[go: up one dir, main page]

JP2001236492A - Method and device for image processing - Google Patents

Method and device for image processing

Info

Publication number
JP2001236492A
JP2001236492A JP2000047453A JP2000047453A JP2001236492A JP 2001236492 A JP2001236492 A JP 2001236492A JP 2000047453 A JP2000047453 A JP 2000047453A JP 2000047453 A JP2000047453 A JP 2000047453A JP 2001236492 A JP2001236492 A JP 2001236492A
Authority
JP
Japan
Prior art keywords
pixels
pixel
image
image processing
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000047453A
Other languages
Japanese (ja)
Other versions
JP4526102B2 (en
JP2001236492A5 (en
Inventor
Hideki Kumai
秀樹 熊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2000047453A priority Critical patent/JP4526102B2/en
Publication of JP2001236492A publication Critical patent/JP2001236492A/en
Publication of JP2001236492A5 publication Critical patent/JP2001236492A5/ja
Application granted granted Critical
Publication of JP4526102B2 publication Critical patent/JP4526102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To accelerate selective projecting process of an MRI. SOLUTION: When a pixel having a maximum or a minimum value is retrieved from each pixel array, extending in the direction where a three- dimensional image composed of pixels arrayed in three dimensions should be projected, only the pixels object pixels are retrieved as only a part of the pixels in the pixel array are retrieved as the pixels of retrieval.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、断層像撮影のため
の医用画像処理方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical image processing method and apparatus for tomographic imaging.

【0002】[0002]

【従来の技術】近年、CT装置、MRI装置、超音波装
置等の医用画像診断装置では、2次元的な画像を表示で
きる他、3次元的な画像を表示することもできるように
なっている。また、3次元画像から2次元画像を作成す
ることも可能となっている。
2. Description of the Related Art In recent years, medical image diagnostic apparatuses such as CT apparatuses, MRI apparatuses, and ultrasonic apparatuses have been able to display not only two-dimensional images but also three-dimensional images. . It is also possible to create a two-dimensional image from a three-dimensional image.

【0003】具体的には、医用画像診断装置により得ら
れた3D信号(3次元画像信号)から、例えば血管など
の必要な組織のみを可視化した投影画像を得る場合、投
影方向に重なっている可視化する必要のない組織の不要
信号(例えば脂肪等)を除去し、必要な信号のみが抽出
されるようにする方法(以下、選択投影法と言う)が知
られている。
More specifically, when a projection image is obtained by visualizing only a necessary tissue such as a blood vessel from a 3D signal (three-dimensional image signal) obtained by a medical image diagnostic apparatus, the visualization overlaps the projection direction. There is known a method (hereinafter, referred to as a selective projection method) of removing unnecessary signals (for example, fat or the like) of a tissue that does not need to be extracted and extracting only necessary signals.

【0004】この選択投影法では、取得した3Dデータ
を使用し、いくつかの異なる方向にそれぞれ投影した画
像を作成してディスプレイ上に表示し、表示された画像
を観察しながらオペレータが不要な信号を削除して行
く。通常、処理時間短縮のため、投影方向は、A-P方向
(身体前後方向)、H-F方向(身体上下方向)、及びR-L
方向(身体左右方向)の3軸方向である。
[0004] In the selective projection method, an image projected in several different directions is created using the acquired 3D data, displayed on a display, and an operator can view unnecessary signals while observing the displayed image. And go. Usually, in order to shorten the processing time, the projection directions are AP direction (body front-back direction), HF direction (body up-down direction), and RL
It is a three-axis direction (a body left-right direction).

【0005】この処理により、不要信号の除去された3
Dデータに対し、不要信号除去効果を確認するため、再
びいくつかの異なる方向に投影した画像(この場合で
も、通常上記の3軸方向にのみ投影する)を作成しディ
スプレイ上に表示する。ここで、例えば、除去すべき不
要信号がまだ存在する場合や誤って必要な信号等を除去
してしまった場合など、必要に応じて不要信号除去処理
を繰り返し行い、不要信号が正しく除去された最終的3
Dデータを得る。
[0005] By this processing, 3
In order to confirm the unnecessary signal removal effect on the D data, images projected again in several different directions (even in this case, usually projected only in the three-axis directions) are created and displayed on a display. Here, for example, when an unnecessary signal to be removed still exists or when a necessary signal or the like is removed by mistake, the unnecessary signal removing process is repeated as necessary, and the unnecessary signal is correctly removed. Final 3
Obtain D data.

