JP2001267772A - Heat dissipation structure of electronic components - Google Patents
Heat dissipation structure of electronic componentsInfo
- Publication number
- JP2001267772A JP2001267772A JP2000072701A JP2000072701A JP2001267772A JP 2001267772 A JP2001267772 A JP 2001267772A JP 2000072701 A JP2000072701 A JP 2000072701A JP 2000072701 A JP2000072701 A JP 2000072701A JP 2001267772 A JP2001267772 A JP 2001267772A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- housing
- electronic component
- heat pipe
- heat radiating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
(57)【要約】
【課題】 放熱効果の改善された電子部品の放熱構造を
提供する。
【解決手段】 高周波電力増幅器10が筐体16に収容
され、筐体16は蛇行細管ヒートパイプ20を介して放
熱部材18に接合される。筐体16は切削加工時の熱歪
みにより、隙間Cを生じうるが、取り付け時の圧着によ
るヒートパイプ20の変形によって、ヒートパイプ20
は隙間Cの形状に倣った形状に変化し、隙間Cが解消さ
れ、ヒートパイプ20は反りを生じた溝部16dとY方
向全面にわたって密接される。ヒートパイプ20の外面
に被覆された軟質めっき22が圧着によって軟化変形
し、流動することによって、隙間Cをさらに確実に閉塞
する。
(57) [Problem] To provide a heat dissipation structure for an electronic component with an improved heat dissipation effect. A high-frequency power amplifier is housed in a housing, and the housing is joined to a heat radiating member via a meandering thin-tube heat pipe. The housing 16 may generate a gap C due to thermal distortion during cutting, but due to deformation of the heat pipe 20 due to compression during mounting, the heat pipe 20
Changes to a shape following the shape of the gap C, the gap C is eliminated, and the heat pipe 20 is in close contact with the warped groove 16d over the entire surface in the Y direction. The soft plating 22 coated on the outer surface of the heat pipe 20 is softened and deformed by pressure bonding and flows, thereby closing the gap C more reliably.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電子部品の放熱構
造に関する。The present invention relates to a heat dissipation structure for electronic components.
【0002】[0002]
【従来の技術】近年、情報機器、移動体通信機器、放送
機器等の電子機器のデジタル化、広帯域化、大容量化が
進展している。これに伴い、これらの電子機器に用いら
れる電子部品の回路の高集積化、信号増幅器の低歪み化
要求に応えるべく、大電力信号部分にも多数の半導体素
子を実装することが求められている。この場合、電子機
器の小型化は必至であり、このため、半導体素子から発
生する熱を小型の放熱装置を用いて効率的に除去するこ
とが必要とされる。2. Description of the Related Art In recent years, digitalization, broadband, and large capacity of electronic devices such as information devices, mobile communication devices, and broadcast devices have been developed. Along with this, it is required to mount a large number of semiconductor elements also in a high power signal portion in order to respond to demands for higher integration of circuits of electronic components used in these electronic devices and lower distortion of signal amplifiers. . In this case, downsizing of the electronic device is inevitable, and therefore, it is necessary to efficiently remove the heat generated from the semiconductor element by using a small radiator.
【0003】特に、今後の情報化社会では、移動体通信
(CDMA)の一層の利用拡大が期待されており、この
場合、基地局の電力増幅部は信号の線形性と低歪み化の
要請から大きなバックオフを取った領域で使用されるた
めに、電力効率が非常に悪い。このため、電力増幅部か
らの発熱量は従来のものとは比較にならないほどに大き
くなっており、効率的な放熱構造を設ける必要性がより
大きい。[0003] In particular, in the information society in the future, further expansion of the use of mobile communication (CDMA) is expected. In this case, the power amplification section of the base station is required to reduce signal linearity and reduce distortion. Power efficiency is very poor because it is used in areas with large backoffs. For this reason, the amount of heat generated from the power amplifying unit is so large as to be incomparable with the conventional one, and there is a greater need to provide an efficient heat dissipation structure.
【0004】これらの電子部品の放熱構造として、通
常、良熱伝導性材料からなるフィン付き放熱部材等が電
子部品に密着して設けられる。As a heat radiating structure for these electronic components, a finned heat radiating member made of a material having good thermal conductivity is usually provided in close contact with the electronic components.
【0005】例えば、上記した基地局の電力増幅部とし
て用いられる高周波電力増幅器9の場合、一例として、
図1〜図3に示すように構成される。For example, in the case of the high-frequency power amplifier 9 used as the power amplifier of the above-described base station, as an example,
It is configured as shown in FIGS.
【0006】同軸コネクタ8aから入力された高周波信
号は、回路基板1aに実装された図示しないインピーダ
ンス変換回路、バイアス回路等を介して半導体素子(F
ET)2aに伝送され、所定のレベルに増幅される。増
幅後の信号は、回路基板1bに実装された図示しない分
配回路で分岐されてそれぞれ半導体素子(FET)2
b、2cに伝送され、所定のレベルに増幅される。増幅
後の信号は、回路基板1cに実装された図示しない合成
回路で合成され、同軸コネクタ8bおよび図示しない同
軸ケーブルを介して、図示しないアンテナに伝送され
る。A high-frequency signal input from the coaxial connector 8a receives a semiconductor element (F) via an impedance conversion circuit, a bias circuit and the like (not shown) mounted on the circuit board 1a.
ET) 2a and amplified to a predetermined level. The amplified signal is branched by a distribution circuit (not shown) mounted on the circuit board 1b, and is divided into semiconductor elements (FETs) 2 respectively.
b, 2c and amplified to a predetermined level. The amplified signal is combined by a combining circuit (not shown) mounted on the circuit board 1c and transmitted to an antenna (not shown) via the coaxial connector 8b and a coaxial cable (not shown).
【0007】この高周波電力増幅器9は、動作時に、最
終段である2個の半導体素子2b、2cにおいて大きな
発熱を生じる。また、最終段の駆動段となる半導体素子
2aにおいても発熱を生じ、これらの半導体素子2a〜
cにおいて局部的に集中して発生する熱の合計量は、高
周波電力増幅器9における総発熱量の大半、例えば、9
0%程度を占める。The high-frequency power amplifier 9 generates a large amount of heat in the last two semiconductor elements 2b and 2c during operation. Further, heat is also generated in the semiconductor element 2a which is the last driving stage, and these semiconductor elements 2a to 2a are generated.
c, the total amount of heat generated locally and concentrated is most of the total heat generation in the high-frequency power amplifier 9, for example, 9
Occupies about 0%.
