満足させ、安定な運転が
行われてきた。また、特にモジュール内部の各エレメン
トの透過水のバランスや濃縮水のスケール成分析出など
を考慮することなどは必要なかった。When a reverse osmosis membrane desalination plant is operated at about 40% of the conventional maximum recovery level, a plurality of modules are simply arranged in parallel and a pressure of 65 atm (supply water temperature of 20%). ° C), supply water pH7
By operating under the following conditions and setting the supply seawater amount to 2.5 times the total amount of permeated water, the above conditions for preventing fouling and concentration polarization are sufficiently satisfied, and stable operation is performed. Have been. Further, it was not necessary to consider the balance of the permeated water of each element inside the module and the scale component precipitation of the concentrated water.
【0016】逆浸透膜海水淡水化プラントの更なるコス
ト低減をめざしていく場合は、回収率をさらに高めた高
回収率運転が課題であり、前述のように通常の方法で海
水の淡水化を行なうと、海水濃度3.5%の海水淡水化
回収率としては回収率を60%程度まで高めることが望
ましく、適量のスケール防止剤の添加を前提として、通
常RO膜の運転圧力としては、濃縮水の浸透圧よりも約
20atm高い90atmの圧力で運転することが必要
となる。In order to further reduce the cost of a reverse osmosis membrane seawater desalination plant, high recovery operation with a higher recovery rate is an issue. As described above, desalination of seawater is carried out by a normal method. When this is performed, it is desirable to increase the recovery rate to about 60% as a seawater desalination recovery rate with a seawater concentration of 3.5%, and on the assumption that an appropriate amount of a scale inhibitor is added, the operating pressure of the RO membrane is usually concentrated. It is necessary to operate at a pressure of 90 atm about 20 atm higher than the osmotic pressure of water.
【0017】しかしながら、従来の1種類の膜を用いた
分離では60%の回収率で運転を行なうには供給液に9
0atmという圧力を一度にかける必要があり、そのた
め膜面のファウリングが大きくなりすぎる、さらに重金
属などファウリング物質によっては膜を劣化させるなど
の問題が生じ、また、濃縮液側でのスケールの発生が大
きいことも問題となる。However, in the conventional separation using one kind of membrane, it is necessary to add 9% to the feed liquid in order to operate at a recovery rate of 60%.
It is necessary to apply a pressure of 0 atm at a time, which causes fouling on the membrane surface to be too large, and also causes problems such as deteriorating the membrane depending on fouling substances such as heavy metals, and generation of scale on the concentrated solution side. Is also a problem.
【0018】また、逆浸透膜のホウ素排除率を向上させ
る目的で、供給水をpH9以上のアルカリ性にして逆浸
透分離する場合も同様、スケールの発生や水酸化物の析
出が起こり大きな問題となる。Similarly, when the supply water is made alkaline at pH 9 or more and the reverse osmosis separation is carried out for the purpose of improving the boron exclusion rate of the reverse osmosis membrane, scale is generated and hydroxide is precipitated, which is a serious problem. .
【0019】ルースRO膜を組合せることによってこれ
までいくつか濃縮手法、海水中のスケール成分の除去な
どの手法が考案されているが、高回収率で海水などの高
濃度溶液から真水を得る具体的な方法についてはいまだ
解決されていないのが実情である。Several methods for concentrating and removing scale components from seawater have been devised by combining a loose RO membrane. However, a specific method for obtaining fresh water from a highly concentrated solution such as seawater with a high recovery rate has been proposed. The fact is that there is still no way to solve the problem.
【0020】本発明は、逆浸透法により高濃度溶液中の
スケール成分の膜面への生成を防止して、高回収率で低
濃度溶液をより安定に、より少ないエネルギーで、より
安価に高効率に得ることができる装置および分離方法を
提供するものであり、特に、海水から40%以上という
高い回収率で、少ないエネルギーで真水を効率的に、か
つ安定的に得るとともに、従来の逆浸透法では除去が不
十分であったホウ素の除去を、スケール生成という問題
を起こさずに向上させるための装置および分離方法を提
供することを目的とする。According to the present invention, the formation of scale components in a high-concentration solution on a membrane surface is prevented by a reverse osmosis method, so that a low-concentration solution can be obtained at a high recovery rate, more stably, with less energy and at a lower cost. An object of the present invention is to provide an apparatus and a separation method that can obtain the water efficiently and, particularly, to obtain fresh water efficiently and stably with low energy at a high recovery rate of 40% or more from seawater and a conventional reverse osmosis. An object of the present invention is to provide an apparatus and a separation method for improving the removal of boron, which has been insufficiently removed by the method, without causing the problem of scale formation.
【0021】[0021]
【課題を解決するための手段】上記課題を解決するため
に本発明は次の構成を有する。「温度25℃、pH6.
5、濃度3.5%の食塩水を圧力56kgf/cm2で
供給したときの塩排除率が90%以上である膜aを用い
た逆浸透膜モジュールユニットAと、温度25℃、pH
6.5、濃度1,500ppmの食塩水を圧力15kg
f/cm2で供給したときの透過流束が0.8m3/m2
・日以上である膜bを用いたルースRO膜モジュールユ
ニットBとを多段に配置したことを特徴とする膜分離装
置。」 本発明において、透過流束とは、蒸留水、あるいは純水
に食塩を1500ppm溶解した食塩水を15kgf/
cm2、25℃、pH6.5、回収率15%以下の条件
で逆浸透分離したときの単位膜面積あたり、単位時間あ
たりの膜透過水量、あるいは、蒸留水または純水に食塩
を500ppm溶解した溶液を用いて、5kgf/cm
2、25℃、pH6.5、回収率15%以下の条件で膜
分離したときの単位膜面積あたり、単位時間あたりの膜
透過水量である。To solve the above problems, the present invention has the following arrangement. "Temperature 25 ° C, pH6.
5. A reverse osmosis membrane module unit A using a membrane a having a salt rejection rate of 90% or more when a salt solution having a concentration of 3.5% is supplied at a pressure of 56 kgf / cm 2 , at a temperature of 25 ° C. and a pH of
6.5, salt solution with a concentration of 1,500ppm, pressure 15kg
The permeation flux when supplied at f / cm 2 is 0.8 m 3 / m 2
-A membrane separation apparatus characterized by arranging loose RO membrane module units B using membranes b that are days or more in multiple stages. In the present invention, the permeation flux refers to a salt solution obtained by dissolving 1500 ppm of salt in distilled water or pure water at 15 kgf /
500 ppm of sodium chloride was dissolved in per unit membrane area, per unit time of membrane permeation, or distilled water or pure water when reverse osmosis separation was performed under the conditions of cm 2 , 25 ° C., pH 6.5, and a recovery rate of 15% or less. 5 kgf / cm using solution
2. The amount of permeated water per unit time per unit membrane area per unit time when membrane separation is performed at 25 ° C., pH 6.5, and a recovery rate of 15% or less.
【0022】また、ここで排除率とは次式で計算される
値である。Here, the rejection rate is a value calculated by the following equation.
【0023】排除率(%)=(供給液の濃度−透過液の
濃度)/供給液の濃度×100 供給液の濃度および透過液の濃度は溶液の電気伝導度の
測定など求めることができる。また、回収率とは、膜に
供給された液量に対する透過液の量の割合であり、次の
式で定義される。Exclusion rate (%) = (concentration of feed solution−concentration of permeate solution) / concentration of feed solution × 100 The concentration of the feed solution and the concentration of the permeate solution can be determined by measuring the electric conductivity of the solution. The recovery rate is a ratio of the amount of the permeated liquid to the amount of the liquid supplied to the membrane, and is defined by the following equation.
【0024】回収率(%)=透過液の量/供給液の量×
100Recovery rate (%) = amount of permeate / amount of feed solution ×
100
【0025】[0025]
【発明の実施の形態】本発明において、膜aとは、被分
離混合液中の一部の成分、例えば溶媒を透過させ他の成
分を透過させない、実質的に逆浸透分離が可能な半透性
の膜であって、その素材には酢酸セルロース系ポリマ
ー、ポリアミド、ポリエステル、ポリイミド、ビニルポ
リマーなどの高分子素材がよく使用されている。またそ
の膜構造は膜の少なくとも片面に緻密層を持ち、緻密層
から膜内部あるいはもう片方の面に向けて徐々に大きな
孔径の微細孔を有する非対称膜、非対称膜の緻密層の上
に別の素材で形成された非常に薄い分離機能層を有する
複合膜がある。膜形態には中空糸、平膜がある。しか
し、本発明の方法は、逆浸透膜の素材、膜構造や膜形態
によらず利用することができいずれも効果がある。代表
的な逆浸透膜としては、例えば酢酸セルロース系やポリ
アミド系の非対称膜およびポリアミド系、ポリ尿素系の
分離機能層を有する複合膜などがあげられる。これらの
なかでも、酢酸セルロース系の非対称膜、ポリアミド系
の複合膜に本発明の装置及び方法が有効である。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a membrane a is a semipermeable membrane capable of substantially reverse osmosis separation, which allows some components in a liquid mixture to be separated, for example, a solvent to pass and other components not to pass. Polymeric materials such as cellulose acetate polymers, polyamides, polyesters, polyimides, and vinyl polymers are often used as the material. The membrane structure has a dense layer on at least one surface of the film, and an asymmetric film having fine pores having a large pore diameter gradually from the dense layer toward the inside of the film or the other surface. There is a composite membrane having a very thin separation functional layer formed of a material. The membrane form includes a hollow fiber and a flat membrane. However, the method of the present invention can be used irrespective of the material, membrane structure and membrane form of the reverse osmosis membrane, and all are effective. Representative reverse osmosis membranes include, for example, cellulose acetate-based and polyamide-based asymmetric membranes and composite membranes having polyamide- and polyurea-based separation functional layers. Among these, the apparatus and method of the present invention are effective for cellulose acetate-based asymmetric membranes and polyamide-based composite membranes.
