JP2001243473A - Image density unevenness detection method - Google Patents
Image density unevenness detection methodInfo
- Publication number
- JP2001243473A JP2001243473A JP2000057337A JP2000057337A JP2001243473A JP 2001243473 A JP2001243473 A JP 2001243473A JP 2000057337 A JP2000057337 A JP 2000057337A JP 2000057337 A JP2000057337 A JP 2000057337A JP 2001243473 A JP2001243473 A JP 2001243473A
- Authority
- JP
- Japan
- Prior art keywords
- area
- pixels
- luminance value
- pixel
- average luminance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Image Analysis (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Image Processing (AREA)
Abstract
(57)【要約】
【課題】カラーフィルターのムラ検出にて、点状ムラの
検出感度を向上させる画像濃淡ムラ検出方法を提供する
こと。
【解決手段】1)2次元画像の画素からWx、Wy画素
の占める領域(AP)に位置する全画素の平均輝度値
(LAP)を作製し、2)領域(AP)からD画素外側に
位置する幅H画素のドーナツ状領域(AS)に位置する
全画素の平均輝度値(LAS)を作製し、3)平均輝度値
(LAP)と平均輝度値(LAS)との差を、ムラ検出の閾
値と比較し、ムラ領域を検出すること。
(57) [Problem] To provide an image density unevenness detection method for improving detection sensitivity of dot-like unevenness in color filter unevenness detection. An average luminance value (L AP ) of all pixels located in an area (AP) occupied by Wx and Wy pixels is prepared from pixels of a two-dimensional image, and 2) an outer side of a D pixel from the area (AP). An average luminance value (L AS ) of all pixels located in the donut-shaped area (AS) having a width of H pixels is prepared, and 3) a difference between the average luminance value (L AP ) and the average luminance value (L AS ) is calculated. Detecting a non-uniform area by comparing with a non-uniformity detection threshold.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、本来検査領域内全
域において一定濃度であることが期待される検査対象物
に生じた部分的な濃淡を、その撮影画像から解析、検出
するムラ領域の検出方法に関するものであり、特に、カ
ラーフィルターなどのムラ検査において用いられる画像
濃淡ムラ検出方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the detection of a non-uniform area in which a partial density generated on an inspection object which is expected to have a constant density throughout the entire inspection area is analyzed and detected from the photographed image. More particularly, the present invention relates to a method for detecting image density unevenness used in an unevenness inspection of a color filter or the like.
【0002】[0002]
【従来の技術】カラー液晶表示装置の色表示用のカラー
フィルターやカラービデオカメラの色分解用のカラーフ
ィルターの品質検査の一環として画像解析装置を用いた
ムラ検査が広く行われている。この画像解析装置は通
常、画像入力装置、コンピュータ、照明、及び付属装置
類からなり、カラーフィルターを透過光で撮影すること
によって画像データを得た後、コンピュータによって画
像処理を行い、ムラ領域を特定している。これに用いら
れる画像処理方法としては、例えば、画像データの1画
素毎にデジタルフィルタ、2次微分処理等を施した後、
別途設定した閾値と比較して閾値を越えた部分をムラ領
域として特定するというものである。2. Description of the Related Art As a part of quality inspection of a color filter for color display of a color liquid crystal display device and a color filter for color separation of a color video camera, unevenness inspection using an image analyzer is widely performed. This image analysis device usually consists of an image input device, a computer, lighting, and attached devices. After obtaining image data by photographing a color filter with transmitted light, the image processing is performed by a computer, and an uneven area is specified. are doing. As an image processing method used for this, for example, after performing a digital filter, a secondary differentiation process, etc. for each pixel of image data,
In comparison with a separately set threshold value, a portion exceeding the threshold value is specified as an uneven area.
【0003】しかしながら、カラー液晶表示装置に用い
るカラーフィルターをフォトリソグラフィー法によって
製造すると、製造プロセス上の避けられない要因からカ
ラーフィルターには直径が数画素程度の点状ムラが生じ
ることがあり、これを皆無にすることは現状では不可能
である。また、ムラの直径、形状、境界部の濃度勾配等
は千差万別であり、従来多用されてきた3×3画素程度
のデジタルフィルタでは、このような点状ムラの形状に
うまく当てはまる確率は低く、点状ムラを検出すること
は困難なものであった。However, when a color filter used for a color liquid crystal display device is manufactured by a photolithography method, dot unevenness having a diameter of about several pixels may occur in the color filter due to unavoidable factors in the manufacturing process. It is not possible at present to eliminate all. In addition, the diameter and shape of the unevenness, the density gradient at the boundary, and the like vary widely, and a digital filter of about 3 × 3 pixels, which has been frequently used in the related art, has a probability of successfully applying to such a shape of the dot-like unevenness. Therefore, it is difficult to detect dot-like unevenness.
【0004】[0004]
【発明が解決しようとする課題】本発明は、このような
従来の問題点に鑑みなされたものであり、その課題とす
るところは、カラーフィルターなどの品質検査における
ムラ検出において、特に、点状ムラに対する検出感度を
向上させ、点状ムラの検出を容易にする画像濃淡ムラ検
出方法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and an object of the present invention is to detect unevenness in quality inspection of a color filter or the like. An object of the present invention is to provide an image density unevenness detection method that improves detection sensitivity to unevenness and facilitates detection of dot-like unevenness.
