JP2001253758A - Method for manufacturing super lightweight cellular concrete - Google Patents
Method for manufacturing super lightweight cellular concreteInfo
- Publication number
- JP2001253758A JP2001253758A JP2000068846A JP2000068846A JP2001253758A JP 2001253758 A JP2001253758 A JP 2001253758A JP 2000068846 A JP2000068846 A JP 2000068846A JP 2000068846 A JP2000068846 A JP 2000068846A JP 2001253758 A JP2001253758 A JP 2001253758A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- cellular concrete
- material powder
- lightweight cellular
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011381 foam concrete Substances 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 10
- 239000002994 raw material Substances 0.000 claims abstract description 46
- 239000000843 powder Substances 0.000 claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 230000005484 gravity Effects 0.000 claims abstract description 14
- 239000012779 reinforcing material Substances 0.000 claims abstract description 14
- 239000004567 concrete Substances 0.000 claims description 6
- 238000003466 welding Methods 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 238000005452 bending Methods 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 239000002002 slurry Substances 0.000 description 7
- 239000004575 stone Substances 0.000 description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 239000004568 cement Substances 0.000 description 3
- 239000004088 foaming agent Substances 0.000 description 3
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241000408495 Iton Species 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/18—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Producing Shaped Articles From Materials (AREA)
- Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、絶乾かさ比重0.
45以下の超軽量気泡コンクリートの製造方法に関し、
特に機械的強度を向上させる超軽量気泡コンクリートの
製造方法に関するものである。[0001] The present invention relates to an absolute dryness specific gravity of 0.1.
Regarding a method for producing ultra-lightweight cellular concrete of 45 or less,
In particular, the present invention relates to a method for producing ultra-lightweight cellular concrete that improves mechanical strength.
【0002】[0002]
【従来の技術及びその課題】近年、軽量気泡コンクリー
トの断熱性能及び吸音性能を更に向上させるため、絶乾
かさ比重を0.45以下とした超軽量気泡コンクリート
の開発が進められている。2. Description of the Related Art In recent years, in order to further improve the heat insulating performance and sound absorbing performance of lightweight cellular concrete, the development of ultra-light cellular concrete having an absolute dryness specific gravity of 0.45 or less has been promoted.
【0003】ここで、軽量気泡コンクリートとは、一般
にALCと呼ばれているものであり、珪酸質原料粉末と
石灰質原料粉末とを主原料としたスラリーに、アルミニ
ウム粉末等の発泡剤を混合して発泡・硬化させ、その後
オートクレーブにて高温高圧水蒸気養生を行って製造さ
れるものである。一方、超軽量気泡コンクリートとは、
上記軽量気泡コンクリートの気泡含有率を上げ、絶乾か
さ比重を0.45以下に調整したもので、成形時、スラ
リー中の気泡の合一化及びその浮力による脱泡の増大を
防ぐことが重要となり、例えば特開平11−21180
では、珪酸質原料粉末と石灰質原料粉末とを主原料とす
る超軽量気泡コンクリートの製造にあたって、石灰質原
料粉末である生石灰とセメントとの割合を所定範囲のも
のとすると共に、発泡剤として所定以上の水面被膜面積
のアルミニウム粉末を用いることを提示している。[0003] The lightweight cellular concrete is generally called ALC, and is obtained by mixing a foaming agent such as aluminum powder with a slurry mainly composed of a siliceous raw material powder and a calcareous raw material powder. It is manufactured by foaming and curing, and then performing high-temperature and high-pressure steam curing in an autoclave. On the other hand, ultralight aerated concrete is
By increasing the bubble content of the lightweight cellular concrete and adjusting the absolute dryness specific gravity to 0.45 or less, it is important to prevent the coalescence of bubbles in the slurry and the increase in defoaming due to its buoyancy during molding. For example, Japanese Patent Application Laid-Open No. 11-21180
In the production of ultralight aerated concrete using siliceous raw material powder and calcareous raw material powder as main raw materials, the ratio of calcined lime, which is calcareous raw material powder, to cement is within a predetermined range, and at least a predetermined amount as a foaming agent. It proposes using an aluminum powder with a water surface area.