【0026】膜aの使用圧力は、特に限定されるもので
はないが、好ましくは50kgf/cm2以上、さらに
好ましくは80kgf/cm2以上で運転されるのが高
い回収率を得るためにも好ましい。従って、ここで使用
される逆浸透膜は、海水淡水化や有価物回収などの高圧
力条件で使用される膜が好ましく、より緻密な分離機能
層を有し、高い耐圧性を有する膜であることが好まし
い。The working pressure of the membrane a is not particularly limited, but it is preferably operated at 50 kgf / cm 2 or more, more preferably at 80 kgf / cm 2 or more, in order to obtain a high recovery rate. . Therefore, the reverse osmosis membrane used here is preferably a membrane used under high pressure conditions such as seawater desalination and valuable resource recovery, and has a denser separation function layer and is a membrane having high pressure resistance. Is preferred.
【0027】本発明において、膜aの有すべき特性は、
3.5%の食塩水、56kgf/cm2、25℃、pH
6.5で測定したときの塩排除率が90%以上、好まし
くは95%以上、さらに好ましくは99%以上の分離性
能を有する膜である。排除率が高いほど透過水中の塩素
イオンの濃度が低くなるので好ましい。塩排除率が90
%よりも小さいと透過液中の塩素イオンの量が多くなり
透過液をそのまま飲料水や工業用水として使用すること
が困難である。In the present invention, the properties that the film a should have are:
3.5% saline, 56 kgf / cm 2 , 25 ° C., pH
It is a membrane having a separation performance of 90% or more, preferably 95% or more, more preferably 99% or more as measured by 6.5. The higher the rejection rate, the lower the concentration of chlorine ions in the permeated water. 90 salt rejection
%, The amount of chloride ions in the permeate increases, making it difficult to use the permeate as it is as drinking water or industrial water.
【0028】さらに膜aは、3.5%の食塩水、56k
gf/cm2、25℃、pH6.5で測定したときの透
過流束が1.5m3/m2・日以下、より好ましくは0.
5m 3/m2・日以上、1.0m3/m2・日以下であるこ
とが好ましい。1.5m3/m2・日を超える場合、膜の
塩排除性能や耐圧性の低下を招き、また0.5m3/m2
・日未満では大きな膜面積が必要になり、膜のコスト高
を招くことになり、高い回収率を得ることが困難とな
る。Further, the membrane a is made of 3.5% saline, 56 k
gf / cmTwoAt 25 ° C. and pH 6.5
1.5m overfluxThree/ MTwoDays or less, more preferably 0.
5m Three/ MTwo・ 1.0m or more for daysThree/ MTwo・ It must be less than days
Is preferred. 1.5mThree/ MTwo・ When it exceeds days,
Including salt rejection performance and reduced pressure resistance, and 0.5mThree/ MTwo
・ Less than a day requires a large membrane area, resulting in high membrane cost
And it is difficult to obtain a high recovery rate.
You.
【0029】本発明において、膜bとはルースRO膜で
ある。In the present invention, the film b is a loose RO film.
【0030】ルースRO膜とは、分子量数百から数千程
度以上の中〜高分子量の分子や二価イオン、重金属イオ
ンなどの多価イオンの排除性能は高いが、一価イオンや
低分子量物質は透過する性質を持った膜であって、その
素材にはポリアミド系、ポリピペラジンアミド系、ポリ
エステルアミド系、あるいは水溶性のビニルポリマーを
架橋したものなどがよく使用されている。またその膜構
造は膜の少なくとも片面に緻密層を持ち、緻密層から膜
内部あるいはもう片方の面に向けて徐々に大きな孔径の
微細孔を有する非対称膜、非対称膜の緻密層の上に別の
素材で形成された非常に薄い分離機能層を有する複合膜
がある。膜形態には中空糸、平膜がある。しかし、本発
明の方法は、逆浸透膜の素材、膜構造や膜形態によらず
利用することができいずれも効果があるが、低圧での運
転のための造水量の大きさを考慮すると複合膜が好まし
い。さらに好ましくはポリアミド系の複合膜であり、ピ
ペラジンポリアミド系の複合膜などが透過水量、耐薬品
性等の点からより適している。Loose RO membranes have high rejection performance for polyvalent ions such as medium to high molecular weight molecules, divalent ions and heavy metal ions, but have a high molecular weight of several hundreds to several thousands or more, but have high monovalent ions and low molecular weight substances. Is a membrane having the property of permeability, and polyamide, polypiperazinamide, polyesteramide, or a crosslinked water-soluble vinyl polymer is often used as the material. The membrane structure has a dense layer on at least one surface of the film, and an asymmetric film having fine pores having a large pore diameter gradually from the dense layer toward the inside of the film or the other surface. There is a composite membrane having a very thin separation functional layer formed of a material. The membrane form includes a hollow fiber and a flat membrane. However, the method of the present invention can be used irrespective of the material of the reverse osmosis membrane, the membrane structure and the membrane form, and both are effective. Membranes are preferred. More preferably, a polyamide-based composite membrane is used, and a piperazine polyamide-based composite membrane or the like is more suitable in terms of the amount of permeated water, chemical resistance, and the like.
【0031】本発明において、ルースRO膜が有すべき
特性は、500ppmの食塩水、5kgf/cm2、2
5℃、pH6.5で測定したときの透過流束が0.5m
3/m 2・日以上を有する膜が好ましく、さらに、500
ppmの食塩水、5kgf/cm2、25℃、pH6.
5で測定したときの塩排除率が80%以下、好ましくは
60%以下で、かつ1000ppmの硫酸マグネシウム
水溶液、5kgf/cm2、25℃、pH6.5で測定
したときの塩排除率が90%以上、好ましくは98%以
上の分離性能を有する膜であることが好ましい。In the present invention, the loose RO film should have
Characteristics are 500 ppm saline, 5 kgf / cmTwo, 2
A permeation flux of 0.5 m when measured at 5 ° C. and pH 6.5
Three/ M TwoA membrane having more than 500 days is preferred;
ppm saline, 5kgf / cmTwo, 25 ° C, pH6.
The salt rejection as measured at 5 is 80% or less, preferably
60% or less and 1000 ppm magnesium sulfate
Aqueous solution, 5kgf / cmTwoMeasured at 25 ° C and pH 6.5
90% or more, preferably 98% or less
It is preferable that the membrane has the above separation performance.
【0032】膜エレメントは上記膜を実際に使用するた
めに形態化したものであり平膜は、スパイラル、チュー
ブラー、プレート・アンド・フレームのエレメントに組
み込んで、また中空糸は束ねた上でエレメントに組み込
んで使用することができるが、本発明はこれらの膜エレ
メントの形態に左右されるものではない。The membrane element is formed by actually using the above membrane, and the flat membrane is incorporated into a spiral, tubular, plate and frame element, and the hollow fibers are bundled to form an element. However, the present invention does not depend on the form of these membrane elements.
【0033】また、逆浸透膜またはルースRO膜モジュ
ールユニットは上述の膜エレメントを1〜数本圧力容器
の中に収めたモジュールを並列に配置したもので、その
組合せ、本数、配列は目的に応じて任意に行なうことが
できる。The reverse osmosis membrane or loose RO membrane module unit is a module in which one or several of the above-mentioned membrane elements are placed in a pressure vessel in parallel, and the combination, number and arrangement of the modules are determined according to the purpose. Arbitrarily.