【0005】[0005]
【課題を解決するための手段】本発明は、検査対象物を
撮影して得られた2次元画像を解析し、部分的に濃度が
高いあるいは低い領域(ムラ領域)を検出する画像濃淡
ムラ検出において、 1)撮影して得られた2次元画像のある座標(x0 ,y
0 )に位置する画素からX軸方向へWx(整数でWx≧
1)、Y軸方向へWy(整数でWy≧1)画素の占める
領域(AP)に位置する全画素の平均輝度値(LAP)を
作製し、 2)該領域(AP)の周辺部の、該領域(AP)からD
(整数でD≧1)画素外側に位置する幅H(整数でH≧
1)画素のドーナツ状領域(AS)に位置する全画素の
平均輝度値(LAS)を作製し、 3)該平均輝度値(LAP)と該平均輝度値(LAS)との
差を、予め設定したムラ検出の閾値と比較し、ムラ領域
を検出することを特徴とする画像濃淡ムラ検出方法であ
る。SUMMARY OF THE INVENTION The present invention analyzes a two-dimensional image obtained by photographing an object to be inspected, and detects an image density unevenness in which an area having a high or low density (an uneven area) is partially detected. 1) Coordinates (x 0 , y) of a two-dimensional image obtained by shooting
0 ) from the pixel located in the X-axis direction to Wx (Wx ≧ an integer)
1) An average luminance value (L AP ) of all pixels located in an area (AP) occupied by Wy (Wy ≧ 1 as an integer) pixels in the Y-axis direction is produced. 2) A peripheral area of the area (AP) is produced. , From the area (AP) to D
(Integer D ≧ 1) Width H outside the pixel (H ≧ Integer
1) An average luminance value ( LAS ) of all the pixels located in the donut-shaped area (AS) of the pixel is prepared. 3) The difference between the average luminance value ( LAP ) and the average luminance value ( LAS ) is calculated. This is a method of detecting unevenness in image density, wherein a non-uniform area is detected by comparing the threshold with a preset threshold value for unevenness detection.
【0006】また、本発明は、上記発明による画像濃淡
ムラ検出方法において、前記ある座標(x0 ,y 0 )
を、前記撮影して得られた2次元画像の全領域にわたっ
て順次更新し、ムラ領域を検出することを特徴とする画
像濃淡ムラ検出方法である。According to the present invention, there is provided the image density unevenness detecting method according to the above invention, wherein the certain coordinates (x 0 , y 0 )
Is sequentially updated over the entire area of the two-dimensional image obtained by shooting, and an uneven density area is detected.
【0007】また、本発明は、上記発明による画像濃淡
ムラ検出方法において、前記Wx及びWyを変化させた
WxとWyとの複数の組み合わせにて、複数個のムラ領
域を検出し、該複数個のムラ領域の和をもって検査対象
物のムラ領域とすることを特徴とする画像濃淡ムラ検出
方法である。The present invention also relates to the image density unevenness detecting method according to the present invention, wherein a plurality of uneven areas are detected by a plurality of combinations of Wx and Wy in which Wx and Wy are changed. Is a method for detecting unevenness in image density, wherein the sum of the uneven areas is used as the uneven area of the inspection object.
【0008】[0008]
【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。図1〜図4は、本発明による画像濃淡ムラ
検出方法の一実施例を模式的に示す説明図である。図1
において、(AT)は、撮影して得られた2次元画像の
全領域の画素をXY直交座標上に示したものである。A
(x0 ,y0 )は、この2次元画像の、ある座標
(x0 ,y 0 )に位置する画素Aを示している。Embodiments of the present invention will be described below in detail. FIG. 1 to FIG. 4 are explanatory views schematically showing one embodiment of the image density unevenness detection method according to the present invention. FIG.
In (AT), pixels in the entire area of the two-dimensional image obtained by shooting are shown on XY orthogonal coordinates. A
(X 0 , y 0 ) indicates a pixel A located at a certain coordinate (x 0 , y 0 ) of the two-dimensional image.
【0009】図1は、Wx=2、Wy=2、すなわち、
撮影して得られた2次元画像のある座標(x0 ,y 0 )
に位置する画素A(A(x0 ,y 0 ))に対応した領域
(AP1)の全画素が2×2=4画素の場合を示したも
のである。また、D=2、H=1、すなわち、ドーナツ
状領域(AS1)は、この領域(AP1)からD=2画
素外側に位置する幅H=1画素で構成された場合を示し
たものである。尚、領域(AP1)は右上がり斜線、ド
ーナツ状領域(AS1)は右下がり斜線で示した領域で
ある。FIG. 1 shows that Wx = 2 and Wy = 2, that is,
Coordinates (x 0 , y 0 ) of the two-dimensional image obtained by shooting
Is a case where all the pixels in the area (AP1) corresponding to the pixel A (A (x 0 , y 0 )) located in are 2 × 2 = 4 pixels. Also, D = 2, H = 1, that is, the donut-shaped area (AS1) has a width H = 1 pixel located outside the area (AP1) by D = 2 pixels. . Note that the area (AP1) is an area shown by oblique lines rising to the right, and the donut-shaped area (AS1) is an area shown by oblique lines falling to the right.
【0010】図2は、Wx=5、Wy=5、すなわち、
撮影して得られた2次元画像のある座標(x0 ,y 0 )
に位置する画素A(A(x0 ,y 0 ))に対応した領域
(AP2)の全画素が5×5=25画素の場合を示した
ものである。また、D=2、H=1、すなわち、ドーナ
ツ状領域(AS2)は、この領域(AP2)からD=2
画素外側に位置する幅H=1画素で構成された場合を示
したものである。尚、領域(AP2)は右上がり斜線、
ドーナツ状領域(AS2)は右下がり斜線で示した領域
である。FIG. 2 shows that Wx = 5 and Wy = 5, that is,
Coordinates (x 0 , y 0 ) of the two-dimensional image obtained by shooting
Is a case where all the pixels of the area (AP2) corresponding to the pixel A (A (x 0 , y 0 )) located in the area A are 5 × 5 = 25 pixels. Also, D = 2, H = 1, that is, the donut-shaped area (AS2) is D = 2 from this area (AP2).
This shows a case where the width H = 1 pixel located outside the pixel. The area (AP2) is an oblique line rising to the right,
The donut-shaped area (AS2) is an area indicated by oblique lines falling to the right.
【0011】本実施例においては、Wx及びWyを2〜
5の範囲で変化させたWxとWyとの複数の組み合わせ
にて、複数個のムラ領域を検出し、これら複数個のムラ
領域の和をもって検査対象物のムラ領域とする画像濃淡
ムラ検出方法について説明する。図3は、上記Wx及び
Wyを2〜5の範囲で変化させた際の、WxとWyとの
複数の組み合わせ中の1組み合わせを示したものであ
る。すなわち、Wx=4、Wy=3、撮影して得られた
2次元画像のある座標(x0 ,y 0 )に位置する画素A
(A(x0 ,y 0 ))に対応した領域(AP3)の全画
素が4×3=12画素で、また、D=2、H=1、ドー
ナツ状領域(AS3)は、この領域(AP3)からD=
2画素外側に位置する幅H=1画素で構成された場合を
示したものである。In this embodiment, Wx and Wy are 2 to 2.