【0004】しかしながら、上記した方法等により製造
された絶乾かさ比重0.45以下の超軽量気泡コンクリ
ートは、通常の軽量気泡コンクリートに比べ、確かに断
熱性能及び吸音性能が向上しているものの、強度が著し
く低いと言う課題を有していた。特に、絶乾かさ比重が
0.35以下の超軽量気泡コンクリートにあっては、圧
縮強度が2.0N/mm2以下となり、小さな衝撃でも
容易に破損してしまう憂いがあり、また、パネル曲げ強
度も通常の軽量気泡コンクリートの1/3程度しかない
ため、搬送途中にパネルの自重によって曲げ力が作用し
た場合には、パネルが折れる懸念があった。そのため、
超軽量気泡コンクリートには、断熱性能及び吸音性能に
優れていることのみならず、十分な強度をも兼ね備えて
いることが求められていた。[0004] However, the ultra-lightweight cellular concrete having an absolute dryness specific gravity of 0.45 or less produced by the above-described method or the like certainly has improved heat insulation performance and sound absorption performance as compared with ordinary lightweight cellular concrete, but has a high strength. Had a problem of being extremely low. Particularly, in the case of ultra-lightweight cellular concrete having a specific gravity of 0.35 or less, the compressive strength is 2.0 N / mm 2 or less, and there is a concern that the concrete is easily damaged by a small impact, and the panel bending strength is also high. However, since there is only about 1/3 of ordinary lightweight cellular concrete, there is a concern that the panel may break if a bending force is applied due to the weight of the panel during transportation. for that reason,
The ultra-lightweight cellular concrete has been required not only to have excellent heat insulating performance and sound absorbing performance, but also to have sufficient strength.
【0005】ここで、セメント系製造物等の機械的強度
を上げる方法としては、一般的に繊維補強が知られてい
る。しかし、この繊維補強は、繊維がマトリックス層
(軽量気泡コンクリート中の固体組織)に均−に分散さ
れて初めて効果を発揮するが、超軽量気泡コンクリート
の場合には、混入した繊維が偏って分布したり、或いは
繊維の一部が気泡内に抜けたりするため、十分な補強効
果が得られず、有効な方法ではなかった。Here, fiber reinforcement is generally known as a method of increasing the mechanical strength of a cement-based product or the like. However, this fiber reinforcement is effective only when the fibers are evenly dispersed in the matrix layer (solid structure in the lightweight cellular concrete). However, in the case of ultra-light cellular concrete, the mixed fibers are unevenly distributed. As a result, a sufficient reinforcing effect was not obtained, and the method was not an effective method.
【0006】また、パネル曲げ強度を上げる方法として
は、パネル内に補強鉄筋を埋設する方法があり、通常の
軽量気泡コンクリートの場合、厚さ75mm以上のパネ
ルには直径5mm以上の鉄線をカゴ状に溶接したもの
(鉄筋マット)を用いている。しかし、超軽量気泡コン
クリートにおいてこの鉄筋マットを用いると、鉄筋周囲
に多数の空洞が生じたり、亀裂が生じる憂いが高い。ま
た、厚さ75mm未満の軽量気泡コンクリートパネルに
は、直径2.6mm程度の溶接金網、或いはメタルラス
も用いられているが、厚さ75mm以上の超軽量気泡コ
ンクリートパネルにおいては、このような補強材では十
分な補強効果は得られない。As a method of increasing the panel bending strength, there is a method of embedding reinforcing steel in the panel. In the case of ordinary lightweight cellular concrete, a panel having a thickness of 75 mm or more is provided with an iron wire having a diameter of 5 mm or more in a cage shape. (Rebar mat) is used. However, when this rebar mat is used in ultra-lightweight cellular concrete, there is a high possibility that many cavities are formed around the rebar or cracks are generated. For lightweight cellular concrete panels having a thickness of less than 75 mm, a welded wire mesh or a metal lath having a diameter of about 2.6 mm is also used. In ultra-lightweight cellular concrete panels having a thickness of 75 mm or more, such a reinforcing material is used. Thus, a sufficient reinforcing effect cannot be obtained.
【0007】本発明は、上述した従来の技術が有する課
題に鑑みなされたものであって、その目的は、機械的強
度を向上させることの出来る超軽量気泡コンクリートの
製造方法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the related art, and has as its object to provide a method for producing ultralight cellular concrete capable of improving mechanical strength. .