【0034】次に、図を用いて本発明の装置の構成を説
明する。本発明において、膜分離装置とは供給液の取水
部分、前処理部分、膜部分から少なくともなる。膜部分
は造水、濃縮、分離などの目的で被処理液を加圧下で膜
モジュールに供給し、透過液と濃縮液に分離するための
部分をいい、通常は膜エレメントと耐圧容器からなる膜
モジュールを配列したユニット、加圧ポンプなどで構成
される。該膜部分に供給される被分離液は前処理部分で
通常、殺菌剤、凝集剤、さらに還元剤、pH調整剤など
の薬液添加と砂濾過、活性炭濾過、保安フィルターなど
による前処理(濁質成分の除去)が行なわれる。例え
ば、海水の脱塩の場合には、取水部分で海水を取込んだ
後、沈殿池で粒子などを分離し、またここで殺菌剤を添
加して殺菌を行なう。さらに、塩化鉄などの凝集剤を添
加して砂濾過を行なう。ろ液は貯槽に貯められ、硫酸な
どでpHを調整した後高圧ポンプに送られる。この送液
中に亜硫酸水素ナトリウムなどの還元剤を添加して膜素
材を劣化させる原因となる殺菌剤を消去し、保安フィル
ターを透過した後、高圧ポンプで昇圧されて膜モジュー
ルに供給されることもしばしば行われる。ただし、これ
らの前処理は、用いる供給液の種類、用途に応じて適宜
採用される。Next, the configuration of the apparatus of the present invention will be described with reference to the drawings. In the present invention, the membrane separation device includes at least a water intake portion for a supply liquid, a pretreatment portion, and a membrane portion. The membrane part is a part that supplies the liquid to be treated to the membrane module under pressure for the purpose of water production, concentration, separation, etc., and separates it into a permeate and a concentrate, and usually consists of a membrane element and a pressure vessel. It is composed of a unit in which modules are arranged, a pressure pump and the like. The liquid to be separated supplied to the membrane portion is a pretreatment portion, which is usually a chemical solution such as a bactericide, a flocculant, a reducing agent, a pH adjuster and the like, and a pretreatment by sand filtration, activated carbon filtration, security filter, etc. Component removal). For example, in the case of desalination of seawater, after taking in seawater at a water intake portion, particles and the like are separated in a sedimentation basin, and a bactericide is added here to perform sterilization. Further, sand filtration is performed by adding a flocculant such as iron chloride. The filtrate is stored in a storage tank, and after adjusting the pH with sulfuric acid or the like, is sent to a high-pressure pump. Add a reducing agent such as sodium bisulfite into this solution to eliminate germicides that cause deterioration of the membrane material, pass through the security filter, and then increase the pressure with a high-pressure pump and supply it to the membrane module. Is often done. However, these pretreatments are appropriately adopted depending on the type of the supply liquid used and the application.
【0035】図1は、ルースRO膜モジュールユニット
Bの透過水を逆浸透膜モジュールユニットAに供給する
場合の装置の図である。海水などの高濃度供給水はまず
前処理部分で前処理を行なった後、一段目のルースRO
膜モジュールユニットBに供給される。ルースRO膜モ
ジュールユニットBは、一価イオンの排除率が低いので
濃縮水と透過水との浸透圧差が少なくなり、その結果海
水のような高濃度溶液においても比較的低圧で運転する
ことができる。一段目でスケール成分などの多価イオン
および中〜高分子量物質と一価のイオンおよび低分子量
物質とに分離される。多価イオンが濃縮された濃縮水は
そのまま放出され、スケール成分を含まない透過水が加
圧されて二段目の逆浸透膜モジュールユニットAに供給
される。逆浸透膜モジュールユニットAではスケール発
生の恐れがないので、高回収率で分離を行なうことが可
能となる。FIG. 1 is a diagram of an apparatus for supplying permeated water of a loose RO membrane module unit B to a reverse osmosis membrane module unit A. High-concentration feedwater such as seawater is first pretreated in the pretreatment section, and then the first stage RO
It is supplied to the membrane module unit B. The loose RO membrane module unit B has a low rejection rate of monovalent ions, so that the osmotic pressure difference between the concentrated water and the permeated water is reduced, and as a result, it can be operated at a relatively low pressure even in a highly concentrated solution such as seawater. . At the first stage, polyvalent ions such as scale components and medium to high molecular weight substances are separated into monovalent ions and low molecular weight substances. The concentrated water in which the polyvalent ions are concentrated is released as it is, and the permeated water containing no scale component is pressurized and supplied to the second reverse osmosis membrane module unit A. In the reverse osmosis membrane module unit A, there is no fear of scale generation, so that separation can be performed at a high recovery rate.
【0036】ここで、ユニットBに続くユニットAにて
高回収率運転を行なう方法について図2に示す。高い回
収率を得るためには、逆浸透膜モジュールユニットAを
多段に配置し、かつ前段の逆浸透膜モジュールユニット
Aの濃縮水を次段の逆浸透膜モジュールユニットAに供
給する方法(以後、濃縮水昇圧法と記す)で行なうの
が、膜のファウリング防止の観点から好ましい。前処理
部分、一段目のルースRO膜モジュールユニットBにつ
いては上記と同じである。ルースRO膜モジュールユニ
ットBの透過水はまず前段の逆浸透膜モジュールユニッ
トAで通常の海水淡水化と同様の操作圧力(60atm
程度)、および回収率(約40%)で運転し、真水を得
る。次にその濃縮水を80atm以上に昇圧して次段の
逆浸透膜モジュールユニットAに供給し、さらにそこか
ら真水を得て全回収率を60%程度にする。尚、ここで
示した操作圧力および回収率は一例として示したもので
あり、これに限定されるものではない。また逆浸透膜モ
ジュールユニットAの前段と次段で用いる膜aは同じ膜
を用いてもよいが、異なる特性の膜を用いる方がより好
ましい。さらに逆浸透膜モジュールユニットAの段数も
限定するものではないが、段数が多くなるとそれだけ昇
圧のためのポンプが必要であることから、設備費および
運転費用を考慮すると二段とするのが好ましい。またホ
ウ素除去性能を向上させるため、逆浸透膜モジュールユ
ニットAの供給水にアルカリを注入するための装置を設
けて、供給水中のホウ酸が解離して陰イオンとなるpH
に調製することもできる。このときのpHは9以上、さ
らに好ましくは9.5以上、11以下にするのが好まし
い。このような高アルカリ条件で運転しても予めスケー
ル成分が除去されているのでスケール生成の恐れは少な
い。アルカリとしては水酸化ナトリウムや炭酸ナトリウ
ムなどのアルカリ塩の濃厚水溶液を使用し、薬液注入ポ
ンプにてルースRO膜モジュールユニットBの透過水、
すなわち逆浸透膜モジュールユニットAの供給水に注入
される。Here, a method of performing a high recovery operation in the unit A following the unit B is shown in FIG. In order to obtain a high recovery rate, a method in which the reverse osmosis membrane module units A are arranged in multiple stages and the concentrated water of the previous reverse osmosis membrane module units A is supplied to the next reverse osmosis membrane module units A It is preferable to carry out the method by a concentrated water pressurization method) from the viewpoint of preventing fouling of the membrane. The pre-processing portion and the first-stage loose RO membrane module unit B are the same as above. The permeated water of the loose RO membrane module unit B is first supplied to the reverse osmosis membrane module unit A in the preceding stage at the same operating pressure as that of ordinary seawater desalination (60 atm).
) And recovery (about 40%) to obtain fresh water. Next, the concentrated water is pressurized to 80 atm or more and supplied to the reverse osmosis membrane module unit A at the next stage. In addition, the operating pressure and the recovery rate shown here are shown as an example, and are not limited thereto. The same membrane may be used as the membrane a used in the previous stage and the next stage of the reverse osmosis membrane module unit A, but it is more preferable to use membranes having different characteristics. Further, the number of stages of the reverse osmosis membrane module unit A is not limited. However, as the number of stages increases, a pump for increasing the pressure is required. Therefore, it is preferable to use two stages in consideration of equipment costs and operation costs. In addition, in order to improve the boron removal performance, a device for injecting alkali into the feed water of the reverse osmosis membrane module unit A is provided, and the pH at which boric acid in the feed water is dissociated to become anions.
Can also be prepared. At this time, the pH is preferably 9 or more, more preferably 9.5 or more, and 11 or less. Even when operating under such high alkali conditions, there is little danger of scale formation because scale components have been removed in advance. As the alkali, a concentrated aqueous solution of an alkali salt such as sodium hydroxide or sodium carbonate is used, and the permeated water of the loose RO membrane module unit B is supplied by a chemical injection pump.
That is, it is injected into the supply water of the reverse osmosis membrane module unit A.