【0006】[0006]

【発明が解決しようとする課題】上記の選択投影法で
は、必要信号を抽出するために、値が最大あるいは最小
の画素を画像の中から検索する処理が行われるが、可視
化すべき信号と不要信号とが投影方向に複雑に重なって
いる場合や、不要信号を完全に除去しようとする場合に
は、上記の不要信号除去処理の繰り返し実行回数が多く
なり、最終的3Dデータを得るまでに長時間を要する。
In the above-described selective projection method, a process of searching a pixel having a maximum or minimum value from an image to extract a necessary signal is performed. When the signal and the signal overlap in the projection direction in a complicated manner or when the unnecessary signal is to be completely removed, the number of times of performing the unnecessary signal removing process is increased, and it takes a long time to obtain the final 3D data. Takes time.

【0007】本発明は、選択投影処理に要する時間を短
縮することを課題とする。
An object of the present invention is to reduce the time required for selective projection processing.

【0008】[0008]

【課題を解決するための手段】上記課題は、3次元に配
列された画素で構成される3次元画像の投影すべき方向
にそれぞれ伸びる各画素列から所定の値を有する画素を
画素列毎に検索するステップと、検索された画素から投
影画像を形成するステップとを含み、前記画素を検索す
るステップにおいて、検索の対象とする画素を画素列中
の一部の画素とすることを特徴とする画像処理方法によ
って解決される。
SUMMARY OF THE INVENTION The object of the present invention is to provide, for each pixel column, a pixel having a predetermined value from each pixel column extending in a projection direction of a three-dimensional image composed of three-dimensionally arranged pixels. The method includes a step of searching, and a step of forming a projection image from the searched pixels. In the step of searching for the pixels, a pixel to be searched is a part of pixels in a pixel column. It is solved by an image processing method.

【0009】この画像処理方法では、全ての画素を検索
の対象とせず、一部の画素についてのみ検索を行うので
検索処理に要する時間が短縮され、従って、例えば、最
大値を有する画素のみを抽出して投影する処理、即ち最
大値投影方法(Maximum Intensity Projection Metho
d)を高速で行うことができる。
In this image processing method, the search time is reduced because only some of the pixels are searched without searching all the pixels. Therefore, for example, only the pixel having the maximum value is extracted. Processing, that is, the maximum intensity projection method
d) can be performed at high speed.

【0010】このようにすれば、医用画像診断装置にお
いて、例えば、脂肪等の組織からの不要な信号を除去す
る処理を画面で除去処理の効果を確認しながら繰り返し
行い、血管のみの画像を形成する選択投影処理を短時間
で行うことができる。
In this way, in the medical image diagnostic apparatus, for example, processing for removing unnecessary signals from tissue such as fat is repeatedly performed while confirming the effect of the removal processing on the screen to form an image of only blood vessels. Can be performed in a short time.

【0011】間引き画素数nを設定するステップを設
け、画素列中の画素をn画素置きに間引いて検索対象画
素とすることができる。また、検索の対象とする画素位
置を隣接する画素列の間でずらすことが好ましい。こう
することにより、細い血管の画素が検索対象から全て外
れてしまうことを防止できる。
A step of setting the number n of thinned pixels is provided, and pixels in a pixel row are thinned every n pixels to be used as a search target pixel. Further, it is preferable that the position of a pixel to be searched be shifted between adjacent pixel columns. By doing so, it is possible to prevent all the pixels of the thin blood vessels from being excluded from the search target.

【0012】[0012]

【発明の実施の形態】以下に、本発明の実施形態を添付
図面を参照して詳細に説明する。図2は、本発明方法が
適用されるMRI装置の全体構成を示すブロック図であ
る。このMRI装置は、磁気共鳴現象を利用して被検体の
断層像を得るもので、図2に示すように、静磁場発生磁
気回路1と、傾斜磁場発生系2と、送信系3と、受信系
4と、信号処理系5と、シーケンサ6と、中央処理装置
(CPU)7と、操作部8とを備えてなる。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 2 is a block diagram showing the overall configuration of an MRI apparatus to which the method of the present invention is applied. This MRI apparatus obtains a tomographic image of a subject by using a magnetic resonance phenomenon. As shown in FIG. 2, a static magnetic field generating magnetic circuit 1, a gradient magnetic field generating system 2, a transmitting system 3, and a receiving system The system includes a system 4, a signal processing system 5, a sequencer 6, a central processing unit (CPU) 7, and an operation unit 8.