【0008】[0008]
【課題を解決するための手段】本発明者らは、上記した
目的を達成すべく試験・研究を重ねた結果、珪酸質原料
粉末と石灰質原料粉末とを主原料とする絶乾かさ比重
0.45以下の超軽量気泡コンクリートの製造にあたっ
て、使用する珪酸質原料粉末の比表面積を所定範囲のも
のに調整することにより、また珪酸質原料粉末の比表面
積を所定範囲のものに調整すると共に、補強材を工夫す
ることにより、十分な強度を有する超軽量気泡コンクリ
ートが製造できることを見出し、本発明を完成させた。Means for Solving the Problems The inventors of the present invention have repeatedly conducted tests and studies to achieve the above-mentioned object, and as a result, the absolute dryness specific gravity of the main raw material of the siliceous raw material powder and the calcareous raw material powder was 0.45. In the production of the following ultralight aerated concrete, by adjusting the specific surface area of the siliceous raw material powder to be used within a predetermined range, and also adjusting the specific surface area of the siliceous raw material powder to within a predetermined range, the reinforcing material It was found that by devising, ultra-lightweight cellular concrete having sufficient strength can be manufactured, and the present invention was completed.
【0009】即ち、本発明は、珪酸質原料粉末と石灰質
原料粉末とを主原料とする絶乾かさ比重0.45以下の
超軽量気泡コンクリートの製造方法において、上記珪酸
質原料粉末として、比表面積が4,000〜10,00
0cm2/gの珪酸質原料粉末を用いることとした。ま
た、本発明は、珪酸質原料粉末と石灰質原料粉末とを主
原料とする絶乾かさ比重0.45以下の超軽量気泡コン
クリートの製造方法において、上記珪酸質原料粉末とし
て、比表面積が4,000〜10,000cm2/gの
珪酸質原料粉末を用いると共に、補強材として、線径が
4.0mm以下の溶接金網、或いはメタルラスを2枚以
上埋設することとした。That is, the present invention relates to a method for producing ultra-lightweight cellular concrete having an absolute dryness specific gravity of 0.45 or less using a siliceous raw material powder and a calcareous raw material powder as main raw materials. 4,000 to 10,000
Silicic raw material powder of 0 cm 2 / g was used. Further, the present invention relates to a method for producing ultralight aerated concrete having an absolute dryness specific gravity of 0.45 or less, comprising a siliceous raw material powder and a calcareous raw material powder as main raw materials, wherein the siliceous raw material powder has a specific surface area of 4,000. A siliceous raw material powder having a size of 10,000 cm 2 / g was used, and two or more metal meshes or a metal lath having a wire diameter of 4.0 mm or less were embedded as a reinforcing material.
【0010】ここで、上記本発明において使用する珪酸
質原料粉末の比表面積を、4,000〜10,000c
m2/gとしたのは、得られる超軽量気泡コンクリート
の圧縮強度及びせん断強度を向上させるためであり、一
般的に軽量気泡コンクリートの製造に使用されている
2,500cm2/g程度の比表面積の珪酸質原料粉末
を使用した場合に比して、圧縮強度及びせん断強度を約
50%程度向上させた超軽量気泡コンクリートが得られ
る。Here, the specific surface area of the siliceous raw material powder used in the present invention is 4,000 to 10,000 c.
The reason for setting m 2 / g is to improve the compressive strength and the shear strength of the obtained ultralight cellular concrete, and a ratio of about 2,500 cm 2 / g generally used for the production of lightweight cellular concrete. As compared with the case of using a siliceous raw material powder having a surface area, an ultra-lightweight cellular concrete having improved compressive strength and shear strength by about 50% can be obtained.
【0011】なお、比表面積が4,000cm2/g満
たない珪酸質原料粉末の場合は、得られる超軽量気泡コ
ンクリートの圧縮強度及びせん断強度の向上が十分では
なく、また10,000cm2/gを越える比表面積の
珪酸質原料粉末を使用した場合には、該珪酸質原料粉末
と石灰質原料粉末とを主原料としたスラリーの粘性が高
いものとなり、発泡に伴う膨張が阻害されて十分な発泡
嵩が確保できず、絶乾かさ比重0.45以下のものが得
られない。In the case of a siliceous raw material powder having a specific surface area of less than 4,000 cm 2 / g, the compressive strength and shear strength of the obtained ultralight cellular concrete are not sufficiently improved, and 10,000 cm 2 / g. When a siliceous raw material powder having a specific surface area exceeding the above is used, the viscosity of the slurry containing the siliceous raw material powder and the calcareous raw material powder as main raw materials becomes high, and expansion due to foaming is hindered and sufficient foaming is prevented. The bulk cannot be secured, and a material having an absolute dryness specific gravity of 0.45 or less cannot be obtained.