【0008】発生した熱を取り除くために、半導体素子
2a〜2c等を実装した回路基板1a〜1cは、例え
ば、良熱伝導性を有するアルミニウム合金等の材料から
なる筐体3の内部に収容される。この場合、3つの回路
基板1a〜1cが平面的に配置されているため、筐体3
は底面3aの面積の広い箱型状に形成されている。筐体
3は、底面3aの外側に、熱伝導性の、例えば、シリコ
ンコンパウンド4が塗布され、多数のフィン5aを設け
た放熱部材5が取り付けられる。そして、半導体素子2
a〜2c等から発生した熱は、筐体3を介して放熱部材
5から放熱される。In order to remove the generated heat, the circuit boards 1a to 1c on which the semiconductor elements 2a to 2c and the like are mounted are housed in a housing 3 made of a material such as an aluminum alloy having good thermal conductivity. You. In this case, since the three circuit boards 1a to 1c are arranged in a plane, the housing 3
Are formed in a box shape having a large area of the bottom surface 3a. The housing 3 is provided with a heat conductive member, for example, a silicon compound 4 applied to the outside of the bottom surface 3a, and a heat radiating member 5 provided with a large number of fins 5a. And the semiconductor element 2
The heat generated from a to 2c and the like is radiated from the heat radiation member 5 through the housing 3.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、上記し
た従来の高周波電力増幅器9の場合、相対的に狭小な平
面を有する半導体素子2a〜2cから発生した熱は、主
に、相対的に広大な平面を有する筐体3の全体に熱伝導
(熱拡散)された後、筐体3の平面の各部位において放
熱部材5に熱伝達され、またその残余の熱は、筐体3の
平面の各部位において放熱部材5に直接に熱伝達された
後、相対的に広大な平面を有する放熱部材5の全体に熱
伝導(熱拡散)され、最終的に、放熱部材5の全面から
多数のフィン5aを介して放熱される。このため、相対
的に広大な平面を有する筐体3あるいは放熱部材5の内
部における熱伝導(熱拡散)が十分に行われず、放熱部
材5の性能を十分に引き出すに至らないという不具合が
ある。However, in the case of the conventional high-frequency power amplifier 9 described above, the heat generated from the semiconductor elements 2a to 2c having a relatively narrow plane is mainly due to the relatively large plane. After being thermally conducted (heat-diffused) to the entire case 3 having the above, heat is transferred to the heat radiating member 5 at each part of the plane of the case 3, and the remaining heat is transmitted to each part of the plane of the case 3. After the heat is directly transmitted to the heat dissipating member 5, the heat dissipating (heat diffusing) is performed on the entire heat dissipating member 5 having a relatively large flat surface. Heat is dissipated through. Therefore, heat conduction (heat diffusion) inside the casing 3 or the heat radiating member 5 having a relatively large flat surface is not sufficiently performed, and there is a problem that the performance of the heat radiating member 5 is not sufficiently brought out.
【0010】また、上記した従来の高周波電力増幅器9
の場合、筐体3は、アルミニウム合金からなる厚板素材
を切削加工して箱型状に形成するとともに、その内部に
回路基板1a〜1cを収容するための凹部3bが形成さ
れるが、その切削加工の際に、厚板素材の内面と外面と
の冷却速度の違いによって熱応力が残留し、加工後、そ
の熱応力が開放されると、外面が収縮して反りを生じ、
筐体3の底面3a表面と放熱部材5の上面との間に隙間
Cを生じることがある(図4参照)。この隙間Cは接触
熱抵抗(部材間の接触部に存在する伝熱抵抗)となり、
放熱効果をさらに阻害する。In addition, the above-mentioned conventional high-frequency power amplifier 9
In the case of, the casing 3 is formed into a box shape by cutting a thick plate material made of an aluminum alloy, and a concave portion 3b for accommodating the circuit boards 1a to 1c is formed therein. During cutting, thermal stress remains due to the difference in cooling rate between the inner surface and the outer surface of the thick plate material, and after the processing, when the thermal stress is released, the outer surface contracts and warps,
There may be a gap C between the bottom surface 3a of the housing 3 and the top surface of the heat radiating member 5 (see FIG. 4). This gap C becomes a contact heat resistance (a heat transfer resistance existing at a contact portion between members),
Further inhibits the heat dissipation effect.
【0011】本発明は、上記の課題に鑑みてなされたも
のであり、放熱効果の改善された電子部品の放熱構造を
提供することを目的とする。The present invention has been made in view of the above problems, and has as its object to provide a heat dissipation structure for an electronic component having an improved heat dissipation effect.
【0012】[0012]
【課題を解決するための手段】本発明に係る電子部品の
放熱構造は、電子部品を、少なくとも一面が良熱伝導性
材料からなる筐体内に収容し、該一面の外側に放熱部材
を設け、該電子部品から発生する熱を該筐体を介して該
放熱部材から放熱する電子部品の放熱構造において、該
筐体と該放熱部材との間に、蛇行細管からなるヒートパ
イプが設けられ、 該ヒートパイプは、該筐体と該放熱
部材の間で圧着されて扁平に変形していることを特徴と
する(請求項1に係る発明)。According to the present invention, there is provided a heat radiating structure for an electronic component, wherein the electronic component is housed in a housing having at least one surface made of a good heat conductive material, and a heat radiating member is provided outside the one surface. In the heat radiating structure of the electronic component that radiates heat generated from the electronic component from the heat radiating member through the housing, a heat pipe including a meandering thin tube is provided between the housing and the heat radiating member. The heat pipe is crimped between the housing and the heat radiating member and is deformed flat (the invention according to claim 1).
【0013】これにより、電子部品の狭小な平面を持つ
半導体素子等の発熱源から発生する熱が筐体の平面上に
拡散する過程で平面上の熱分布に偏りを生じたときに、
筐体と放熱部材の間に蛇行細管からなるヒートパイプを
設けることで、熱分布の偏りを駆動源としてヒートパイ
プの作業媒体が流動し、ヒートパイプの全体に熱が均一
に効率的に拡散されるため、ヒートパイプを介して放熱
部材の平面上の各部位に熱が均一かつ効率的に伝達さ
れ、放熱部材の機能を十分に発揮して、良好な放熱効果
を得ることができる。また、ヒートパイプが筐体と放熱
部材の間の隙間形状に倣って筐体および放熱部材に密接
するため、部材間の隙間として存在していた接触熱抵抗
箇所が解消され、より良好に熱伝達が図られる。Accordingly, when heat generated from a heat source such as a semiconductor element having a narrow flat surface of the electronic component is diffused on the flat surface of the housing, and the heat distribution on the flat surface is biased,
By providing a heat pipe consisting of a meandering thin tube between the housing and the heat dissipating member, the work medium of the heat pipe flows with the bias of the heat distribution as a driving source, and the heat is uniformly and efficiently diffused throughout the heat pipe. Therefore, heat is uniformly and efficiently transmitted to each part on the plane of the heat radiating member via the heat pipe, and the function of the heat radiating member can be sufficiently exhibited to obtain a good heat radiating effect. In addition, since the heat pipe closely follows the shape of the gap between the housing and the heat dissipating member, the contact heat resistance portion that was present as a gap between the members is eliminated, and the heat transfer is further improved. Is achieved.