【0013】静磁場発生磁気回路1は、被検体9の周り
にその体軸方向または体軸と直行する方向に均一な静磁
場を発生させるものであり、被検体9の周りのある広が
りを持った空間に配置される、永久磁石方式、常電導方
式、あるいは超電導方式の磁場発生手段を含む。
The static magnetic field generating magnetic circuit 1 generates a uniform static magnetic field around the subject 9 in the body axis direction or in a direction perpendicular to the body axis, and has a certain spread around the subject 9. And a permanent magnet type, a normal conduction type, or a superconducting type magnetic field generating means disposed in a closed space.

【0014】傾斜磁場発生系2は、X,Y,Zの三軸方向に
巻かれた傾斜磁場コイル10と、それぞれのコイルを駆
動する傾斜磁場電源11とから構成され、後述のシーケ
ンサ6からの命令にしたがって、それぞれのコイルの傾
斜磁場電源11を駆動することにより、X,Y,Zの三軸方
向の傾斜磁場Gs,Gp,Gfを被検体9に印加する。この傾斜
磁場の加え方により、被検体9のスライス面を設定する
ことができる。
The gradient magnetic field generating system 2 includes a gradient magnetic field coil 10 wound in three axes of X, Y, and Z, and a gradient magnetic field power supply 11 for driving each coil. The gradient magnetic field power supplies 11 of the respective coils are driven in accordance with the instructions to apply the gradient magnetic fields Gs, Gp, and Gf in the X, Y, and Z directions to the subject 9. The slice plane of the subject 9 can be set by how to apply the gradient magnetic field.

【0015】送信系3は、後述のシーケンサ6から送出
される高周波磁場パルスにより被検体9の生体組織を構
成する原子の原子核に核磁気共鳴を起こさせるために高
周波信号を照射するものであり、高周波発振器12、変
調器13、高周波増幅器14、送信側高周波コイル15
から構成される。高周波発振器12から出力される高周
波パルスを高周波増幅器14で増幅した後に、被検体9
に近接配置された受信側高周波コイル16に供給するこ
とにより電磁波が被検体9に照射される。
The transmission system 3 irradiates a high-frequency signal to cause nuclear magnetic resonance in the nuclei of the atoms constituting the living tissue of the subject 9 by a high-frequency magnetic field pulse transmitted from a sequencer 6 described later. High-frequency oscillator 12, modulator 13, high-frequency amplifier 14, transmission-side high-frequency coil 15
Consists of After the high-frequency pulse output from the high-frequency oscillator 12 is amplified by the high-frequency amplifier 14,
The electromagnetic wave is applied to the subject 9 by supplying the electromagnetic wave to the reception-side high-frequency coil 16 disposed close to the object 9.

【0016】受信系4は、被検体9の生体組織の原子核
の核磁気共鳴により放出されるエコー信号(NMR信号)
を検出するものであり、受信側高周波コイル16、増幅
器17、直交位相検波器18、A/D変換器19から構成
される。送信側高周波コイル15から照射された電磁波
に対する被検体9からの応答電磁波(NMR信号)は、被
検体9に近接配置された受信側高周波コイル16で検出
され、増幅器17及び直交位相検波器18を経由してA/
D変換器に入力され、そこでディジタル量に変換され、
さらにシーケンサ6からの命令に従うタイミングで直交
位相検波器18によりサンプリングされた二系列の収集
データとして信号処理系5に送られる。
The receiving system 4 includes an echo signal (NMR signal) emitted by nuclear magnetic resonance of an atomic nucleus of a living tissue of the subject 9.
And comprises a receiving-side high-frequency coil 16, an amplifier 17, a quadrature phase detector 18, and an A / D converter 19. A response electromagnetic wave (NMR signal) from the subject 9 to the electromagnetic wave emitted from the transmitting high-frequency coil 15 is detected by the receiving high-frequency coil 16 disposed close to the subject 9, and transmitted to the amplifier 17 and the quadrature phase detector 18. Via A /
Input to the D converter, where it is converted to a digital quantity,
Further, the data is sent to the signal processing system 5 as two series of collected data sampled by the quadrature phase detector 18 at a timing according to a command from the sequencer 6.