【0012】また、本発明において使用する補強材とし
て、線径が4.0mm以下の溶接金網、或いはメタルラ
スを使用することとしたのは、補強材周辺に空洞や亀裂
が生じ難いためであり、また2枚以上を埋設することと
したのは、細い線径の補強材でも十分な補強効果を得る
ためである。In addition, the reason why a welding wire mesh having a wire diameter of 4.0 mm or less or a metal lath is used as the reinforcing material used in the present invention is that a cavity or a crack is hardly generated around the reinforcing material. The reason why two or more sheets are buried is to obtain a sufficient reinforcing effect even with a reinforcing material having a small wire diameter.
【0013】即ち、補強材周辺に空洞が生じるのは、発
泡により膨張してきたスラリーが補強材の裏に回り込め
ずに空洞として残ったり、気泡が補強材の抵抗で浮上を
阻害され、その周辺に密集・合泡して気泡溜まりとなっ
たりするためである。また、補強材周辺に亀裂が生じる
のは、膨張終了直後、脱泡による沈下現象が起きる際
に、補強材周辺のスラリーがその抵抗によって沈下の動
きに追随できないためである。通常の軽量気泡コンクリ
ートであれば、こうした現象は比較的軽微で大きな問題
とはならないが、超軽量気泡コンクリートは気泡量が多
く、沈下現象も激しいために問題となる。但し、何れも
補強材が抵抗となって生じるものであるため、線径の細
い溶接金網、或いはメタルラスを使用すれば問題は解消
されることとなるため、本発明においては、線径が4.
0mm以下の溶接金網、或いはメタルラスを使用するこ
ととした。That is, the cavities are formed around the reinforcing material because the slurry expanded by foaming does not go around the back of the reinforcing material and remains as cavities, or bubbles are hindered by the resistance of the reinforcing material, and the surroundings are hindered. This is due to the fact that the air bubbles are densely and intermingled, forming a bubble pool. Further, the reason why cracks are formed around the reinforcing material is that immediately after the expansion is completed, when a settlement phenomenon due to defoaming occurs, the slurry around the reinforcing material cannot follow the movement of the settlement due to its resistance. In the case of ordinary lightweight cellular concrete, such a phenomenon is relatively small and does not cause a serious problem. However, ultra-light cellular concrete has a large amount of bubbles and a serious settling phenomenon, which causes a problem. However, since the reinforcing material becomes a resistance in any case, the problem can be solved by using a welded wire mesh or a metal lath having a small wire diameter.
A welding wire mesh of 0 mm or less or a metal lath was used.
【0014】一方、線径が細くなると、肝心の補強効果
が小さくなる。そこで、2枚以上の溶接金網、或いはメ
タルラスを埋設するのが有効となる。この溶接金網、或
いはメタルラスの埋設位置については、特に限定するも
のではないが、パネルに曲げ力がかかる場合、一方の面
には圧縮力が働き、他方の面には引っ張り力が働くた
め、各々少なくとも1枚を圧縮に対する補強、他方を引
っ張りに対する補強となるよう配置すれば補強効果はよ
り大きくなる。また、埋設する溶接金網、或いはメタル
ラスの枚数についても、2枚以上であれば特に限定する
ものではないが、コストやパネル総重量などを考える
と、「パネル厚さ(mm)/50」枚とすることが望ま
しい。On the other hand, as the wire diameter becomes smaller, the essential reinforcing effect becomes smaller. Therefore, it is effective to embed two or more welded metal meshes or metal laths. There is no particular limitation on the position where the welding wire mesh or metal lath is embedded, but when a bending force is applied to the panel, a compressive force acts on one surface and a tensile force acts on the other surface. If at least one sheet is arranged so as to be reinforced for compression and the other is reinforced for tension, the reinforcing effect is further enhanced. Also, the number of welded metal meshes or metal laths to be buried is not particularly limited as long as it is two or more, but in consideration of cost, total panel weight, etc., “panel thickness (mm) / 50” sheets It is desirable to do.