An image density unevenness detection method that detects a plurality of uneven regions by a plurality of combinations of Wx and Wy changed in the range of 5, and uses the sum of the plurality of uneven regions as an uneven region of the inspection object explain. FIG. 3 shows one of a plurality of combinations of Wx and Wy when Wx and Wy are changed in the range of 2 to 5. That is, Wx = 4, Wy = 3, a pixel A located at a certain coordinate (x 0 , y 0 ) of a two-dimensional image obtained by shooting.
All pixels in the area (AP3) corresponding to (A (x 0 , y 0 )) are 4 × 3 = 12 pixels, and D = 2, H = 1, and the donut-shaped area (AS3) is AP3) to D =
This shows a case where the width H is one pixel located two pixels outside.
【0012】先ず、図1に示すように、D=2、H=
1、及びWx=2、Wy=2と設定して、撮影して得ら
れた2次元画像のある座標(x0 ,y 0 )に位置する画
素A(A(x0 ,y 0 ))から、X軸方向へWx=2、
Y軸方向へWy=2画素の占める領域(AP1)に位置
する全画素の平均輝度値(LAP1 )を求める。L
AP1 (x0 ,y 0 )を、画素A(A(x0 ,y 0 ))に
対応したWx=2、Wy=2の領域(AP1)の平均輝
度値とすると、LAP1 (x0 ,y 0 )は以下に示す数式
(1)にて表される。First, as shown in FIG. 1, D = 2 and H =
1 and Wx = 2, Wy = 2, and from a pixel A (A (x 0 , y 0 )) located at a certain coordinate (x 0 , y 0 ) of a two-dimensional image obtained by shooting. , Wx = 2 in the X-axis direction,
An average luminance value (L AP1 ) of all pixels located in an area (AP1) occupied by Wy = 2 pixels in the Y-axis direction is obtained. L
AP1 the (x 0, y 0), when the average luminance value of the pixel A (A (x 0, y 0)) corresponding to Wx = 2, Wy = 2 regions (AP1), L AP1 (x 0, y 0 ) is represented by the following equation (1).
【0013】 LAP1 (x0 ,y 0 )=ΣL(xi ,y j )/(Wx×Wy)・・・(1) i=0〜(Wx−1) j=0〜(Wy−1) すなわち、この際には、(i=0,j=0)、(i=
0,j=1)、(i=1,j=0)、(i=1,j=
1)の4画素の平均輝度値を表したものとなる。[0013] L AP1 (x 0, y 0 ) = ΣL (x i, y j) / (Wx × Wy) ··· (1) i = 0~ (Wx-1) j = 0~ (Wy-1 That is, in this case, (i = 0, j = 0), (i =
0, j = 1), (i = 1, j = 0), (i = 1, j =
This represents the average luminance value of the four pixels of 1).
【0014】次に、この領域(AP1)の周辺部の、こ
の領域(AP1)からD=2画素外側に位置する幅H=
1画素のドーナツ状領域(AS1)に位置する全画素の
平均輝度値(LAS1 )を求める。LAS1 (x0 ,y 0 )
を、画素A(A(x0 ,y 0 ))に対応したドーナツ状
領域(AS1)の平均輝度値とすると、LAS1 (x0 ,
y 0 )は以下に示す数式(2)にて表される。尚、ドー
ナツ状領域(AS1)は図4に示すように、AS1a、
AS1b、AS1c、AS1dに4分割したものを集約
した。Next, a width H = D = 2 pixels outside the area (AP1) around the area (AP1).
The average luminance value (L AS1 ) of all pixels located in the donut-shaped area (AS1) of one pixel is obtained. L AS1 (x 0 , y 0 )
Is the average luminance value of the donut-shaped area (AS1) corresponding to the pixel A (A (x 0 , y 0 )), L AS1 (x 0 ,
y 0 ) is represented by the following equation (2). Incidentally, the donut-shaped area (AS1) has AS1a,
AS1b, AS1c, and AS1d divided into four parts were collected.
【0015】 LAS1 (x0 ,y 0 )={ΣLAS1a(xi1,y j1)/(Wx+2D+2H)} +{ΣLAS1b(xi2,y j2)/(Wx+2D+2H)} +{ΣLAS1c(xi3,y j3)/(Wy+2D)} +{ΣLAS1d(xi4,y j4)/(Wy+2D)} ・・・・・・・・・・・(2) i1 =−(D+H)〜((Wx−1)+D+H) j1 =−(D+H) i2 =−(D+H)〜((Wx−1)+D+H) j2 =(D+H) i3 =−(D+H) j3 =−(D)〜((Wy−1)+D) i4 =(D+H) j4 =−(D)〜((Wy−1)+D) LAS1 (x0 ,y 0 )={ΣLAS1a(xi1,y j1)+ΣLAS1b(xi2,y j2) +ΣLAS1c(xi3,y j3)+ΣLAS1d(xi4,y j4)}/{2(Wx+2D+2 H)+2(Wy+2D)} ・・・・・・・・・・・・・・・・(3) すなわち、この際には、(j=−3,i=−3〜4)の
8画素、(j=3,i=−3〜4)の8画素、(i=−
3,j=−2〜3)の6画素、(i=3,j=−2〜
3)の6画素の合計28画素の平均輝度値を表したもの
となる。尚、数式(2)はドーナツ状領域(AS1)を
4分割したもの、数式(3)は4分割したものを集約し
て表したものである。L AS1 (x 0 , y 0 ) = {L AS1a (x i1 , y j1 ) / (Wx + 2D + 2H)} + { LAS 1b (x i2 , y j2 ) / (Wx + 2D + 2H)} + { LAS 1c (x i3, y j3) / (Wy + 2D)} + {ΣL AS1d (x i4, y j4) / (Wy + 2D)} ··········· (2) i 1 = - (D + H) ~ (( Wx-1) + D + H) j 1 = − (D + H) i 2 = − (D + H) to ((Wx−1) + D + H) j 2 = (D + H) i 3 = − (D + H) j 3 = − (D) to ((Wy−1) + D) i 4 = (D + H) j 4 = − (D) to ((Wy−1) + D) L AS1 (x 0 , y 0 ) = { ΣLAS 1a (x i1 , y j1 ) + ΣL AS1b (x i2, y j2) + ΣL AS1c (x i3, y j3) + ΣL AS1d (x i4, y j4)} / {2 (Wx + 2D + 2 H) +2 (Wy + 2D)} ··········・(3) That is, in this case, eight pixels (j = -3, i = -3 to 4), eight pixels (j = 3, i = -3 to 4), and (i = −
6 pixels of (3, j = −2 to 3), (i = 3, j = −2 to 3)
3) The average luminance value of a total of 28 pixels of 6 pixels is obtained. The expression (2) is obtained by dividing the donut-shaped area (AS1) into four parts, and the expression (3) is obtained by integrating the divided parts into four parts.