【0014】この場合、前記蛇行細管からなるヒートパ
イプは、主にターン部と直管部とから構成され、該ター
ン部が該直管部より細径に形成されていると(請求項4
に係る発明)、ターン部の変形等を防止するのに必要な
所定の曲率半径を確保しつつターン部を介して隣接する
直管部間の距離を小さくすることができるため、ヒート
パイプのそれぞれの直管部が相互に確実に密着して整列
され、接触熱抵抗箇所が解消され、より良好な熱伝達効
果を得ることができる。In this case, the heat pipe composed of the meandering thin tube is mainly composed of a turn portion and a straight tube portion, and the turn portion is formed to have a smaller diameter than the straight tube portion.
Invention), the distance between adjacent straight pipe portions via the turn portion can be reduced while securing a predetermined radius of curvature necessary for preventing deformation and the like of the turn portion. The straight pipe portions are surely in close contact with each other and are aligned, the contact heat resistance portion is eliminated, and a better heat transfer effect can be obtained.
【0015】また、この場合、前記蛇行細管からなるヒ
ートパイプは、前記電子部品を収容するために形成され
た前記筐体の電子部品収容部よりも広幅に設けられ、該
筐体は該蛇行細管ヒートパイプの広幅部分に対応して拡
張部をさらに形成していると(請求項5に係る発明)、
より好適である。ここで、広幅とは、平面上の四方のう
ち対向する2方向に広い場合および四方すべての方向に
広い場合の双方をいう。[0015] In this case, the heat pipe formed of the meandering thin tube is provided wider than an electronic component accommodating portion of the housing formed to house the electronic component. When the expansion portion is further formed corresponding to the wide portion of the heat pipe (the invention according to claim 5),
More preferred. Here, the term “wide” refers to both the case where the width is wide in two opposing directions and the case where the width is wide in all four directions.
【0016】また、この場合、前記筐体と前記放熱部材
の間に、圧着による前記蛇行細管からなるヒートパイプ
の変形量を調整するためのスペーサ部材を設けていると
(請求項6に係る発明)、ヒートパイプの変形量を所望
の値に調整することができて好適である。また、筐体を
放熱部材に組付ける際に、誤って、例えば、締結部材を
締め付けすぎて蛇行細管ヒートパイプを圧潰するおそれ
もない。ここで、スペーサ部材は、筐体等とは格別に独
立した部材として設けてもよく、また、筐体等の一部と
して設けてもよい。Further, in this case, a spacer member is provided between the housing and the heat radiating member for adjusting a deformation amount of the heat pipe formed of the meandering thin tube by crimping (the invention according to claim 6). ), The amount of deformation of the heat pipe can be adjusted to a desired value, which is preferable. Further, when assembling the housing to the heat radiating member, there is no possibility that the meandering thin tube heat pipe is crushed by mistake, for example, by excessively tightening the fastening member. Here, the spacer member may be provided as a member that is exceptionally independent of the housing or the like, or may be provided as a part of the housing or the like.
【0017】また、本発明に係る電子部品の放熱構造に
おいて、上記蛇行細管からなるヒートパイプに代えて、
並列に複数のヒートパイプを設けてもよい(請求項2に
係る発明)。Further, in the heat dissipation structure for an electronic component according to the present invention, instead of the heat pipe comprising the meandering thin tube,
A plurality of heat pipes may be provided in parallel (the invention according to claim 2).
【0018】また、本発明に係る電子部品の放熱構造に
おいて、前記ヒートパイプは、前記筐体と前記放熱部材
との間に取り付けるに先立ち、予め少なくとも一部が軟
質はんだで被覆されていると(請求項3に係る発明)、
ヒートパイプが筐体と放熱部材の間で圧着されたとき
に、軟質はんだが軟化変形して流動し、接触熱抵抗箇所
としての隙間がより確実に解消され、筐体と放熱部材の
間においてより良好な熱伝達効果を得ることができる。
ここで、軟質はんだとは、軟化点が93〜183℃の範
囲のはんだ金属をいう。In the heat radiating structure for an electronic component according to the present invention, at least a part of the heat pipe is previously coated with a soft solder before being attached between the housing and the heat radiating member. The invention according to claim 3),
When the heat pipe is pressed between the housing and the heat dissipating member, the soft solder is softened and deformed and flows, and the gap as the contact heat resistance portion is more reliably eliminated, and the heat soldering member is disposed between the housing and the heat dissipating member. A good heat transfer effect can be obtained.
Here, the soft solder refers to a solder metal having a softening point in the range of 93 to 183 ° C.
【0019】[0019]
【発明の実施の形態】本発明に係る電子部品の放熱構造
の好適な実施の形態(以下、本実施の形態例という。)
について、電子部品として従来例で説明した高周波電力
増幅器を例にとって、図を参照して、以下に説明する。
なお、従来例と同一の構成要素については、重複する説
明を省略することがある。BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of a heat dissipation structure for an electronic component according to the present invention (hereinafter, referred to as an embodiment).
This will be described below with reference to the drawings, taking the high-frequency power amplifier described in the conventional example as an example of an electronic component.
Note that, for the same components as those in the conventional example, duplicate description may be omitted.
【0020】本実施の形態例に係る電子部品の放熱構造
について、図5の高周波電力増幅器の平面図、図6の高
周波電力増幅器の断面図、図7の高周波電力増幅器の右
側面図および図8の蛇行細管ヒートパイプの平面図を参
照して説明する。FIG. 5 is a plan view of the high-frequency power amplifier, FIG. 6 is a cross-sectional view of the high-frequency power amplifier, FIG. 7 is a right side view of the high-frequency power amplifier, and FIG. This will be described with reference to a plan view of the meandering thin tube heat pipe.
【0021】高周波電力増幅器10は、回路基板12a
〜12c、半導体素子(FET)14a〜14cおよび
各回路基板12a〜12c上に実装される図示しない各
回路から構成され、さらに、高周波電力増幅器10は、
同軸コネクタ11a等に接続される(図5参照)。従来
例で説明したように、高周波電力増幅器10は、動作時
において、半導体素子14a〜14cが主要な発熱源と
なる。The high frequency power amplifier 10 includes a circuit board 12a
To 12c, semiconductor elements (FETs) 14a to 14c, and circuits (not shown) mounted on the circuit boards 12a to 12c.
It is connected to the coaxial connector 11a and the like (see FIG. 5). As described in the conventional example, in the high-frequency power amplifier 10, during operation, the semiconductor elements 14a to 14c are main heat sources.