【0037】図3は逆浸透膜モジュールユニットAの濃
縮水をルースRO膜モジュールユニットBに供給し、ル
ースRO膜モジュールユニットBの透過水を逆浸透膜モ
ジュールユニットAの供給水に混合した場合の装置の図
である。まず前処理を行なった海水は一段目の逆浸透膜
モジュールユニットAに供給され、そこで海水などの高
濃度溶液から真水が分離される。濃縮水はそのままルー
スRO膜モジュールユニットBに供給してもかまわない
が、高い回収率を得るために濃縮水昇圧法を用いるのが
好ましい。その後、逆浸透膜モジュールユニットAの最
終段の濃縮水はルースRO膜モジュールユニットBに供
給されるが、この際濃縮水自身が圧力を有しているので
加圧する必要はない。ルースRO膜モジュールユニット
Bではさらにスケール成分を含む濃縮水と塩濃度が薄く
スケール成分を含まない透過水に分離される。ルースR
O膜モジュールユニットBの濃縮水はそのまま放出さ
れ、透過水は一段目の逆浸透膜モジュールユニットAの
供給水に戻して混合される。このとき、一段目の供給水
のスケール成分濃度はルースRO膜モジュールユニット
Bの透過水によって薄められるので逆浸透膜モジュール
ユニットAでは通常の40%よりも高い回収率で運転が
可能となるのである。さらに、図3のケースでスケール
防止剤を添加する場合にはスケール防止剤は膜bの供給
水に添加するだけでよく、全体の供給水の量に比べてル
ースRO膜モジュールユニットBの供給水の量は少なく
なるのでトータルとしてのスケール防止剤の量は少なく
てすむという利点がある。FIG. 3 shows a case where the concentrated water of the reverse osmosis membrane module unit A is supplied to the loose RO membrane module unit B, and the permeated water of the loose RO membrane module unit B is mixed with the supply water of the reverse osmosis membrane module unit A. It is a figure of an apparatus. First, the pretreated seawater is supplied to the first-stage reverse osmosis membrane module unit A, where fresh water is separated from a highly concentrated solution such as seawater. The concentrated water may be directly supplied to the loose RO membrane module unit B, but it is preferable to use the concentrated water pressurization method in order to obtain a high recovery rate. After that, the concentrated water at the final stage of the reverse osmosis membrane module unit A is supplied to the loose RO membrane module unit B. At this time, there is no need to pressurize the concentrated water itself because it has a pressure. The loose RO membrane module unit B is further separated into concentrated water containing scale components and permeated water having a small salt concentration and containing no scale components. Loose R
The concentrated water of the O membrane module unit B is discharged as it is, and the permeated water is returned to the supply water of the first-stage reverse osmosis membrane module unit A and mixed. At this time, since the scale component concentration of the first-stage feed water is reduced by the permeated water of the loose RO membrane module unit B, the reverse osmosis membrane module unit A can be operated at a recovery rate higher than the normal 40%. . Further, in the case of adding the scale inhibitor in the case of FIG. 3, the scale inhibitor only needs to be added to the feed water of the membrane b, and the feed water of the loose RO membrane module unit B is smaller than the total feed water. Therefore, there is an advantage that the amount of the scale inhibitor can be reduced as a whole.
【0038】また、本発明において逆浸透膜装置の供給
液に添加するスケール防止剤とは溶液中の多価金属イオ
ンなどのスケール成分と錯体を形成し、スケールの発生
を抑制するもので、有機や無機のイオン性のポリマーあ
るいはモノマーが使用できる。イオン性のポリマーとし
てはポリアクリル酸、スルホン化ポリスチレン、ポリア
クリルアミド、ポリアリルアミンなどの合成ポリマーや
カルボキシメチルセルロース、キトサン、アルギン酸な
どの天然高分子が使用できる。有機系のモノマーとして
はエチレンジアミン四酢酸などが使用できる。無機系ス
ケール防止剤としてはポリ燐酸塩などが使用できる。こ
れらのスケール防止剤の中では入手のしやすさ、溶解性
など操作のしやすさ、価格の点から特にポリアクリル酸
系ポリマー、ポリ燐酸塩、エチレンジアミン四酢酸(E
DTA)などが本発明において好適に用いられる。ポリ
燐酸塩とはヘキサメタ燐酸ナトリウムを代表とする分子
内に2個以上の燐原子を有し、アルカリ金属、アルカリ
土類金属と燐酸原子などにより結合した重合無機燐酸系
物質をいう。代表的なポリ燐酸塩としては、ピロ燐酸4
ナトリウム、ピロ燐酸2ナトリウム、トリポリ燐酸ナト
リウム、テトラポリ燐酸ナトリウム、ヘプタポリ燐酸ナ
トリウム、デカポリ燐酸ナトリウム、メタ燐酸ナトリウ
ム、ヘキサメタ燐酸ナトリウム、およびこれらのカリウ
ム塩などがあげられる。In the present invention, the scale inhibitor to be added to the feed liquid of the reverse osmosis membrane device forms a complex with a scale component such as a polyvalent metal ion in the solution and suppresses the generation of scale. And inorganic ionic polymers or monomers can be used. As the ionic polymer, synthetic polymers such as polyacrylic acid, sulfonated polystyrene, polyacrylamide, and polyallylamine, and natural polymers such as carboxymethylcellulose, chitosan, and alginic acid can be used. Ethylenediaminetetraacetic acid or the like can be used as the organic monomer. Polyphosphates and the like can be used as the inorganic scale inhibitor. Among these scale inhibitors, polyacrylic acid-based polymers, polyphosphates, ethylenediaminetetraacetic acid (E) are particularly preferred in terms of availability, operability such as solubility, and price.
DTA) and the like are suitably used in the present invention. The polyphosphate refers to a polymerized inorganic phosphoric acid-based substance having two or more phosphorus atoms in a molecule represented by sodium hexametaphosphate and bonded to an alkali metal or an alkaline earth metal by a phosphoric acid atom or the like. Typical polyphosphates include pyrophosphate 4
Examples include sodium, disodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium heptapolyphosphate, sodium decapolyphosphate, sodium metaphosphate, sodium hexametaphosphate, and potassium salts thereof.
【0039】また、これらスケール防止剤の添加濃度は
供給液中の少なくともスケール成分を取込める量であれ
ば充分であるが、費用や溶解にかかる時間などの操作性
を考慮すると一般的には0.01〜1000ppmであ
り、正確には供給水の水質に依存するが通常、海水の場
合では0.1〜100ppmが好ましく、さらに好まし
くは1〜50ppmである。添加量が0.01ppmよ
りも少ない場合にはスケールの発生を充分に抑制できな
いため、膜性能の劣化が起こる。また、1000ppm
以上ではスケール防止剤自体が膜表面に吸着して造水量
を低下させたり、水質を悪化させるため好ましくない。
多量にスケール成分を含む供給液では数十〜数百ppm
の添加が必要な場合もある。It is sufficient that the concentration of the scale inhibitor added is at least an amount capable of taking in the scale components in the feed solution. However, in consideration of the operability such as the cost and the time required for dissolution, it is generally 0. Although it depends on the quality of feed water, it is usually 0.1 to 100 ppm, more preferably 1 to 50 ppm in seawater. When the addition amount is less than 0.01 ppm, the generation of scale cannot be sufficiently suppressed, so that the film performance deteriorates. 1000 ppm
Above-mentioned is not preferable because the scale inhibitor itself is adsorbed on the membrane surface to reduce the amount of fresh water or deteriorate the water quality.
Dozens to hundreds of ppm for feed solutions containing large amounts of scale components
May need to be added.
【0040】また、本発明の装置および分離方法の前処
理部分には限外濾過膜を用いると、本発明の装置をより
一層安定に運転することができるので好適に用いられ
る。限外濾過膜は例えば複数本の中空糸膜を束ねてなる
中空糸膜モジュールとして用いられ、砂濾過との併用あ
るいは単独で使用される。また中空糸膜モジュールは装
置の運転上中空糸膜表面の汚れを物理的洗浄手段によっ
て除去しつつ、長期間使用可能な中空糸膜を用いること
が必要である。物理的な洗浄手段としては、ろ過水の逆
方向流水洗浄や空気によるエアーフラッシングまたはス
クラビング洗浄を用いることができる。If an ultrafiltration membrane is used in the pretreatment part of the apparatus and the separation method of the present invention, the apparatus of the present invention can be operated more stably, and thus is preferably used. The ultrafiltration membrane is used, for example, as a hollow fiber membrane module formed by bundling a plurality of hollow fiber membranes, and is used in combination with sand filtration or alone. Further, in operation of the apparatus, it is necessary to use a hollow fiber membrane which can be used for a long period of time while removing dirt on the surface of the hollow fiber membrane by physical washing means in operation of the apparatus. As the physical cleaning means, reverse flowing water cleaning of filtered water, air flushing with air or scrubbing cleaning can be used.