【0017】信号処理系5は、受信系4で検出したエコ
ー信号を用いて画像再構成のための演算を行い画像表示
するものであり、エコー信号についてのフーリエ変換、
補正係数計算、画像再構成等の処理及び後述のシーケン
サ6の制御を行うCPU7と、経時的な画像解析処理及び
計測のためのプログラムや、該プログラムの実行に用い
る一定のパラメータなどを記憶するROM(読み出し専用
メモリ)20と、先行の計測で得られた計測パラメー
タ、受信系4で検出したエコー信号、関心領域設定に用
いる画像、関心領域設定のためのパラメータなどの一時
保管、記憶のためのRAM(随時書き込み読み出しメモ
リ)21と、CPU7で再構成された画像データを記録す
るデータ格納部としての光磁気ディスク22及び磁気デ
ィスク23と、これらの光磁気ディスク22及び磁気デ
ィスク23から読み出した画像データを映像化し、断層
像として表示するディスプレイ24とから構成される。
The signal processing system 5 performs an operation for image reconstruction by using the echo signal detected by the receiving system 4 and displays an image.
A CPU 7 for performing processing such as correction coefficient calculation and image reconstruction and controlling a sequencer 6 to be described later, and a ROM for storing a program for image analysis processing and measurement over time and certain parameters used for executing the program (Read-only memory) 20 for temporarily storing and storing measurement parameters obtained by preceding measurement, echo signals detected by the receiving system 4, images used for setting a region of interest, parameters for setting a region of interest, and the like. RAM (Random Access Memory) 21, Magneto-optical disk 22 and Magnetic Disk 23 as data storage for storing image data reconstructed by CPU 7, and images read from these Magneto-optical Disk 22 and Magnetic Disk 23 And a display 24 for displaying data as a tomographic image.

【0018】シーケンサ6は、被検体9の生体組織を構
成する原子の原子核に核磁気共鳴を起こさせる高周波磁
場パルスを、所定のパルスシーケンスで繰り返し印加す
る動作を実行するためのものであり、CPU7の制御化で
動作し、被検体9の断層像のデータ収集に必要な種々の
命令を送信系3、傾斜磁場発生系2、及び受信系4に送
る。また、操作部8は、信号処理系5で行われる処理の
制御に必要な情報を入力するものであり、マウス25、
キーボード26を含む。
The sequencer 6 executes an operation of repeatedly applying a high-frequency magnetic field pulse for causing nuclear magnetic resonance to the nuclei of the atoms constituting the living tissue of the subject 9 in a predetermined pulse sequence. And sends various commands necessary for data collection of tomographic images of the subject 9 to the transmission system 3, the gradient magnetic field generation system 2, and the reception system 4. The operation unit 8 is for inputting information necessary for controlling processing performed by the signal processing system 5.
A keyboard 26 is included.

【0019】次に、図1を参照して、上記のMRI装置に
より得られた3Dデータから不要信号を除去し、血管等
の必要な組織のみの投影画像を作成する手順を示す。
Next, a procedure for removing unnecessary signals from the 3D data obtained by the above-described MRI apparatus and creating a projection image of only necessary tissues such as blood vessels will be described with reference to FIG.

【0020】先ず、ステップ101で取得した3Dデー
タを使用し、複数の異なる投影方向、例えば、A-P方向
(身体前後方向)、H-F方向(身体上下方向)、及びR-L
方向(身体左右方向)の3軸方向に投影した画像を作成
し、ステップ102でディスプレイ上に表示し、ステッ
プ103で表示された画像を観察しながらオペレータが
不要な信号を削除する。
First, using the 3D data acquired in step 101, a plurality of different projection directions, for example, an AP direction (body longitudinal direction), an HF direction (body vertical direction), and RL
An image projected in three axial directions (lateral directions of the body) is created, displayed on a display in step 102, and an operator deletes unnecessary signals while observing the image displayed in step 103.