【0022】放熱構造として、従来例と同様に、筐体1
6および放熱部材18が設けられるとともに、さらに、
筐体16と放熱部材18との間に蛇行細管からなるヒー
トパイプ(伝熱クッションプレート:以下、単にヒート
パイプという。)20が設けられる。As the heat dissipation structure, as in the conventional example, the housing 1
6 and a heat dissipating member 18 are provided.
A heat pipe (heat transfer cushion plate: hereinafter simply referred to as a heat pipe) 20 composed of a meandering thin tube is provided between the housing 16 and the heat radiation member 18.
【0023】筐体16は、高周波電力増幅器10を収容
する電子部品収容部としての凹部16aが高周波電力増
幅器10の形状に合わせて形成されている。なお、凹部
16aの一部に複数の突設部16bが形成され、この突
設部16bが半導体素子14a〜14cと密着されて、
回路基板12a〜12cよりも図6中上方(Z1方向)
に浮いた状態で配置される半導体素子14a〜14cと
筐体16との密着性が確保されている。また、従来例と
異なり、図5中Y方向両側にそれぞれ幅ΔWの幅広部
(拡張部)16hが設けられている。そして、筐体16
の底面(底部)16cの外側、すなわち、凹部16aの
形成される側の反対側には、凹部16aの幅W1よりも
大きな幅W2の溝部16dが形成されている(図6、図
7参照)。なお、図6中、参照符号17は、回路基板1
2a〜12cおよび半導体素子14a〜14cを閉塞す
るための筐体16の蓋体を示す。The housing 16 has a recess 16 a as an electronic component housing for housing the high-frequency power amplifier 10, which is formed in accordance with the shape of the high-frequency power amplifier 10. A plurality of projecting portions 16b are formed in a part of the concave portion 16a, and the projecting portions 16b are in close contact with the semiconductor elements 14a to 14c,
6 (Z1 direction) above the circuit boards 12a to 12c.
Adhesion between the semiconductor elements 14a to 14c arranged in a floating state and the housing 16 is ensured. Further, unlike the conventional example, wide portions (extended portions) 16h having a width ΔW are provided on both sides in the Y direction in FIG. Then, the housing 16
A groove 16d having a width W2 larger than the width W1 of the concave portion 16a is formed outside the bottom surface (bottom portion) 16c, that is, on the side opposite to the side where the concave portion 16a is formed (see FIGS. 6 and 7). . In FIG. 6, reference numeral 17 denotes the circuit board 1.
3 shows a lid of a housing 16 for closing 2a to 12c and semiconductor elements 14a to 14c.
【0024】上記のように構成される筐体16は、例え
ば、アルミニウム合金等の良熱伝導性を有する材料から
なる厚板素材(素材)を用い、切削加工により凹部16
aおよび溝部16dが設けられるとともに、ほぼ箱型状
に形成される。The housing 16 configured as described above is made of, for example, a thick plate material (material) made of a material having good thermal conductivity such as an aluminum alloy, and is formed by cutting.
a and a groove 16d are provided, and are formed in a substantially box shape.
【0025】放熱部材18は、従来例で説明したものと
同様に、多数のフィン18aが設けられ、この場合、ア
ルミニウム材料を用いて形成される(図7参照)。The heat dissipating member 18 is provided with a large number of fins 18a in the same manner as described in the conventional example, and is formed using an aluminum material in this case (see FIG. 7).
【0026】ヒートパイプ20は、16本の直管部(ク
ッション伝熱管部)20aと、隣接する直管部20a、
20aをつなぐ曲管状のターン部(折り曲げ部)20b
とから略構成され、それらの最端部E1、E2はヘッダ
部20cにより接続されて循環ラインを形成している
(図8参照)。ヘッダ部20cにはヒートパイプ20内
に作動媒体を導入するための導入口20dが設けられて
いる。なお、上記したように、筐体16に幅広部16h
が設けられることによって溝部16eの幅W2が大きく
形成されているため、後述するようにこの溝部16eに
収容されるヒートパイプ20は、高周波電力増幅器10
の平面寸法に関わらず、図8中、Y方向の幅寸法が大き
く形成されたものを用いることができ、放熱効率を向上
させることができる。この場合、Y方向に代えてあるい
はY方向とともにX方向に幅寸法を大きくしてもよい。The heat pipe 20 has 16 straight pipe sections (cushion heat transfer pipe sections) 20a and adjacent straight pipe sections 20a,
20b, a curved tubular turn (bend) connecting 20a
These end portions E1 and E2 are connected by a header portion 20c to form a circulation line (see FIG. 8). The header portion 20c is provided with an introduction port 20d for introducing a working medium into the heat pipe 20. As described above, the wide portion 16h is attached to the housing 16.
Is provided, the width W2 of the groove 16e is formed large, so that the heat pipe 20 housed in the groove 16e is connected to the high-frequency power amplifier 10 as described later.
Regardless of the plane dimensions of FIG. 8, the one having a large width in the Y direction in FIG. 8 can be used, and the heat radiation efficiency can be improved. In this case, the width may be increased in the X direction instead of the Y direction or together with the Y direction.
【0027】ヒートパイプ20の作動媒体として、例え
ば、水を用いる。この場合、密封状態において気液混層
状態に維持するために減圧条件とする。したがって、高
温側に接した液状の水(液状の作動媒体)は受熱するこ
とにより気化し、一方、低温側に接した水蒸気(気体状
の作動媒体)は放熱することにより液化する。そして、
この層変化および密度変化を伴う水の流動によって、図
7中、ヒートパイプ20の上下間(Z方向)で熱が伝達
される。このとき、ヒートパイプ20の高温側の平面の
熱分布に偏りがあると、この熱分布の偏りが駆動源とな
って、例えば、高温点側に位置した水が気化して低温点
側に移動し(例えば、図8中、矢印方向に流動)、ヒー
トパイプ20の、図8中、X、Y方向の平面の全面にわ
ったって均一かつ迅速に熱が拡散される。ヒートパイプ
20の高温側の平面の熱分布が均一、すなわち、平面の
各部位において温度が均一化されると水の平面上におけ
る流動は停止する。そして、ヒートパイプ20全面の各
部位から均一に効率的に熱が放出される。なお、図8で
は、説明の便宜上、水が矢印の一方向に流動してヒート
パイプ20内を循環するように模式的(絵画的に)に示
しているが、ミクロ的にはヒートパイプ20の各部位に
おいて双方向に流動する。但し、この場合、ヒートパイ
プの端部を閉止する構造とすると、端部近傍での水の流
動が不充分となるため、上記のように循環構造とするこ
とが好適である。As a working medium of the heat pipe 20, for example, water is used. In this case, the pressure is reduced to maintain the gas-liquid mixed state in the sealed state. Therefore, liquid water (liquid working medium) in contact with the high-temperature side is vaporized by receiving heat, while water vapor (gaseous working medium) in contact with the low-temperature side is liquefied by releasing heat. And
Heat is transmitted between the upper and lower portions (Z direction) of the heat pipe 20 in FIG. At this time, if there is a bias in the heat distribution on the high temperature side plane of the heat pipe 20, this bias in the heat distribution becomes a driving source, for example, water located at the high temperature point vaporizes and moves to the low temperature point side. 8 (for example, flows in the direction of the arrow in FIG. 8), and the heat is uniformly and rapidly diffused over the entire surface of the heat pipe 20 in the X and Y directions in FIG. When the heat distribution on the flat surface on the high temperature side of the heat pipe 20 is uniform, that is, when the temperature is made uniform at each part of the flat surface, the flow of water on the flat surface stops. Then, heat is uniformly and efficiently released from each part of the entire surface of the heat pipe 20. In addition, in FIG. 8, for convenience of explanation, water is schematically (pictorially) shown to flow in one direction of the arrow and circulate in the heat pipe 20. It flows in both directions at each part. However, in this case, if the end of the heat pipe is closed, the flow of water near the end becomes insufficient, so that the circulation structure as described above is preferable.
