[go: up one dir, main page]

JP2001237241A - Low dielectric constant film and semiconductor device using the same - Google Patents

Low dielectric constant film and semiconductor device using the same

Info

Publication number
JP2001237241A
JP2001237241A JP2000052254A JP2000052254A JP2001237241A JP 2001237241 A JP2001237241 A JP 2001237241A JP 2000052254 A JP2000052254 A JP 2000052254A JP 2000052254 A JP2000052254 A JP 2000052254A JP 2001237241 A JP2001237241 A JP 2001237241A
Authority
JP
Japan
Prior art keywords
dielectric constant
low dielectric
constant film
film
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000052254A
Other languages
Japanese (ja)
Inventor
Asako Koike
麻子 小池
Kazuatsu Tago
一農 田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000052254A priority Critical patent/JP2001237241A/en
Publication of JP2001237241A publication Critical patent/JP2001237241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low dielectric constant film used as interlayer insulation with low dielectric constant, low hygroscopic characteristic, and high temperature resistance. SOLUTION: Each bead with low dielectric constant is dispersed uniformly in silica-based monomer and polymerized. Alternatively, a thermally decomposing foaming agent is added to an initial polymerized body of polyamide-acid initially. Then, the initial polymerized body is foamed and polymerized, and independent bubbles with diameter of 20 nm or below is dispersed uniformly to form the low dielectric constant film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置に使用
する層間絶縁膜とそれを用いた半導体装置に関する。
The present invention relates to an interlayer insulating film used for a semiconductor device and a semiconductor device using the same.

【0002】[0002]

【従来の技術】IC、LSIと云った半導体装置におい
て、高集積化、微細化と共に配線遅延時間の低減や漏れ
電流などの電気的性能維持のために、半導体装置の層間
絶縁膜の誘電率の低下が要求されている。
2. Description of the Related Art In semiconductor devices such as ICs and LSIs, the dielectric constant of an interlayer insulating film of a semiconductor device is increased in order to maintain high electrical performance such as high integration and miniaturization, reduction of wiring delay time and leakage current. Reduction is required.

【0003】現在、層間絶縁膜として広く使用されてい
るシリカ系被膜は、比誘電率がシリコン酸化膜が4〜
5、含炭素シリカ系膜が3〜4程度であり、さらに低下
させることが必要である。
At present, a silica-based coating widely used as an interlayer insulating film has a relative permittivity of 4 to 4 for a silicon oxide film.
5. The carbon-containing silica film is about 3 to 4 and needs to be further reduced.

【0004】また、有機系膜がシリカ系膜よりも誘電率
を低下させ易いことから、フッ素系樹脂や含フッ素ポリ
イミド樹脂など有機系の層間絶縁膜が開発されている。
しかし、有機系の分子構造は、吸湿性ひいては水の透過
性が高いと云う傾向があり、このため配線に用いている
銅が腐食し易く、また、耐熱性、機械特性、耐薬品性に
おいても不十分な点が多い。
Further, since an organic film is more likely to lower the dielectric constant than a silica film, an organic interlayer insulating film such as a fluorine resin or a fluorine-containing polyimide resin has been developed.
However, the organic molecular structure tends to have high hygroscopicity and, consequently, high water permeability, so that copper used for wiring is easily corroded, and heat resistance, mechanical properties and chemical resistance are also high. There are many insufficient points.

【0005】さらに、低誘電率の有機系の分子自身を均
一に溶解する溶媒が無く、溶液の塗布が均一にできない
などの課題もある。例えば、特開平7−76644号、
特開平3−282874号公報には、それぞれフッ素系
樹脂と含フッ素ポリイミド樹脂の低誘電率膜が記載され
ている。しかし、いずれもガラス転移温度が250℃以
下であり、該温度よりも高温においては、線膨張係数が
配線に用いている金属の3〜5倍程度と大きいことか
ら、製造工程において300〜400℃の高温にさらさ
れることを考慮すると、高温での機械特性が不十分であ
る。
[0005] Further, there is a problem that there is no solvent for uniformly dissolving the low dielectric constant organic molecules themselves, so that the solution cannot be uniformly applied. For example, JP-A-7-76644,
JP-A-3-282874 describes low dielectric constant films of a fluorine resin and a fluorine-containing polyimide resin, respectively. However, each has a glass transition temperature of 250 ° C. or lower, and at a temperature higher than the glass transition temperature, the linear expansion coefficient is about 3 to 5 times that of the metal used for the wiring. In view of exposure to high temperatures, the mechanical properties at high temperatures are insufficient.

【0006】また、特開平5−182518号公報に
は、多孔質の微小球体を膜中に分散することにより誘電
率を低下させる方法が開示されているが、有機系樹脂と
微小球体の誘電率の差が小さいのでその効果は小さく、
また、有機系樹脂のガラス転移温度の低さと吸湿性の高
さが問題である。
Japanese Patent Application Laid-Open No. 5-182518 discloses a method of reducing the dielectric constant by dispersing porous microspheres in a film. The effect is small because the difference between
Another problem is that the glass transition temperature of the organic resin is low and the hygroscopicity is high.

【0007】一方、多孔質膜の開発も近年盛んである。
しかし、ゲル化と乾燥の工程を含む特開平8−5936
2号公報に記載の方法では、工程が複雑で20nm以下
の均一で独立粒径の多孔質膜が得られにくく、配線間隔
が0.1μmレベルの半導体装置には適用できない。
On the other hand, porous membranes have been actively developed in recent years.
However, Japanese Patent Application Laid-Open No. H8-5936, which includes gelling and drying steps.
In the method described in Japanese Patent Publication No. 2 (1994), the process is complicated, a porous film having a uniform diameter of 20 nm or less and having an independent particle diameter is difficult to obtain, and cannot be applied to a semiconductor device having a wiring interval of 0.1 μm.

【0008】また、特開平11−217458号公報に
記載の方法では、アルコキシシランを用い、比誘電率を
2以下にするため、気孔率が高くなり機械特性が低下す
ることから、CMP(Chemical Mechanical Polishi
ng)などの方法が用いられているが、配線と低誘電率膜
との間の剥離等が起り易いと云う問題がある。
In the method described in Japanese Patent Application Laid-Open No. 11-217458, since the relative dielectric constant is set to 2 or less using alkoxysilane, the porosity is increased and the mechanical properties are reduced. Polishi
ng) is used, but there is a problem that peeling between the wiring and the low dielectric constant film easily occurs.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、シリ
カ系の低誘電率膜を、機械的特性、吸湿特性を保持した
まま誘電率を低下させること、および、有機系低誘電率
膜の機械的特性、吸湿特性の改善と、誘電率を低下させ
ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the dielectric constant of a silica-based low dielectric constant film while maintaining mechanical properties and moisture absorption characteristics, and to provide an organic low dielectric constant film. The purpose is to improve mechanical properties and moisture absorption properties and to lower the dielectric constant.

【0010】[0010]

【課題を解決するための手段】本発明は、シリカ系の低
誘電率膜に粒径20nm以下、比誘電率2.8以下のビ
ーズ(微小球体)を含有させたことを特徴とする低誘電
率膜にある。
According to the present invention, there is provided a low dielectric constant film comprising a silica-based low dielectric constant film containing beads (microspheres) having a particle diameter of 20 nm or less and a relative dielectric constant of 2.8 or less. In the rate film.

【0011】該低誘電率膜は、式〔1〕〜〔3〕The low dielectric constant film has the formulas [1] to [3]

【0012】[0012]

【化2】 Si(OR)4 …〔1〕 R'Si(OR)3 …〔2〕 R'2Si(OR)2 …〔3〕 (但し、式中Rは炭素数1〜5のアルカン、R'は炭素
数1〜3のアルカン、パーフロロアルカン、臭素、塩
素、フッ素のいずれかを示す)でしめされる化合物の少
なくとも1種の溶液に、比誘電率2.8以下、粒径20
nm以下の有機系ビーズを分散させた後、脱水縮合させ
たシリカ系被膜からなる低誘電率膜にある。
Embedded image Si (OR) 4 ... [1] R'Si (OR) 3 ... [2] R ' 2 Si (OR) 2 ... [3] (where R is an alkane having 1 to 5 carbon atoms) , R ′ represents any one of alkanes having 1 to 3 carbon atoms, perfluoroalkane, bromine, chlorine and fluorine) in a solution of at least one compound represented by the formula: 20
This is a low dielectric constant film made of a silica-based coating obtained by dispersing organic beads having a diameter of nm or less and then dehydrating and condensing.

