JP2001233867A - Glycidol production method - Google Patents
Glycidol production methodInfo
- Publication number
- JP2001233867A JP2001233867A JP2000051523A JP2000051523A JP2001233867A JP 2001233867 A JP2001233867 A JP 2001233867A JP 2000051523 A JP2000051523 A JP 2000051523A JP 2000051523 A JP2000051523 A JP 2000051523A JP 2001233867 A JP2001233867 A JP 2001233867A
- Authority
- JP
- Japan
- Prior art keywords
- glycidol
- allyl alcohol
- allyl
- water
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Epoxy Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、グリシドールの製
造方法に関するものである。グリシドールはグリシジル
エーテル、グリシジルエステル、(ポリ)グリセリンエ
ーテル、(ポリ)グリセリンエステル、ジヒドロキシプ
ロピルアミン等、医薬品、塗料、半導体用UV硬化剤等
の原料として有用な物質である。TECHNICAL FIELD The present invention relates to a method for producing glycidol. Glycidol is a substance useful as a raw material for pharmaceuticals, paints, UV curing agents for semiconductors, and the like, such as glycidyl ether, glycidyl ester, (poly) glycerin ether, (poly) glycerin ester, and dihydroxypropylamine.
【0002】[0002]
【従来の技術】グリシドール類の製造方法としては、ア
リルアルコール類を過酢酸のような有機過酸で酸化する
方法、過酸化水素で酸化する方法(特開昭62−114
980、特開平4−335032、及び特開平6−95
92号公報)、ハイドロパーオキサイドで酸化する方
法、酸素で酸化する方法などが提案されている。2. Description of the Related Art As a method for producing glycidols, a method of oxidizing allyl alcohols with an organic peracid such as peracetic acid or a method of oxidizing with hydrogen peroxide (Japanese Patent Laid-Open No. 62-114)
980, JP-A-4-335032 and JP-A-6-95
No. 92), a method of oxidizing with a hydroperoxide, a method of oxidizing with oxygen, and the like have been proposed.
【0003】また、グリシドール類を精製する方法とし
ては、アリルアルコール類と過酸化水素を反応させた反
応粗液から、触媒を蒸留分離し、触媒に含まれる有機物
を燃焼除去させてから、触媒を反応器にリサイクルさせ
る方法(特公昭58−43142号公報)や、上記の脱
触媒工程で、触媒を薄膜式蒸発器で分離する方法(特公
昭60−55512号公報)、アリルアルコールと過酸
化水素を反応させて得られたグリシドールの製品化工程
で、蒸留塔の塔頂に、水を仕込むことにより、還流をか
けずに分離する方法(特開平5−125069号公報)
等が提案されている。[0003] As a method for purifying glycidols, a catalyst is separated by distillation from a crude reaction solution obtained by reacting allyl alcohols with hydrogen peroxide, and the organic substances contained in the catalyst are burned off. A method of recycling to a reactor (Japanese Patent Publication No. 58-43142), a method of separating the catalyst by a thin-film evaporator in the above-mentioned decatalysis step (Japanese Patent Publication No. 60-55512), an allyl alcohol and hydrogen peroxide In the step of commercializing glycidol obtained by reacting glycidol with water at the top of the distillation column to separate without reflux (Japanese Patent Laid-Open No. 5-125069)
Etc. have been proposed.
【0004】[0004]
【発明が解決しようとする課題】上記の如く、公知の製
造方法では、反応における酸化剤の種類、選択率あるい
は活性を上げるための検討は多くなされている。また、
精製方法についても、種々の検討がなされている。しか
しながら、安価で純度の低いアリルアルコールを原料に
使用することについての検討は全くなされていない。す
なわち、本発明の目的は、上記グリシドールの原料であ
るアリルアルコールの製造工程を簡略化することによ
り、工業的に安価なグリシドールの製法を供給すること
にある。As described above, in the known production methods, many studies have been made to increase the type, selectivity or activity of the oxidizing agent in the reaction. Also,
Various studies have also been made on the purification method. However, no study has been made on the use of inexpensive and low-purity allyl alcohol as a raw material. That is, an object of the present invention is to provide an industrially inexpensive process for producing glycidol by simplifying the process for producing allyl alcohol, which is a raw material of the glycidol.
【0005】従来、グリシドールを合成するための出発
原料であるアリルアルコールとしては、特許第2662
965号や特公平8−1379号公報に記載されている
ように、プロピレン、酸素及び酢酸を気相で反応させる
ことによって酢酸アリルを合成し、得られた酢酸アリル
を水で加水分解させ、副生する酢酸を分離することによ
り、アリルアルコールの反応粗液を得ることができる。
この場合、アリルアルコール反応粗液に含まれる物質と
しては、アリルアルコール、酢酸アリル、水等を含み、
その組成は、アリルアルコール60〜80重量%、酢酸
アリル5重量%以下、それ以外の成分を水等が占めてい
る。上記アリルアルコール反応粗液を、更に、脱低沸点
物処理及び脱高沸点物処理等の処理をすることで、グリ
シドールを合成するための原料アリルアルコールを得て
いた。Conventionally, allyl alcohol as a starting material for synthesizing glycidol is disclosed in Japanese Patent No. 2662.