【0021】不要信号除去処理効果を確認するため、ス
テップ104で、不要信号の除去されたデータを用いて
再び複数の異なる方向への投影画像を作成する。このス
テップで各投影方向について最大値を有する画素を検索
するMIP処理を実行する。従来のMIP処理では、全ての画
素を検索対象としているが、ここでは、処理を高速化す
るため、各投影方向について、最大値検索をn(nは正の
整数)画素おきに間引いて行う。このnの値は、例え
ば、画面上の所定の箇所に数値を入力するかあるいは画
面上にスライドバーを表示し、マウスで操作することに
より設定することができる。これにより、選択投影処理
におけるMIP処理(不要信号除去効果を確認するために
行うMIP)を実行する度に、そのMIP処理で使用する間引
き幅nを設定できる。
In order to confirm the effect of the unnecessary signal removal processing, in step 104, projection images in a plurality of different directions are created again using the data from which the unnecessary signal has been removed. In this step, MIP processing for searching for a pixel having the maximum value in each projection direction is executed. In the conventional MIP processing, all pixels are set as search targets. Here, in order to speed up the processing, the maximum value search is thinned out every n (n is a positive integer) pixels in each projection direction. The value of n can be set, for example, by inputting a numerical value at a predetermined position on the screen or displaying a slide bar on the screen and operating with a mouse. Thus, each time the MIP processing (MIP performed to confirm an unnecessary signal removal effect) in the selective projection processing is performed, the thinning width n used in the MIP processing can be set.

【0022】最大値検索を行う画素のR-L方向の位置を
i(0≦i<x)、H-F方向の位置をj(0≦j<y)、A-P方
向の位置をk(0≦k<z)とするとき、R-L方向の最大値
検索は次式に従って行われる。
The position of the pixel for which the maximum value search is performed in the RL direction is i (0 ≦ i <x), the position in the HF direction is j (0 ≦ j <y), and the position in the AP direction is k (0 ≦ k <z). ), The maximum value search in the RL direction is performed according to the following equation.

【0023】 W(j,k)max = max(W(j,k)[i]) 但し、i = 0(n+1), 1(n+1), 2(n+1), 3(n+1)… (式1) ここで、max(W(j,k)[i])は、データ列W(j,k)[i]の最大
値を表す。j,kの全ての組み合わせについて算出されたW
(j,k)maxに対応する画素がR-L方向の選択投影像を構成
する。
W (j, k) max = max (W (j, k) [i]) where i = 0 (n + 1), 1 (n + 1), 2 (n + 1), 3 ( n + 1) (Equation 1) Here, max (W (j, k) [i]) represents the maximum value of the data sequence W (j, k) [i]. W calculated for all combinations of j and k
A pixel corresponding to (j, k) max forms a selected projection image in the RL direction.

【0024】尚、上記間引き画素数nを1とするとき、
即ち1画素置きに最大値検索を行う場合、iが偶数(i=0,
2,4,…)である画素は全て最大値検索の対象となるが、i
が奇数(i=1,3,5,…)である全ての画素は最大値検索の対
象外となる。このため、血管のような細い組織の情報が
良好に抽出できない場合もあり得る。この問題に対処す
るためには、最大値検索を行う画素に隣接する画素を最
大値検索の対象から除外するようにして画素を間引くこ
とが好ましい。このような最大値検索は、例えば次式に
従って行うことができ、この場合も式1の場合と同様MI
P処理の高速化が可能である。
When the number n of thinned pixels is 1,
That is, when the maximum value search is performed every other pixel, i is an even number (i = 0,
2,4, ...) are all subjected to the maximum value search.
Are all odd numbers (i = 1, 3, 5,...) Are excluded from the maximum value search. For this reason, information on thin tissues such as blood vessels may not be extracted well. In order to cope with this problem, it is preferable to thin out pixels so that pixels adjacent to the pixel for which the maximum value search is to be performed are excluded from the maximum value search target. Such a maximum value search can be performed, for example, according to the following equation.
P processing can be speeded up.