【0013】これにより、膜内に空隙等が形成されない
ので、機械特性が良く、吸湿性を低く保つことができ
る。また、有機系ビーズが低誘電率なので、膜全体の誘
電率も下げることができる。この方法は、従来の製造工
程を殆ど変更することなく実施することができる。
As a result, no voids or the like are formed in the film, so that the mechanical properties are good and the hygroscopicity can be kept low. Further, since the organic beads have a low dielectric constant, the dielectric constant of the entire film can be reduced. This method can be performed with little change in the conventional manufacturing process.

【0014】また、ポリアミド酸等の初期重合体溶液
に、発泡剤として熱分解性分子を加えて加熱し、重合と
共に発泡させることにより、独立気泡を加熱閉環したポ
リイミド膜内に形成させた低誘電率膜にある。
In addition, a thermally decomposable molecule as a foaming agent is added to a solution of an initial polymer such as polyamic acid, and the mixture is heated and foamed together with the polymerization, so that closed cells are formed in the heated and closed polyimide film. In the rate film.

【0015】ここで、独立気泡の粒径が40nm以上で
は膜中の水分子が集まり、水滴となるため、半導体装置
の層間絶縁層等に用いた場合、銅配線の腐食の原因とな
り易い。また、配線間隔が0.1μmレベルの半導体装
置においては、絶縁膜をエッチングし配線用のホールや
溝を形成する際にできる新生面の平坦化には、上記独立
気泡の粒径は、20nm以下、好ましくは、10nm以
下の粒径とする。
Here, if the diameter of the closed cells is 40 nm or more, water molecules in the film collect and become water droplets, and when used as an interlayer insulating layer of a semiconductor device, it is likely to cause corrosion of copper wiring. Further, in a semiconductor device having a wiring interval of 0.1 μm level, the diameter of the closed cells is 20 nm or less for flattening a new surface formed when an insulating film is etched to form wiring holes or grooves. Preferably, the particle size is 10 nm or less.

【0016】また、ポリイミドをガラス転移温度の高い
化学構造ものを選択することにより、高温での機械的特
性を保ち、上記粒径の独立気泡を均一に分散させること
により、気泡による機械的特性の低下を防ぎ、耐吸湿性
を保つことができる。
Further, by selecting a polyimide having a chemical structure having a high glass transition temperature, the mechanical properties at a high temperature can be maintained, and the closed cells having the above-mentioned particle size can be uniformly dispersed, whereby the mechanical properties of the bubbles can be reduced. It is possible to prevent the deterioration and maintain the moisture absorption resistance.

【0017】[0017]

【発明の実施の形態】本発明に用いられるアルコキシシ
ランまたはハロゲン化アルコキシシランは、前記式
〔1〕〜〔3〕から選択される1種以上である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The alkoxysilane or halogenated alkoxysilane used in the present invention is at least one selected from the formulas [1] to [3].

【0018】ここで、RにはCH3,C25,C37
CH(CH3)2,CH2CH3などが、R'にはBr,C
l,F,CH3,C25,C37,CH(CH3)2,CH2
CH3,CF3,C25,C37,CF(CF3)2,CF2
CF3などが挙げられる。
Here, R is CH 3 , C 2 H 5 , C 3 H 7 ,
CH (CH 3 ) 2 , CH 2 CH 3 and the like;
l, F, CH 3, C 2 H 5, C 3 H 7, CH (CH 3) 2, CH 2
CH 3 , CF 3 , C 2 F 5 , C 3 F 7 , CF (CF 3 ) 2 , CF 2
CF 3 and the like.

【0019】加水分解による縮合反応時には、塩基性、
酸性の触媒のいずれも使用することができる。具体的に
はアンモニア,硝酸,リン酸,酢酸,ギ酸などが挙げら
れる。また、溶媒としてはアルコール,ケトン,エーテ
ル,エステル類が用いられる。
At the time of the condensation reaction by hydrolysis, basic,
Any of the acidic catalysts can be used. Specific examples include ammonia, nitric acid, phosphoric acid, acetic acid, and formic acid. As the solvent, alcohols, ketones, ethers, and esters are used.

【0020】溶媒に溶かした塗布液を熟成させた後、粒
径20nm以下のビーズを添加し、十分に攪拌して分散
させる。最終生成物である塗布膜の誘電率を低下させる
ためには、ビーズの比誘電率は低いほど良く、2.8以
下であることが必要である。
After aging the coating solution dissolved in the solvent, beads having a particle size of 20 nm or less are added, and the mixture is sufficiently stirred and dispersed. In order to lower the dielectric constant of the coating film as a final product, the lower the relative dielectric constant of the beads, the better, and it is necessary that the beads have a relative dielectric constant of 2.8 or less.

【0021】また、半導体装置の作製工程においては、
熱処理が300〜400℃近くなることからガラス転移
温度は350℃以上、好ましくは、400℃以上がよ
い。
In the process of manufacturing a semiconductor device,
The glass transition temperature is preferably 350 ° C. or higher, and more preferably 400 ° C. or higher, since the heat treatment becomes close to 300 to 400 ° C.

【0022】ビーズの組成としては、ポリスチレン,ポ
リエチレン,フッ素化ポリイミド,ポリテトラフロロエ
チレンが挙げられるが、これらを架橋してガラス転移温
度を上げたものが望ましい。特に、フッ素化ポリイミ
ド,ポリテトラフロロエチレンが好ましい。
Examples of the composition of the beads include polystyrene, polyethylene, fluorinated polyimide, and polytetrafluoroethylene, and it is desirable to crosslink these to increase the glass transition temperature. Particularly, fluorinated polyimide and polytetrafluoroethylene are preferable.

【0023】これらのビーズは、公知の方法で重合した
水性相から分離,乾燥したビーズ、あるいは、市販され
ているビースを、モリキュラシーブ等の目の細かいふる
いを用いて分け、20nm以下のものを取り出して用い
る。
These beads are separated from an aqueous phase polymerized by a known method and dried, or commercially available beads are separated using a fine sieve such as a molecular sieve, and separated into beads having a diameter of 20 nm or less. Take out and use.

【0024】これらの塗布液を用いてシリコンウエハ上
にシリカ系被膜を形成する際は、この塗布溶液に3分程
度浸積させる浸積法、もしくは、スピンコート装置を用
いて塗布するスピンコート法を用いる。スピンコートの
回転数は、目的の膜厚に合わせて適宜調整する。より薄
膜を生成したいときには、浸積法が望ましい。
When a silica-based film is formed on a silicon wafer using these coating solutions, a dipping method in which the coating solution is dipped in the coating solution for about 3 minutes, or a spin coating method in which the coating is performed using a spin coating apparatus. Is used. The number of revolutions of the spin coat is appropriately adjusted according to the target film thickness. When a thin film is to be formed, the immersion method is desirable.

【0025】本発明において用いられる初期重合体は、
ポリイミド酸以外でも熱、または、電子線照射により重
合する物質であればよい。生成した膜のガラス転移点が
350℃以上、望ましくは400℃以上を有し、低誘電
率化のためには分子間相互作用が高く、かつ、分子の対
称性が高く、分子内の双極子能率が低い構造であること
が必要である。
The prepolymer used in the present invention is:
Any substance other than polyimide acid may be used as long as it is a substance that is polymerized by heat or electron beam irradiation. The resulting film has a glass transition point of 350 ° C. or higher, preferably 400 ° C. or higher, has a high intermolecular interaction and a high molecular symmetry for a low dielectric constant, and has a dipole in the molecule. It is necessary to have a structure with low efficiency.

【0026】ポリアミド酸初期重合体の例として次式
〔4〕〜〔8〕で示すの構造が挙げられる。
Examples of the polyamic acid prepolymer include structures represented by the following formulas [4] to [8].

【0027】[0027]

【化3】 Embedded image

【0028】[0028]

【化4】 Embedded image

【0029】[0029]

【化5】 Embedded image

【0030】これらの初期重合体を1種以上溶解させた
溶液に、発泡剤として熱分解性分子を加え、シリコンウ
エハ上にスピンコートする。
A thermally decomposable molecule as a foaming agent is added to a solution in which one or more of these prepolymers are dissolved, and spin-coated on a silicon wafer.

【0031】電子線を照射または加熱により膜を硬化さ
せつつ、熱分解性分子を分解して独立気泡を形成する。
独立気泡を均一に形成するためには、発泡剤が分解する
温度領域で初期重合体の粘度が急激に変化しないよう、
初期重合体の重合度を調整する必要がある。
While the film is cured by irradiation with an electron beam or heating, the thermally decomposable molecules are decomposed to form closed cells.
In order to form closed cells uniformly, the viscosity of the initial polymer should not change suddenly in the temperature range where the blowing agent decomposes,
It is necessary to adjust the degree of polymerization of the initial polymer.

【0032】溶媒としては、N−ジメチルアセトアミ
ド、N−メチルスルホキサイド、N−メチルピロリドン
などの極性溶媒が用いられる。
As the solvent, a polar solvent such as N-dimethylacetamide, N-methylsulfoxide and N-methylpyrrolidone is used.

【0033】本発明で用いる熱分解性分子は、会合して
半径3〜10nm程度の球状分子になるものが、細かい
独立気泡を均一に形成できるので望ましい。熱分解性分
子がポリマで、かつ、ベースとなる樹脂初期重合体との
相溶性が高いと、連続気泡ができ易いことから、熱分解
性分子は大きくても重合度30程度のオリゴマであるこ
とが望ましい。
The thermally decomposable molecules used in the present invention are desirably those that associate into spherical molecules having a radius of about 3 to 10 nm because fine closed cells can be uniformly formed. If the thermally decomposable molecule is a polymer and has high compatibility with the base resin prepolymer, open cells are likely to be formed. Is desirable.

【0034】熱分解性分子としては、例えば、会合性の
分子としてCn2n+1COONH4(n=1〜8)、Cm
2m+1COONH4(m=1〜8)が、また、非会合性
の分子としては、アゾジカルボンアミド,アゾジカルボ
ン酸バリウム、アゾビスイソブチロニトリル、N,N'−
ジニトロソペンタメチレンテトラミン,4,4−オキシ
ビスベンゼンスルフォニルヒドラジドが挙げられる。
Examples of the thermally decomposable molecules include C n F 2n + 1 COONH 4 (n = 1 to 8) and C m as associative molecules.
H 2m + 1 COONH 4 (m = 1 to 8), and non-associative molecules include azodicarbonamide, barium azodicarboxylate, azobisisobutyronitrile, N, N′-
Dinitrosopentamethylenetetramine, 4,4-oxybisbenzenesulfonylhydrazide.

【0035】以下、本発明を実施例に基づき詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to examples.

【0036】〔実施例 1〕Si(OCH3)4の20g、
(CH2CH3)Si(OCH3)3の20gを、純水50gと
メタノール65gとの混合溶液に溶解させ、硝酸を純水
で希釈した1.5%の硝酸液150gを2時間かけて添
加後、室温で20時間熟成させた。
Example 1 20 g of Si (OCH 3 ) 4
20 g of (CH 2 CH 3 ) Si (OCH 3 ) 3 was dissolved in a mixed solution of 50 g of pure water and 65 g of methanol, and 150 g of a 1.5% nitric acid solution obtained by diluting nitric acid with pure water was added for 2 hours. After the addition, the mixture was aged at room temperature for 20 hours.

【0037】上記のシリカ膜形成用塗布溶液に、平均粒
径5nm程度のポリテトラフロロエチレンのビーズを8
g添加し、十分に攪拌した後、スピンナーヘッド装置の
回転数を1500rpmで塗布溶液をシリコンウエハ上
に塗布した。次いで、300℃のオートクレーブで大気
中2時間焼成した。
Into the above-mentioned coating solution for forming a silica film, polytetrafluoroethylene beads having an average particle size of about 5 nm were added.
g, and after sufficiently stirring, the coating solution was applied onto a silicon wafer at a rotation speed of a spinner head device of 1500 rpm. Then, it was calcined in an air at 300 ° C. for 2 hours in the air.

【0038】得られたシリカ系被膜は、エリプソメトリ
ーで膜厚400nmであった。インピーダンスアナライ
ザで比誘電率を測定したところ2.5であった。
The obtained silica-based film had a thickness of 400 nm by ellipsometry. It was 2.5 when the relative dielectric constant was measured with the impedance analyzer.

【0039】このウエハを3日間大気中室温で放置した
後、TDS(Thermal DesorptionSpectroscopy)評
価装置を用いて含水量を評価した。このTDS評価装置
は、ウエハを加熱したときに放出されるガスをQ−ma
ssで評価するものである。ウエハを室温から350℃
まで40分かけて加熱した。このときにウエハから放出
される脱ガスをQ−massで評価した結果、殆ど水の
放出は検出されなかった。
After leaving the wafer at room temperature in the air for 3 days, the water content was evaluated using a TDS (Thermal Desorption Spectroscopy) evaluation apparatus. This TDS evaluation apparatus uses Q-ma gas released when a wafer is heated.
It is evaluated by ss. Wafer temperature from room temperature to 350 ° C
Heating for 40 minutes. At this time, the outgassing released from the wafer was evaluated by Q-mass, and as a result, almost no release of water was detected.

【0040】〔実施例 2〕CF3Si(OCH3)4の2
0g、(CF2CF3)2Si(OCH3)3の20gとを、純
水50gとメタノール65gとの混合溶液に溶解し、硝
酸を純水で希釈した1.5%の硝酸水溶液150gを2
時間かけて添加後、室温で20時間熟成させた。
Example 2 CF 3 Si (OCH 3 ) 4 2
0 g and 20 g of (CF 2 CF 3 ) 2 Si (OCH 3 ) 3 were dissolved in a mixed solution of 50 g of pure water and 65 g of methanol, and 150 g of a 1.5% nitric acid aqueous solution obtained by diluting nitric acid with pure water was added. 2
After the addition over time, the mixture was aged at room temperature for 20 hours.

【0041】上記のシリカ膜形成用塗布溶液に、平均粒
径5nm程度のポリスチレンのビーズを8g添加し、十
分に攪拌後、スピンナーヘッド装置の回転数を1500
rpmで塗布溶液をシリコンウエハ上に塗布した。
8 g of polystyrene beads having an average particle size of about 5 nm was added to the above-mentioned coating solution for forming a silica film, and the mixture was sufficiently stirred.
The coating solution was applied on a silicon wafer at rpm.

【0042】300℃のオートクレーブで大気中2時間
焼成し、エリプソメトリーで測定したところ、このシリ
カ系被膜の膜厚は390nmであった。インピーダンス
アナライザで比誘電率を測定したところ2.5であっ
た。実施例1と同様に、ウエハ放置後の含水量をTDS
で評価した結果、殆ど水の放出は検出されなかった。
The film was fired in the air at 300 ° C. for 2 hours in the air and measured by ellipsometry. As a result, the thickness of the silica-based film was 390 nm. It was 2.5 when the relative dielectric constant was measured with the impedance analyzer. In the same manner as in Example 1, the water content after leaving the wafer was TDS.
As a result, almost no water release was detected.

【0043】〔実施例 3〕式[Embodiment 3] Equation

〔9〕のジアミン2.4
4g(0.01モル)を50mlのN−メチルスルホキサ
イドに溶解し、これに式〔10〕の酸無水物2.22g
(0.01モル)を加え、室温で6時間攪拌し式〔11〕
のポリアミド酸を合成した。
[9] diamine 2.4
4 g (0.01 mol) was dissolved in 50 ml of N-methylsulfoxide, and 2.22 g of an acid anhydride of the formula [10] was added thereto.
(0.01 mol), and the mixture was stirred at room temperature for 6 hours to obtain formula [11].
Was synthesized.

【0044】[0044]

【化6】 Embedded image

【0045】これに熱分解型発泡剤としてC37COO
NH4の0.46g(0.002モル)を加えた後、室温で
0.5時間攪拌後、室温で30分熟成させた。
In addition, C 3 F 7 COO is used as a pyrolytic foaming agent.
After adding 0.46 g (0.002 mol) of NH 4, the mixture was stirred at room temperature for 0.5 hour and then aged at room temperature for 30 minutes.

【0046】この塗布溶液をスピンナーヘッド装置の回
転数を1500rpmで塗布溶液をシリコンウエハ上に
塗布した。その後、300℃で1時間加熱処理し、脱水
縮合させつつ発泡剤を熱分解させて気体とし、独立気泡
を形成させた。
The coating solution was applied on a silicon wafer at a rotation speed of a spinner head device of 1500 rpm. Thereafter, the foaming agent was thermally decomposed while dehydrating and condensing to form a gas while being heated at 300 ° C. for 1 hour to form closed cells.

【0047】赤外吸収スペクトルより式〔12〕のポリ
イミドが形成されていることが明らかで、エリプソメト
リーで測定したところ、このポリイミドの被膜は400
nmであった。
It is clear from the infrared absorption spectrum that the polyimide of the formula [12] was formed, and it was determined by ellipsometry that the coating of this polyimide was 400
nm.

【0048】小角X線散乱(SAXS)で分析した結果、
平均粒径は8nmであった。インピーダンスアナライザ
により測定した比誘電率は1.9であった。上記のポリ
イミド材料の示差操作熱量計で測定したガラス転移温度
は390℃であった。また、実施例1と同様に、ウエハ
放置後の含水量をTDSで評価した結果、殆ど水の放出
は検出されなかった。
As a result of analysis by small angle X-ray scattering (SAXS),
The average particle size was 8 nm. The relative dielectric constant measured by an impedance analyzer was 1.9. The glass transition temperature of the above polyimide material measured by a differential operation calorimeter was 390 ° C. Further, as in Example 1, as a result of evaluating the water content after leaving the wafer by TDS, almost no water release was detected.

【0049】〔実施例 4〕式〔13〕のジアミン2.
58g(0.01モル)を50mlのN−メチルスルホキ
サイドに溶解し、これに式〔14〕の酸無水物2.18
g(0.01モル)を加え、室温で6時間攪拌し、式〔1
5〕のポリアミド酸を合成した。
Example 4 Diamine of Formula [13]
58 g (0.01 mol) was dissolved in 50 ml of N-methylsulfoxide, and 2.18 of the acid anhydride of the formula [14] was added thereto.
g (0.01 mol), and the mixture was stirred at room temperature for 6 hours.
5] was synthesized.

【0050】[0050]

【化7】 Embedded image

【0051】これに熱分解型発泡剤としてC37COO
NH40.21g(0.002モル)を加え実施例3と同様
に攪拌,熟成後、シリコンウエハ上にスピンコートし、
加熱処理して膜を形成した。
[0051] C 3 H 7 COO thereto as thermally decomposable foaming agent
0.21 g (0.002 mol) of NH 4 was added, and the mixture was stirred and aged in the same manner as in Example 3, and then spin-coated on a silicon wafer.
Heat treatment was performed to form a film.

【0052】赤外吸収スペクトルより式〔16〕のポリ
イミドが形成されていることが明らかであり、エリプソ
メトリーで測定した該ポリイミドの被膜は420nmで
あった。
It was clear from the infrared absorption spectrum that a polyimide of the formula [16] was formed, and the thickness of the polyimide film measured by ellipsometry was 420 nm.

【0053】実施例3と同様に平均粒径、比誘電率、ガ
ラス転移温度を測定したところ、それぞれ7.0nm、
1.8、400℃であった。また、実施例1と同様に、
ウエハ放置後の含水量をTDSで評価した結果、殆ど水
の放出は検出されなかった。
The average particle diameter, relative dielectric constant, and glass transition temperature were measured in the same manner as in Example 3.
1.8, 400 ° C. Further, similarly to the first embodiment,
As a result of evaluating the water content after leaving the wafer by TDS, almost no water release was detected.

【0054】〔実施例 5〕式〔17〕のジアミン3.
28g(0.01モル)を50mlのN−ジメチルアセト
アミドに溶解し、これに式〔18〕の酸無水物2.70
g(0.01モル)を加え、室温で6時間攪拌し、式〔1
9〕のポリアミド酸を合成した。
Example 5 Diamine of Formula [17] 3.
28 g (0.01 mol) was dissolved in 50 ml of N-dimethylacetamide, and 2.70 of the acid anhydride of the formula [18] was added thereto.
g (0.01 mol), and the mixture was stirred at room temperature for 6 hours.
9] was synthesized.

【0055】[0055]

【化8】 Embedded image

【0056】これに熱分解型発泡剤としてC25COO
NH4の0.36g(0.002モル)を加え、実施例3と
同様に攪拌、熟成後、シリコンウエハ上にスピンコート
し、加熱処理して膜を形成した。
C 2 F 5 COO was used as a pyrolytic foaming agent.
0.36 g (0.002 mol) of NH 4 was added, stirred and aged in the same manner as in Example 3, and then spin-coated on a silicon wafer and heat-treated to form a film.

【0057】赤外吸収スペクトルより、式〔20〕のポ
リイミドが形成されていることが明らかであり、エリプ
ソメトリーで測定した結果、このポリイミドの被膜は4
30nmであった。実施例3と同様に平均粒径、比誘電
率、ガラス転移温度を測定したところ、それぞれ7.2
nm、1.8、390℃であった。また、実施例1と同
様に、ウエハ放置後の含水量をTDSで評価した結果、
殆ど水の放出は検出されなかった。
It is clear from the infrared absorption spectrum that the polyimide of the formula [20] was formed. As a result of measurement by ellipsometry, this polyimide coating was 4%.
30 nm. The average particle diameter, relative dielectric constant, and glass transition temperature were measured in the same manner as in Example 3, and each was 7.2.
nm, 1.8, 390 ° C. In addition, as in Example 1, the water content after the wafer was left was evaluated by TDS.
Almost no water release was detected.

【0058】〔実施例 6〕式〔21〕のジアミン2.
34g(0.01モル)を50mlのN−ジメチルアセト
アミドに溶解し、これに式〔22〕の酸無水物2.68
g(0.01モル)を加え、室温で6時間攪拌して、式
〔〔23〕のポリアミド酸を合成した。
Example 6 Diamine of the formula [21] 2.
34 g (0.01 mol) was dissolved in 50 ml of N-dimethylacetamide, and 2.68 of the acid anhydride of the formula [22] was added thereto.
g (0.01 mol) was added, and the mixture was stirred at room temperature for 6 hours to synthesize a polyamic acid of the formula [23].

【0059】[0059]

【化9】 Embedded image

【0060】これに熱分解型発泡剤としてC49COO
NH4の0.56g(0.002モル)を加え、実施例3と
同様に攪拌、熟成後、シリコンウエハ上にスピンコート
し、加熱処理して、膜を形成した。
C 4 F 9 COO was used as a pyrolytic foaming agent.
0.56 g (0.002 mol) of NH 4 was added, stirred and aged in the same manner as in Example 3, and then spin-coated on a silicon wafer and heat-treated to form a film.

【0061】赤外吸収スペクトルより、式〔24〕のポ
リイミドが形成されていることが明らかであり、エリプ
ソメトリーで測定したこのポリイミドの被膜は410n
mであった。実施例3と同様に平均粒径、比誘電率、ガ
ラス転移温度を測定したところ、それぞれ7.8nm、
1.8、410℃であった。また、実施例1と同様に、
ウエハ放置後の含水量をTDSで評価した結果、殆ど水
の放出は検出されなかった。
It is clear from the infrared absorption spectrum that the polyimide of the formula [24] was formed, and the film of this polyimide measured by ellipsometry was 410 n
m. When the average particle diameter, the relative dielectric constant, and the glass transition temperature were measured in the same manner as in Example 3, each was 7.8 nm,
1.8, 410 ° C. Further, similarly to the first embodiment,
As a result of evaluating the water content after leaving the wafer by TDS, almost no water release was detected.

【0062】〔実施例 7〕式〔25〕のジアミン1.
72g(0.01モル)を50mlのN−ジメチルアセト
アミドに溶解し、これに式〔26〕の酸無水物2.57
g(0.01モル)を加え、室温で6時間攪拌して、式
〔27〕のポリアミド酸を合成した。
Example 7 Diamine of Formula [25] 1.
72 g (0.01 mol) was dissolved in 50 ml of N-dimethylacetamide, and 2.57 of the acid anhydride of the formula [26] was added thereto.
g (0.01 mol) was added and the mixture was stirred at room temperature for 6 hours to synthesize a polyamic acid of the formula [27].

【0063】[0063]

【化10】 Embedded image

【0064】これに熱分解型発泡剤としてC49COO
NH4の0.56g(0.002モル)を加え、実施例3と
同様に攪拌、熟成後、シリコンウエハ上にスピンコート
し、加熱処理して膜を形成した。
C 4 F 9 COO was used as a pyrolytic foaming agent.
0.56 g (0.002 mol) of NH 4 was added, and the mixture was stirred and aged as in Example 3, spin-coated on a silicon wafer, and heat-treated to form a film.

【0065】赤外吸収スペクトルより、式〔28〕のポ
リイミドが形成されていることが明らかであり、エリプ
ソメトリーで測定したこのポリイミドの被膜は420n
mであった。
From the infrared absorption spectrum, it is clear that the polyimide of the formula [28] was formed, and the film of this polyimide measured by ellipsometry was 420 nm.
m.

【0066】実施例3と同様に平均粒径、比誘電率、ガ
ラス転移温度を測定したところ、それぞれ8.0nm、
1.9、390℃であった。また、実施例1と同様に、
ウエハ放置後の含水量をTDSで評価した結果、殆ど水
の放出は検出されなかった。
The average particle diameter, relative dielectric constant, and glass transition temperature were measured in the same manner as in Example 3.
1.9, 390 ° C. Further, similarly to the first embodiment,
As a result of evaluating the water content after leaving the wafer by TDS, almost no water release was detected.

【0067】〔実施例 8〕実施例1の低誘電率膜を用
い、図1に示す様に層間絶縁膜6を形成した半導体装置
の配線遅延時間を測定した。後述の比較例1の低誘電率
膜を用いた半導体装置に比べ、配線遅延時間を88%に
減少することができた。
Example 8 Using the low dielectric constant film of Example 1, the wiring delay time of a semiconductor device having an interlayer insulating film 6 formed thereon as shown in FIG. 1 was measured. The wiring delay time could be reduced to 88% as compared with the semiconductor device using the low dielectric constant film of Comparative Example 1 described later.

【0068】〔実施例 9〕実施例3の低誘電率膜を用
い、図1に示す様に層間絶縁膜6を形成した半導体装置
の配線遅延時間を測定した。後述の比較例3の低誘電率
膜を用いた半導体装置に比べ、配線遅延時間を78%に
減少することができた。
Example 9 Using the low dielectric constant film of Example 3, the wiring delay time of a semiconductor device having an interlayer insulating film 6 formed thereon as shown in FIG. 1 was measured. The wiring delay time was reduced to 78% as compared with the semiconductor device using the low dielectric constant film of Comparative Example 3 described later.

【0069】また、実施例8,9の低誘電率膜を半導体
装置の層間絶縁膜に用いることにより、配線遅延時間を
減少できる。
Further, by using the low dielectric constant films of Examples 8 and 9 as the interlayer insulating film of the semiconductor device, the wiring delay time can be reduced.

【0070】〔比較例 1〕Si(OCH3)4の20g、
(CH3CH3)Si(OCH3)3の20gを純水50gとメ
タノール65gを混合した混合溶液に溶解させ、硝酸を
純水で希釈した1.5%の硝酸水溶液150gを2時間
かけて添加した後、室温で20時間熟成させた。スピン
ナーヘッド装置の回転数を1500rpmで上記塗布溶
液をシリコンウエハ上に塗布した。
Comparative Example 1 20 g of Si (OCH 3 ) 4
20 g of (CH 3 CH 3 ) Si (OCH 3 ) 3 was dissolved in a mixed solution of 50 g of pure water and 65 g of methanol, and 150 g of a 1.5% nitric acid aqueous solution obtained by diluting nitric acid with pure water was added for 2 hours. After the addition, the mixture was aged at room temperature for 20 hours. The coating solution was applied onto a silicon wafer at a rotation speed of a spinner head device of 1500 rpm.

【0071】その後、300℃のオートクレーブで大気
中1時間焼成した。エリプソメトリーで測定したこのシ
リカ系被膜は400nmであった。インピーダンスアナ
ライザで比誘電率を測定したところ2.9であった。
Thereafter, the mixture was fired in an autoclave at 300 ° C. for one hour in the air. The silica-based coating measured by ellipsometry was 400 nm. It was 2.9 when the relative permittivity was measured with the impedance analyzer.

【0072】〔比較例 2〕CF3Si(OCH3)4の2
0g、(CF2CF3)2Si(OCH3)3の20gを純水5
0gとメタノール65gを混合した混合溶液に溶解さ
せ、硝酸を純水で希釈した1.5%の硝酸水溶液150
gを2時間かけて添加後、室温で20時間熟成させた。
[Comparative Example 2] 2 of CF 3 Si (OCH 3 ) 4
0 g and (CF 2 CF 3 ) 2 Si (OCH 3 ) 3 in 20 g of pure water.
0 g and 65 g of methanol were dissolved in a mixed solution, and nitric acid was diluted with pure water.
g was added over 2 hours and aged at room temperature for 20 hours.

【0073】スピンナーヘッド装置の回転数を1500
rpmで塗布溶液をシリコンウエハ上に塗布した。その
後、300℃のオートクレーブで大気中1時間焼成し
た。エリプソメトリーで測定したこのシリカ系被膜は4
00nmであった。インピーダンスアナライザで比誘電
率を測定したところ2.8であった。
The number of revolutions of the spinner head device is set to 1500
The coating solution was applied on a silicon wafer at rpm. Then, it was fired in an air at 300 ° C. for 1 hour in the air. This silica-based coating measured by ellipsometry was 4
00 nm. It was 2.8 when the relative dielectric constant was measured with the impedance analyzer.

【0074】〔比較例 3〕実施例3と同様に式[Comparative Example 3] The same as in Example 3,

〔9〕
のジアミン2.44g(0.01モル)を50mlのN−メ
チルスルホキサイドに溶解し、これに式〔10〕の酸無
水物2.22g(0.01モル)を加え、室温で6時間攪拌
し式〔11〕のポリアミド酸を合成した。
[9]
Is dissolved in 50 ml of N-methylsulfoxide, 2.22 g (0.01 mol) of the acid anhydride of the formula [10] is added thereto, and the mixture is added at room temperature for 6 hours. With stirring, the polyamic acid of the formula [11] was synthesized.

【0075】実施例3と同様にシリコンウエハ上にスピ
ンコート後、加熱処理して膜を形成した。
In the same manner as in Example 3, a film was formed by spin-coating a silicon wafer and then performing a heat treatment.

【0076】赤外吸収スペクトルより、式〔12〕のポ
リイミドが形成されていることが明らかであり、エリプ
ソメトリーで測定したこのポリイミドの被膜は240n
mであった。インピーダンスアナライザで測定した比誘
電率は2.6であった。
It is clear from the infrared absorption spectrum that the polyimide of the formula [12] was formed, and the film of this polyimide measured by ellipsometry was 240 nm.
m. The relative dielectric constant measured with an impedance analyzer was 2.6.

【0077】〔比較例 4〕実施例4と同様に式〔1
3〕のジアミン2.58g(0.01モル)を50mlのN
−メチルスルホキサイドに溶解し、これに式〔14〕の
酸無水物2.18g(0.01モル)を加え、室温で6時間
攪拌し、式〔15〕のポリアミド酸を合成した。
[Comparative Example 4] As in Example 4, the formula [1]
2.5 g (0.01 mol) of the diamine of 3) was added to 50 ml of N
-Methyl sulfoxide, 2.18 g (0.01 mol) of the acid anhydride of the formula [14] was added thereto, and the mixture was stirred at room temperature for 6 hours to synthesize a polyamic acid of the formula [15].

【0078】実施例4と同様にシリコンウエハ上にスピ
ンコート後加熱処理し、膜を形成した。
In the same manner as in Example 4, a silicon wafer was spin-coated and then heat-treated to form a film.

【0079】赤外吸収スペクトルより、式〔16〕のポ
リイミドが形成されていることが明らかであり、エリプ
ソメトリーで測定したこのポリイミドの被膜は250n
mであった。実施例4と同様に比誘電率、ガラス転移温
度を測定したところ、それぞれ2.5、400℃であっ
た。
It is clear from the infrared absorption spectrum that the polyimide of the formula [16] was formed, and the film of this polyimide measured by ellipsometry was 250 nm.
m. The relative dielectric constant and the glass transition temperature were measured in the same manner as in Example 4. As a result, they were 2.5 and 400 ° C., respectively.

【0080】〔比較例 5〕実施例5と同様に式〔1
7〕のジアミン3.28g(0.01モル)を50mlのN
−ジメチルアセトアミドに溶解し、これに式〔18〕の
酸無水物2.70g(0.01モル)を加え、室温で6時間
攪拌し、式〔19〕のポリアミド酸を合成した。
[Comparative Example 5] As in Example 5, the formula [1]
7] with 3.28 g (0.01 mol) of diamine in 50 ml of N
Was dissolved in dimethylacetamide, and 2.70 g (0.01 mol) of the acid anhydride of the formula [18] was added thereto, followed by stirring at room temperature for 6 hours to synthesize a polyamic acid of the formula [19].

【0081】実施例5と同様にシリコンウエハ上にスピ
ンコート後、加熱処理して膜を形成した。赤外吸収スペ
クトルより、式〔20〕のポリイミドが形成されている
ことが明らかであり、該ポリイミドの被膜は260nm
であった。実施例5と同様に比誘電率、ガラス転移温度
を測定したところ、それぞれ2.6、400℃であっ
た。
In the same manner as in Example 5, a film was formed by spin-coating on a silicon wafer, followed by heat treatment. From the infrared absorption spectrum, it is clear that the polyimide of the formula [20] is formed, and the polyimide film has a thickness of 260 nm.
Met. The relative dielectric constant and the glass transition temperature were measured in the same manner as in Example 5, and were 2.6 and 400 ° C., respectively.

【0082】〔比較例 6〕実施例6と同様に式〔2
1〕のジアミン2.34g(0.01モル)を50mlのN
−ジメチルアセトアミドに溶解し、これに式〔22〕の
酸無水物2.68g(0.01モル)を加え、室温で6時間
攪拌し、式〔23〕のポリアミド酸を合成した。
[Comparative Example 6] In the same manner as in Example 6, the formula [2]
2.31 g (0.01 mol) of the diamine of 1) was added to 50 ml of N
-Dissolved in dimethylacetamide, 2.68 g (0.01 mol) of the acid anhydride of the formula [22] was added thereto, and the mixture was stirred at room temperature for 6 hours to synthesize a polyamic acid of the formula [23].

【0083】実施例6と同様にシリコンウエハ上にスピ
ンコート後、加熱処理して膜を形成した。赤外吸収スペ
クトルより、式〔24〕のポリイミドが形成されている
ことが明らかであり、このポリイミドの被膜は250n
mであった。実施例7と同様に比誘電率、ガラス転移温
度を測定したところ、それぞれ2.6、420℃であっ
た。
As in Example 6, a film was formed by spin-coating on a silicon wafer and heat-treating. It is clear from the infrared absorption spectrum that the polyimide of the formula [24] was formed, and the coating of this polyimide was 250 n
m. The relative dielectric constant and glass transition temperature were measured in the same manner as in Example 7, and were 2.6 and 420 ° C., respectively.

【0084】〔比較例 7〕実施例7と同様に式〔2
5〕のジアミン1.72g(0.01モル)を50mlのN
−ジメチルアセトアミドに溶解し、これに式〔26〕の
酸無水物2.57g(0.01モル)を加え、室温で6時間
攪拌し、式〔27〕のポリアミド酸を合成した。
[Comparative Example 7] In the same manner as in Example 7, the formula [2]
5] 1.72 g (0.01 mol) of diamine was added to 50 ml of N
Was dissolved in dimethylacetamide, and 2.57 g (0.01 mol) of the acid anhydride of the formula [26] was added thereto, followed by stirring at room temperature for 6 hours to synthesize a polyamic acid of the formula [27].

【0085】実施例7と同様にスピンコート後、加熱処
理して膜を形成した。赤外吸収スペクトルより、式〔2
8〕のポリイミドが形成されていることが明らかであ
り、エリプソメトリーで測定したこのポリイミドの被膜
は250nmであった。実施例7と同様に比誘電率、ガ
ラス転移温度を測定したところ、それぞれ2.9、39
0℃であった。実施例7と同様に、ウエハ放置後の含水
量をTDSで評価した結果、殆ど水の放出は検出されな
かった。
After the spin coating in the same manner as in Example 7, a heat treatment was performed to form a film. From the infrared absorption spectrum, the formula [2
It was clear that the polyimide of No. 8] was formed, and the thickness of the polyimide film measured by ellipsometry was 250 nm. The relative permittivity and the glass transition temperature were measured in the same manner as in Example 7, and the values were 2.9 and 39, respectively.
It was 0 ° C. As in Example 7, as a result of evaluating the water content after leaving the wafer by TDS, almost no water release was detected.

【0086】〔比較例 8〕実施例7と同様に式〔2
5〕のジアミン1.72g(0.01モル)を50mlのN
−ジメチルアセトアミドに溶解し、これに式〔26〕の
酸無水物2.57g(0.01モル)を加え、室温で6時間
攪拌し、式〔27〕のポリアミド酸を合成した。
[Comparative Example 8] In the same manner as in Example 7, the formula [2]
5] 1.72 g (0.01 mol) of diamine was added to 50 ml of N
Was dissolved in dimethylacetamide, and 2.57 g (0.01 mol) of the acid anhydride of the formula [26] was added thereto, followed by stirring at room temperature for 6 hours to synthesize a polyamic acid of the formula [27].

【0087】これに熱分解型発泡剤として重合度100
のポリプロピレンオキシド1gを加え、実施例7と同様
にスピンコート後、加熱処理して膜を形成した。赤外吸
収スペクトルより、式〔28〕のポリイミドが形成され
ていることが明らかであり、エリプソメトリーで測定し
たこのポリイミドの被膜は430nmであった。実施例
7と同様に比誘電率、ガラス転移温度を測定したとこ
ろ、それぞれ1.8、390℃であった。
As a thermal decomposition type foaming agent, a polymerization degree of 100
Was spin-coated in the same manner as in Example 7, followed by heat treatment to form a film. From the infrared absorption spectrum, it was clear that a polyimide represented by the formula [28] was formed, and the thickness of the polyimide film measured by ellipsometry was 430 nm. The relative dielectric constant and the glass transition temperature were measured in the same manner as in Example 7, and were 1.8 and 390 ° C., respectively.

【0088】平均孔径を実施例7と同様に測定したとこ
ろ40nmであったが、実施例7よりも孔径のバラツキ
が大きかった。実施例7と同様に、ウエハ放置後の含水
量をTDSで評価した結果、実施例7よりも1桁以上多
くの水が検出された。
When the average pore size was measured in the same manner as in Example 7, it was 40 nm, but the variation in the pore size was larger than in Example 7. As in Example 7, as a result of evaluating the water content after leaving the wafer by TDS, one or more orders of magnitude more water were detected than in Example 7.

【0089】〔比較例 9〕実施例7と同様に式〔2
5〕のジアミン1.72g(0.01モル)を50mlのN
−ジメチルアセトアミドに溶解し、これに式〔26〕の
酸無水物2.57g(0.01モル)を加え、室温で6時間
攪拌し、式〔27〕のポリアミド酸を合成した。
[Comparative Example 9] [Comparative Example 9]
5] 1.72 g (0.01 mol) of diamine was added to 50 ml of N
Was dissolved in dimethylacetamide, and 2.57 g (0.01 mol) of the acid anhydride of the formula [26] was added thereto, followed by stirring at room temperature for 6 hours to synthesize a polyamic acid of the formula [27].

【0090】これに熱分解型発泡剤としてアゾジカルボ
ンアミド1gを加え、実施例7と同様にスピンコート
後、加熱処理して膜を形成した。赤外吸収スペクトルよ
り、式〔28〕のポリイミドが形成されていることが明
らかであり、エリプソメトリーで測定したこのポリイミ
ドの被膜は420nmであった。実施例7と同様に比誘
電率、ガラス転移温度を測定したところ、それぞれ1.
9、400℃であった。平均孔径を実施例7と同様に測
定したところ12nmであったが、実施例7よりも孔径
のバラツキが大きかった。
To this, 1 g of azodicarbonamide was added as a pyrolysis type foaming agent, and spin-coated as in Example 7, followed by heat treatment to form a film. From the infrared absorption spectrum, it was clear that the polyimide represented by the formula [28] was formed, and the thickness of the polyimide film measured by ellipsometry was 420 nm. The relative permittivity and the glass transition temperature were measured in the same manner as in Example 7.
9, 400 ° C. When the average pore size was measured in the same manner as in Example 7, it was 12 nm, but the variation in the pore size was larger than in Example 7.

【0091】実施例7と同様に、ウエハ放置後の含水量
をTDSで評価した結果、実施例7の数倍の水が検出さ
れた。
As in the case of Example 7, the water content after the wafer was left was evaluated by TDS, and as a result, water several times that of Example 7 was detected.

【0092】実施例1〜2と比較例1〜2とを比較する
と分かるように、低誘電率のビーズを加えることにより
誘電率を低下させることができ、かつ、吸湿性も低く抑
えられる。
As can be seen from a comparison between Examples 1 and 2 and Comparative Examples 1 and 2, the addition of beads having a low dielectric constant can lower the dielectric constant and suppress the hygroscopicity.

【0093】また、実施例3〜7と比較例3〜7とを比
較すると分かるように、熱分解性の分子を加え発泡させ
ることにより、均一な独立気泡を形成させ、誘電率を低
下させることができ、かつ、吸湿性も低く抑えられる。
Further, as can be seen from a comparison between Examples 3 to 7 and Comparative Examples 3 to 7, by adding thermally decomposable molecules and foaming, uniform closed cells are formed and the dielectric constant is lowered. And moisture absorption can be suppressed to a low level.

【0094】また、実施例7と比較例8,9とを比較す
ることにより、独立気泡の孔径およびそのばらつきの点
から、熱分解性の分子は会合性の分子が最もよく(比較
例8)、高分子であると孔径が大きくなって連続気泡と
なり、吸湿性が増すことが分かる(比較例9)。
Further, by comparing Example 7 with Comparative Examples 8 and 9, the thermally decomposable molecule is most preferably an associative molecule in terms of the pore diameter of the closed cell and its variation (Comparative Example 8). It can be seen that, if it is a polymer, the pore size increases and the cells become open cells, increasing the hygroscopicity (Comparative Example 9).

【0095】[0095]

【発明の効果】本発明のシリカ系低誘電率膜は、低誘電
率ビーズを加えることにより従来のシリカ系低誘電率膜
と製造工程を殆ど変えることなく、誘電率を低下させる
ことができ、配線遅延時間の短縮を図ることができる。
The silica-based low dielectric constant film of the present invention can lower the dielectric constant by adding a low dielectric constant bead without changing the manufacturing process of the conventional silica-based low dielectric constant film. The wiring delay time can be reduced.

【0096】また、本発明の有機系低誘電率膜において
は、均一な孔径の独立気泡を有することから、従来の有
機系低誘電率膜よりも誘電率を下げることができ、配線
遅延時間の短縮を図ることができる。
Further, since the organic low dielectric constant film of the present invention has closed cells having a uniform pore size, the dielectric constant can be made lower than that of the conventional organic low dielectric constant film, and the wiring delay time can be reduced. Shortening can be achieved.

【0097】また、ガラス転移温度が高いポリアミド酸
初期重合体を用いたことで温度に対する耐久性が大き
く、製造工程における加熱処理に十分に耐え得るので、
信頼性を向上させることができる。
In addition, since the polyamic acid prepolymer having a high glass transition temperature is used, the durability against the temperature is large, and the heat treatment in the manufacturing process can be sufficiently endured.
Reliability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の低誘電率膜を用いた半導体装置の模式
断面図である。
FIG. 1 is a schematic sectional view of a semiconductor device using a low dielectric constant film of the present invention.

【符号の説明】[Explanation of symbols]

1…p型Si、2…n型Si、3…ゲート電極、4…S
i基板、5…SiO2、6…層間絶縁膜、7…W、8…
Al、9…Cu、10…SiN。
1 ... p-type Si, 2 ... n-type Si, 3 ... gate electrode, 4 ... S
i board, 5 ... SiO 2, 6 ... interlayer insulating film, 7 ... W, 8 ...
Al, 9 ... Cu, 10 ... SiN.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 25/06 C08L 25/06 27/18 27/18 83/00 83/00 H01L 21/316 H01L 21/316 G 21/768 C08L 79:08 // C08L 79:08 H01L 21/90 S Fターム(参考) 4F074 AA74 BA13 BA14 BA15 BA16 BA18 BA19 BA20 CA29 DA03 DA12 DA59 4J002 BB03X BC03X BD15X CM04X CP02W CP03W CP08W FA08X 4J043 PA02 PA19 QB15 QB26 RA06 RA35 SA06 SB01 TA22 TB01 UA121 UA122 UA131 UA132 UA262 UA332 UB051 UB061 UB402 YA06 ZA43 ZA46 ZB50 5F033 HH08 HH11 JJ19 KK01 KK08 RR09 RR22 RR23 SS22 WW01 WW03 XX00 XX24 XX27 5F058 AA10 AC02 AC03 AC04 AC06 AF04 AG01 AH01 AH02 BA20 BC05 BF46 BH01 BJ01 BJ02──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 25/06 C08L 25/06 27/18 27/18 83/00 83/00 H01L 21/316 H01L 21 / 316 G 21/768 C08L 79:08 // C08L 79:08 H01L 21/90 SF term (reference) 4F074 AA74 BA13 BA14 BA15 BA16 BA18 BA19 BA20 CA29 DA03 DA12 DA59 4J002 BB03X BC03X BD15X CM04X CP02W CP03W CP08W FA02X 4J04 QB15 QB26 RA06 RA35 SA06 SB01 TA22 TB01 UA121 UA122 UA131 UA132 UA262 UA332 UB051 UB061 UB402 YA06 ZA43 ZA46 ZB50 5F033 HH08 HH11 JJ19 KK01 BK08 RR09 RR22 RR23 SS22 A01 AC02 A01 AC04 A02 ACOA BJ01 BJ02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 シリカ系の低誘電率膜に粒径20nm以
下、比誘電率2.8以下のビーズ(微小球体)を含有さ
せたことを特徴とする低誘電率膜。
1. A low dielectric constant film comprising a silica-based low dielectric constant film containing beads (microspheres) having a particle diameter of 20 nm or less and a relative dielectric constant of 2.8 or less.
【請求項2】 前記ビーズがポリエチレン,ポリスチレ
ン、フッ素化ポリイミド、ポリテトラフルオロエチレン
の1種以上である請求項1に記載の低誘電率膜。
2. The low dielectric constant film according to claim 1, wherein the beads are at least one of polyethylene, polystyrene, fluorinated polyimide, and polytetrafluoroethylene.
【請求項3】 前記シリカ系の低誘電率膜が式〔1〕〜
〔3〕 【化1】 Si(OR)4 …〔1〕 R'Si(OR)3 …〔2〕 R'2Si(OR)2 …〔3〕 (但し、式中Rは炭素数1〜5のアルカン、R'は炭素
数1〜3のアルカン、パーフロロアルカン、臭素、塩
素、フッ素のいずれかを示す)で表される化合物の1種
以上を脱水縮合させたものである請求項1に記載の低誘
電率膜。
3. The silica-based low dielectric constant film according to the formula [1]
[3] embedded image Si (OR) 4 ... [1] R′Si (OR) 3 ... [2] R ′ 2 Si (OR) 2 ... 5. The alkane of formula (5) and R 'represent one or more of alkanes having 1 to 3 carbon atoms, perfluoroalkane, bromine, chlorine and fluorine). 4. The low dielectric constant film according to 1.
【請求項4】 ポリアミド酸重合体の溶液に熱分解性発
泡剤を加え、加熱,重合と共に熱分解性発泡剤を発泡さ
せて加熱閉環したポリイミド膜中に、粒径20nm以下
の独立気泡を形成させた350℃以上のガラス転移温度
を有することを特徴とする低誘電率膜。
4. A closed cell having a particle size of 20 nm or less is formed in a polyimide film which is heated and closed by adding a thermally decomposable foaming agent to a solution of the polyamic acid polymer, heating and polymerizing the thermally decomposable foaming agent together with polymerization. A low dielectric constant film having a glass transition temperature of 350 ° C. or higher.
【請求項5】 前記熱分解性発泡剤がポリイミド酸重合
体の溶液中で会合する分子であり、前記独立気泡が粒径
20nm以下で均一分散されている請求項4に記載の低
誘電率膜。
5. The low dielectric constant film according to claim 4, wherein the thermally decomposable blowing agent is a molecule associated in a solution of a polyimide acid polymer, and the closed cells have a particle diameter of 20 nm or less and are uniformly dispersed. .
【請求項6】 前記独立気泡の粒径が10nm以下であ
る請求項5に記載の低誘電率膜。
6. The low dielectric constant film according to claim 5, wherein the closed cells have a particle size of 10 nm or less.
【請求項7】 層間絶縁膜を備えた半導体装置におい
て、前記層間絶縁膜が請求項1〜6のいずれかに記載の
低誘電率膜で構成されていることを特徴とする半導体装
置。
7. A semiconductor device provided with an interlayer insulating film, wherein the interlayer insulating film is formed of the low dielectric constant film according to claim 1.
JP2000052254A 2000-02-24 2000-02-24 Low dielectric constant film and semiconductor device using the same Pending JP2001237241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000052254A JP2001237241A (en) 2000-02-24 2000-02-24 Low dielectric constant film and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000052254A JP2001237241A (en) 2000-02-24 2000-02-24 Low dielectric constant film and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2001237241A true JP2001237241A (en) 2001-08-31

Family

ID=18573806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000052254A Pending JP2001237241A (en) 2000-02-24 2000-02-24 Low dielectric constant film and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2001237241A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293129C (en) * 2004-10-14 2007-01-03 北京化工大学 Method for preparing Nano film of multiporous polyimide in low dielectric constant
US7425350B2 (en) 2005-04-29 2008-09-16 Asm Japan K.K. Apparatus, precursors and deposition methods for silicon-containing materials
JP2012049552A (en) * 2004-04-02 2012-03-08 Spansion Llc Semiconductor devices
WO2015198970A1 (en) * 2014-06-25 2015-12-30 旭化成イーマテリアルズ株式会社 Polyimide film having pores and method for producing same
EP3031848A1 (en) 2014-12-09 2016-06-15 ABB Technology Ltd Dielectric material and dielectric film
WO2017164335A1 (en) * 2016-03-25 2017-09-28 日産化学工業株式会社 Resin composition for forming porous film, and porous film
WO2017164336A1 (en) * 2016-03-25 2017-09-28 日産化学工業株式会社 Method for producing porous film
WO2022102345A1 (en) * 2020-11-10 2022-05-19 東レ株式会社 Resin composition, cured film, insulating film or protective film, antenna element, electronic component, display device or semiconductor device, and production method therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049552A (en) * 2004-04-02 2012-03-08 Spansion Llc Semiconductor devices
CN1293129C (en) * 2004-10-14 2007-01-03 北京化工大学 Method for preparing Nano film of multiporous polyimide in low dielectric constant
US7425350B2 (en) 2005-04-29 2008-09-16 Asm Japan K.K. Apparatus, precursors and deposition methods for silicon-containing materials
WO2015198970A1 (en) * 2014-06-25 2015-12-30 旭化成イーマテリアルズ株式会社 Polyimide film having pores and method for producing same
JPWO2015198970A1 (en) * 2014-06-25 2017-04-20 旭化成株式会社 Polyimide film having voids and method for producing the same
EP3031848A1 (en) 2014-12-09 2016-06-15 ABB Technology Ltd Dielectric material and dielectric film
WO2017164335A1 (en) * 2016-03-25 2017-09-28 日産化学工業株式会社 Resin composition for forming porous film, and porous film
WO2017164336A1 (en) * 2016-03-25 2017-09-28 日産化学工業株式会社 Method for producing porous film
JPWO2017164336A1 (en) * 2016-03-25 2019-02-14 日産化学株式会社 Method for producing porous membrane
JPWO2017164335A1 (en) * 2016-03-25 2019-02-14 日産化学株式会社 Porous film forming resin composition and porous film
WO2022102345A1 (en) * 2020-11-10 2022-05-19 東レ株式会社 Resin composition, cured film, insulating film or protective film, antenna element, electronic component, display device or semiconductor device, and production method therefor
CN116323755A (en) * 2020-11-10 2023-06-23 东丽株式会社 Resin composition, cured film, insulating film or protective film, antenna element, electronic component, display device or semiconductor device, and method for producing same

Similar Documents

Publication Publication Date Title
JP2000154268A (en) Nanoporous polymer film for low dielectric constant interlayer dielectric and method of manufacturing the same
WO2000068956A1 (en) Nanoporous material fabricated using a dissolvable reagent
US20020132496A1 (en) Ultra low-k dielectric materials
JP2000044719A (en) Porous polyimide, its precusor and manufacture of porous polyimide
JP2001237241A (en) Low dielectric constant film and semiconductor device using the same
JP4049775B2 (en) Organosilicate polymer and insulating film containing the same
JP2001098224A (en) Silica-based film, method of forming silica-based film, and electronic component having silica-based film
JP4555836B2 (en) Cyclodextrin derivatives as pore-forming templates and low dielectric materials prepared using the same
JP2001098218A (en) Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film
KR100508696B1 (en) Ultra-low Dielectrics for Copper Interconnect
JP2002504751A (en) Low dielectric constant film with high glass transition temperature prepared by electron beam curing
US20060141163A1 (en) Organic siloxane resins and insulating film using the same
JP2000340651A (en) Manufacturing method of low dielectric constant film
TW201133148A (en) Resist underlayer composition and process of producing integrated circuit devices using the same
JP2002105205A (en) Porous membrane comprising organosilicon compound and method for producing the same
TW200916508A (en) Organosilane polymer with improved gap-filling properties for semiconductor device and coating composition using the same
JPH10150036A (en) Method of forming low dielectric constant insulating film and semiconductor device using this film
US6602801B2 (en) Method for forming a region of low dielectric constant nanoporous material
WO2003103034A1 (en) Method for forming inorganic porous film
JP2002203430A (en) Insulating material for high frequency electronic component
US20060135633A1 (en) Porous low-dielectric constant (k) thin film with controlled solvent diffusion
JP2002252224A (en) Method for producing hydrophobic porous SOG film
KR100579037B1 (en) Low dielectric polysilsesquioxane copolymers and insulating films having low dielectric nano pores, and methods of manufacturing the same
Hyeon‐Lee et al. Properties of nanoporous organosilicate hybrid thin films with a bimodal pore size distribution
CN105367810B (en) A kind of preparation method and application of hexafluoropropane base PMO films