No. 965 and Japanese Patent Publication No. 8-1379, allyl acetate is synthesized by reacting propylene, oxygen and acetic acid in the gas phase, and the obtained allyl acetate is hydrolyzed with water. By separating the generated acetic acid, a crude reaction liquid of allyl alcohol can be obtained.
In this case, the substances contained in the allyl alcohol reaction crude liquid include allyl alcohol, allyl acetate, water and the like,
The composition is 60-80% by weight of allyl alcohol, 5% by weight or less of allyl acetate, and water and the like occupy other components. The raw material allyl alcohol for synthesizing glycidol has been obtained by subjecting the crude allyl alcohol reaction crude liquid to a treatment such as a treatment for removing low-boiling substances and a treatment for removing high-boiling substances.
【0006】本発明でいう脱低沸点物処理とは、アリル
アルコール反応粗液から、水、低沸点物等を除去するこ
とである。具体的には、例えば、段数20〜40段の蒸
留塔を用いて、塔頂圧力500〜850Torr、塔底
温度を85〜120℃で蒸留することにより、塔頂か
ら、共沸で水・酢酸アリル・アリルアルコールを留出さ
せ、留分を凝縮して液化させることにより有機層及び水
層の2層に分離する。有機層は酢酸アリルがリッチであ
り、有機層の全量または一部を還流物として蒸留塔に戻
す。水層には微量の酢酸アリル、アリルアルコール等が
存在するが、これらの物質は水と共に系外に除去する。[0006] The treatment for removing low-boiling substances referred to in the present invention is to remove water, low-boiling substances and the like from an allyl alcohol reaction crude liquid. Specifically, for example, using a distillation column having 20 to 40 plates, distillation is performed at a top pressure of 500 to 850 Torr and a bottom temperature of 85 to 120 ° C., and water / acetic acid is azeotropically distilled from the top of the column. Allyl and allyl alcohol are distilled off, and the fraction is condensed and liquefied to separate into an organic layer and an aqueous layer. The organic layer is rich in allyl acetate, and the whole or a part of the organic layer is returned to the distillation column as reflux. A trace amount of allyl acetate, allyl alcohol, etc. is present in the aqueous layer, and these substances are removed out of the system together with water.
【0007】脱高沸点物処理とは、具体的に、例えば、
段数20〜50段の蒸留塔を用いて、塔頂圧力500〜
850Torr、塔底温度を95〜115℃で蒸留する
ことにより、脱低沸点物処理までで除去できなかった酢
酸アリル等の高沸点物を、系外に缶出させることであ
る。[0007] The deboiler treatment is specifically, for example,
Using a distillation column having 20 to 50 plates, the top pressure is 500 to
By distillation at 850 Torr at a tower bottom temperature of 95 to 115 ° C., high-boiling substances such as allyl acetate which could not be removed by the treatment for removing low-boiling substances are discharged to the outside of the system.
【0008】上記のように、アリルアルコール反応粗液
を、脱低沸点物処理及び脱高沸点物処理を行って精製し
ていた理由としては、これらの処理で除去される、水
分、低沸点物及び高沸点物が、グリシドール製造時に悪
影響を与えると考えられてきた。具体的には、グリシド
ール製造時に、過剰の水分が存在すると、グリシドール
が開環し、(ポリ)グリセリン等となり選択率が低下す
ると考えられていた。また、アリルアルコールと過酸化
水素を反応させてグリシドールを合成する際に、触媒を
使用しており、低沸点物又は高沸点物が存在することに
より、グリシドール合成の触媒を被毒させ、触媒の活性
低下および選択率の低下を招くと考えられていた。更
に、低沸点物又は高沸点物が、生成したグリシドールの
開環反応を誘発する恐れがあるとも考えられていた。つ
まり、グリシドールの選択率の低下、触媒活性の低下を
防止しようと考えて、脱低沸点物処理及び脱高沸点物処
理を実施していた。[0008] As described above, the crude allyl alcohol reaction liquid is subjected to the treatment for removing low-boiling substances and the treatment for removing high-boiling substances, and the reason for this is that water, low-boiling substances removed by these treatments are removed. And high boilers have been thought to adversely affect glycidol production. Specifically, it has been considered that when excess water is present during the production of glycidol, glycidol is opened to form (poly) glycerin or the like, and the selectivity is reduced. In addition, when synthesizing glycidol by reacting allyl alcohol and hydrogen peroxide, a catalyst is used, and the presence of a low-boiling substance or a high-boiling substance poisons the catalyst for glycidol synthesis, and the catalyst is used as a catalyst. It was thought that the activity and the selectivity were reduced. It was further believed that low or high boilers could trigger the ring opening reaction of the formed glycidol. That is, in order to prevent a decrease in the selectivity of glycidol and a decrease in the catalytic activity, the treatment for removing low-boiling substances and the treatment for removing high-boiling substances have been carried out.