【0028】上記のように構成されるヒートパイプ20
は、良熱伝導性を有し、かつ伸展性に優れる、例えば、
アルミニウムを材料とした、例えば、1〜2mmφ程度
のパイプを用いて、隣接する直管部20a、20aが整
列するようにして形成される。このとき、ターン部20
bは、隣接する直管部20a、20aが密接して整列す
るように、例えば、0.5〜1.0mmφ程度に径を細
く加工して折り曲げることによって形成される。なお、
ヒートパイプ20の肉厚は、例えば、0.1mm程度で
ある。The heat pipe 20 constructed as described above
Has good thermal conductivity and excellent extensibility, for example,
For example, using a pipe made of aluminum and having a diameter of about 1 to 2 mmφ, the adjacent straight pipe portions 20a are formed so as to be aligned. At this time, turn part 20
b is formed by processing and bending the diameter to about 0.5 to 1.0 mmφ so that the adjacent straight pipe portions 20a and 20a are closely aligned. In addition,
The thickness of the heat pipe 20 is, for example, about 0.1 mm.
【0029】高周波電力増幅器10を収容した筐体16
に上記ヒートパイプ20および放熱部材18を取り付け
る方法について、以下説明する。A housing 16 accommodating the high-frequency power amplifier 10
A method of attaching the heat pipe 20 and the heat radiating member 18 to the above will be described below.
【0030】ヒートパイプ20は、取り付けに際し、予
め、直管部20aの外面が、例えば、軟化点が117℃
のIn−Sn系等の軟質はんだ22で被覆されるととも
に、隣接する直管部20a、20a間が軟質はんだ22
で接合されている。ここで、軟質はんだ22は、In−
Sn系等に限ることなく、軟化点が93〜183℃の範
囲内のものであれば、好適に用いることができる。When the heat pipe 20 is attached, the outer surface of the straight pipe portion 20a has a softening point of, for example, 117 ° C.
Is covered with a soft solder 22 such as an In-Sn based solder, and a soft solder 22 is provided between adjacent straight pipe portions 20a, 20a.
It is joined by. Here, the soft solder 22 is made of In-
The softening point is not limited to the Sn type and any other material having a softening point in the range of 93 to 183 ° C can be suitably used.
【0031】そして、予め放熱部材18を配置した状態
で放熱部材18の上面の所定の位置に蛇行細管ヒートパ
イプを位置決めし、配置する(図8参照)。ついで、ヒ
ートパイプ20が筐体16の溝部16dに収まるよう
に、筐体16を位置決めし、配置する。最後に、ボルト
止め等の方法で、ヒートパイプ20を挟持した状態で筐
体16と放熱部材18とを固定する(図6、図7参
照)。Then, the meandering thin tube heat pipe is positioned and arranged at a predetermined position on the upper surface of the heat dissipating member 18 with the heat dissipating member 18 disposed in advance (see FIG. 8). Next, the housing 16 is positioned and arranged so that the heat pipe 20 is accommodated in the groove 16 d of the housing 16. Finally, the housing 16 and the heat radiating member 18 are fixed with the heat pipe 20 sandwiched therebetween by a method such as bolting (see FIGS. 6 and 7).
【0032】このとき、溝部16dの側壁16eは、ス
ペーサ部材として作用する。すなわち、側壁16eの高
さHは、ヒートパイプ20の直径Dの原寸法D1よりも
小さく形成されており、したがって、筐体16と放熱部
材20とを固定した際に、ヒートパイプ20が圧着され
て、直径Dが高さHと同一寸法になるように扁平に変形
する。このため、側壁16eの高さHを適宜変更するこ
とにより、ヒートパイプ20の直径Dの変化量を容易に
所望の値に調整することができる。また、ボルト止め等
の方法で筐体16と放熱部材20とを固定する際に、誤
って、締め付けすぎてヒートパイプ20を圧潰するおそ
れもない。At this time, the side wall 16e of the groove 16d functions as a spacer member. That is, the height H of the side wall 16e is formed smaller than the original dimension D1 of the diameter D of the heat pipe 20. Therefore, when the housing 16 and the heat radiation member 20 are fixed, the heat pipe 20 is crimped. Then, it deforms flat so that the diameter D becomes the same dimension as the height H. Therefore, by appropriately changing the height H of the side wall 16e, the amount of change in the diameter D of the heat pipe 20 can be easily adjusted to a desired value. Further, when the housing 16 and the heat radiating member 20 are fixed by a method such as bolting, there is no possibility that the heat pipe 20 is crushed due to excessive tightening by mistake.
【0033】従来例で説明したように、筐体16は切削
加工時の熱歪みにより、図9に示すように底面16の幅
方向(図9中、Y方向)の中央部が上方(Z1方向)に
反って、底面と放熱部材の上面との間に隙間Cを生じう
るが、取り付け時のヒートパイプ20の変形によって、
ヒートパイプ20は隙間Cの形状に倣った形状に変化
し、隙間Cが解消される。すなわち、ヒートパイプ20
の、図9中、Y方向両端部の直管部20a−1は、直径
Dが原寸法D1に比べて大幅に縮小され、一方、Y方向
中央部の直管部20a−2は、例えば、直径Dが原寸法
D1とほぼ同一な程度にほとんど変形を生じないことに
よって、ヒートパイプ20は反りを生じた溝部16dと
Y方向全面にわたって密接される。このとき、ヒートパ
イプ20の外面に被覆された軟質めっき22が圧着によ
って軟化変形し、流動することによって、隙間Cをさら
に確実に閉塞する。これにより、接触熱抵抗となってい
た隙間Cが解消されることによって、筐体16、ヒート
パイプ20および放熱部材18が密着して一体化され
る。As described in the conventional example, the center of the bottom surface 16 of the housing 16 in the width direction (Y direction in FIG. 9) is upward (Z1 direction) as shown in FIG. Contrary to the above, a gap C may be generated between the bottom surface and the upper surface of the heat radiating member.