【0041】本発明で使用する中空糸膜モジュールとし
ては中空糸膜束の端部を接着剤で固めた後で切断により
中空糸膜内部を開孔させてなる中空糸膜モジュールであ
り、特に構造は問わないが、物理洗浄の手段と組合せて
最適形状を採用することができる。特に好ましくは、タ
ンク形状の容器の中に、複数本の中空糸膜エレメントを
装填した形状のモジュールが大容量化に適しており、最
も好ましい。中空糸膜モジュールを構成する中空糸膜と
しては、多孔質の中空糸膜であれば特に限定しないが、
ポリエチレン、ポリプロピレン、ポリスルホン、ポリビ
ニルアルコール、セルロースアセテート、ポリアクリロ
ニトリル、その他の材質を選定することができる。この
中で特に好ましい中空糸膜素材としては、アクリロニト
リルを少なくとも一成分とする重合体からなる中空糸膜
が適当である。アクリロニトリル系重合体の中で最も好
ましいものとしては、アクリロニトリルを少なくとも5
0モル%以上、好ましくは60モル%以上と、該アクリ
ロニトリルに対して共重合性を有するビニル化合物一種
または二種以上を50%以下、好ましくは0〜40モル
%とからなるアクリロニトリル系共重合体である。ま
た、これらアクリロニトリル系重合体二種以上、さらに
他の重合体との混合物でもよい。上記ビニル化合物とし
ては、アクリロニトリルに対して共重合性を有する公知
の化合物であれば良く、特に限定されないが、好ましい
共重合成分としては、アクリル酸、イタコン酸、アクリ
ルサ酸メチル、メタクリル酸メチル、酢酸ビニル、アル
ルスルホン酸ソーダ、p−スチレンスルホン酸ソーダ等
を例示することができる。The hollow fiber membrane module used in the present invention is a hollow fiber membrane module in which the inside of the hollow fiber membrane is opened by hardening the end of the hollow fiber membrane bundle with an adhesive and then cutting it. However, the optimum shape can be adopted in combination with the physical cleaning means. Particularly preferably, a module having a shape in which a plurality of hollow fiber membrane elements are loaded in a tank-shaped container is suitable for increasing the capacity, and is most preferable. The hollow fiber membrane constituting the hollow fiber membrane module is not particularly limited as long as it is a porous hollow fiber membrane,
Polyethylene, polypropylene, polysulfone, polyvinyl alcohol, cellulose acetate, polyacrylonitrile, and other materials can be selected. Among these, a particularly preferable hollow fiber membrane material is a hollow fiber membrane made of a polymer containing acrylonitrile as at least one component. Among the most preferred acrylonitrile-based polymers, acrylonitrile has at least 5
Acrylonitrile copolymer comprising 0 mol% or more, preferably 60 mol% or more, and 50% or less, preferably 0 to 40 mol% of one or more vinyl compounds copolymerizable with the acrylonitrile. It is. Further, a mixture of two or more of these acrylonitrile-based polymers, and a mixture with another polymer may be used. The vinyl compound is not particularly limited as long as it is a known compound having copolymerizability to acrylonitrile, and preferred copolymerization components include acrylic acid, itaconic acid, methyl acrylate, methyl methacrylate, and acetic acid. Examples thereof include vinyl, sodium allyl sulfonate, and sodium p-styrene sulfonate.
【0042】本発明の装置及び分離方法によって、逆浸
透膜モジュールユニットAでは通常の回収率よりも高い
回収率で運転することが可能であり、分離のコストを考
えると回収率はできるだけ高い方が好ましい。本発明の
分離方法では回収率を通常の40%を越える値にするこ
とができ、さらにコストを低減するためには50%以
上、より好ましくは60%の回収率で分離を行なうこと
が好ましい。According to the apparatus and the separation method of the present invention, the reverse osmosis membrane module unit A can be operated at a higher recovery rate than a normal recovery rate, and considering the cost of separation, the higher the recovery rate is, the better. preferable. In the separation method of the present invention, the recovery rate can be set to a value exceeding normal 40%. In order to further reduce the cost, it is preferable to perform the separation at a recovery rate of 50% or more, more preferably 60%.
【0043】また、本発明の装置および分離方法は濃度
の高い供給液の分離に適している。特に、溶質濃度が
0.5%以上の溶液の分離に効果があり、海水の淡水化
にも効果が大きい。The apparatus and the separation method of the present invention are suitable for separating a supply liquid having a high concentration. In particular, it has an effect on separating a solution having a solute concentration of 0.5% or more, and has a great effect on desalination of seawater.
【0044】[0044]
【実施例】以下に実施例によって本発明をさらに詳細に
説明するが、本発明はこれらの実施例によりなんら限定
されるものではない。EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
【0045】本発明に供した膜の特性を表1に示す。本
発明ではこれら2種類の膜aと1種類の膜bについて、
各々膜面積が7m3の膜エレメントを作製し、このエレ
メントを1〜数本装填した圧力容器を1〜数本並列に配
置したものを逆浸透膜モジュールユニットまたはルース
RO膜モジュールユニットとし、海水の淡水化を行なっ
た。海水は瀬戸内海の海水を塩濃度3.5%に調整した
ものを用いた。また、ホウ素の定量はクルクミン吸光光
度法で行なった。Table 1 shows the properties of the film used in the present invention. In the present invention, for these two types of film a and one type of film b,
A membrane element having a membrane area of 7 m 3 was prepared, and one or several pressure vessels loaded with one or several of these elements were arranged in parallel to form a reverse osmosis membrane module unit or a loose RO membrane module unit. Desalination was performed. Seawater of Seto Inland Sea adjusted to a salt concentration of 3.5% was used. The amount of boron was determined by curcumin absorption spectrophotometry.
【0046】[0046]
【表1】 [Table 1]
【0047】実施例1 膜b−1および膜a−1を用いた逆浸透膜モジュールユ
ニットおよびルースRO膜モジュールユニットを使用し
て図1に示す装置を作製した。この装置を用いて、まず
前処理部分で塩濃度3.5%の海水を25℃、pH6.
7に調製した後、中空糸限外濾過膜モジュールで処理し
た。その後、25kgf/cm2に昇圧してルースRO
膜モジュールユニットBに供給し、塩濃度1.9%の透
過水と塩濃度5.9%の濃縮水を得た。ルースRO膜モ
ジュールユニットBの透過水には微量の多価イオンを含
んでいた。この透過水を90atmに昇圧して逆浸透膜
モジュールユニットAに供給した。供給水量に対する逆
浸透膜モジュールユニットAの透過水量の割合は47%
であり、透過水の塩濃度は266ppmであった。ま
た、逆浸透膜モジュールユニットAの造水量は6.7m
3/日であり、2000時間経過後も透過水量の低下は
認められなかった。 実施例2 実施例1において、単段だったユニットAを2段に換え
た。即ち、ルースRO膜モジュールユニットBの透過水
を、膜a−1を用いた逆浸透膜モジュールユニットAに
供給し、その濃縮水を昇圧して、膜a−2を用いた逆浸
透膜モジュールユニットAに供給する濃縮水昇圧法を用
いる方法を図2の装置で行なった。膜a−1の操作圧力
は52atmで、膜a−2は80atmで運転した。逆
浸透膜モジュールユニットAの回収率は前段、後段合せ
て63%であり、透過水の塩濃度は185ppmであっ
た。また、逆浸透膜モジュールユニットAは前段、後段
ともに1600時間経過後も透過水量の低下は認められ
なかった。 実施例3 膜a−1および膜b−1を用いた逆浸透膜モジュールユ
ニットおよびルースRO膜モジュールユニットを使用し
て図3に示す装置を作製した。この装置を用いて、まず
前処理部分で塩濃度3.5%の海水を25℃、pH6.
7に調製した後、中空糸限外濾過膜モジュールで処理し
て供給水とした。その後、供給水とルースRO膜モジュ
ールユニットBの透過水を混合し、90atmに昇圧し
て逆浸透膜モジュールユニットAに供給した。逆浸透膜
モジュールユニットAの濃縮水は塩濃度5.6%であっ
た。この濃縮水にヘキサメタリン酸ナトリウムを10p
pmの濃度になるように添加し、ルースRO膜モジュー
ルユニットBに供給した。ルースRO膜モジュールユニ
ットBでは塩濃度8.9%の濃縮水と塩濃度2.9%で
多価イオン濃度の低い透過水が得られた。ルースRO膜
モジュールユニットBの濃縮水は装置外に取りだし、透
過水は逆浸透膜モジュールユニットAの供給水に循環し
混合した。供給する海水量に対する逆浸透膜モジュール
ユニットAの透過水量の割合は60%であり、透過水の
塩濃度は227ppmであった。また、逆浸透膜モジュ
ールユニットAの透過水量は29.9m3/日であり、
2000時間経過後も透過水量の低下は認められなかっ
た。 実施例4 実施例3において、単段だったユニットAに換えて、2
段のユニットAとした。即ち、膜a−1を用いた逆浸透
膜モジュールユニットAを前段に、膜a−2を用いた逆
浸透膜モジュールユニットAを後段とした濃縮水昇圧法
を用いて行なった。従ってユニット構成は{A(濃縮
水)→A(濃縮水)→B}となった。ルースRO膜モジ
ュールユニットBの透過水を供給水に戻して混合し、6
0atmに昇圧して前段の逆浸透膜モジュールユニット
Aに供給した。前段の逆浸透膜モジュールユニットAの
濃縮水は90atmに昇圧して、後段の逆浸透膜モジュ
ールユニットAに供給した。後段の逆浸透膜モジュール
ユニットAの濃縮水の塩濃度は6.3%であった。この
濃縮水にヘキサメタリン酸ナトリウムを10ppmの濃
度になるように添加し、ルースRO膜モジュールユニッ
トBに供給した。ルースRO膜モジュールユニットBで
は塩濃度9.2%の濃縮水と塩濃度3.6%で多価イオ
ン濃度の低い透過水が得られた。ルースRO膜モジュー
ルユニットBの濃縮水は装置外に取りだし、透過水は前
段の逆浸透膜モジュールユニットAの供給水に循環し混
合した。供給する海水量に対する逆浸透膜モジュールユ
ニットAの透過水量の割合は、前段、後段合せて64%
であり、透過水の塩濃度は197ppmであった。ま
た、前段および後段の逆浸透膜モジュールユニットAの
透過水量は、1600時間経過後も低下は認められなか
った。 比較例1 実施例1の膜a−1を用いた逆浸透膜モジュールユニッ
トAを使用して、これに凝集砂濾過処理を行なった海水
(塩濃度3.5%)を供給して90atmで分離を行な
った。供給水にヘキサメタリン酸ナトリウムを10pp
mの濃度になるように添加し、供給する海水の量に対す
る透過水量の割合を60%として運転を行なったとこ
ろ、透過水の塩素イオン濃度は306ppmであった。
また、透過水量は21.7m3/日であり、2000時
間経過後には透過水量は19.3m3/日と11%低下
した。 比較例2 実施例1の膜a−1を用いた逆浸透膜モジュールユニッ
トAを使用して、これに凝集砂濾過処理を行なった海水
(塩濃度3.5%)を供給して63atmで分離を行な
った。供給水にヘキサメタリン酸ナトリウムを10pp
mの濃度になるように添加し、供給する海水の量に対す
る透過水量の割合を42%として運転を行なったとこ
ろ、透過水の塩素イオン濃度は306ppmであり、ホ
ウ素の濃度は1.3ppmとなり、水道水質監視項目の
指針値を上回った。 比較例3 比較例2において、供給水にアルカリを注入してpHを
9に調製した。その結果、二価陽イオンの水酸化物が多
量に析出して、逆浸透膜モジュールユニットAの透過水
量が急激に大きく低下して、運転不可能となった。Example 1 An apparatus shown in FIG. 1 was manufactured using a reverse osmosis membrane module unit using a membrane b-1 and a membrane a-1 and a loose RO membrane module unit. Using this apparatus, first, seawater having a salt concentration of 3.5% was subjected to 25 ° C., pH 6.