【0009】[0009]
【課題を解決するための手段】本発明者らは、かかる問
題点を解決するため鋭意検討を重ねた結果、酢酸アリル
を加水分解して得られるアリルアルコールを主として含
有する反応粗液を、脱低沸点物処理及び脱高沸点物処理
のいずれをも行うことなく、グリシドールの選択率の低
下、触媒活性の低下を招くことがなく、過酸化水素でエ
ポキシ化することができることを見出し、本発明を完成
するに至った。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, have found that the reaction crude liquid containing mainly allyl alcohol obtained by hydrolyzing allyl acetate can be removed. The present invention has found that epoxidation with hydrogen peroxide can be performed without performing either low-boiling-point treatment or de-high-boiling-point treatment, without causing a decrease in glycidol selectivity and a decrease in catalytic activity. Was completed.
【0010】すなわち本発明の第1は、酢酸アリルを加
水分解して得られ、アリルアルコール60〜80重量
%、酢酸アリル0〜5重量%及び水20〜40重量%を
含む反応粗液を、過酸化水素でエポキシ化することを特
徴とするグリシドールの製造方法を提供する。本発明の
第2は、反応粗液が、プロピレン、酸素及び酢酸を気相
で反応させることによって酢酸アリルを合成し、得られ
た酢酸アリルを水で加水分解させ、副生する酢酸を分離
したものであることを特徴とする本発明の第1に記載の
グリシドールの製造方法を提供する。本発明の第3は、
酢酸アリルを加水分解して得られ、アリルアルコールを
主として含有する反応粗液を、脱低沸点物処理又は脱高
沸点物処理のいずれの処理も実施することなく、過酸化
水素でエポキシ化することを特徴とするグリシドールの
製造方法を提供する。That is, a first aspect of the present invention is to provide a crude reaction solution obtained by hydrolyzing allyl acetate and containing 60 to 80% by weight of allyl alcohol, 0 to 5% by weight of allyl acetate and 20 to 40% by weight of water. Provided is a method for producing glycidol, which is characterized by epoxidation with hydrogen peroxide. In the second aspect of the present invention, the reaction crude liquid synthesizes allyl acetate by reacting propylene, oxygen and acetic acid in the gas phase, hydrolyzes the obtained allyl acetate with water, and separates acetic acid as a by-product. A method for producing glycidol according to the first aspect of the present invention is provided. A third aspect of the present invention is
Epoxidizing the reaction crude liquid obtained by hydrolyzing allyl acetate and containing mainly allyl alcohol with hydrogen peroxide without performing any treatment of removing low boilers or removing high boilers. And a method for producing glycidol.
【0011】[0011]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に用いられるアリルアルコール反応粗液は、プロ
ピレン、酸素及び酢酸を気相で反応させることによって
酢酸アリルを合成し、得られた酢酸アリルを水で加水分
解させ、副生する酢酸を分離することによって得られ
る。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The allyl alcohol reaction crude liquid used in the present invention synthesizes allyl acetate by reacting propylene, oxygen and acetic acid in a gas phase, hydrolyzes the obtained allyl acetate with water, and separates acetic acid as a by-product. Obtained by:
【0012】上記アリルアルコール反応粗液は、具体的
には以下のようにして製造される。酸素4〜8、酢酸1
1〜15、プロピレン15〜25、水1〜4各容量%と
として、その他を窒素あるいは炭酸ガスとした組成で、
Pd触媒を用いて圧力3〜10atm、温度140〜2
00℃で反応を行うことにより酢酸アリルを得ることが
できる。放圧するときに100℃以下で分縮させること
により主成分である酢酸アリル等を凝縮させる。蒸留塔
(実段20〜40段)を用いて塔頂圧力500〜850
Torr、還流比0.5〜10、塔底温度30〜60℃
とすることで過剰に存在する酢酸および水等を缶出させ
る。蒸留塔(実段20〜50段)を用いて塔頂圧力20
0〜760Torr、還流比5〜40、塔底温度50〜
80℃とすることで副生物であるアクロレインやアセト
ン等の低沸点物を留去させる。アクロレインやアセトン
等の低沸点物を留去した粗液100部に対して水を1〜
50部添加し、圧力500〜800Torr、温度40
〜90℃、イオン交換樹脂を用いて酢酸アリルの加水分
解を行う。蒸留塔(実段20〜50段)を用いて塔頂圧
力500〜850Torr、還流比0.5〜10、塔底
温度40〜80℃とすることで未反応の酢酸アリルを留
出させる。最後に、蒸留塔(実段20〜50段)を用い
て塔頂圧力500〜850Torr、還流比0.5〜1
0、塔底温度50〜80℃とすることでアリルアルコー
ルと水を共沸で留出させ、副生する酢酸を除去する。こ
のようにして得られたアリルアルコール反応粗液は、通
常、アリルアルコールが60〜80重量%、酢酸アリル
が0〜5重量%、残りは水である。The above allyl alcohol reaction crude liquid is specifically produced as follows. Oxygen 4-8, acetic acid 1
1 to 15, propylene 15 to 25, water 1 to 4 by volume, and the other components are nitrogen or carbon dioxide.