【0015】なお、上記本発明において使用できる珪酸
質原料粉末としては、従来と同様に石英、珪石、フライ
アッシュ、スラグ、シリカフューム等のSiO2含有化
合物の1種又は2種以上を使用することができ、また、
これらの珪酸質原料粉末と石灰質原料粉末との混合割合
も、従来と同様に酸化カルシウム(CaO)/シリカ
(SiO2)の重量比にして0.3〜0.8程度とすれ
ば良い。As the siliceous raw material powder that can be used in the present invention, one or more of SiO 2 -containing compounds such as quartz, silica stone, fly ash, slag, and silica fume can be used as in the prior art. Can, and
The mixing ratio between the siliceous raw material powder and the calcareous raw material powder may be about 0.3 to 0.8 in terms of the weight ratio of calcium oxide (CaO) / silica (SiO 2 ) as in the related art.
【0016】[0016]
【試験例】以下、上記した本発明にかかる超軽量気泡コ
ンクリートの製造方法を見出した試験例につき説明す
る。なお、以下の試験例においては、珪酸質原料粉末と
しては、東海工業株式会社製の宇久須珪石をボールミ
ル、及びディスクミルで所定の比表面積に粉砕したもの
を使用した。また、石灰質原料粉末としては、奥多摩工
業株式会社製の生石灰、及び太平洋セメント株式会社製
の普通ポルトランドセメントを使用し、発泡剤として
は、大和金属粉株式会社製のアルミニウム粉末を使用し
た。Test Examples Hereinafter, test examples in which a method for producing the ultralight cellular concrete according to the present invention as described above will be described. In the following test examples, as the siliceous raw material powder, a powder obtained by pulverizing Ukusu silica stone manufactured by Tokai Kogyo Co., Ltd. to a predetermined specific surface area with a ball mill and a disc mill was used. As the calcareous raw material powder, quick lime manufactured by Okutama Industry Co., Ltd. and ordinary Portland cement manufactured by Taiheiyo Cement Co., Ltd. were used, and as the foaming agent, aluminum powder manufactured by Daiwa Metal Powder Co., Ltd. was used.
【0017】−試験例1− 先ず、比表面積を5,000cm2/gに調整した珪
石、生石灰、セメントからなる主原料に、ALCの解体
屑などの回収原料、所定量の水を加えてスラリーを調整
し、このスラリーにアルミニウム粉末を加えて所定時間
攪拌した後、型枠に打設した。なお、型枠には、1枚の
パネル(厚さ100mm)につき2枚の線径2.6mm
の溶接金網〔JIS G 3551「溶接金網」のデザ
イン溶接金網,丸鉄線(WFP−D)〕が埋設されるよ
うに配置した。Test Example 1 First, a raw material such as ALC demolition waste and a predetermined amount of water were added to a main raw material composed of silica, quicklime and cement whose specific surface area was adjusted to 5,000 cm 2 / g, and a slurry was added. Was adjusted, aluminum powder was added to the slurry, and the mixture was stirred for a predetermined time, and then poured into a mold. The formwork has two wire diameters of 2.6 mm per panel (100 mm thick).
[Design welding wire mesh of JIS G 3551 "Welded wire mesh", round iron wire (WFP-D)].
【0018】その後、1.5時間で脱型し、ピアノ線で
厚さ100mmの半硬化状モルタルパネルに切断した
後、オートクレーブに入れ、温度180℃、圧力10気
圧程度の飽和水蒸気雰囲気下で6時間養生を施し、絶乾
かさ比重が0.35の超軽量気泡コンクリートを得た。Thereafter, the mold was removed in 1.5 hours, cut into a semi-cured mortar panel having a thickness of 100 mm with a piano wire, placed in an autoclave, and heated at 180 ° C. under a saturated steam atmosphere at a pressure of about 10 atm. After curing for a long time, an ultra-lightweight cellular concrete having an absolute dryness specific gravity of 0.35 was obtained.
【0019】この得られた超軽量気泡コンクリートにつ
いて、各々圧縮強度、及びパネル曲げ強度をJIS A
5416「軽量気泡コンクリートパネル」に準じて測
定し、圧縮強度は2.0N/mm2以上、パネル曲げ強
度は4,000N/m2以上を合格(○)とした。その
結果を表1に記載する。Regarding the obtained ultralight cellular concrete, the compressive strength and the panel bending strength were respectively measured according to JIS A.