After the preparation to 7, the mixture was treated with a hollow fiber ultrafiltration membrane module. Thereafter, the pressure is increased to 25 kgf / cm 2 and loose RO
The feed water was supplied to the membrane module unit B to obtain permeated water having a salt concentration of 1.9% and concentrated water having a salt concentration of 5.9%. The permeated water of the loose RO membrane module unit B contained a trace amount of polyvalent ions. This permeated water was pressurized to 90 atm and supplied to the reverse osmosis membrane module unit A. The ratio of the permeated water amount of the reverse osmosis membrane module unit A to the supplied water amount is 47%.
And the salt concentration of the permeated water was 266 ppm. The amount of fresh water produced by the reverse osmosis membrane module unit A is 6.7 m.
3 / day, and no decrease in the amount of permeated water was observed even after lapse of 2000 hours. Example 2 In Example 1, the unit A was changed from a single stage to two stages. That is, the permeated water of the loose RO membrane module unit B is supplied to the reverse osmosis membrane module unit A using the membrane a-1, the concentrated water is pressurized, and the reverse osmosis membrane module unit using the membrane a-2 is supplied. A method using the pressurization of concentrated water supplied to A was performed by the apparatus shown in FIG. The operating pressure of membrane a-1 was operated at 52 atm, and membrane a-2 was operated at 80 atm. The recovery rate of the reverse osmosis membrane module unit A was 63% for the first and second stages, and the salt concentration of the permeated water was 185 ppm. Further, in the reverse osmosis membrane module unit A, no decrease in the permeated water amount was observed even after 1600 hours had elapsed in both the former stage and the latter stage. Example 3 An apparatus shown in FIG. 3 was produced using a reverse osmosis membrane module unit using a membrane a-1 and a membrane b-1 and a loose RO membrane module unit. Using this apparatus, first, seawater having a salt concentration of 3.5% was subjected to 25 ° C., pH 6.
After adjusting to 7, water was supplied through treatment with a hollow fiber ultrafiltration membrane module. Thereafter, the supply water and the permeated water of the loose RO membrane module unit B were mixed, the pressure was increased to 90 atm, and the mixture was supplied to the reverse osmosis membrane module unit A. The concentrated water of the reverse osmosis membrane module unit A had a salt concentration of 5.6%. Add 10p of sodium hexametaphosphate to this concentrated water
pm, and supplied to the loose RO membrane module unit B. In the loose RO membrane module unit B, concentrated water having a salt concentration of 8.9% and permeated water having a low salt concentration of 2.9% were obtained. The concentrated water of the loose RO membrane module unit B was taken out of the apparatus, and the permeated water was circulated and mixed with the feed water of the reverse osmosis membrane module unit A. The ratio of the permeated water amount of the reverse osmosis membrane module unit A to the supplied seawater amount was 60%, and the salt concentration of the permeated water was 227 ppm. Further, the amount of permeated water of the reverse osmosis membrane module unit A is 29.9 m 3 / day,
No decrease in the amount of permeated water was observed even after lapse of 2,000 hours. Example 4 In Example 3, instead of the unit A which was a single stage, 2
The unit A of the step was used. That is, the reverse osmosis membrane module unit A using the membrane a-1 was used in the first stage, and the reverse osmosis membrane module unit A using the membrane a-2 was used in the second stage, using a concentrated water pressurization method. Therefore, the unit configuration was {A (concentrated water) → A (concentrated water) → B}. Return the permeated water of the loose RO membrane module unit B to the feed water and mix,
The pressure was increased to 0 atm and supplied to the reverse osmosis membrane module unit A in the preceding stage. The pressure of the concentrated water of the reverse osmosis membrane module unit A in the first stage was increased to 90 atm, and supplied to the second reverse osmosis membrane module unit A. The salt concentration of the concentrated water in the reverse osmosis membrane module unit A in the latter stage was 6.3%. Sodium hexametaphosphate was added to the concentrated water to a concentration of 10 ppm, and supplied to the loose RO membrane module unit B. In the loose RO membrane module unit B, concentrated water having a salt concentration of 9.2% and permeated water having a low polyvalent ion concentration at a salt concentration of 3.6% were obtained. The concentrated water of the loose RO membrane module unit B was taken out of the apparatus, and the permeated water was circulated and mixed with the feed water of the preceding reverse osmosis membrane module unit A. The ratio of the amount of permeated water of the reverse osmosis membrane module unit A to the amount of seawater to be supplied is 64% in the former stage and the latter stage.
And the salt concentration of the permeated water was 197 ppm. Further, the permeated water amount of the reverse osmosis membrane module units A in the first and second stages did not decrease even after 1600 hours. Comparative Example 1 Using a reverse osmosis membrane module unit A using the membrane a-1 of Example 1, supplied with seawater (salt concentration: 3.5%) subjected to coagulated sand filtration, and separated at 90 atm. Was performed. 10 pp sodium hexametaphosphate in feed water
m, and the operation was performed with the ratio of the amount of permeated water to the amount of supplied seawater being 60%. As a result, the chlorine ion concentration of the permeated water was 306 ppm.
Furthermore, permeate flow rate is at 21.7 m 3 / day, permeate flow after lapse of 2000 hours dropped 19.3 m 3 / day and 11%. Comparative Example 2 Using reverse osmosis membrane module unit A using membrane a-1 of Example 1, supplied with seawater (salt concentration: 3.5%) subjected to coagulated sand filtration, and separated at 63 atm. Was performed. 10 pp sodium hexametaphosphate in feed water
m, and the operation was performed with the ratio of the amount of permeated water to the amount of supplied seawater being 42%. The chlorine ion concentration of the permeated water was 306 ppm, and the concentration of boron was 1.3 ppm. It exceeded the guideline value of the tap water quality monitoring item. Comparative Example 3 In Comparative Example 2, the pH was adjusted to 9 by injecting an alkali into the feed water. As a result, a large amount of divalent cation hydroxide was precipitated, and the amount of permeated water of the reverse osmosis membrane module unit A was sharply reduced, so that the operation became impossible.
【0048】[0048]
【発明の効果】本発明により、高濃度溶液、特に海水か
ら高い回収率、少ないエネルギーで、より安価に、かつ
ホウ素濃度を十分除去した低濃度溶液を安定に得ること
ができる装置および分離方法を提供することができる。According to the present invention, there is provided an apparatus and a separation method capable of stably obtaining a low-concentration solution from a high-concentration solution, particularly from seawater, at a high recovery rate, with a small amount of energy, at a lower cost and with a sufficient boron concentration removed. Can be provided.