The shape of the heat pipe 20 changes to follow the shape of the gap C, and the gap C is eliminated. That is, the heat pipe 20
In FIG. 9, the straight pipe portions 20a-1 at both ends in the Y direction have a diameter D greatly reduced as compared with the original dimension D1, while the straight pipe portions 20a-2 at the center portion in the Y direction are, for example, Since the diameter D hardly deforms to the same extent as the original dimension D1, the heat pipe 20 is in close contact with the warped groove 16d over the entire surface in the Y direction. At this time, the soft plating 22 coated on the outer surface of the heat pipe 20 is softened and deformed by pressure bonding and flows, thereby closing the gap C more reliably. As a result, the gap C, which has been the contact thermal resistance, is eliminated, and the housing 16, the heat pipe 20, and the heat radiating member 18 are tightly integrated.
【0034】上記のように構成される本実施の形態例に
係る高周波電力増幅器10の放熱構造によれば、高周波
電力増幅器10使用時に、狭小な平面を有する半導体素
子14a〜14cから集中的に発生する熱は、突設部1
6bを介して筐体16に伝達され、筐体16の幅広な平
面に拡散するが、このとき、熱拡散が不充分で筐体16
の平面に熱分布の偏りを生じる過程では、この熱分布の
偏りを駆動源として、ヒートパイプ20の水が層変化お
よび密度変化して流動し、熱がヒートパイプ20の全面
に効率的に伝達される。According to the heat dissipation structure of the high-frequency power amplifier 10 according to the present embodiment configured as described above, when the high-frequency power amplifier 10 is used, the heat is intensively generated from the semiconductor elements 14a to 14c having a narrow plane. The heat that is generated is
6b, the light is transmitted to the housing 16 and diffuses into a wide flat surface of the housing 16. At this time, heat diffusion is insufficient and the
In the process in which the unevenness of the heat distribution is generated in the plane of the heat pipe, the water in the heat pipe 20 flows by changing the layer and the density by using the unevenness of the heat distribution as a driving source, and the heat is efficiently transmitted to the entire surface of the heat pipe 20. Is done.
【0035】そして、筐体16からヒートパイプ20に
伝達された熱は、ヒートパイプ20全面の各部位におい
て、放熱部材18の全面に均一かつ効率的に伝達され
る。そして、放熱部材18の全面に多数設けられたフィ
ン18aから効率よく放熱が行われ、高周波電力増幅器
10の温度上昇が抑制される。The heat transmitted from the housing 16 to the heat pipe 20 is uniformly and efficiently transmitted to the entire surface of the heat radiating member 18 at each portion on the entire surface of the heat pipe 20. Then, heat is efficiently radiated from the fins 18 a provided on the entire surface of the heat radiating member 18, and the temperature rise of the high-frequency power amplifier 10 is suppressed.
【0036】以上説明した実施例の蛇行細管からなるヒ
ートパイプ20に代えて、複数本のヒートパイプを並列
に配置しても、上記した効果を得ることができる。The above-mentioned effects can be obtained by arranging a plurality of heat pipes in parallel, instead of the heat pipes 20 composed of the meandering thin tubes of the embodiment described above.
【0037】[0037]
【発明の効果】請求項1に係る電子部品の放熱構造によ
れば、電子部品を収容する筐体と放熱部材との間に蛇行
細管からなるヒートパイプが設けられ、ヒートパイプ
は、筐体と該放熱部材の間で圧着されて扁平に変形し、
また、請求項2に係る電子部品の放熱構造によれば、蛇
行細管からなるヒートパイプに代えて、並列に複数のヒ
ートパイプを設けているため、ヒートパイプを介して放
熱部材の平面上の各部位に熱が均一かつ効率的に伝達さ
れ、また、部材間の隙間が解消されることにより良好に
熱伝達が図られ、放熱部材の機能を十分に発揮して、良
好な放熱効果を得ることができる。According to the heat dissipating structure for an electronic component of the present invention, a heat pipe made of a meandering thin tube is provided between the heat dissipating member and the housing for accommodating the electronic component. It is crimped between the heat dissipating members and deforms flat,
According to the heat radiating structure for an electronic component according to the second aspect, since a plurality of heat pipes are provided in parallel instead of the heat pipe formed of the meandering thin tube, each of the heat radiating members on the plane of the heat radiating member is provided via the heat pipe. The heat is uniformly and efficiently transmitted to the parts, and the gap between the members is eliminated so that the heat can be transmitted well, and the function of the heat radiating member is sufficiently exhibited to obtain a good heat radiating effect. Can be.
【0038】また、請求項3記載の電子部品の放熱構造
によれば、ヒートパイプは、筐体と放熱部材との間に取
り付けるに先立ち、予め少なくとも一部が軟質はんだで
被覆されているため、接触熱抵抗箇所としての隙間がよ
り一層解消され、筐体と放熱部材の間においてより良好
な熱伝達効果を得ることができる。According to the heat radiating structure for an electronic component of the present invention, at least a part of the heat pipe is coated with the soft solder before the heat pipe is mounted between the housing and the heat radiating member. The gap as the contact heat resistance portion is further eliminated, and a better heat transfer effect can be obtained between the housing and the heat radiating member.
【0039】また、請求項4記載の電子部品の放熱構造
によれば、蛇行細管からなるヒートパイプは、ターン部
が直管部より細径に形成されてなるため、直管部が相互
により確実に密着して整列され、接触熱抵抗箇所が解消
され、より良好な熱伝達効果を得ることができる。Further, according to the heat radiation structure of the electronic component according to the fourth aspect, since the heat pipe formed of the meandering thin tube has the turn portion formed to have a smaller diameter than the straight tube portion, the straight tube portions are more reliably connected to each other. , The contact heat resistance portion is eliminated, and a better heat transfer effect can be obtained.
【0040】また、請求項5記載の電子部品の放熱構造
によれば、蛇行細管からなるヒートパイプは、筐体の電
子部品収容部よりも広幅に設けられ、筐体は蛇行細管ヒ
ートパイプの広幅部分に対応して拡張部をさらに形成し
てなるため、より好適である。According to the fifth aspect of the present invention, the heat pipe made of the meandering thin tube is provided wider than the electronic component accommodating portion of the housing, and the housing is made wider than the width of the meandering thin tube heat pipe. This is more preferable because an extended portion is further formed corresponding to the portion.