Measured according to 5416 "lightweight cellular concrete panel," compressive strength 2.0 N / mm 2 or more, the panel bending strength was passed 4,000N / m 2 or more (○). Table 1 shows the results.
【0020】−試験例2− 珪石の比表面積を4,000cm2/gに調整した以外
は、上記試験例1と全く同様とし、得られた超軽量気泡
コンクリートについて、各々圧縮強度、及びパネル曲げ
強度を上記試験例1と同様に測定した。その結果を表1
に併記する。Test Example 2 Except that the specific surface area of the silica stone was adjusted to 4,000 cm 2 / g, the test was performed in exactly the same manner as in Test Example 1 above. The strength was measured as in Test Example 1 above. Table 1 shows the results.
It is described together.
【0021】−試験例3− 珪石の比表面積を10,000cm2/gに調整した以
外は、上記試験例1と全く同様とし、得られた超軽量気
泡コンクリートについて、各々圧縮強度、及びパネル曲
げ強度を上記試験例1と同様に測定した。その結果を表
1に併記する。Test Example 3 Except that the specific surface area of the silica stone was adjusted to 10,000 cm 2 / g, the test was performed in exactly the same manner as in Test Example 1 above. The strength was measured as in Test Example 1 above. The results are also shown in Table 1.
【0022】−試験例4− 珪石の比表面積を2,500cm2/gに調整した以外
は、上記試験例1と全く同様とし、得られた超軽量気泡
コンクリートについて、各々圧縮強度、及びパネル曲げ
強度を上記試験例1と同様に測定した。その結果を表1
に併記する。Test Example 4 Except that the specific surface area of silica stone was adjusted to 2,500 cm 2 / g, the test was performed in exactly the same manner as in Test Example 1 above, and the resulting ultralight cellular concrete was subjected to compressive strength and panel bending, respectively. The strength was measured as in Test Example 1 above. Table 1 shows the results.
It is described together.
【0023】−試験例5− 珪石の比表面積を12,500cm2/gに調整した以
外は、上記試験例1と全く同様とした。その結果を表1
に併記する。Test Example 5 The procedure was the same as in Test Example 1 except that the specific surface area of the silica stone was adjusted to 12,500 cm 2 / g. Table 1 shows the results.
It is described together.
【0024】−試験例6− 型枠に、1枚のパネル(厚さ100mm)につき2枚の
厚さ0.8mmのメタルラス〔JIS A 5505
「メタルラス」の平ラスに準じる〕が埋設されるように
配置した以外は、上記試験例1と全く同様とし、得られ
た超軽量気泡コンクリートについて、各々圧縮強度、及
びパネル曲げ強度を上記試験例1と同様に測定した。そ
の結果を表1に併記する。Test Example 6 Two metal laths having a thickness of 0.8 mm per panel (thickness of 100 mm) [JIS A 5505]
[Following the flat lath of "metal lath"], except that it was arranged so as to be buried. It measured similarly to 1. The results are also shown in Table 1.
【0025】−試験例7− 型枠に、1枚のパネル(厚さ100mm)につき1枚の
線径2.6mmの溶接金網〔JIS G 3551「溶
接金網」のデザイン溶接金網,丸鉄線(WFP−D)〕
が埋設されるように配置した以外は、上記試験例1と全
く同様とし、得られた超軽量気泡コンクリートについ
て、各々圧縮強度、及びパネル曲げ強度を上記試験例1
と同様に測定した。その結果を表1に併記する。Test Example 7 A welded wire mesh having a wire diameter of 2.6 mm per panel (thickness: 100 mm) [design welded wire mesh of JIS G 3551 “welded wire mesh”, round iron wire (WFP) -D)]
Is exactly the same as in the above-mentioned Test Example 1 except that it is disposed so as to be embedded.
It measured similarly to. The results are also shown in Table 1.
【0026】−試験例8− 型枠に、1枚のパネル(厚さ100mm)につき1組の
線径5.0mmの鉄筋マット〔JIS G 3532
「鉄線」をカゴ状に溶接〕が埋設されるように配置した
以外は、上記試験例1と全く同様とした。その結果を表
1に併記する。Test Example 8 A set of reinforced mats having a wire diameter of 5.0 mm per panel (100 mm thick) [JIS G 3532]
[Iron wire in the form of a cage] was placed in the same manner as in Test Example 1 above, except that it was arranged so as to be embedded. The results are also shown in Table 1.