【0016】続いて、上記領域(AP1)の平均輝度
値、LAP1 (x0 ,y 0 )と、上記ドーナツ状領域(A
S1)の平均輝度値、LAS1 (x0 ,y 0 )との差を求
める。この差が、予め設定したムラ検出の閾値(S)と
比較し、閾値よりも大きい場合、すなわち、以下に示す
数式(4)の関係が成立するとき、画素A(A(x0,y
0 ))に対応した領域(AP1)がムラ領域であると
判断するものである。 |LAP1 (x0 ,y 0 )−LAS1 (x0 ,y 0 )|>S ・・・・(4) そして、その判断結果をC(x0 ,y 0 )=1[ムラ領
域である]とする。ただし、判断を行う前に、予めC
(x0 ,y 0 )=0[ムラ領域でない]に設定してお
く。Subsequently, the average brightness value of the area (AP1), L AP1 (x 0 , y 0 ), and the donut-shaped area (A
The difference between the average luminance value of S1) and L AS1 (x 0 , y 0 ) is obtained. This difference is compared with a threshold value (S) for unevenness detection set in advance, and when the difference is larger than the threshold value, that is, when the relationship of the following equation (4) holds, the pixel A (A (x 0 , y)
0 )) is determined to be an uneven area. | L AP1 (x 0 , y 0 ) −L AS1 (x 0 , y 0 ) |> S (4) Then, the determination result is expressed as C (x 0 , y 0 ) = 1 [in the uneven area. There is]. However, before making a decision,
(X 0 , y 0 ) = 0 is set to [not a non-uniform area].
【0017】上記のようにして、検査対象物内のある特
定箇所がムラ領域であるか否かの判定を行うことができ
る。すなわち、ある特定箇所の座標を、前記ある座標
(x0,y 0 )に代えて設定することによって可能とな
る。尚、本発明において、D=2、H=1、及びWx=
2、Wy=2は、検査対象物におけるムラの直径、形
状、境界部の濃度勾配等を考慮して設定するものである
が、Dは、9≧D≧1程度、Hは、3≧H≧1程度、及
びWxは、1〜6程度、Wxは、1〜6程度のものであ
る。As described above, it is possible to determine whether or not a specific location in the inspection object is an uneven area. That is, it becomes possible by setting the coordinates of a certain specific place instead of the certain coordinates (x 0 , y 0 ). In the present invention, D = 2, H = 1, and Wx =
2, Wy = 2 is set in consideration of the diameter and shape of unevenness in the inspection object, the density gradient at the boundary, and the like. D is about 9 ≧ D ≧ 1, and H is 3 ≧ H. ≧ 1 and Wx are about 1 to 6, and Wx is about 1 to 6.
【0018】また、引き続き、画素A(A(x0 ,y
0 ))の座標を次々に更新しながら、撮影して得られ
た2次元画像の全体に対して上記演算を繰り返すと、こ
の演算の繰り返しによって、前記設定条件(D=2、H
=1、及びWx=2、Wy=2)での点状ムラの検出を
2次元画像の全体に対して行うことになる。尚、2次元
画像の周辺部分、上方辺部、及び左方辺部の(D+H)
画素、右方辺部の(D+H+(Wx−1))画素、下方
辺部の(D+H+(Wy−1))画素に関しては演算が
出来ないため点状ムラの検出は除外することになる。Further, the pixel A (A (x 0 , y
0 )), the above calculation is repeated for the entire two-dimensional image obtained by shooting while updating the coordinates one after another. By repeating this calculation, the setting condition (D = 2, H
= 1, and Wx = 2, Wy = 2) are detected for the entire two-dimensional image. (D + H) of the peripheral portion, upper side portion, and left side portion of the two-dimensional image
For pixels, (D + H + (Wx-1)) pixels on the right side, and (D + H + (Wy-1)) pixels on the lower side, the detection of dot-like unevenness is excluded.
【0019】更に、D=2、H=1にて、Wx及びWy
を2〜5の範囲で変化させたWxとWyとの複数の組み
合わせにて、複数個のムラ領域を検出することにより、
ムラ領域の検出の精度を更にさせることが出来るものと
なる。例えば、図1に示す設定(D=2、H=1、及び
Wx=2、Wy=2)から、その1組み合わせである図
3に示す設定(D=2、H=1、及びWx=4、Wy=
3)など、多くのWxとWyとの組み合わせを経て図2
に示す設定(D=2、H=1、及びWx=5、Wy=
5)に至る複数の組み合わせにて、複数個のムラ領域を
検出するものである。そして、この際の最終のムラ領域
は、これら複数個のムラ領域の和をもって検査対象物の
ムラ領域とする。Further, when D = 2 and H = 1, Wx and Wy
By detecting a plurality of uneven regions by a plurality of combinations of Wx and Wy in which is changed in the range of 2 to 5,
The accuracy of detecting the uneven area can be further improved. For example, from the settings shown in FIG. 1 (D = 2, H = 1, and Wx = 2, Wy = 2), one of the settings shown in FIG. 3 (D = 2, H = 1, and Wx = 4). , Wy =
3) through many combinations of Wx and Wy, such as 3)
(D = 2, H = 1, Wx = 5, Wy =
In a plurality of combinations up to 5), a plurality of uneven areas are detected. The final non-uniform area at this time is the non-uniform area of the inspection object with the sum of the plurality of non-uniform areas.