【図1】ユニット構成{B→A}がである場合の膜分離
装置のフロー図である。(実施例1)FIG. 1 is a flowchart of a membrane separation apparatus in a case where a unit configuration is {B → A}. (Example 1)
【図2】ユニット構成{B→A(濃縮水)→A}である
場合の膜分離装置のフロー図である。(実施例2)FIG. 2 is a flow chart of the membrane separation apparatus in the case of unit configuration {B → A (concentrated water) → A}. (Example 2)
【図3】 スケール防止手段を有するユニット構成{A
(濃縮水)→B}がである場合の膜分離装置のフロー図
である。(実施例3)FIG. 3 is a unit configuration having scale prevention means.
It is a flow figure of the membrane separation device when (concentrated water) → B}. (Example 3)
1:高濃度溶液(例:海水) 2:前処理部分 3:加圧ポンプ 4:膜aを用いた逆浸透膜モジュールユニットA 5:膜aを用いた逆浸透膜モジュールユニットAの濃縮
水 6:膜aを用いた逆浸透膜モジュールユニットAの透過
水 7:膜bを用いたルースRO膜モジュールユニットB 8:膜bを用いたルースRO膜モジュールユニットBの
濃縮水 9:膜bを用いたルースRO膜モジュールユニットBの
透過水 10:スケール防止剤添加手段1: High-concentration solution (eg, seawater) 2: Pretreatment part 3: Pressurizing pump 4: Reverse osmosis membrane module unit A using membrane a 5: Concentrated water of reverse osmosis membrane module unit A using membrane a 6 : Permeate water of reverse osmosis membrane module unit A using membrane a 7: Loose RO membrane module unit B using membrane b 8: Concentrated water of loose RO membrane module unit B using membrane b 9: Use membrane b Permeated water of loose RO membrane module unit B 10: Means for adding scale inhibitor
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/44 C02F 1/44 G K 5/00 610 5/00 610F 620 620B 620C 5/08 5/08 F 5/10 620 5/10 620A 620Z 630 630 5/12 5/12 (72)発明者 池田 敏裕 滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内 (72)発明者 栗原 優 滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/44 C02F 1/44 G K 5/00 610 5/00 610F 620 620B 620C 5/08 5/08 F5 / 10 620 5/10 620A 620Z 630 630 5/12 5/12 (72) Inventor Toshihiro Ikeda 1-1-1, Sonoyama, Otsu, Shiga Prefecture Toray Industries, Inc. Shiga Plant (72) Inventor Yu Kurihara 1-1-1, Sonoyama, Otsu City, Shiga Prefecture Toray Industries, Inc. Shiga Plant
Claims (17)
食塩水を圧力56kgf/cm2で供給したときの塩排
除率が90%以上である膜aを用いた逆浸透膜モジュー
ルユニットAと、温度25℃、pH6.5、濃度1,5
00ppmの食塩水を圧力15kgf/cm2で供給し
たときの透過流束が0.8m3/m2・日以上である膜b
を用いたルースRO膜モジュールユニットBとを多段に
配置したことを特徴とする膜分離装置。1. A reverse osmosis membrane module using a membrane a having a salt rejection of 90% or more when a saline solution having a temperature of 25 ° C., a pH of 6.5 and a concentration of 3.5% is supplied at a pressure of 56 kgf / cm 2. Unit A, temperature 25 ° C, pH 6.5, concentration 1,5
A membrane b having a permeation flux of 0.8 m 3 / m 2 · day or more when 00 ppm saline is supplied at a pressure of 15 kgf / cm 2.
A loose RO membrane module unit B using a plurality of units.
請求項1に記載の膜分離装置。2. The operation pressure of the membrane a is 50 atm or more.
The membrane separation device according to claim 1.
00ppmの食塩水を圧力5kgf/cm2で供給した
ときの透過流束が0.5m3/m2・日以上である、請求
項1または2に記載の膜分離装置。3. The film b has a temperature of 25 ° C., a pH of 6.5, and a concentration of 5.
3. The membrane separation device according to claim 1, wherein the permeation flux when supplying 00 ppm saline at a pressure of 5 kgf / cm 2 is 0.5 m 3 / m 2 · day or more.
00ppmの食塩水を圧力5kgf/cm2で供給した
ときの塩排除率が80%以下であり、かつ、温度25
℃、pH6.5、濃度1,000ppmの硫酸マグネシ
ウム水溶液を圧力5kgf/cm2で供給したときの塩
排除率が90%以上である、請求項1〜3のいずれかに
記載の膜分離装置。4. The film b has a temperature of 25 ° C., a pH of 6.5, and a concentration of 5.
When a salt solution of 00 ppm is supplied at a pressure of 5 kgf / cm 2 , the salt rejection is 80% or less, and the temperature is 25%.
° C., pH 6.5, salt rejection rate when supplying the aqueous solution of magnesium sulfate concentration 1,000ppm pressure 5 kgf / cm 2 is 90% or more, the membrane separation apparatus according to claim 1.
ルースRO膜モジュールユニットBに供給する、請求項
1〜4のいずれかに記載の膜分離装置。5. The membrane separation device according to claim 1, wherein the permeated water of the reverse osmosis membrane module unit A is supplied to the loose RO membrane module unit B.
水を逆浸透膜モジュールユニットAに供給する、請求項
1〜4のいずれかに記載の膜分離装置。6. The membrane separation apparatus according to claim 1, wherein the permeated water of the loose RO membrane module unit B is supplied to the reverse osmosis membrane module unit A.
pHを9以上に調整するための装置を設けた、請求項6
に記載の膜分離装置。7. An apparatus for adjusting the pH of the supply water of the reverse osmosis membrane module unit A to 9 or more.
5. The membrane separation device according to item 1.
ルースRO膜モジュールユニットBに供給する、請求項
1〜4のいずれかに記載の膜分離装置。8. The membrane separation device according to claim 1, wherein the concentrated water of the reverse osmosis membrane module unit A is supplied to the loose RO membrane module unit B.
ルースRO膜モジュールユニットBに供給し、ルースR
O膜モジュールユニットBの透過水を逆浸透膜モジュー
ルユニットAの供給水に混合する、請求項1〜4のいず
れかに記載の膜分離装置。9. The concentrated water of the reverse osmosis membrane module unit A is supplied to the loose RO membrane module unit B,
The membrane separation device according to any one of claims 1 to 4, wherein the permeated water of the O membrane module unit B is mixed with the supply water of the reverse osmosis membrane module unit A.
配置し、かつ前段の逆浸透膜モジュールユニットの濃縮
水を次段の逆浸透膜モジュールユニットに供給する、請
求項5〜9のいずれかに記載の膜分離装置。10. The reverse osmosis membrane module unit A is arranged in multiple stages, and the concentrated water of the previous stage reverse osmosis membrane module unit is supplied to the next stage reverse osmosis membrane module unit. The membrane separation device as described in the above.
段に配置し、かつ前段のルースRO膜モジュールユニッ
トの透過水を次段のルースRO膜モジュールユニットに
供給する、請求項5〜10のいずれかに記載の膜分離装
置。11. The loose RO membrane module unit B according to claim 5, wherein the loose RO membrane module units B are arranged in multiple stages, and the permeated water of the preceding loose RO membrane module unit is supplied to the next loose RO membrane module unit. The membrane separation device as described in the above.
た、請求項1〜11のいずれかに記載の膜分離装置。12. The membrane separation device according to claim 1, further comprising a device for adding a scale inhibitor.
で処理する装置を設けた、請求項1〜12のいずれかに
記載の膜分離装置。13. The membrane separation apparatus according to claim 1, further comprising an apparatus for treating the first-stage supply water with a backwashable ultrafiltration membrane.
を用いることを特徴とするの高濃度溶液の分離方法。14. A method for separating a high-concentration solution, comprising using the apparatus according to claim 1.
量に対する透過水量の割合が40%を越える、請求項1
4に記載の高濃度溶液の分離方法。15. The ratio of the amount of permeated water to the amount of water supplied to the reverse osmosis membrane module unit A exceeds 40%.
5. The method for separating a high-concentration solution according to 4.
液である、請求項14または15に記載の高濃度溶液の
分離方法。16. The method for separating a high-concentration solution according to claim 14, wherein the high-concentration solution is a solution having a solute concentration of 0.5% or more.
16のいずれかに記載の高濃度溶液の分離方法。17. The high concentration solution is seawater.