【0041】また、請求項6記載の電子部品の放熱構造
によれば、筐体と放熱部材の間に、圧着による蛇行細管
からなるヒートパイプの変形量を調整するためのスペー
サ部材を設けてなるため、変形量を所望の値に調整する
ことができ、また、ヒートパイプを圧潰するおそれがな
く、好適である。According to the heat radiating structure for an electronic component of the present invention, a spacer member is provided between the housing and the heat radiating member for adjusting the amount of deformation of the heat pipe formed of the meandering thin tube by crimping. Therefore, the amount of deformation can be adjusted to a desired value, and there is no possibility of crushing the heat pipe, which is preferable.
【図1】従来の高周波電力増幅器の放熱構造を説明する
ための、高周波電力増幅器等の平面図である。FIG. 1 is a plan view of a high-frequency power amplifier and the like for describing a heat radiation structure of a conventional high-frequency power amplifier.
【図2】従来の高周波電力増幅器の放熱構造を説明する
ための、図1中II−II線上の高周波電力増幅器等の
断面図である。FIG. 2 is a cross-sectional view of a high-frequency power amplifier and the like taken along line II-II in FIG. 1 for explaining a heat radiation structure of the conventional high-frequency power amplifier.
【図3】従来の高周波電力増幅器の放熱構造を説明する
ための、高周波電力増幅器等の右側面図である。FIG. 3 is a right side view of a high-frequency power amplifier and the like for describing a heat radiation structure of a conventional high-frequency power amplifier.
【図4】従来の高周波電力増幅器の放熱構造における筐
体の反り状態を説明するための、図1中IV−IV線上
の高周波電力増幅器等の断面図である。FIG. 4 is a cross-sectional view of a high-frequency power amplifier and the like on a line IV-IV in FIG. 1 for explaining a warped state of a housing in a heat radiation structure of a conventional high-frequency power amplifier.
【図5】本実施の形態例に係る高周波電力増幅器の放熱
構造を説明するための、高周波電力増幅器等の平面図で
ある。FIG. 5 is a plan view of a high-frequency power amplifier and the like for describing a heat radiation structure of the high-frequency power amplifier according to the present embodiment.
【図6】本実施の形態例に係る高周波電力増幅器の放熱
構造を説明するための、図5中VI−VI線上の高周波
電力増幅器等の断面図である。FIG. 6 is a cross-sectional view of the high-frequency power amplifier and the like taken along line VI-VI in FIG. 5 for explaining a heat radiation structure of the high-frequency power amplifier according to the present embodiment.
【図7】本実施の形態例に係る高周波電力増幅器の放熱
構造を説明するための、高周波電力増幅器等の右側面図
である。FIG. 7 is a right side view of the high-frequency power amplifier and the like for describing a heat radiation structure of the high-frequency power amplifier according to the present embodiment.
【図8】本実施の形態例に係る高周波電力増幅器の放熱
構造における蛇行細管ヒートパイプを説明するための、
蛇行細管ヒートパイプの平面図である。FIG. 8 is a view for explaining a meandering thin-tube heat pipe in the heat dissipation structure of the high-frequency power amplifier according to the embodiment;
It is a top view of a meandering thin tube heat pipe.
【図9】本実施の形態例に係る高周波電力増幅器の放熱
構造における筐体の反り状態を説明するための、図5中
IX−IX線上の高周波電力増幅器等の断面図である。FIG. 9 is a cross-sectional view of the high-frequency power amplifier and the like taken along line IX-IX in FIG. 5 for explaining a warped state of the housing in the heat dissipation structure of the high-frequency power amplifier according to the present embodiment.
10 高周波電力増幅器 12a〜12c 回路基板 14a〜14c 半導体素子 16 筐体 16e スペーサ部材 16h 幅広部 18 放熱部材 20 ヒートパイプ 20a 直管部 20b ターン部 DESCRIPTION OF SYMBOLS 10 High frequency power amplifier 12a-12c Circuit board 14a-14c Semiconductor element 16 Housing 16e Spacer member 16h Wide part 18 Heat dissipation member 20 Heat pipe 20a Straight pipe part 20b Turn part
Claims (6)
性材料からなる筐体内に収容し、該一面の外側に放熱部
材を設け、該電子部品から発生する熱を該筐体を介して
該放熱部材から放熱する電子部品の放熱構造において、 該筐体と該放熱部材との間に、蛇行細管からなるヒート
パイプが設けられ、 該ヒートパイプは、該筐体と該放熱部材の間で圧着され
て扁平に変形していることを特徴とする電子部品の放熱
構造。An electronic component is housed in a housing whose at least one surface is made of a material having good thermal conductivity, a heat radiating member is provided outside the one surface, and heat generated from the electronic component is transmitted through the housing through the housing. In the heat radiating structure of an electronic component that radiates heat from a heat radiating member, a heat pipe formed of a meandering thin tube is provided between the case and the heat radiating member, and the heat pipe is press-bonded between the case and the heat radiating member. A heat dissipating structure for an electronic component, wherein the heat dissipating structure is flattened and deformed.
性材料からなる筐体内に収容し、該一面の外側に放熱部
材を設け、該電子部品から発生する熱を該筐体を介して
該放熱部材から放熱する電子部品の放熱構造において、 該筐体と該放熱部材との間に、並列に複数のヒートパイ
プが設けられ、 該ヒートパイプは、該筐体と該放熱部材の間で圧着され
て扁平に変形していることを特徴とする電子部品の放熱
構造。2. An electronic component is housed in a housing whose at least one surface is made of a material having good thermal conductivity, a heat radiation member is provided outside the one surface, and heat generated from the electronic component is passed through the housing. In the heat radiating structure of the electronic component that radiates heat from the heat radiating member, a plurality of heat pipes are provided in parallel between the housing and the heat radiating member, and the heat pipe is press-bonded between the housing and the heat radiating member. A heat dissipating structure for an electronic component, wherein the heat dissipating structure is flattened and deformed.
熱部材との間に取り付けるに先立ち、予め少なくとも一
部が軟質はんだで被覆されていることを特徴とする請求
項1または2に記載の電子部品の放熱構造。3. The heat pipe according to claim 1, wherein at least a part of the heat pipe is coated with a soft solder before being attached between the housing and the heat radiating member. Heat dissipation structure for electronic components.
主にターン部と直管部とから構成され、該ターン部が該
直管部より細径に形成されていることを特徴とする請求
項1記載の電子部品の放熱構造。4. The heat pipe comprising the meandering thin tube,
2. The heat radiating structure for an electronic component according to claim 1, wherein the heat radiating structure is mainly composed of a turn portion and a straight tube portion, and the turn portion has a smaller diameter than the straight tube portion.