【0020】上述のように、本発明による画像濃淡ムラ
検出方法においては、着目する領域(AP)と比較する
領域(AS)との間をD(整数でD≧1)画素外側に離
すことによってムラ領域辺縁部の濃度変動が急峻である
か、緩やかであるかによる検出力の差を回避し、感度良
くムラ領域を検出するとが可能となる。また、Wx及び
Wyを変更しながらWxとWyとの複数の組み合わせに
て、繰り返し複数個のムラ領域を検出することによっ
て、ムラの直径、形状、境界部の濃度勾配等による検出
力の差を回避し、感度良くムラ領域を検出するとが可能
となる。As described above, in the image density unevenness detection method according to the present invention, the area between the area of interest (AP) and the area to be compared (AS) is separated by D (an integer D ≧ 1) pixels outside. It is possible to avoid a difference in detection power depending on whether the density fluctuation at the edge of the uneven area is steep or gentle, and detect the uneven area with high sensitivity. In addition, by repeatedly detecting a plurality of uneven regions with a plurality of combinations of Wx and Wy while changing Wx and Wy, a difference in detection power due to uneven diameter, shape, density gradient at a boundary portion, and the like can be obtained. Thus, it is possible to detect the uneven area with high sensitivity.
【0021】図5は、本発明による画像濃淡ムラ検出方
法におけるムラ領域検出のフローの一例を示す説明図で
ある。先ず、図1における設定条件、D=2、H=1、
及び前記C=0[ムラ領域でない]、及びWx=2、W
y=2を設定する。次に、図1における、撮影して得ら
れた2次元画像の全領域の左上方端からX軸及びY軸方
向に各々(D+H+1)画素離れてた座標(xa ,
ya )を設定する。尚、Xmax 、及びYmax は、各々X
軸方向のデータサイズ、及びY軸方向のデータサイズで
ある。FIG. 5 is an explanatory diagram showing an example of a flow of detecting an uneven area in the image density unevenness detecting method according to the present invention. First, the setting conditions in FIG. 1, D = 2, H = 1,
And the above C = 0 [not a non-uniform area], and Wx = 2, W
Set y = 2. Next, in FIG. 1, coordinates (x a , x a ) separated by (D + H + 1) pixels in the X-axis and Y-axis directions from the upper left end of the entire area of the captured two-dimensional image.
Set y a ). Note that X max and Y max are each X
The data size in the axial direction and the data size in the Y-axis direction.
【0022】次に、前記数式(1)を一般化した数式
(11) LAP(x,y )=ΣL(xi ,y j )/(Wx×Wy) ・・・・(11) i=0〜(Wx−1) j=0〜(Wy−1) に従って、撮影して得られた2次元画像の上記座標(x
a ,y a )に位置する画素B(B(xa ,y a ))か
ら、X軸方向へWx=2、Y軸方向へWy=2画素の占
める領域(AP)に位置する全画素の平均輝度値
(LAP)を求める。Next, Equation (1) a generalized equation (11) L AP (x, y) = ΣL (x i, y j) / (Wx × Wy) ···· (11) i = 0- (Wx-1) j = 0 to (Wy-1) The coordinates (x
a, a pixel B located to y a) (B (x a , y a) from) of all pixels located in the region (AP) occupying the X-axis direction to Wx = 2, Y-axis direction of Wy = 2 pixels An average luminance value ( LAP ) is obtained.
【0023】次に、前記数式(3)を一般化した数式
(13) LAS(x,y )={ΣLAS a(xi1,y j1)+ΣLAS b(xi2,y j2)+ΣL AS c (xi3,y j3)+ΣLAS d(xi4,y j4)}/{2(Wx+2D+2H)+ 2(Wy+2D)} ・・・・・・・・・・・・・・・(13) に従って、この領域(AP)の周辺部の、この領域(A
P)からD=2画素外側に位置する幅H=1画素のドー
ナツ状領域(AS)に位置する全画素の平均輝度値(L
AS)を求める。Next, an equation obtained by generalizing the equation (3)
(13) LAS(X, y) = {ΣLAS a(Xi1, Yj1) + ΣLAS b(Xi2, Yj2) + ΣL AS c (Xi3, Yj3) + ΣLAS d(Xi4, Yj4) / {2 (Wx + 2D + 2H) +2 (Wy + 2D)} (13) According to (13), this area (A) at the periphery of this area (AP)
P) is a pixel having a width H = 1 pixel located outside D = 2 pixels from P).
The average luminance value (L) of all the pixels located in the nut-shaped area (AS)
AS).
【0024】続いて、上記領域(AP)の平均輝度値、
LAP(xa ,y a )と、上記ドーナツ状領域(AS)の
平均輝度値、LAS(xa ,y a )との差を求める。この
差が、予め設定したムラ検出の閾値と比較し閾値(S)
よりも大きい場合、すなわち、以下に示す数式(4)を
一般化した数式(14)の関係が成立するとき、画素B
(B(xa ,y a ))に対応した領域(AP)がムラ領
域であると判断するものである。 |LAP(x,y )−LAS(x,y )|>S ・・・・(14) そして、その判断結果をC(x,y )=1[ムラ領域で
ある]とする。尚、差を求める前の判断結果は、予め、
C(x,y )=0[ムラ領域でない]にセットしてあ
る。Subsequently, the average luminance value of the area (AP),
L AP (x a, y a ) and the average luminance value of the donut-shaped region (AS), L AS (x a, y a) the difference between the seek. This difference is compared with a preset threshold value for unevenness detection, and the threshold value (S)
When the relationship of Expression (14), which is a generalization of Expression (4) shown below, holds, the pixel B
(B (x a, y a )) region corresponding to the (AP) is one in which it is determined that the uneven area. | L AP (x, y) -L AS (x, y) |> S ···· (14) Then, the determination result and C (x, y) = 1 [ a uneven areas. Note that the judgment result before obtaining the difference is
C (x, y) = 0 (not a non-uniform area).