【0025】W(j,k)max = max(W(j,k)[i]) 但し、iは、(k+j)/(n+1) の余りをmとするとき、 i = 0(n+1)+m, 1(n+1)+m, 2(n+1)+m, 3(n+1)+m… (式2) 式2に従った最大値検索の対象となる画素配列パターン
の例を、n=2の場合について図3に示す。最大値検索を
行う画素がn画素置きに配列されるのであれば、どのよ
うな配列パターンでも同じ処理高速化の効果が得られ
る。
W (j, k) max = max (W (j, k) [i]) where i is 0 when the remainder of (k + j) / (n + 1) is m. (n + 1) + m, 1 (n + 1) + m, 2 (n + 1) + m, 3 (n + 1) + m (Equation 2) FIG. 3 shows an example of a pixel arrangement pattern for n = 2. As long as the pixels for which the maximum value search is performed are arranged every n pixels, the same processing speed-up effect can be obtained with any arrangement pattern.

【0026】ステップ104で上記の間引き処理後にMI
P処理を行い、投影画像を作成した後に、ステップ10
5でディスプレイに不要信号の除去された画像を表示す
る。ステップ106でオペレータは、例えば、除去すべ
き不要信号がまだ存在すると判断した場合あるいは誤っ
て必要な信号を除去してしまったと判断した場合にはス
テップ103に戻り再び不要信号除去処理を行う。ま
た、この効果が充分であると判断した場合にはステップ
107で不要信号の除去された領域を3Dデータに反映
させる。
At step 104, the MI
After performing P processing and creating a projection image, step 10
In step 5, an image from which unnecessary signals have been removed is displayed on the display. In step 106, for example, when the operator determines that the unnecessary signal to be removed still exists or determines that the necessary signal has been removed by mistake, the operator returns to step 103 and performs the unnecessary signal removing process again. If it is determined that this effect is sufficient, the area from which unnecessary signals have been removed is reflected in the 3D data in step 107.

【0027】ステップ108でオペレータは、処理を継
続するか終了するかを最終的に判断し、継続する場合に
はステップ103に戻り、終了する場合には所望の投影
方向の画像を作成する。
In step 108, the operator finally determines whether to continue or terminate the processing. If the processing is continued, the operation returns to step 103, and if it is completed, an image in a desired projection direction is created.

【0028】上記実施形態では、最大検索の対象となる
各画素の座標位置を計算により求めているが、予めそれ
らのの位置パターンをテーブルとして用意しておくこと
もできる。なお、本実施形態においては、3Dデータと
してMRI装置の画像データを用いたが、CTあるいは超
音波等の画像を用いることもできる。
In the above embodiment, the coordinate position of each pixel to be searched for the maximum is obtained by calculation. However, those position patterns can be prepared in advance as a table. In the present embodiment, the image data of the MRI apparatus is used as the 3D data, but an image such as a CT or an ultrasonic wave may be used.

【0029】[0029]

【発明の効果】本発明によれば、各投影方向において、
最大値検索を予め抽出された画素のみに行うので、選択
投影画像を高速に形成でき、不要信号除去処理にようす
る時間を短縮することができる。
According to the present invention, in each projection direction,
Since the maximum value search is performed only on pixels extracted in advance, a selected projection image can be formed at high speed, and the time required for unnecessary signal removal processing can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による選択投影の手順を示すフローチャ
ートである。
FIG. 1 is a flowchart showing a procedure of selective projection according to the present invention.

【図2】本発明方法が適用されるMRI装置のブロック
図である。
FIG. 2 is a block diagram of an MRI apparatus to which the method of the present invention is applied.

【図3】最大値検索の対象となる画素の配列パターンを
説明する図である。
FIG. 3 is a diagram illustrating an arrangement pattern of pixels to be searched for a maximum value.