前記電子部品を収容するために形成された前記筐体の電
子部品収容部よりも広幅に設けられ、該筐体は該蛇行細
管ヒートパイプの広幅部分に対応して拡張部をさらに形
成していることを特徴とする請求項1記載の電子部品の
放熱構造。5. The heat pipe comprising the meandering thin tube,
The casing is formed wider than the electronic component accommodating portion of the casing formed to accommodate the electronic component, and the casing further forms an extension corresponding to a wide portion of the meandering thin tube heat pipe. 2. The heat radiating structure for an electronic component according to claim 1, wherein:
よる前記蛇行細管からなるヒートパイプの変形量を調整
するためのスペーサ部材を設けていることを特徴とする
請求項1記載の電子部品の放熱構造。6. The electronic device according to claim 1, wherein a spacer member is provided between the housing and the heat radiating member to adjust a deformation amount of the heat pipe made of the meandering thin tube by crimping. Heat dissipation structure of parts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000072701A JP2001267772A (en) | 2000-03-15 | 2000-03-15 | Heat dissipation structure of electronic components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000072701A JP2001267772A (en) | 2000-03-15 | 2000-03-15 | Heat dissipation structure of electronic components |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001267772A true JP2001267772A (en) | 2001-09-28 |
Family
ID=18591067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000072701A Withdrawn JP2001267772A (en) | 2000-03-15 | 2000-03-15 | Heat dissipation structure of electronic components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001267772A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2393329A (en) * | 2002-09-17 | 2004-03-24 | Hewlett Packard Development Co | Heat sink with heat pipe in direct contact with component |
US6894900B2 (en) | 2002-09-17 | 2005-05-17 | Hewlett-Packard Development Company, L.P. | Heat sink with heat pipe and base fins |
WO2005089197A2 (en) | 2004-03-12 | 2005-09-29 | Powerwave Technologies, Inc. | Rf power amplifier assembly with heat pipe enhanced pallet |
JP2006278923A (en) * | 2005-03-30 | 2006-10-12 | Furukawa Electric Co Ltd:The | Heat sink for vehicle mounting |
US7143819B2 (en) | 2002-09-17 | 2006-12-05 | Hewlett-Packard Development Company, L.P. | Heat sink with angled heat pipe |
JP2007333263A (en) * | 2006-06-13 | 2007-12-27 | Furukawa Electric Co Ltd:The | Heat pipe and heat sink |
JP2008130715A (en) * | 2006-11-20 | 2008-06-05 | Yaskawa Electric Corp | Heatsink, and power converting device using it |
JP2015038396A (en) * | 2012-12-21 | 2015-02-26 | 古河電気工業株式会社 | Heat sink |
WO2022181344A1 (en) * | 2021-02-25 | 2022-09-01 | 日本電産株式会社 | Cooling device |
-
2000
- 2000-03-15 JP JP2000072701A patent/JP2001267772A/en not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7143819B2 (en) | 2002-09-17 | 2006-12-05 | Hewlett-Packard Development Company, L.P. | Heat sink with angled heat pipe |
US6894900B2 (en) | 2002-09-17 | 2005-05-17 | Hewlett-Packard Development Company, L.P. | Heat sink with heat pipe and base fins |
GB2393329B (en) * | 2002-09-17 | 2006-05-03 | Hewlett Packard Development Co | Heat sink with heat pipe in direct contact with component |
US7140422B2 (en) | 2002-09-17 | 2006-11-28 | Hewlett-Packard Development Company, L.P. | Heat sink with heat pipe in direct contact with component |
GB2393329A (en) * | 2002-09-17 | 2004-03-24 | Hewlett Packard Development Co | Heat sink with heat pipe in direct contact with component |
WO2005089197A2 (en) | 2004-03-12 | 2005-09-29 | Powerwave Technologies, Inc. | Rf power amplifier assembly with heat pipe enhanced pallet |
WO2005089197A3 (en) * | 2004-03-12 | 2007-10-04 | Powerwave Technologies Inc | Rf power amplifier assembly with heat pipe enhanced pallet |
CN101142459B (en) * | 2004-03-12 | 2010-12-08 | 电力波技术公司 | RF power amplifier assembly with heat pipe enhanced pallet |
JP2006278923A (en) * | 2005-03-30 | 2006-10-12 | Furukawa Electric Co Ltd:The | Heat sink for vehicle mounting |
JP2007333263A (en) * | 2006-06-13 | 2007-12-27 | Furukawa Electric Co Ltd:The | Heat pipe and heat sink |
JP2008130715A (en) * | 2006-11-20 | 2008-06-05 | Yaskawa Electric Corp | Heatsink, and power converting device using it |
JP2015038396A (en) * | 2012-12-21 | 2015-02-26 | 古河電気工業株式会社 | Heat sink |
WO2022181344A1 (en) * | 2021-02-25 | 2022-09-01 | 日本電産株式会社 | Cooling device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5513070A (en) | Dissipation of heat through keyboard using a heat pipe | |
US10215504B2 (en) | Flexible cold plate with enhanced flexibility | |
US7342788B2 (en) | RF power amplifier assembly with heat pipe enhanced pallet | |
US6698511B2 (en) | Vortex heatsink for high performance thermal applications | |
US11246239B2 (en) | Heatsink | |
US20040052051A1 (en) | Heat sink with heat pipe and base fins | |
US20070133174A1 (en) | Information processor with a radiator that includes a heat pipe | |
US20090266518A1 (en) | Heat plate type cooler module | |
JP2001057405A (en) | Heat sink provided with radiating fin and method of fixing radiating fin | |
JP2004303866A (en) | Heat sink with radiation fin and method for fixing radiation fin | |
JP2001183080A (en) | Method for manufacturing compressed mesh wick and flat surface type heat pipe having compressed mesh wick | |
US20090314471A1 (en) | Heat pipe type heat sink and method of manufacturing the same | |
US20110168358A1 (en) | Lap-joined heat pipe structure and thermal module using same | |
JP2001267772A (en) | Heat dissipation structure of electronic components | |
JP2856193B2 (en) | Multi-chip module mounting structure | |
US20060227515A1 (en) | Cooling apparatus for electronic device | |
JP2004022914A (en) | Insulated circuit board and its cooling structure and power semiconductor device and its cooling structure | |
JP4770933B2 (en) | Wireless communication device | |
JP2002289750A (en) | Multi-chip module and its radiation structure | |
CN101316495B (en) | Heat sink assembly | |
WO1999053256A1 (en) | Plate type heat pipe and its installation structure | |
US20070277962A1 (en) | Two-phase cooling system for cooling power electronic components | |
JP2006013217A (en) | Heatsink using carbon graphite | |
JPH10107192A (en) | Heat sink | |
WO2018181933A1 (en) | Heat sink |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070605 |