【0025】引き続き、同様にしてx=xa+1 、すなわ
ち、xa のX軸方向に隣接する画素(xa+1 ,ya )の
LAP(xa+1 ,y a )、LAS(xa+1 ,y a )を求め、
その差の判断結果を得る。そして、順次x>{Xmax −
(D+H+(Wx−1)}に至るまでX軸方向の各画素
の判断結果を得る。次に、y=ya+1 、すなわち、画素
B(B(xa ,y a ))のY軸方向に隣接する画素(x
a ,ya+1 )のLAP(xa ,y a+1 )、LAS(xa ,y
a+1 )を求め、その差の判断結果を得る。そして、順次
x>{Xmax −(D+H+(Wx−1)}に至るまでX
軸方向の各画素の判断結果を得る。[0025] Subsequently, in the same manner x = x a + 1, i.e., L AP (x a + 1 , y a) of the pixels adjacent in the X-axis direction x a (x a + 1, y a), L asked the AS (x a + 1, y a),
The result of the difference determination is obtained. Then, sequentially x> {X max −
(Get D + H + (Wx-1 ) determination result of each pixel in the X-axis direction up to the}. Then, y = y a + 1, i.e., Y-axis of pixels B (B (x a, y a)) Pixels adjacent in the direction (x
a, y a + 1) of L AP (x a, y a + 1), L AS (x a, y
a + 1 ), and the result of the difference is obtained. Then, sequentially x> {X max - (D + H + (Wx-1)} X up to the
The determination result of each pixel in the axial direction is obtained.
【0026】同様にして、順次y>{Ymax −(D+H
+(Wy−1)}に至るまで、すなわち、2次元画像の
左下方端に位置する画素のX軸方向の全画素までの判断
結果を得る。すなわち、以上により、前記設定条件(D
=2、H=1、及び前記B=0[ムラ領域でない]、及
びWx=2、Wy=2)での、2次元画像の周辺部分を
除く領域の全画素の判断結果(ムラ領域の検出)を得る
ことになる。ここで、周辺部分としては、上方辺部、及
び左方辺部の(D+H)画素、右方辺部の(D+H+
(Wx−1))画素、下方辺部の(D+H+(Wy−
1))画素である。Similarly, sequentially, y> {Y max- (D + H
+ (Wy-1)}, that is, the determination result up to all pixels in the X-axis direction of the pixel located at the lower left end of the two-dimensional image is obtained. That is, by the above, the setting condition (D
= 2, H = 1, and B = 0 [not a non-uniform area], and Wx = 2, Wy = 2), the result of determination of all pixels in the area except the peripheral part of the two-dimensional image (non-uniform area detection) ). Here, the peripheral portion includes (D + H) pixels on the upper side and the left side, and (D + H +) on the right side.
(Wx-1)) pixel, (D + H + (Wy-
1)) Pixels.
【0027】次に、前記設定条件であるD=2、H=
1、及び前記C=0[ムラ領域でない]、及びWx=
2、Wy=2の内、順次変化させるWx及びWyの値を
5とし、Wx及びWyを変化させたWxとWyとの複数
の組み合わせにて、上記処理を行うことにより、複数個
のムラ領域を検出する。そして、最終のムラ領域は、こ
れら複数個のムラ領域の和をもって検査対象物のムラ領
域とする。Next, the set conditions D = 2, H =
1, and C = 0 [not in the uneven area], and Wx =
2, Wy = 2, the values of Wx and Wy to be sequentially changed are set to 5, and the above processing is performed by a plurality of combinations of Wx and Wy in which Wx and Wy are changed. Is detected. The final non-uniform area is defined as the non-uniform area of the inspection object with the sum of the plurality of non-uniform areas.
【0028】[0028]
【発明の効果】本発明は、検査対象物を撮影して得られ
た2次元画像を解析し、部分的に濃度が高いあるいは低
い領域(ムラ領域)を検出する画像濃淡ムラ検出におい
て、a)ある座標(x0 ,y 0 )に位置する画素からX
軸方向へWx、Y軸方向へWy画素の占める領域(A
P)に位置する全画素の平均輝度値(LAP)を作製し、
b)領域(AP)からD画素外側に位置する幅H画素の
ドーナツ状領域(AS)に位置する全画素の平均輝度値
(LAS)を作製し、c)該平均輝度値(LAP)と該平均
輝度値(LAS)との差を、予め設定したムラ検出の閾値
と比較し、ムラ領域を検出する画像濃淡ムラ検出方法で
あるので、カラーフィルターなどの品質検査における特
定箇所のムラ検出において、ムラ領域辺縁部の濃度変動
が急峻であるか、緩やかであるかによる検出力の差を回
避した、特に、点状ムラに対する検出感度を向上させ、
点状ムラの検出を容易にする画像濃淡ムラ検出方法とな
る。According to the present invention, a two-dimensional image obtained by photographing an object to be inspected is analyzed, and the image density unevenness detection for partially detecting a high or low density area (uneven area) includes: X from a pixel located at a certain coordinate (x 0 , y 0 )
Area occupied by Wx pixels in the axial direction and Wy pixels in the Y axis direction (A
An average luminance value (L AP ) of all the pixels located in P) is created,
b) preparing an average luminance value ( LAS ) of all pixels located in a donut-shaped area (AS) having a width of H pixels located outside the area (AP) by D pixels; and c) producing an average luminance value ( LAP ). And the average luminance value (L AS ) is compared with a preset threshold value of unevenness detection to detect unevenness of the image density. In the detection, the difference in the detection power depending on whether the density fluctuation at the edge of the uneven area is steep or gentle is avoided, and in particular, the detection sensitivity for point-like unevenness is improved,
An image density unevenness detection method that facilitates detection of dot-like unevenness is provided.