【0027】[0027]
【表1】 [Table 1]
【0028】表1から、珪酸質原料粉末として使用する
珪石の比表面積を4,000〜10,000cm2/g
とする(試験例1,2,3及び6)と、得られる超軽量
気泡コンクリートの圧縮強度及びパネル曲げ強度を向上
させることができることが分かった。また、表1から、
線径の細い溶接金網、或いはメタルラスを2枚使用して
補強する(試験例1,2,3及び6)と、補強材周辺に
空洞や亀裂が無く、パネル曲げ強度の高い超軽量気泡コ
ンクリートが得られることが分かった。Table 1 shows that the specific surface area of the silica used as the siliceous raw material powder was 4,000 to 10,000 cm 2 / g.
(Test Examples 1, 2, 3, and 6), it was found that the compressive strength and panel bending strength of the obtained ultralight cellular concrete could be improved. Also, from Table 1,
Reinforcement using two thin welded wire meshes or metal laths (Test Examples 1, 2, 3 and 6) results in ultra-lightweight cellular concrete with high panel bending strength, without voids or cracks around the reinforcement. It turned out to be obtained.
【0029】[0029]
【発明の効果】以上、詳細に説明した本発明にかかる超
軽量気泡コンクリートの製造方法によれば、圧縮強度及
びパネル曲げ強度の高い絶乾かさ比重が0.45以下の
超軽量気泡コンクリートを製造することができ、搬送
時、或いは施工時に欠けやひび割れが生じ難い超軽量気
泡コンクリートを提供できる効果がある。According to the method for producing ultra-light cellular concrete according to the present invention described in detail above, an ultra-light cellular concrete having a high compressive strength and a high panel bending strength and an absolute dryness specific gravity of 0.45 or less is produced. It is possible to provide an ultra-lightweight cellular concrete in which chipping or cracking hardly occurs during transportation or construction.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 神初 憲治 東京都中央区日本橋蛎殻町1丁目10番7号 日本イトン工業株式会社内 Fターム(参考) 4G012 PB02 4G019 HA02 HC02 JA01 4G052 AB46 4G058 GA04 GB01 GC01 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenji Kamihatsu 1-10-7 Nihonbashi Kakigara-cho, Chuo-ku, Tokyo F-term (reference) in Nippon Iton Kogyo Co., Ltd. 4G012 PB02 4G019 HA02 HC02 JA01 4G052 AB46 4G058 GA04 GB01 GC01
Claims (2)
原料とする絶乾かさ比重0.45以下の超軽量気泡コン
クリートの製造方法において、上記珪酸質原料粉末とし
て、比表面積が4,000〜10,000cm2/gの
珪酸質原料粉末を用いることを特徴とする、超軽量気泡
コンクリートの製造方法。1. A method for producing ultra-lightweight cellular concrete having an absolute dryness specific gravity of 0.45 or less using a siliceous raw material powder and a calcareous raw material powder as main raw materials, wherein the specific surface area of the siliceous raw material powder is 4,000 to 4,000. A method for producing ultralight aerated concrete, comprising using a siliceous raw material powder of 10,000 cm 2 / g.