Pressure 3 to 10 atm, temperature 140 to 2 using Pd catalyst
By performing the reaction at 00 ° C., allyl acetate can be obtained. When pressure is released, allyl acetate and the like, which are main components, are condensed by decomposing at 100 ° C. or less. Using a distillation column (actual stage 20 to 40 stages), top pressure 500 to 850
Torr, reflux ratio 0.5-10, tower bottom temperature 30-60 ° C
As a result, excess acetic acid, water, and the like are removed. Using a distillation column (actual stages 20 to 50), a top pressure of 20
0 to 760 Torr, reflux ratio 5 to 40, tower bottom temperature 50 to
By adjusting the temperature to 80 ° C., low-boiling substances such as acrolein and acetone as by-products are distilled off. Water is added to 100 parts of the crude liquid from which low-boiling substances such as acrolein and acetone are distilled off.
Add 50 parts, pressure 500-800 Torr, temperature 40
Allyl acetate is hydrolyzed at ~ 90 ° C using an ion exchange resin. Unreacted allyl acetate is distilled off by using a distillation column (actual stages 20 to 50) at a top pressure of 500 to 850 Torr, a reflux ratio of 0.5 to 10 and a bottom temperature of 40 to 80 ° C. Finally, using a distillation column (actual stages 20 to 50), the top pressure is 500 to 850 Torr, and the reflux ratio is 0.5 to 1
0, Allyl alcohol and water are distilled off azeotropically by adjusting the bottom temperature to 50 to 80 ° C. to remove acetic acid as a by-product. The thus obtained allyl alcohol reaction crude liquid generally contains 60 to 80% by weight of allyl alcohol, 0 to 5% by weight of allyl acetate, and the rest is water.
【0013】得られたアリルアルコール反応粗液は、前
記のような脱低沸点物処理又は脱高沸点物処理のいずれ
の処理もすることなくそのまま、水及び触媒を加え、過
酸化水素でエポキシ化する。The obtained allyl alcohol reaction crude liquid is subjected to epoxidation with hydrogen peroxide without adding any of the above-mentioned treatments for removing low-boiling substances or removing high-boiling substances, and adding water and a catalyst. I do.
【0014】アリルアルコール反応粗液100重量部に
対して、水10〜20重量部及び下記触媒をアリルアル
コール100重量部に対し0.01〜20重量部を加
え、均一になるよう攪拌を行い、温度を10〜70℃に
なるように制御する。この状態で、1〜10時間を要し
て、アリルアルコール1モルに対して、過酸化水素(濃
度20〜80重量%)を0.1〜2モル滴下し、更に、
1〜10時間熟成する。この際、過酸化水素が0.1モ
ル未満では、未反応原料が多くなりすぎて回収の点で不
利であり、2モルを超えると未反応過酸化水素が多くな
りすぎて、濃縮時に危険を生じる。また、反応温度が、
10℃未満では、反応速度が遅くなりすぎ、70℃を超
えると過酸化水素が不安定になりすぎて好ましくない。
本発明で用いられる触媒としては、例えば、タングステ
ン酸化合物、チタノシリケート化合物、モリブデン酸化
合物等が挙げられる。これらの化合物をそのまま使用す
ると強すぎる場合には、水酸化ナトリウム等の塩基によ
り部分中和して触媒として使用することが好ましい。触
媒が0.01重量部未満では、反応速度が遅くなりす
ぎ、20重量部を超えると副反応が多くなる。10 to 20 parts by weight of water and 0.01 to 20 parts by weight of the following catalyst are added to 100 parts by weight of allyl alcohol with respect to 100 parts by weight of the allyl alcohol reaction crude liquid, and the mixture is stirred to be uniform. The temperature is controlled to be 10 to 70 ° C. In this state, 1 to 10 hours are required, and 0.1 to 2 mol of hydrogen peroxide (concentration: 20 to 80% by weight) is added dropwise to 1 mol of allyl alcohol.
Aged for 1 to 10 hours. At this time, if the amount of hydrogen peroxide is less than 0.1 mol, the unreacted raw material becomes too large, which is disadvantageous in terms of recovery. If it exceeds 2 mol, the amount of unreacted hydrogen peroxide becomes too large, causing a danger at the time of concentration. Occurs. The reaction temperature is
If the temperature is lower than 10 ° C., the reaction rate becomes too slow, and if it exceeds 70 ° C., hydrogen peroxide becomes too unstable, which is not preferable.
Examples of the catalyst used in the present invention include a tungstate compound, a titanosilicate compound, and a molybdate compound. If these compounds are too strong to be used as they are, they are preferably partially neutralized with a base such as sodium hydroxide and used as a catalyst. When the amount of the catalyst is less than 0.01 part by weight, the reaction rate becomes too slow, and when the amount exceeds 20 parts by weight, side reactions increase.