【0029】また、本発明は、上記画像濃淡ムラ検出方
法において、ある座標(x0 ,y 0)を、撮影して得ら
れた2次元画像の全領域にわたって順次更新し、ムラ領
域を検出する画像濃淡ムラ検出方法であるので、カラー
フィルターなどの品質検査におけるムラ検出において、
検査対象物の全領域にわたってムラ領域辺縁部の濃度変
動が急峻であるか、緩やかであるかによる検出力の差を
回避した、特に、点状ムラに対する検出感度を向上さ
せ、点状ムラの検出を容易にする画像濃淡ムラ検出方法
となる。According to the present invention, in the image density unevenness detection method, a certain coordinate (x 0 , y 0 ) is sequentially updated over the entire area of a two-dimensional image obtained by photographing to detect an uneven area. Since it is an image density unevenness detection method, in unevenness detection in quality inspection such as color filters,
Avoids a difference in detection power depending on whether the density fluctuation at the periphery of the uneven area is steep or gentle over the entire area of the inspection object. An image density unevenness detection method that facilitates detection is provided.
【0030】また、本発明は、上記画像濃淡ムラ検出方
法において、Wx及びWyを変化させたWxとWyとの
複数の組み合わせにて、複数個のムラ領域を検出し、こ
れら複数個のムラ領域の和をもって検査対象物のムラ領
域とする画像濃淡ムラ検出方法であるので、カラーフィ
ルターなどの品質検査におけるムラ検出において、ムラ
の直径、形状、境界部の濃度勾配等による検出力の差を
回避した、特に、点状ムラに対する検出感度を向上さ
せ、点状ムラの検出を容易にする画像濃淡ムラ検出方法
となる。Further, according to the present invention, in the above image density unevenness detecting method, a plurality of uneven areas are detected by a plurality of combinations of Wx and Wy with Wx and Wy changed, and the plurality of uneven areas are detected. Is a method for detecting unevenness in image density, which is a non-uniform area of the object to be inspected by adding the sum of the values. In particular, the present invention provides an image density unevenness detection method that improves the detection sensitivity for point-like unevenness and facilitates the detection of point-like unevenness.
【図1】本発明による画像濃淡ムラ検出方法の一実施例
を模式的に示す説明図である。FIG. 1 is an explanatory diagram schematically showing one embodiment of a method for detecting unevenness in image density according to the present invention.
【図2】本発明による画像濃淡ムラ検出方法の一実施例
を模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing one embodiment of a method for detecting unevenness in image density according to the present invention.
【図3】本発明による画像濃淡ムラ検出方法の一実施例
を模式的に示す説明図である。FIG. 3 is an explanatory diagram schematically showing an embodiment of a method for detecting unevenness in image density according to the present invention.
【図4】本発明による画像濃淡ムラ検出方法の一実施例
を模式的に示す説明図である。FIG. 4 is an explanatory view schematically showing an embodiment of the image density unevenness detection method according to the present invention.
【図5】本発明による画像濃淡ムラ検出方法におけるム
ラ領域検出のフローの一例を示す説明図である。FIG. 5 is an explanatory diagram showing an example of a flow of uneven area detection in the image density unevenness detecting method according to the present invention.
A(x0 ,y 0 )…ある座標(x0 ,y 0 )に位置する
画素A B(xa ,y a )…座標(xa ,y a )に位置する画素
B AP…Wx×Wy画素の占める領域 AP1…画素Aに対応したWx=2、Wy=2の領域 AP2…画素Aに対応したWx=5、Wy=5の領域 AP3…画素Aに対応したWx=4、Wy=3の領域 AS…ドーナツ状領域 AS1…画素Aに対応したWx=2、Wy=2、D=
2、H=1のドーナツ状領域 AS2…画素Aに対応したWx=5、Wy=5、D=
2、H=1のドーナツ状領域 AS3…画素Aに対応したWx=4、Wy=3、D=
2、H=1のドーナツ状領域 AT…撮影して得られた2次元画像の全領域の画素 LAP…領域(AP)に位置する全画素の平均輝度値 LAP1 (x0 ,y 0 )…画素Aに対応したWx=2、W
y=2の領域(AP1)の平均輝度値 LAS…ドーナツ状領域(AS)に位置する全画素の平均
輝度値 LAS1 (x0 ,y 0 )…画素Aに対応したドーナツ状領
域(AS1)に位置する全画素の平均輝度値 S…ムラ検出の閾値 Xmax …X軸方向のデータサイズ Ymax …Y軸方向のデータサイズ A (x 0, y 0) ... pixel A B (x a, y a) is located in a certain coordinate (x 0, y 0) ... coordinate (x a, y a) pixel B AP ... Wx × Wy located Area occupied by pixels AP1 ... Wx = 2, Wy = 2 area corresponding to pixel A AP2 ... Wx = 5, Wy = 5 area corresponding to pixel A AP3 ... Wx = 4, Wy = 3 corresponding to pixel A Area AS... Donut-shaped area AS1... Wx = 2, Wy = 2, D =
2, H = 1 donut-shaped region AS2 ... Wx = 5, Wy = 5, D = corresponding to pixel A
2, H = 1 donut-shaped area AS3 ... Wx = 4, Wy = 3, D = corresponding to pixel A
2, H = 1 in the donut-shaped region AT ... shooting average luminance value of all pixels located in the pixel L AP ... areas of all regions (AP) of the 2-dimensional images obtained by L AP1 (x 0, y 0 ) ... Wx = 2, W corresponding to pixel A
Average luminance value L AS of y = 2 area (AP1)... Average luminance value of all pixels located in donut-shaped area (AS) L AS1 (x 0 , y 0 ). Donut-shaped area (AS1) corresponding to pixel A ) Average luminance value of all pixels located in S): threshold value of unevenness detection X max : data size in X-axis direction Y max : data size in Y-axis direction
Claims (3)
を解析し、部分的に濃度が高いあるいは低い領域(ムラ
領域)を検出する画像濃淡ムラ検出において、 1)撮影して得られた2次元画像のある座標(x0 ,y
0 )に位置する画素からX軸方向へWx(整数でWx≧
1)、Y軸方向へWy(整数でWy≧1)画素の占める
領域(AP)に位置する全画素の平均輝度値(LAP)を
作製し、 2)該領域(AP)の周辺部の、該領域(AP)からD
(整数でD≧1)画素外側に位置する幅H(整数でH≧
1)画素のドーナツ状領域(AS)に位置する全画素の
平均輝度値(LAS)を作製し、 3)該平均輝度値(LAP)と該平均輝度値(LAS)との
差を、予め設定したムラ検出の閾値と比較し、ムラ領域
を検出することを特徴とする画像濃淡ムラ検出方法。An image density unevenness detection for analyzing a two-dimensional image obtained by photographing an inspection object and partially detecting a high or low density area (uneven area) includes: Coordinates (x 0 , y) of the obtained two-dimensional image
0 ) from the pixel located in the X-axis direction to Wx (Wx ≧ an integer)
1) An average luminance value (L AP ) of all pixels located in an area (AP) occupied by Wy (Wy ≧ 1 as an integer) pixels in the Y-axis direction is produced. 2) A peripheral area of the area (AP) is produced. , From the area (AP) to D
(Integer D ≧ 1) Width H outside the pixel (H ≧ Integer
1) An average luminance value ( LAS ) of all the pixels located in the donut-shaped area (AS) of the pixel is prepared. 3) The difference between the average luminance value ( LAP ) and the average luminance value ( LAS ) is calculated. A method for detecting unevenness in the density of an image by comparing the threshold with a preset threshold value for unevenness detection.