16. The method for separating a high-concentration solution according to any one of 16.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001068121A JP2001269544A (en) | 1994-12-02 | 2001-03-12 | Membrane separation device and method for separating highly concentrated solution |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-299856 | 1994-12-02 | ||
JP29985694 | 1994-12-02 | ||
JP2001068121A JP2001269544A (en) | 1994-12-02 | 2001-03-12 | Membrane separation device and method for separating highly concentrated solution |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31424595A Division JP3593765B2 (en) | 1994-12-02 | 1995-12-01 | Reverse osmosis membrane separation apparatus and method for seawater |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001269544A true JP2001269544A (en) | 2001-10-02 |
Family
ID=26562101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001068121A Pending JP2001269544A (en) | 1994-12-02 | 2001-03-12 | Membrane separation device and method for separating highly concentrated solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001269544A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006181397A (en) * | 2004-08-10 | 2006-07-13 | Kurita Water Ind Ltd | Method and apparatus for treating wastewater containing organic matter and oxidizing agent |
JP2008253953A (en) * | 2007-04-09 | 2008-10-23 | Nitto Denko Corp | Membrane separation method and membrane separation apparatus |
JP2010029757A (en) * | 2008-07-25 | 2010-02-12 | Miura Co Ltd | Membrane filtration system, and operating method of membrane filtration system |
CN107479375A (en) * | 2017-07-28 | 2017-12-15 | 天津城建大学 | Regulate and control the method for step pressurised seawater desalination system Element Flux balance degree |
JP2019076827A (en) * | 2017-10-24 | 2019-05-23 | 住友電気工業株式会社 | Water treatment equipment and water treatment method |
KR20190062582A (en) * | 2016-11-18 | 2019-06-05 | 오르가노 코포레이션 | Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method |
WO2023276586A1 (en) * | 2021-06-29 | 2023-01-05 | 住友化学株式会社 | Membrane separation method, and method for manufacturing loose ro membrane |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS523580A (en) * | 1975-06-27 | 1977-01-12 | Ebara Infilco Co Ltd | Membrane separating method |
JPS5358974A (en) * | 1976-11-10 | 1978-05-27 | Ebara Infilco Co Ltd | Separating method by use of membrane |
JPS5483688A (en) * | 1977-12-16 | 1979-07-03 | Kurita Water Ind Ltd | Desalting apparatus of sea water |
JPS54124875A (en) * | 1978-03-23 | 1979-09-28 | Mitsui Toatsu Chem Inc | Concentrating solution |
JPS5531459A (en) * | 1978-08-28 | 1980-03-05 | Futoshi Norimura | Sea water desalination apparatus of two-stage permeation system |
JPS55109406A (en) * | 1979-02-14 | 1980-08-22 | Toray Ind Inc | Liquid separating system |
JPS59213489A (en) * | 1983-05-19 | 1984-12-03 | Kurita Water Ind Ltd | Treatment of water containing boron |
JPS61200810A (en) * | 1985-02-28 | 1986-09-05 | Kurita Water Ind Ltd | Membrane separation apparatus |
JPS6291287A (en) * | 1985-10-16 | 1987-04-25 | Hitachi Ltd | Pure water production equipment |
JPS62102887A (en) * | 1985-10-30 | 1987-05-13 | Toyo Soda Mfg Co Ltd | Separation of seawater |
JPH0461983A (en) * | 1990-06-25 | 1992-02-27 | Kawasaki Heavy Ind Ltd | Salt water treatment method and equipment |
JPH0494726A (en) * | 1990-08-09 | 1992-03-26 | Toray Ind Inc | Semipermeable dual membrane, its production and production of high-purity water |
JPH04150923A (en) * | 1990-10-12 | 1992-05-25 | Kawasaki Heavy Ind Ltd | Method and device for concentrating solution by reverse osmosis membrane |
JPH06210140A (en) * | 1993-01-19 | 1994-08-02 | Japan Organo Co Ltd | Membrane separator |
-
2001
- 2001-03-12 JP JP2001068121A patent/JP2001269544A/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS523580A (en) * | 1975-06-27 | 1977-01-12 | Ebara Infilco Co Ltd | Membrane separating method |
JPS5358974A (en) * | 1976-11-10 | 1978-05-27 | Ebara Infilco Co Ltd | Separating method by use of membrane |
JPS5483688A (en) * | 1977-12-16 | 1979-07-03 | Kurita Water Ind Ltd | Desalting apparatus of sea water |
JPS54124875A (en) * | 1978-03-23 | 1979-09-28 | Mitsui Toatsu Chem Inc | Concentrating solution |
JPS5531459A (en) * | 1978-08-28 | 1980-03-05 | Futoshi Norimura | Sea water desalination apparatus of two-stage permeation system |
JPS55109406A (en) * | 1979-02-14 | 1980-08-22 | Toray Ind Inc | Liquid separating system |
JPS59213489A (en) * | 1983-05-19 | 1984-12-03 | Kurita Water Ind Ltd | Treatment of water containing boron |
JPS61200810A (en) * | 1985-02-28 | 1986-09-05 | Kurita Water Ind Ltd | Membrane separation apparatus |
JPS6291287A (en) * | 1985-10-16 | 1987-04-25 | Hitachi Ltd | Pure water production equipment |
JPS62102887A (en) * | 1985-10-30 | 1987-05-13 | Toyo Soda Mfg Co Ltd | Separation of seawater |
JPH0461983A (en) * | 1990-06-25 | 1992-02-27 | Kawasaki Heavy Ind Ltd | Salt water treatment method and equipment |
JPH0494726A (en) * | 1990-08-09 | 1992-03-26 | Toray Ind Inc | Semipermeable dual membrane, its production and production of high-purity water |
JPH04150923A (en) * | 1990-10-12 | 1992-05-25 | Kawasaki Heavy Ind Ltd | Method and device for concentrating solution by reverse osmosis membrane |
JPH06210140A (en) * | 1993-01-19 | 1994-08-02 | Japan Organo Co Ltd | Membrane separator |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006181397A (en) * | 2004-08-10 | 2006-07-13 | Kurita Water Ind Ltd | Method and apparatus for treating wastewater containing organic matter and oxidizing agent |
JP2008253953A (en) * | 2007-04-09 | 2008-10-23 | Nitto Denko Corp | Membrane separation method and membrane separation apparatus |
WO2008126777A1 (en) * | 2007-04-09 | 2008-10-23 | Nitto Denko Corporation | Method of membrane separation and membrane separation apparatus |
CN101646482B (en) * | 2007-04-09 | 2012-08-22 | 日东电工株式会社 | Method of membrane separation and membrane separation apparatus |
US8404119B2 (en) | 2007-04-09 | 2013-03-26 | Nitto Denko Corporation | Method of membrane separation and membrane separation apparatus |
JP2010029757A (en) * | 2008-07-25 | 2010-02-12 | Miura Co Ltd | Membrane filtration system, and operating method of membrane filtration system |
KR102358382B1 (en) * | 2016-11-18 | 2022-02-04 | 오르가노 코포레이션 | Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method |
US12303833B2 (en) | 2016-11-18 | 2025-05-20 | Organo Corporation | Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method |
KR20190062582A (en) * | 2016-11-18 | 2019-06-05 | 오르가노 코포레이션 | Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method |
CN107479375A (en) * | 2017-07-28 | 2017-12-15 | 天津城建大学 | Regulate and control the method for step pressurised seawater desalination system Element Flux balance degree |
CN107479375B (en) * | 2017-07-28 | 2020-07-28 | 天津城建大学 | Method for regulating and controlling flux equilibrium degree of elements of step-pressurized seawater desalination system |
JP2019076827A (en) * | 2017-10-24 | 2019-05-23 | 住友電気工業株式会社 | Water treatment equipment and water treatment method |
WO2023276586A1 (en) * | 2021-06-29 | 2023-01-05 | 住友化学株式会社 | Membrane separation method, and method for manufacturing loose ro membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100204608B1 (en) | Reverse osmosis separator and reverse osmosis separation method | |
JP6971992B2 (en) | Osmotic pressure assisted reverse osmosis process and its usage | |
JP3593765B2 (en) | Reverse osmosis membrane separation apparatus and method for seawater | |
CN107206320B (en) | Concentration of brine | |
CN211311217U (en) | Zero liquid discharge system | |
JP2008100220A (en) | Method for producing freshwater | |
WO2012098969A1 (en) | Method for cleaning membrane module, method of fresh water generation, and fresh water generator | |
JP2003154362A (en) | Method and apparatus for treating water | |
JP3319321B2 (en) | Fresh water generator and method for removing boron from water | |
JP2000093751A (en) | Reverse osmosis separation device and reverse osmosis separation method | |
JP2001269543A (en) | Membrane separation device and method for separating highly concentrated solution | |
JPWO2014115769A1 (en) | Operation method of fresh water production equipment | |
EP1894612B1 (en) | Method for purifying water by means of a membrane filtration unit | |
JP4187316B2 (en) | Reverse osmosis membrane separation apparatus and reverse osmosis membrane separation method | |
JP2003200160A (en) | Water making method and water making apparatus | |
JPH09248429A (en) | Separation method and apparatus therefor | |
JP2001269544A (en) | Membrane separation device and method for separating highly concentrated solution | |
JP2008542002A (en) | Improved method for desalination | |
Liu | Advanced treatment of biologically treated heavy oil wastewater for reuse as boiler feed-water by combining ultrafiltration and nanofiltration | |
JP3963304B2 (en) | Reverse osmosis separation method | |
JP2003117553A (en) | Method and apparatus for producing fresh water | |
JPH09276863A (en) | Reverse osmosis separation apparatus and method therefor | |
JPH09155344A (en) | Method for desalination of brackish water and apparatus therefor | |
JP2002085944A (en) | Ion selective separator, fluid treatment equipment including the same and fluid separation process | |
JP2002058967A (en) | Reverse osmotic separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040309 |