【0015】この様にして得られたグリシドール反応粗
液を蒸留して、精グリシドールが得られる。蒸留は連続
蒸留又はバッチ蒸留で行うことができる。蒸留方法の一
例を示せば次のとおりである。蒸留塔(実段10〜30
段)を用いて、塔頂圧力50〜200Torr、還流比
0.1〜5、塔底温度を20〜80℃とし、反応粗液を
供給し、グリシドールおよび触媒等を含む液を缶出させ
る。次いで、強制薄膜式蒸発器を用いて、塔頂圧力1〜
50Torr、蒸発器温度80〜130℃で、前記缶出
液を供給し、粗グリシドールを留出させ、缶底から触媒
と高沸点物および若干のグリシドールを抜き取る。蒸留
塔(実段10〜50段)を用い、バッチ蒸留により、水
等の低沸点物を塔頂圧力5〜100Torrで、全留出
させる。主留分は、最後に、蒸留塔(実段10〜45
段)を用い、バッチ蒸留により、塔頂圧力5〜50To
rr、還流比0.1〜10で留出させ、塔底温度が50
〜150℃になるまで留出させる。The thus obtained glycidol reaction crude liquid is distilled to obtain purified glycidol. Distillation can be performed by continuous distillation or batch distillation. An example of the distillation method is as follows. Distillation tower (actual stage 10-30
Using (stage), the top pressure is 50 to 200 Torr, the reflux ratio is 0.1 to 5, the bottom temperature is 20 to 80 ° C., the reaction crude liquid is supplied, and the liquid containing glycidol, catalyst and the like is discharged. Then, using a forced thin-film evaporator, the top pressure is 1 to
At 50 Torr and at an evaporator temperature of 80 to 130 ° C., the bottoms are fed to distill crude glycidol, and the catalyst, high-boiling substances and some glycidol are withdrawn from the bottom of the bottom. Using a distillation column (actual stages 10 to 50), low-boiling substances such as water are completely distilled at a top pressure of 5 to 100 Torr by batch distillation. The main fraction is finally distilled in a distillation column (actual stages 10 to 45).
), And the column head pressure is 5 to 50 To by batch distillation.
rr, a distillation ratio of 0.1 to 10 and a bottom temperature of 50
Distill to ~ 150 ° C.
【0016】得られたグリシドールは、純度99.00
〜99.99%で保存安定性の高いものである。本発明
の方法によれば、従来公知の方法の様な、アリルアルコ
ール反応粗液を、脱低沸点物処理又は脱高沸点物処理を
実施しなくても、グリシドールを選択率良く、且つ触媒
活性の低下を招くことなく工業的に、有利に製造するこ
とができる。The glycidol obtained has a purity of 99.00.
Up to 99.99%, indicating high storage stability. According to the method of the present invention, glycidol can be selected with high selectivity and catalytic activity without subjecting a crude allyl alcohol reaction solution to a treatment for removing low boilers or a treatment for removing high boilers, as in a conventionally known method. Can be advantageously produced industrially without causing a decrease in
【0017】[0017]
【実施例】以下に、実施例により本発明を具体的に説明
するが、本発明はこれらに限定されるものではない。The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.
【0018】(参考例1)1リットルのオートクレーブ
を用いて、酸素/酢酸/プロピレン/水=6/13/1
7/3各容量%になるようにし、圧力5atm、シリカ
担持のパラジウム触媒を用いて、温度180℃で反応を
4時間実施した。反応終了後、オートクレーブ温度を8
0℃に保ち放圧することでガス成分の除去を行った。真
空ジャケット付きの80φのオルダーショウ蒸留塔(実
段30段)を用いて塔頂圧力760Torr、還流比
1、塔底温度110℃とし、1,300g/hの速度で
上記ガス除去成分を供給し、930g/hで酢酸および
水分を缶出させた。真空ジャケット付きの80φのオル
ダーショウ蒸留塔(実段35段)を用いて塔頂圧力20
0Torr、還流比20、塔底温度70℃とし、370
g/hの速度で上記の留出液を供給し、30g/hでア
クロレインやアセトン等の低沸点物を留去させた。得ら
れた酢酸アリル粗液340gと水30gを強酸性イオン
交換樹脂を用いて、圧力760Torr、温度60℃、
時間5時間で加水分解を行い、アリルアルコールを含む
加水分解粗液を得た。真空ジャケット付きの80φのオ
ルダーショウ蒸留塔(実段30段)を用いて、塔頂圧力
760Torr、還流比1、塔底温度103℃とし、9
00g/hの速度で加水分解粗液を供給し、930g/
hで酢酸、アリルアルコールおよび水分を缶出させ、5
50g/hの速度で未反応の酢酸アリルおよび水等を留
去させた。最後に、真空ジャケット付きの80φのオル
ダーショウ蒸留塔(実段30段)を用いて塔頂圧力76
0Torr、還流比2、塔底温度125℃とし、450
g/hの速度で上記の缶出液を供給し、1000g/h
でアリルアルコールと水を含む粗液を得た。Reference Example 1 Using a 1 liter autoclave, oxygen / acetic acid / propylene / water = 6/13/1
The reaction was carried out at a temperature of 180 ° C. for 4 hours using a palladium catalyst supported on silica at a pressure of 5 atm and a volume ratio of 7/3 each. After the reaction is completed, the autoclave temperature is set to 8
Gas components were removed by releasing the pressure while maintaining the temperature at 0 ° C. The above-mentioned gas removal component was supplied at a rate of 1,300 g / h at an overhead pressure of 760 Torr, a reflux ratio of 1 and a tower bottom temperature of 110 ° C. using an 80φ Oldershaw distillation column (actual stage 30 stages) equipped with a vacuum jacket, Acetic acid and water were discharged at 930 g / h. Using an 80φ Oldershaw distillation column (actual stage 35 stages) with a vacuum jacket, the top pressure was 20