して得られた2次元画像の全領域にわたって順次更新
し、ムラ領域を検出することを特徴とする請求項1記載
の画像濃淡ムラ検出方法。2. The method according to claim 1, wherein the certain coordinates (x 0 , y 0 ) are sequentially updated over the entire area of the two-dimensional image obtained by the photographing, and an uneven area is detected. Image density unevenness detection method.
との複数の組み合わせにて、複数個のムラ領域を検出
し、該複数個のムラ領域の和をもって検査対象物のムラ
領域とすることを特徴とする請求項1、又は請求項2記
載の画像濃淡ムラ検出方法。3. Wx and Wy obtained by changing Wx and Wy.
3. The image according to claim 1, wherein a plurality of non-uniform areas are detected by a plurality of combinations of the non-uniform areas, and the sum of the plurality of non-uniform areas is used as the non-uniform area of the inspection object. Shading unevenness detection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000057337A JP2001243473A (en) | 2000-03-02 | 2000-03-02 | Image density unevenness detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000057337A JP2001243473A (en) | 2000-03-02 | 2000-03-02 | Image density unevenness detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001243473A true JP2001243473A (en) | 2001-09-07 |
Family
ID=18578149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000057337A Pending JP2001243473A (en) | 2000-03-02 | 2000-03-02 | Image density unevenness detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001243473A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010054247A (en) * | 2008-08-26 | 2010-03-11 | Sharp Corp | Defect detecting apparatus, defect detecting method, defect detecting program and computer-readable recording medium with the program recorded thereon |
KR20140073259A (en) * | 2012-12-06 | 2014-06-16 | 엘지디스플레이 주식회사 | Apparatus and Method for Detection MURA in Display Device |
-
2000
- 2000-03-02 JP JP2000057337A patent/JP2001243473A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010054247A (en) * | 2008-08-26 | 2010-03-11 | Sharp Corp | Defect detecting apparatus, defect detecting method, defect detecting program and computer-readable recording medium with the program recorded thereon |
KR20140073259A (en) * | 2012-12-06 | 2014-06-16 | 엘지디스플레이 주식회사 | Apparatus and Method for Detection MURA in Display Device |
KR101966075B1 (en) | 2012-12-06 | 2019-04-05 | 엘지디스플레이 주식회사 | Apparatus and Method for Detection MURA in Display Device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1023452A (en) | Picture extracting device and its method | |
JP2007285754A (en) | Defect detection method and defect detection apparatus | |
CN112581904B (en) | A Moiré Compensation Method for Brightness Grayscale Image of OLED Screen | |
US20050196044A1 (en) | Method of extracting candidate human region within image, system for extracting candidate human region, program for extracting candidate human region, method of discerning top and bottom of human image, system for discerning top and bottom, and program for discerning top and bottom | |
CN1286063C (en) | Technology for removing false image of liquid crystal projector | |
JP2005165387A (en) | Screen streak defect detection method and apparatus, and display device | |
JP2009036582A (en) | Inspection method, inspection device and inspection program of plane display panel | |
WO2008007729A1 (en) | Image analyzing method, image analyzing apparatus, inspecting apparatus, image analyzing program and computer readable recording medium | |
CN114331975B (en) | Display screen display defect detection method and device | |
JP6302272B2 (en) | Image processing apparatus, image processing method, and imaging apparatus | |
JP2001243473A (en) | Image density unevenness detection method | |
JP3860540B2 (en) | Entropy filter and region extraction method using the filter | |
CN114689605A (en) | Display detection method, device, equipment and medium based on machine vision | |
JP4369030B2 (en) | Image correction method and apparatus, and computer-readable recording medium storing image correction program | |
CN109934768B (en) | Sub-pixel displacement image acquisition method based on registration mode | |
CN1366275A (en) | Technology for removing false image of storage of liquid crystal projector | |
JP2004219072A (en) | Screen streak defect detection method and device | |
JP2014135007A (en) | Flat panel display automatic unevenness detection device and automatic unevenness detection method | |
JP2006133055A (en) | MURA DEFECT DETECTING METHOD AND DEVICE, SPATIAL FILTER, MURA DEFECT INSPECTION SYSTEM, AND MURA DEFECT DETECTING METHOD PROGRAM | |
EP2681714B1 (en) | An object based segmentation method | |
WO2020238116A1 (en) | Product positioning method | |
JP4164166B2 (en) | Irradiation area extraction apparatus, irradiation area extraction method, and computer-readable storage medium | |
JP2000339452A (en) | Method and device for extracting picture and storage medium | |
JP7185839B2 (en) | Image processing device, image processing method and image processing program | |
EP2306397A1 (en) | Method and system for optimizing lens aberration detection |