【符号の説明】[Explanation of symbols]

1 静磁場発生磁気回路 2 傾斜磁場発生系 3 送信系 4 受信系 5 信号処理系 6 シーケンス 7 CPU 8 操作部 9 被検体 10 傾斜磁場コイル DESCRIPTION OF SYMBOLS 1 Static magnetic field generation magnetic circuit 2 Gradient magnetic field generation system 3 Transmission system 4 Receiving system 5 Signal processing system 6 Sequence 7 CPU 8 Operation unit 9 Subject 10 Gradient magnetic field coil

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 3次元に配列された画素で構成される3
次元画像の投影すべき方向にそれぞれ伸びる各画素列か
ら所定の値を有する画素を画素列毎に検索するステップ
と、検索された画素から投影画像を形成するステップと
を含み、前記画素を検索するステップにおいて、検索の
対象とする画素を画素列中の一部の画素とすることを特
徴とする画像処理方法。
1. A three-dimensional array composed of three-dimensionally arranged pixels.
Searching for a pixel having a predetermined value for each pixel row from each pixel row extending in the direction in which the three-dimensional image is to be projected, and forming a projection image from the searched pixels; An image processing method, wherein, in the step, a pixel to be searched is a part of pixels in a pixel column.
【請求項2】 請求項1において、間引き画素数nを設
定するステップを含み、画素列中の画素をn画素置きに
間引いて検索対象画素とすることを特徴とする画像処理
方法。
2. The image processing method according to claim 1, further comprising the step of setting the number n of thinned pixels, wherein the pixels in the pixel column are thinned out every n pixels to be a search target pixel.
【請求項3】 請求項1または2において、検索対象画
素位置を隣接する画素列の間でずらすことを特徴とする
画像処理方法。
3. The image processing method according to claim 1, wherein a search target pixel position is shifted between adjacent pixel columns.
【請求項4】 3次元に配列された画素で構成される被
検体の3次元画像を得る手段と、該3次元画像の投影す
べき方向に伸びる各画素列から所定の値を有する画素を
画素列毎に検索する手段と、検索された画素から投影画
像を形成する手段とを備え、前記検索手段は、画素列中
の一部の画素を検索対象画素とすることを特徴とする画
像処理装置。
4. A means for obtaining a three-dimensional image of an object composed of three-dimensionally arranged pixels, and a method of converting a pixel having a predetermined value from each pixel row extending in a direction in which the three-dimensional image is to be projected. An image processing apparatus comprising: means for searching for each column; and means for forming a projection image from the searched pixels, wherein the searching means uses a part of pixels in the pixel row as search target pixels. .
【請求項5】 請求項4において、間引き画素数nを設
定する手段を含み、画素列中の画素をn画素置きに間引
いて検索対象画素とすることを特徴とする画像処理装
置。
5. The image processing apparatus according to claim 4, further comprising means for setting the number n of thinned pixels, wherein pixels in a pixel column are thinned every n pixels to be a search target pixel.
【請求項6】 請求項4または5において、検索対象画
素位置を隣接する画素列の間でずらすことを特徴とする
画像処理装置。
6. The image processing apparatus according to claim 4, wherein a search target pixel position is shifted between adjacent pixel columns.
JP2000047453A 2000-02-24 2000-02-24 Image processing method and apparatus Expired - Fee Related JP4526102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000047453A JP4526102B2 (en) 2000-02-24 2000-02-24 Image processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000047453A JP4526102B2 (en) 2000-02-24 2000-02-24 Image processing method and apparatus

Publications (3)

Publication Number Publication Date
JP2001236492A true JP2001236492A (en) 2001-08-31
JP2001236492A5 JP2001236492A5 (en) 2007-04-26
JP4526102B2 JP4526102B2 (en) 2010-08-18

Family

ID=18569702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000047453A Expired - Fee Related JP4526102B2 (en) 2000-02-24 2000-02-24 Image processing method and apparatus

Country Status (1)