原料とする絶乾かさ比重0.45以下の超軽量気泡コン
クリートの製造方法において、上記珪酸質原料粉末とし
て、比表面積が4,000〜10,000cm2/gの
珪酸質原料粉末を用いると共に、補強材として、線径が
4.0mm以下の溶接金網、或いはメタルラスを2枚以
上埋設することを特徴とする、超軽量気泡コンクリート
の製造方法。2. A method for producing ultra-lightweight cellular concrete having an absolute dryness specific gravity of 0.45 or less using a siliceous raw material powder and a calcareous raw material powder as main raw materials, wherein the specific surface area of the siliceous raw material powder is 4,000 to 4,000. Production of ultra-lightweight cellular concrete, characterized by using a siliceous raw material powder of 10,000 cm 2 / g and embedding a welding wire mesh having a wire diameter of 4.0 mm or less or two or more metal laths as a reinforcing material. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000068846A JP2001253758A (en) | 2000-03-13 | 2000-03-13 | Method for manufacturing super lightweight cellular concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000068846A JP2001253758A (en) | 2000-03-13 | 2000-03-13 | Method for manufacturing super lightweight cellular concrete |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001253758A true JP2001253758A (en) | 2001-09-18 |
Family
ID=18587843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000068846A Pending JP2001253758A (en) | 2000-03-13 | 2000-03-13 | Method for manufacturing super lightweight cellular concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001253758A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7361240B2 (en) | 2003-12-13 | 2008-04-22 | Lg.Philips Lcd Co., Ltd. | Apparatus and method for fabricating liquid crystal display |
JP2016204860A (en) * | 2015-04-16 | 2016-12-08 | 旭化成建材株式会社 | Design panel, wall structure and construction method |
JP2017160065A (en) * | 2016-03-07 | 2017-09-14 | 株式会社ホクコン | Lime wash modified composition and mortar molding/laid panel, and method for manufacturing laid panel |
JP2020040871A (en) * | 2018-09-10 | 2020-03-19 | 旭化成ホームズ株式会社 | Lightweight cellular concrete |
-
2000
- 2000-03-13 JP JP2000068846A patent/JP2001253758A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7361240B2 (en) | 2003-12-13 | 2008-04-22 | Lg.Philips Lcd Co., Ltd. | Apparatus and method for fabricating liquid crystal display |
JP2016204860A (en) * | 2015-04-16 | 2016-12-08 | 旭化成建材株式会社 | Design panel, wall structure and construction method |
JP2017160065A (en) * | 2016-03-07 | 2017-09-14 | 株式会社ホクコン | Lime wash modified composition and mortar molding/laid panel, and method for manufacturing laid panel |
JP2020040871A (en) * | 2018-09-10 | 2020-03-19 | 旭化成ホームズ株式会社 | Lightweight cellular concrete |
JP7398225B2 (en) | 2018-09-10 | 2023-12-14 | 旭化成ホームズ株式会社 | lightweight aerated concrete |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108298904A (en) | A kind of reinforcement means for the ECC composite fibre mesh grids improving masonry wall anti-seismic performance | |
JP2003527288A (en) | Fiber cement building materials with low density additives | |
JP2010538958A (en) | Impact resistant strain hardening brittle matrix composites for protective structures | |
CN108529947A (en) | A kind of concrete inhibiting distress in concrete | |
Raza et al. | Experimental study of physical, fresh-state and strength parameters of concrete incorporating wood waste ash as a cementitious material | |
CN114149229B (en) | Ultrahigh-performance concrete for suspended tunnel pipe section and preparation method thereof | |
CN106477989A (en) | A kind of high-strength concrete adapting to wet environment and preparation method | |
CN102912892B (en) | High-ductility fiber concrete combined brick masonry wall and method for constructing same | |
CN111196701B (en) | Polymer modified hybrid microfiber cementitious composites | |
WO2006123632A1 (en) | Lightweight cement based hardened article reinforced with fiber | |
Abd Al Kareem et al. | Impact resistance of bendable concrete reinforced with grids and containing PVA solution | |
CN109572090B (en) | Thermal insulation material and preparation method thereof | |
Jaini et al. | Application of foamed concrete and cold-formed steel decking as lightweight composite slabs: experimental study on structural behaviour | |
JP2001253758A (en) | Method for manufacturing super lightweight cellular concrete | |
US6860935B2 (en) | Multiple scale cement composite with positive and ductile setting in uniaxial tension | |
CN102912982B (en) | Construction method of high-ductility fiber concrete floor cast-in-place layer | |
CN102912893B (en) | High-ductility fiber concrete combination block masonry wall and construction method thereof | |
JP2003534226A5 (en) | ||
JPH08502014A (en) | Metal fiber mat reinforced composite material | |
Vijayalakshmi | Investigation on the Mechanical Property and Crack Arresting Mechanism of Natural Jute Fiber used as Reinforcement for Lightweight Concrete Masonry Prism | |
KR101713022B1 (en) | Fiber reinforced concrete composite materials based on alkali activating slag and concrete application produced by the same | |
CN102910872B (en) | High-ductility fiber reinforced concrete low-rise shear wall | |
CN115288473A (en) | A kind of brick column polymer mortar and clad steel reinforcement method | |
CN102898102A (en) | Anti-cracking protective mortar for roof waterproof layer | |
CN102889004B (en) | Method for increasing ring beam for brick masonry wall |