0 Torr, a reflux ratio of 20, and a bottom temperature of 70 ° C.
The distillate was supplied at a rate of g / h, and low-boiling substances such as acrolein and acetone were distilled off at a rate of 30 g / h. Using a strongly acidic ion exchange resin, 340 g of the obtained allyl acetate crude liquid and 30 g of water were applied at a pressure of 760 Torr and a temperature of 60 ° C.
Hydrolysis was performed for 5 hours to obtain a crude hydrolyzed liquid containing allyl alcohol. Using an 80-diameter Oldershaw distillation column equipped with a vacuum jacket (actual stage 30 stages), a top pressure of 760 Torr, a reflux ratio of 1, a bottom temperature of 103 ° C, and 9
The hydrolysis crude liquid was supplied at a rate of 00 g / h, and 930 g / h
h to remove acetic acid, allyl alcohol and water
Unreacted allyl acetate, water and the like were distilled off at a rate of 50 g / h. Finally, an 80 φ Oldershaw distillation column equipped with a vacuum jacket (actual stage 30 stages) was used to achieve a top pressure of 76
0 Torr, reflux ratio of 2, tower bottom temperature of 125 ° C., 450
g / h at a rate of 1000 g / h
Thus, a crude liquid containing allyl alcohol and water was obtained.
【0019】(実施例1)ジャケット付きSUS316
製20リットル反応器に、参考例1で得られたアリルア
ルコール反応粗液(アリルアルコール/水/酢酸アリル
=71.7/27.2/1.0重量%)11,260g
(アリルアルコール分139モル)と水2,150g、
触媒(タングステン酸82.2gおよび4%苛性ソーダ
水溶液375g)を加えて均一になるよう攪拌を行い、
温度を40℃になるように制御した。この状態で濃度5
8重量%の過酸化水素水3,693g(過酸化水素分1
09モル)を、反応温度を40℃に制御しながら1時間
で滴下した後、4時間熟成させた。反応成績はアリルア
ルコール基準で、転化率48.7%、選択率80.1%
であった。(Example 1) SUS316 with jacket
In a 20-liter reactor, 11,260 g of the crude allyl alcohol reaction liquid obtained in Reference Example 1 (allyl alcohol / water / allyl acetate = 71.7 / 27.2 / 1.0% by weight)
(139 mol of allyl alcohol) and 2,150 g of water,
A catalyst (82.2 g of tungstic acid and 375 g of a 4% aqueous sodium hydroxide solution) was added thereto, and the mixture was stirred so as to be uniform.
The temperature was controlled to be 40 ° C. In this state, the density 5
3,693 g of 8% by weight aqueous hydrogen peroxide (hydrogen peroxide content 1
09 mol) was added dropwise over 1 hour while controlling the reaction temperature at 40 ° C., and the mixture was aged for 4 hours. The reaction results were 48.7% conversion and 80.1% selectivity based on allyl alcohol.
Met.
【0020】真空ジャケット付き80φのオルダーショ
ウ蒸留塔(実段30段)を用いて、塔頂圧力100To
rr、還流比1、塔底温度を60℃とし、1,600g
/hの速度で反応粗液を供給し、950g/hの速度で
グリシドールおよび触媒等を含む液を缶出させた。次い
で、強制薄膜式蒸発器を用いて、塔頂圧力24Tor
r、加熱温度100℃で加熱し、800g/hの速度で
前記缶出液を供給し、704g/hの速度で粗グリシド
ールを留出させ、触媒と高沸点物および若干のグリシド
ールを排出させた。最後に、3リットルフラスコに上記
粗グリシドール4,000gを仕込み、真空ジャケット
付き40φのオルダーショウ蒸留塔(実段20段)を設
置し、オイルバスで液を加熱した。水や低沸点物等を塔
頂圧力20Torrで、全留出させた。主留分は、塔頂
圧力6Torr、還流比1で、液温度が110℃になる
まで留出させた。得られたグリシドールは、純度99.
9%(安定性346日)の高品質のものであった。Using an 80-diameter Oldershaw distillation column equipped with a vacuum jacket (30 actual stages), the top pressure was 100 To
rr, reflux ratio 1, tower bottom temperature 60 ° C, 1,600 g
The reaction crude liquid was supplied at a rate of 950 g / h, and a liquid containing glycidol, a catalyst and the like was discharged at a rate of 950 g / h. Then, using a forced thin film evaporator, the overhead pressure was 24 Torr.
r, heating at a heating temperature of 100 ° C., supplying the bottoms at a rate of 800 g / h, distilling crude glycidol at a rate of 704 g / h, and discharging the catalyst, high-boiling substances and some glycidol. . Finally, 4,000 g of the crude glycidol was charged into a 3 liter flask, and a 40φ Aldershaw distillation column (actual stage, 20 stages) equipped with a vacuum jacket was installed, and the liquid was heated in an oil bath. Water and low-boiling substances were all distilled at a tower pressure of 20 Torr. The main fraction was distilled at a top pressure of 6 Torr and a reflux ratio of 1 until the liquid temperature reached 110 ° C. The obtained glycidol has a purity of 99.
It was of high quality, 9% (stability 346 days).
【0021】(比較例1)参考例1で得られたアリルア
ルコール反応粗液を脱低沸点物処理するために、真空ジ
ャケット付き40φオルダーショウ蒸留塔(実段30
段)に、アリルアルコール反応粗液を400g/hの速
度で仕込み、常圧、塔頂温度84℃、塔底温度98℃で
蒸留し、塔頂の留出分を凝縮、液化し、有機層を還流物
として塔頂に戻し、アリルアルコールを含む液を280
g/hで缶出させた。次いで、缶出液を脱高沸点物処理
するために、真空ジャケット付き40φオルダーショウ
蒸留塔(実段30段)に、204g/hの速度で仕込
み、常圧、塔頂温度94℃、塔底温度105℃、還流比
0.5で蒸留し、塔頂からアリルアルコールを含む液を
200g/hで留出させた。上記操作で精製されたアリ
ルアルコールの純度は99.5%であった。(Comparative Example 1) In order to remove the low-boiling substance from the allyl alcohol reaction crude liquid obtained in Reference Example 1, a 40φ Oldershaw distillation column equipped with a vacuum jacket (actual stage 30)
), The crude liquid of the allyl alcohol reaction was charged at a rate of 400 g / h, and distilled at normal pressure, at a top temperature of 84 ° C and at a bottom temperature of 98 ° C, and the distillate at the top was condensed and liquefied to form an organic layer. Was returned to the column as a reflux, and the liquid containing allyl alcohol was
g / h. Next, in order to remove the high-boiling point product from the bottoms, it was charged at a rate of 204 g / h into a 40φ Oldershaw distillation column equipped with a vacuum jacket (actual stage 30 stages) at a normal pressure, a top temperature of 94 ° C., and a bottom temperature. Distillation was performed at 105 ° C. and a reflux ratio of 0.5, and a liquid containing allyl alcohol was distilled off at a rate of 200 g / h from the top of the tower. The purity of the allyl alcohol purified by the above operation was 99.5%.
【0022】ジャケット付きSUS316製20リット
ル反応器に、上記アリルアルコール8,400g(アリ
ルアルコール分144モル)と水2,150g、触媒
(タングステン酸82.2gおよび4%苛性ソーダ水溶
液375g)を加えて、均一になるよう攪拌を行い、温
度を40℃になるように制御した。この状態で、濃度5
8重量%の過酸化水素水3,693g(過酸化水素分1
09モル)を反応温度40℃に制御しながら1時間で滴
下した後、4時間熟成させた。反応成績はアリルアルコ
ール基準で、転化率46.9%、選択率65.2%であ
った。得られたグリシドールの反応粗液は、実施例1と
同様に処理して、純度99.7%(安定性209日)の
製品が得られた。To a jacketed SUS316 20 liter reactor were added 8,400 g of the above allyl alcohol (144 mol of allyl alcohol), 2,150 g of water, and a catalyst (82.2 g of tungstic acid and 375 g of a 4% aqueous sodium hydroxide solution). Stirring was performed so as to be uniform, and the temperature was controlled to be 40 ° C. In this state, the density 5
3,693 g of 8% by weight aqueous hydrogen peroxide (hydrogen peroxide content 1
(0.9 mol) was added dropwise over 1 hour while controlling the reaction temperature at 40 ° C., followed by aging for 4 hours. The reaction results were 46.9% in conversion and 65.2% in selectivity based on allyl alcohol. The obtained crude reaction solution of glycidol was treated in the same manner as in Example 1 to obtain a product having a purity of 99.7% (stability: 209 days).
【0023】実施例1及び比較例1で使用した原料アリ
ルアルコールの組成を表1に、反応成績を表2に、得ら
れた製品の品質を表3に示す。Table 1 shows the composition of the starting allyl alcohol used in Example 1 and Comparative Example 1, Table 2 shows the reaction results, and Table 3 shows the quality of the obtained product.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【表2】 [Table 2]
【0026】[0026]
【表3】 [Table 3]
【0027】[0027]
【発明の効果】アリルアルコール反応粗液を、脱低沸点
物処理および脱高沸点物処理のいずれの処理を実施しな
くても、グリシドールを選択率良く、且つ触媒活性の低
下を招くことなく工業的に有利に製造することができ
る。Industrial Applicability The allylic alcohol-reacted crude liquid can be industrially produced without a low glycidol selectivity and without lowering the catalytic activity, without performing any of the treatments for removing low-boiling substances and removing high-boiling substances. It can be advantageously manufactured.
Claims (3)
ルアルコール60〜80重量%、酢酸アリル0〜5重量
%及び水20〜40重量%を含む反応粗液を、過酸化水
素でエポキシ化することを特徴とするグリシドールの製
造方法。An epoxidation of a crude reaction solution obtained by hydrolyzing allyl acetate and containing 60 to 80% by weight of allyl alcohol, 0 to 5% by weight of allyl acetate and 20 to 40% by weight of water with hydrogen peroxide. A process for producing glycidol.
を気相で反応させることによって酢酸アリルを合成し、
得られた酢酸アリルを水で加水分解させ、副生する酢酸
を分離したものであることを特徴とする請求項1記載の
グリシドールの製造方法。2. The reaction crude liquid synthesizes allyl acetate by reacting propylene, oxygen and acetic acid in a gas phase,
2. The method for producing glycidol according to claim 1, wherein the obtained allyl acetate is hydrolyzed with water to separate acetic acid as a by-product.
ルアルコールを主として含有する反応粗液を、脱低沸点
物処理および脱高沸点物処理のいずれの処理も実施する
ことなく、過酸化水素でエポキシ化することを特徴とす
るグリシドールの製造方法。3. A reaction crude liquid obtained by hydrolyzing allyl acetate and mainly containing allyl alcohol is treated with hydrogen peroxide without performing any of a treatment for removing low-boiling substances and a treatment for removing high-boiling substances. A process for producing glycidol, which comprises epoxidizing with glycidol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000051523A JP2001233867A (en) | 2000-02-28 | 2000-02-28 | Glycidol production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000051523A JP2001233867A (en) | 2000-02-28 | 2000-02-28 | Glycidol production method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001233867A true JP2001233867A (en) | 2001-08-28 |
Family
ID=18573168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000051523A Pending JP2001233867A (en) | 2000-02-28 | 2000-02-28 | Glycidol production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001233867A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004058737A1 (en) * | 2002-12-24 | 2004-07-15 | Showa Denko K.K. | Method of oxidizing carbon-carbon double bond and process for producing oxidized compound |
KR100762862B1 (en) * | 2005-06-24 | 2007-10-04 | 쇼와 덴코 가부시키가이샤 | Oxidation of carbon-carbon double bonds and preparation of oxidized compounds |
-
2000
- 2000-02-28 JP JP2000051523A patent/JP2001233867A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004058737A1 (en) * | 2002-12-24 | 2004-07-15 | Showa Denko K.K. | Method of oxidizing carbon-carbon double bond and process for producing oxidized compound |
US7038069B2 (en) | 2002-12-24 | 2006-05-02 | Showa Denko K.K. | Process for oxidizing carbon-carbon double bond and process for producing oxidized compounds |
KR100762862B1 (en) * | 2005-06-24 | 2007-10-04 | 쇼와 덴코 가부시키가이샤 | Oxidation of carbon-carbon double bonds and preparation of oxidized compounds |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0720984B1 (en) | Integrated process for epoxidation | |
US5214168A (en) | Integrated process for epoxide production | |
JP5373240B2 (en) | Integrated production method of olefin oxides | |
CN1062863C (en) | Integrated process for epoxide production | |
JP5083670B2 (en) | Process for producing 3-hydroxytetrahydrofuran using dehydration cyclization | |
JPH11228555A (en) | Product consisting mainly of epichlorohydrin and production of the product | |
KR100385627B1 (en) | Integrated Epoxylation Process | |
EP1359148A1 (en) | Process for the epoxidation of olefins | |
EP1072600B2 (en) | Process for the preparation of Epoxides | |
JPH049378A (en) | Production method of ε-caprolactone | |
EP0061393B1 (en) | Continuous process for the preparation of propylene oxide | |
US6838571B2 (en) | Oxirane production using peroxidized compound | |
JP2001048872A (en) | Continuously production of propylene oxide and another alkene oxide | |
JP2001233867A (en) | Glycidol production method | |
JP3441189B2 (en) | Stabilized alicyclic epoxy-containing (meth) acrylate compound and method for producing the same | |
WO2004020369A1 (en) | Process for the preparation of styrene or substituted styrene | |
JPH06211821A (en) | Method for epoxidizing olefin compound | |
JPS6345666B2 (en) | ||
JP2952027B2 (en) | Method for producing cyclohexene oxide | |
JPS6233183A (en) | Manufacture of alicyclic diepoxide | |
JP3051192B2 (en) | Epoxidized 1-methyltetrahydrobenzyl alcohol and method for producing the same | |
JP2000072707A (en) | Method for producing glutaraldehyde aqueous solution | |
JP2000026439A (en) | Production of propylene oxide | |
CN110878003A (en) | Isofol and new method for coproducing isophorol and carvone | |
JPH0441452A (en) | Production of 2-alkoxycyclohexanol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050912 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050815 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20051017 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051021 |