Country Link
JP (1) JP4526102B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043594A1 (en) 2016-08-30 2018-03-08 キヤノン株式会社 Image processing device, image processing method, image processing program, and impage processing system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130989A (en) * 1991-11-11 1993-05-28 Hitachi Medical Corp Processor for ct image
JPH06142092A (en) * 1992-11-10 1994-05-24 Hitachi Medical Corp X-ray ct apparatus
JPH0757119A (en) * 1993-08-18 1995-03-03 Ge Yokogawa Medical Syst Ltd Method and device for calculating projection image
JPH0765146A (en) * 1993-08-24 1995-03-10 Toshiba Corp Ultrasonic diagnostic system
JPH07254057A (en) * 1994-03-15 1995-10-03 Hitachi Ltd High-speed maximum intensity projection processing method
JPH1043178A (en) * 1996-08-06 1998-02-17 Ge Yokogawa Medical Syst Ltd Method, device for setting reconstitutive faces, reconstitutive image preparing method and x-ray ct device
JPH10207351A (en) * 1997-01-20 1998-08-07 Nissan Motor Co Ltd Navigation system and medium which stores navigation program using the system
JPH119588A (en) * 1997-06-26 1999-01-19 Shimadzu Corp X-ray CT system
JP2000116654A (en) * 1998-10-13 2000-04-25 Fuji Photo Optical Co Ltd Ultrasonic image forming apparatus
JP2000139901A (en) * 1998-11-13 2000-05-23 Fuji Photo Film Co Ltd Radiation image forming device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130989A (en) * 1991-11-11 1993-05-28 Hitachi Medical Corp Processor for ct image
JPH06142092A (en) * 1992-11-10 1994-05-24 Hitachi Medical Corp X-ray ct apparatus
JPH0757119A (en) * 1993-08-18 1995-03-03 Ge Yokogawa Medical Syst Ltd Method and device for calculating projection image
JPH0765146A (en) * 1993-08-24 1995-03-10 Toshiba Corp Ultrasonic diagnostic system
JPH07254057A (en) * 1994-03-15 1995-10-03 Hitachi Ltd High-speed maximum intensity projection processing method
JPH1043178A (en) * 1996-08-06 1998-02-17 Ge Yokogawa Medical Syst Ltd Method, device for setting reconstitutive faces, reconstitutive image preparing method and x-ray ct device
JPH10207351A (en) * 1997-01-20 1998-08-07 Nissan Motor Co Ltd Navigation system and medium which stores navigation program using the system
JPH119588A (en) * 1997-06-26 1999-01-19 Shimadzu Corp X-ray CT system
JP2000116654A (en) * 1998-10-13 2000-04-25 Fuji Photo Optical Co Ltd Ultrasonic image forming apparatus
JP2000139901A (en) * 1998-11-13 2000-05-23 Fuji Photo Film Co Ltd Radiation image forming device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043594A1 (en) 2016-08-30 2018-03-08 キヤノン株式会社 Image processing device, image processing method, image processing program, and impage processing system
US10997775B2 (en) 2016-08-30 2021-05-04 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and image processing system
US11494972B2 (en) 2016-08-30 2022-11-08 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and image processing system

Also Published As

Publication number Publication date
JP4526102B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP4129375B2 (en) Medical image diagnostic apparatus and image region designation support method
US6108573A (en) Real-time MR section cross-reference on replaceable MR localizer images
JP5518403B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US8125222B2 (en) Magnetic resonance imaging apparatus and scanning-condition creating method
EP3384307B1 (en) Removal of image artifacts in sense-mri
US8055038B2 (en) Image processing apparatus, image processing method, and magnetic resonance imaging apparatus
JP3878462B2 (en) Diagnostic imaging support system
JP2009061334A (en) Magnetic resonance imaging apparatus and multi-station imaging method
JP3878456B2 (en) Diagnostic imaging support system
US7148688B2 (en) Magnetic resonance imaging apparatus and method of controlling magnetic resonance imaging apparatus
JP3976845B2 (en) Magnetic resonance imaging system
JP5295536B2 (en) Magnetic resonance imaging apparatus and preview image display apparatus
JP5101896B2 (en) Image display apparatus, image display method, and magnetic resonance imaging apparatus
US11686800B2 (en) Correction of magnetic resonance images using simulated magnetic resonance images
JPH05253208A (en) Magnetic resonance imaging device
WO2007040224A1 (en) Magnetic resonance imaging device, and magnetic resonance angiography method
JP2004057237A (en) Magnetic resonance imaging apparatus
JP2001236492A (en) Method and device for image processing
JP4901420B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP2019205542A (en) Magnetic resonance imaging apparatus, processing apparatus, and medical image processing method
JP3153572B2 (en) Magnetic resonance imaging
JP2007167374A (en) Medical image processing device
US11372067B2 (en) Method for acquiring water-fat separation image, and magnetic resonance imaging apparatus therefor
JP2010094156A (en) Mri apparatus
JP2007167152A (en) Magnetic resonance imaging apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees