JP2001230496A - Semiconductor laser element - Google Patents
Semiconductor laser elementInfo
- Publication number
- JP2001230496A JP2001230496A JP2000373151A JP2000373151A JP2001230496A JP 2001230496 A JP2001230496 A JP 2001230496A JP 2000373151 A JP2000373151 A JP 2000373151A JP 2000373151 A JP2000373151 A JP 2000373151A JP 2001230496 A JP2001230496 A JP 2001230496A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- refractive index
- low refractive
- laser device
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 43
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 150000001875 compounds Chemical class 0.000 claims abstract description 15
- 230000003287 optical effect Effects 0.000 abstract description 15
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 abstract description 8
- 230000007774 longterm Effects 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 157
- 238000005253 cladding Methods 0.000 description 18
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 14
- 239000000758 substrate Substances 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は自己整合型の半導体
レーザ素子に関し、更に詳しくは、高光出力での発振が
可能であり、長期の動作信頼性も高い半導体レーザ素子
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-aligned semiconductor laser device, and more particularly, to a semiconductor laser device capable of oscillating with high light output and having high long-term operation reliability.
【0002】[0002]
【従来の技術】自己整合型の半導体レーザ素子は、注入
電流と発振レーザ光を共振器内に同時に閉じ込めること
ができる高光出力のレーザ素子であって、通常、GaA
s系化合物半導体を用いて製造されている。そのような
従来の半導体レーザ素子の層構造の1例Aを図2に示
す。2. Description of the Related Art A self-aligned semiconductor laser device is a laser device having a high optical output capable of simultaneously confining an injection current and an oscillating laser beam in a resonator.
It is manufactured using an s-based compound semiconductor. FIG. 2 shows an example A of the layer structure of such a conventional semiconductor laser device.
【0003】この素子では、GaAs基板1の上に、n
−GaAsから成る厚み0.5μmのバッファ層2,n
−Al0.3Ga0.7Asから成る厚み2.0μmの下部ク
ラッド層3,i−Al0.1Ga0.9Asから成る厚み50
nmの下部光閉じ込め層4,In0.2Ga0.8Asから成る
厚み7nmの量子井戸層とAl0.1Ga0.9Asから成る厚
み10nmの障壁層とで構成されている活性層5,i−A
l0.1Ga0.9Asから成る厚み50nmの上部光閉じ込め
層6が積層されており、そして、前記上部光閉じ込め層
6の上に、p−Al0.3Ga0.7Asから成る厚み500
nmの上部クラッド層7aと、n−Al0.35Ga0.65As
から成る厚み0.5μmの電流狭窄層も兼ねる低屈折率
層8が積層され、これらは厚み2.0μmのp−Al
0.3Ga0.7Asから成る上部クラッド層7bで埋設され
ている。そして、この上部クラッド層7bの上にはp−
GaAsから成る厚み0.5μmのコンタクト層9が積
層されている。なお、コンタクト層9には上部電極(図
示しない)が形成され、基板1の裏面には下部電極(図
示しない)が形成されている。In this device, a GaAs substrate 1 is provided with n
A buffer layer 2, n of 0.5 μm thick made of GaAs
-Al 0.3 Ga 0.7 lower cladding layer having a thickness of 2.0μm made of As 3, i-Al 0.1 Ga thickness 50 of 0.9 As
nm lower light confinement layer 4, active layer 5 composed of a 7 nm thick quantum well layer made of In 0.2 Ga 0.8 As and a 10 nm thick barrier layer made of Al 0.1 Ga 0.9 As, i-A
An upper optical confinement layer 6 of l 0.1 Ga 0.9 As having a thickness of 50 nm is laminated, and a thickness 500 of p-Al 0.3 Ga 0.7 As is formed on the upper optical confinement layer 6.
nm upper cladding layer 7a and n-Al 0.35 Ga 0.65 As
A low-refractive-index layer 8 also serving as a current confinement layer having a thickness of 0.5 μm and having a thickness of 2.0 μm is formed.
It is buried in an upper cladding layer 7b made of 0.3 Ga 0.7 As. A p-type layer is formed on the upper cladding layer 7b.
A contact layer 9 made of GaAs and having a thickness of 0.5 μm is laminated. Note that an upper electrode (not shown) is formed on the contact layer 9, and a lower electrode (not shown) is formed on the back surface of the substrate 1.
【0004】この素子の層構造Aにおいて、電流狭窄層
(低屈折率層)8には上部クラッド層7aにまで至る所
定幅のチャンネル10が電流注入経路として形成され、
光と電流の横(幅)方向へ閉じ込め構造が形成されてい
る。チャンネル10の幅W、すなわち、チャンネル内で
電界強度(光分布)が最も強い部分の幅は、発振レーザ
光の横モード制御との関係で決められる。具体的には、
上記した半導体レーザ素子において、上部クラッド層7
aがp−Al0.3Ga0.7Asから成り、その厚みが上記
したような500nm程度である場合、活性層5で発振し
たレーザ光の高次モードをカットオフして基本横モード
動作させるために必要なカットオフ幅との関係で、上記
チャンネル10の幅Wを2.5μm程度に設計してい
る。In the layer structure A of the device, a channel 10 having a predetermined width reaching the upper cladding layer 7a is formed in the current confinement layer (low refractive index layer) 8 as a current injection path.
A confinement structure is formed in the lateral (width) direction of light and current. The width W of the channel 10, that is, the width of the portion where the electric field intensity (light distribution) is strongest in the channel is determined in relation to the transverse mode control of the oscillation laser light. In particular,
In the semiconductor laser device described above, the upper clad layer 7
If a is made of p-Al 0.3 Ga 0.7 As and the thickness is about 500 nm as described above, it is necessary to cut off the higher-order mode of the laser beam oscillated by the active layer 5 to operate in the basic transverse mode. The width W of the channel 10 is designed to be about 2.5 μm in relation to a suitable cutoff width.
【0005】この素子は次のようにして製造される。ま
ず、MOCVD法やMBE法により、基板1の上に、前
記したバッファ層2,下部クラッド層3,下部光閉じ込
め層4,活性層5,上部光閉じ込め層6を順次成膜し、
更にその上に厚み500nm程度の上部クラッド層7aを
成膜したのち、その上に低屈折率層にすべき層8’を成
膜して図3で示した層構造A0を形成する。This device is manufactured as follows. First, the buffer layer 2, the lower cladding layer 3, the lower optical confinement layer 4, the active layer 5, and the upper optical confinement layer 6 are sequentially formed on the substrate 1 by MOCVD or MBE.
Further after forming the upper cladding layer 7a having a thickness of about 500nm on it, to form a layered structure A 0 shows the layer 8 'to be in the low refractive index layer thereon by depositing in FIG.
【0006】活性層5は、GaAsから成る厚み10nm
の障壁層で分離され、それぞれは厚み7nmであるIn
0.2Ga0.8Asから成る2層の量子井戸、および、これ
ら量子井戸の両側に配置された厚み20nmのGaAsか
ら成る光閉じ込め層で形成されている。ついで、結晶成
長装置から層構造A0を取り出し、その層構造A0に対し
てホトリソグラフィーとウェットエッチング処理を行
い、層8’にチャンネル幅Wが2.5μmであるチャン
ネル10を形成して電流狭窄層(低屈折率層)8を有す
る層構造A1にする(図4)。なお、上記ウェットエッ
チング処理で形成されるチャンネル10の側面10a
は、エッチングの異方性の影響を受けて上方に広がる傾
斜面になっている。The active layer 5 is made of GaAs and has a thickness of 10 nm.
Each of which has a thickness of 7 nm.
It is formed of two quantum wells made of 0.2 Ga 0.8 As, and a light confinement layer made of GaAs having a thickness of 20 nm disposed on both sides of the quantum wells. Then, take out the layered structure A 0 from the crystal growth apparatus performs photolithography and wet etching process on the layer structure A 0, the current to form a channel 10 the channel width W is 2.5μm in the layer 8 ' constriction layer to the layer structure a 1 having a (low refractive index layer) 8 (FIG. 4). The side surface 10a of the channel 10 formed by the above wet etching process
Is an inclined surface extending upward under the influence of the anisotropy of etching.
【0007】ついで、層構造A1を再び結晶成長装置内
に配置し、層構造A1の上に上部クラッド層7bとコン
タクト層9を順次成膜し、図5で示した層構造A2を形
成する。そして、この層構造A2に上部電極と下部電極
を形成したのち、共振器長が800μmとなるように劈
開して図2で示した層構造Aとし、一方の劈開面(前端
面)S1に反射率5%の膜を成膜し、他方の劈開面(後
端面)S2に反射率92%の膜を成膜して目的とするレ
ーザ素子が製造される。Next, the layer structure A 1 is placed in the crystal growth apparatus again, and the upper cladding layer 7 b and the contact layer 9 are sequentially formed on the layer structure A 1 , and the layer structure A 2 shown in FIG. Form. Then, after forming the upper and lower electrodes in the layer structure A 2, and the layer structure A cavity length is shown in Figure 2 is cleaved so that 800 [mu] m, one cleavage plane (front surface) S 1 the reflectivity of 5% film is formed, a laser element is manufactured of interest by forming a reflection of 92% of the film to the other cleavage plane (rear surface) S 2.
【0008】上記した仕様で製造されたレーザ素子は、
しきい値電流が15mAであり、基本モードにおいて、キ
ンクによって制限される最大光出力は350mW程度であ
る。そして、発振波長はほぼ980nmである。ところ
で、低屈折率層8におけるカットオフ幅が2.5μm程
度である上記したレーザ素子には、次のような問題があ
る。The laser device manufactured according to the above specification is
The threshold current is 15 mA, and the maximum light output limited by the kink in the basic mode is about 350 mW. The oscillation wavelength is approximately 980 nm. By the way, the above-mentioned laser element having a cut-off width of about 2.5 μm in the low refractive index layer 8 has the following problem.
【0009】第1の問題は、近年のレーザ素子の高光出
力化の要望に応えるべく、上記レーザ素子を更に高出力
化させようとすると、キンク発生の問題に加えて新たな
問題が発生してくる。具体的には、光出力500mW程度
で動作させると、前端面S1における光密度は高くな
り、数10MW/cm2にまで達する。そのため、当該前端
面S1が光学損傷を受け、いわゆるCOMD(Catastrop
hic Optical Mirror Damage)が発生して頓死するとい
う問題である。The first problem is that, in order to meet the recent demand for higher light output of the laser element, if the laser element is further increased in output, a new problem occurs in addition to the problem of kink generation. come. Specifically, operating at about optical output 500 mW, the optical density is higher at the front surface S 1, reaching up to several 10 MW / cm 2. Therefore, the front end surface S 1 is subjected to optical damage, the so-called COMD (Catastrop
hic Optical Mirror Damage) occurs.
【0010】第2の問題は、低屈折率層8を上部クラッ
ド層7aおよび7bよりも屈折率が小さくなるようにす
るために、その低屈折率層8を構成する半導体材料がA
l組成比の高いAl0.35Ga0.65Asで形成しているこ
とに起因する。具体的には、層構造A1を形成したの
ち、上部クラッド層7bが積層される前に、当該低屈折
率層8に形成したチャンネル10の表面(側面)が露出
するため、その表面が大気中の酸素によって酸化される
ことがあるという問題である。このようなチャンネル1
0(低屈折率層8)の表面酸化、とりわけ活性層5に近
いチャンネル10の側面において酸化が起こっている
と、製造したレーザ素子を連続動作させたときに短時間
で光出力の低下が進み、その結果、素子としての長期信
頼性の低下という問題が生ずる。The second problem is that, in order to make the low refractive index layer 8 lower in refractive index than the upper cladding layers 7a and 7b, the semiconductor material forming the low refractive index layer 8 must be made of A.
This is because they are formed of Al 0.35 Ga 0.65 As having a high 1 composition ratio. Specifically, after forming the layer structure A 1, before the upper cladding layer 7b are stacked, the surface of the channel 10 formed on the low refractive index layer 8 (side) is exposed, the air is its surface The problem is that it may be oxidized by the oxygen in it. Channel 1 like this
If the surface oxidation of the 0 (low-refractive-index layer 8), particularly the oxidation on the side surface of the channel 10 near the active layer 5, occurs, the light output decreases in a short time when the manufactured laser device is continuously operated. As a result, there arises a problem that the long-term reliability of the device decreases.
【0011】[0011]
【発明が解決しようとする課題】本発明は、図5で示し
た層構造を有する自己整合型の半導体レーザ素子の上記
問題を解決し、1000mW以上という高光出力での発振
時にあってもCOMDが発生しにくく、また長期信頼性
も高い自己整合型の半導体レーザ素子を提供することを
目的とする。The present invention solves the above-mentioned problem of the self-aligned semiconductor laser device having the layer structure shown in FIG. 5, and the COMD is reduced even when oscillating at a high optical output of 1000 mW or more. It is an object of the present invention to provide a self-aligned semiconductor laser device which is hardly generated and has high long-term reliability.
【0012】[0012]
【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、電流狭窄層も兼ねる低屈折
率層が活性層の近傍に形成されている自己整合型の半導
体レーザ素子において、前記低屈折率層はAlxGa1-x
As(0≦x≦1)から成る複数の化合物半導体層から
成り、かつ、前記活性層から離隔している前記化合物半
導体層ほど低屈折率になっていることを特徴とする半導
体レーザ素子が提供される。According to the present invention, there is provided a self-aligned semiconductor laser device in which a low refractive index layer also serving as a current confinement layer is formed near an active layer. The low refractive index layer is made of Al x Ga 1-x
A semiconductor laser device comprising a plurality of compound semiconductor layers made of As (0 ≦ x ≦ 1) and having a lower refractive index as the compound semiconductor layer is more distant from the active layer. Is done.
【0013】具体的には、前記活性層から離隔している
化合物半導体層ほど、そのAl組成比が高くなっている
半導体レーザ素子が提供される。また、本発明において
は、電流狭窄層も兼ねる低屈折率層が活性層の近傍に形
成されている自己整合型の半導体レーザ素子において、
前記低屈折率層は、GayIn1-yAszP1-z(0≦y≦
0.5,0≦z≦1)から成る複数の化合物半導体層か
ら成り、かつ、前記活性層から離隔している前記化合物
半導体層ほど低屈折率になっていることを特徴とする半
導体レーザ素子が提供される。Specifically, there is provided a semiconductor laser device in which the compound semiconductor layer separated from the active layer has a higher Al composition ratio. Further, according to the present invention, in a self-aligned semiconductor laser device in which a low refractive index layer also serving as a current confinement layer is formed near an active layer,
The low-refractive-index layer is formed of Ga y In 1-y As z P 1-z (0 ≦ y ≦
0.5, 0 ≦ z ≦ 1), wherein the compound semiconductor layer separated from the active layer has a lower refractive index. Is provided.
【0014】[0014]
【発明の実施の形態】本発明のレーザ素子における層構
造の1例Bを図1に示す。この層構造Bは、低屈折率層
8が後述する態様になっていることを除いては、図2で
示した層構造Aの場合と同じになっている。この低屈折
率層8は、AlGaAs、GaInAsPなどのGaA
s系化合物半導体から成る複数の層81,82,……8i
で構成されている。そして、活性層5から離隔している
箇所に位置している層ほど低屈折率の層になっている。
すなわち、この低屈折率層8においては、上部クラッド
層7aの上に直接成膜されている層81の屈折率が最も
高く、上にいくほど屈折率が順次低くなっているのであ
る。FIG. 1 shows an example B of a layer structure in a laser device of the present invention. The layer structure B is the same as the layer structure A shown in FIG. 2 except that the low refractive index layer 8 has a mode described later. The low refractive index layer 8 is made of GaAs such as AlGaAs, GaInAsP, or the like.
a plurality of layers 8 1 , 8 2 ,... 8 i made of s-based compound semiconductor
It is composed of The layer located at a position farther from the active layer 5 has a lower refractive index.
That, in this low-refractive index layer 8, the refractive index of the layer 81 which is deposited directly on the upper cladding layer 7a is the highest, is the refractive index toward the top becomes successively lower.
【0015】このような低屈折率層8は、図3で示した
層構造A0における層8’の形成時に、Al組成比が異
なるAlxGa1-xAs(0≦x≦1)を順次成膜するこ
とにより、Alに関する組成変化を有する層として形成
することができる。具体的には、p−Al0.3Ga0.7A
sから成る上部クラッド層7aの上に、少なくとも前記
上部クラッド層7aとAl組成が同じであるか、または
それより小さいAl組成比のn−AlGaAsで層81
を成膜し、その層81の上にはAl組成比が層81より大
きいAlGaAsで次の層82を成膜し、更にその上に
は層8 2よりAl組成比が高いAlGaAsで次の層を
成膜するという操作を反復し、上にいくほどAl組成比
が階段状に高くなっていく層にする。Such a low refractive index layer 8 is shown in FIG.
Layer structure A0In forming the layer 8 ′, the Al composition ratio is different.
AlxGa1-xAs (0 ≦ x ≦ 1)
Formed as a layer having a composition change related to Al
can do. Specifically, p-Al0.3Ga0.7A
at least on the upper cladding layer 7a made of
The Al composition is the same as that of the upper cladding layer 7a, or
Layer 8 of n-AlGaAs having a smaller Al composition ratio1
And the layer 81On top of this, the Al composition ratio is layer 81Greater than
Next layer 8 of AlGaAsTwoAnd then further
Is layer 8 TwoThe next layer is made of AlGaAs having a higher Al composition ratio.
The operation of forming a film is repeated, and the Al composition ratio increases as going upward.
Is a layer that rises stepwise.
【0016】なお、低屈折率層8におけるAlの組成変
化は、上記したように順次Al組成比が高くなっていく
階段状の変化であってもよいが、Al組成比が直線的に
変化するようにしてもよく、また放物線状に変化するよ
うにしてもよい。低屈折率層8における上記したような
Alの組成変化は、上部クラッド層7aおよび7bの屈
折率に対して低屈折率層8全体の等価屈折率(Σdini/
Σdiによって近似される;diは各化合物半導体層の厚
み、niは各化合物半導体層の屈折率)が小さくなるよう
に設計する必要がある。The Al composition change in the low refractive index layer 8 may be a stepwise change in which the Al composition ratio is gradually increased as described above, but the Al composition ratio changes linearly. Alternatively, it may be changed in a parabolic manner. As described above, the change in the Al composition in the low refractive index layer 8 is caused by the equivalent refractive index (Σdini / Σ) of the entire low refractive index layer 8 with respect to the refractive indexes of the upper cladding layers 7a and 7b.
It is necessary to design so that が di is approximated; di is the thickness of each compound semiconductor layer, and ni is the refractive index of each compound semiconductor layer).
【0017】また、チャンネル10の部分と低屈折率層
8の部分の等価屈折率比が、図5で示した単一の低屈折
率層8の場合に比べて小さくなるように設計するとチャ
ンネル10の底部の幅Wを広くしても基本横モード動作
を実現できるようになる。したがって、このレーザ素子
の場合、図5で示した従来構造の半導体レーザ素子より
もカットオフ幅を広くすることができるので、高光出力
発振時における前端面の光密度は小さくなり、COMD
の発生が起こりづらくなる。逆にいえば、COMDを起
こすことなく高光出力発振を実現することができる。If the equivalent refractive index ratio between the portion of the channel 10 and the portion of the low refractive index layer 8 is designed to be smaller than that of the single low refractive index layer 8 shown in FIG. The basic lateral mode operation can be realized even if the width W of the bottom of the substrate is increased. Therefore, in the case of this laser device, the cutoff width can be made wider than that of the semiconductor laser device having the conventional structure shown in FIG.
Is less likely to occur. Conversely, high light output oscillation can be realized without COMD.
【0018】また、チャンネル10の底部近辺における
層のAl組成比が従来よりも小さくなっているので、図
5で示した従来構造の層構造Aの場合に比べてチャンネ
ル10の底部近辺、すなわち、活性層近傍の酸化が抑制
される。換言すれば、電界強度が最も強くなる底部の側
面の酸化は抑制される。したがって、このレーザ素子の
長期信頼性は従来構造よりも高くなる。Since the Al composition ratio of the layer near the bottom of the channel 10 is smaller than that of the conventional structure, the vicinity of the bottom of the channel 10, that is, the layer structure A of the conventional structure shown in FIG. Oxidation near the active layer is suppressed. In other words, the oxidation of the bottom side surface where the electric field strength is highest is suppressed. Therefore, the long-term reliability of this laser device is higher than that of the conventional structure.
【0019】なお、低屈折率層8のチャンネル10底部
近辺における酸化を防止するために、GaAsにより低
屈折率層8の最下層を成膜してもよい。加えて、低屈折
率層8の等価屈折率を上部クラッド層7aおよび7bよ
りも小さくなるように選択すれば、前記低屈折率層8
を、AlGaAsの代わりに、GayIn1-yAszP1-z
(0≦y≦0.5,0≦z≦1)で形成することもでき
る。この場合には、GayIn1-yAszP1-zはAlを含
まないので、酸化抑制にはより顕著な効果を得ることが
できる。In order to prevent oxidation of the low refractive index layer 8 near the bottom of the channel 10, the lowermost layer of the low refractive index layer 8 may be formed of GaAs. In addition, if the equivalent refractive index of the low refractive index layer 8 is selected to be smaller than that of the upper cladding layers 7a and 7b, the low refractive index layer 8
Is replaced with Al y GaAs instead of Ga y In 1-y As z P 1-z
(0 ≦ y ≦ 0.5, 0 ≦ z ≦ 1). In this case, since Ga y In 1-y As z P 1-z does not contain Al, a more remarkable effect can be obtained in suppressing oxidation.
【0020】なお、この場合においても、チャンネル1
0の部分と低屈折率層8のチャンネル10以外の部分の
等価屈折率比が、図5で示した単一の低屈折率層8の場
合に比べて小さくなるように設計すると、チャンネル1
0の底部の幅Wを広くしても基本横モード動作を実現で
きるようになる。したがって、このレーザ素子の場合
も、図5で示した従来構造の半導体レーザ素子よりもカ
ットオフ幅を広くすることができるので、高光出力発振
時における前端面の光密度は小さくなり、COMDの発
生が起こりづらくなる。逆にいえば、COMDを起こす
ことなく高光出力発振を実現することができる。In this case, the channel 1
If the design is such that the equivalent refractive index ratio of the portion of the low refractive index layer 8 other than the channel 10 is smaller than that of the single low refractive index layer 8 shown in FIG.
The basic lateral mode operation can be realized even if the width W of the bottom of 0 is widened. Therefore, also in the case of this laser device, the cutoff width can be made wider than that of the semiconductor laser device having the conventional structure shown in FIG. 5, so that the light density at the front end face during high light output oscillation becomes smaller, and COMD occurs. Is less likely to occur. Conversely, high light output oscillation can be realized without COMD.
【0021】[0021]
【実施例】チャンネル10の幅Wが5μmであったこ
と、低屈折率層8が、最下層81の成膜に際しては厚み
0.05μmのAl0.2Ga0.8As(屈折率3.53
6)を用い、順次Al組成比を、層82は0.25(厚
み:0.05μm、屈折率3.514)、層83は0.
3(厚み:0.1μm、屈折率3.493)、層84は
0.35(厚み:0.15μm、屈折率3.471)と
リニアに高めていき、最上層85では厚み0.15μm
のAl0.4Ga0.6As(屈折率3.450)となる5層
から成膜されていることを除いては、図5で示した層構
造A2と同じ層構造BをGaAs基板の上に形成した。EXAMPLES width W of the channel 10 was 5 [mu] m, the low-refractive index layer 8, the thickness of 0.05μm. Before lowermost 8 1 of deposition Al 0.2 Ga 0.8 As (refractive index 3.53
Using 6), sequentially Al composition ratio, the layer 82 is 0.25 (Thickness: 0.05 .mu.m, refractive index 3.514) Layer 8 3 0.
3 (thickness: 0.1 [mu] m, refractive index 3.493) Layer 8 4 0.35 (thickness: 0.15 [mu] m, refractive index 3.471) and will raise the linear, the uppermost 8 5 Thickness 0. 15 μm
Except that it is deposited from a 5-layer serving as the Al 0.4 Ga 0.6 As (refractive index 3.450), forms the same layer structure B with the layer structure A 2 shown in FIG. 5 on the GaAs substrate did.
【0022】なお、この場合の低屈折率層8の等価屈折
率は、Σdini/Σdi(但し、diは各層の厚み、niは各化
合物半導体層の屈折率)によって近似すると3.48に
なる。そして、この層構造に電極を形成したのち共振器
長800μmに劈開し、その前端面S1と後端面S2に反
射率5%,92%の膜をそれぞれ成膜してレーザ素子に
した。In this case, the equivalent refractive index of the low refractive index layer 8 is 3.48 when approximated by 近似 dini / Σdi (where di is the thickness of each layer and ni is the refractive index of each compound semiconductor layer). Then, after forming an electrode in this layer structure, the substrate was cleaved to a resonator length of 800 μm, and a film having a reflectivity of 5% and 92% was formed on the front end face S 1 and the rear end face S 2 to form a laser device.
【0023】このレーザ素子のしきい値電流は20mAで
あり、また基本横モードでのキンクによって制限される
最大光出力は500mWであった。また、更に光出力を大
きくしていくと、1200mWでCOMDが発生した。一
方、図5で示した層構造A2から製造した従来のレーザ
素子(チャンネル底部における幅は2.5μm、低屈折
率層は単一の層)の場合は500mWでCOMDが発生し
た。したがって、本発明のレーザ素子は従来のレーザ素
子に比べると、性能は大きく向上している。The threshold current of this laser device was 20 mA, and the maximum light output limited by kink in the fundamental transverse mode was 500 mW. Further, when the light output was further increased, COMD occurred at 1200 mW. On the other hand, the conventional laser device fabricated from the layer structure A 2 shown in FIG. 5 (a width in the channel bottom 2.5 [mu] m, the low refractive index layer is a single layer) COMD occurs in 500mW For. Therefore, the performance of the laser device of the present invention is greatly improved as compared with the conventional laser device.
【0024】また、温度60℃、光出力250mWの条件
下で連続動作させ、1000時間経過後における光出力
の減少率を測定したところ、本発明のレーザ素子の場合
は0.1〜0.5%であった。一方、従来のレーザ素子の
場合は、1〜5%であった。このことから明らかなよう
に、本発明のレーザ素子は従来のレーザ素子に比べて高
い長期信頼性を備えている。When the laser was continuously operated under the conditions of a temperature of 60 ° C. and an optical output of 250 mW, and the reduction rate of the optical output after the lapse of 1000 hours was measured, in the case of the laser device of the present invention, it was 0.1 to 0.5. %Met. On the other hand, in the case of the conventional laser element, it was 1 to 5%. As is apparent from this, the laser device of the present invention has higher long-term reliability than the conventional laser device.
【0025】また、GaAs基板を用いた図1の層構造
Bにおいて、低屈折率層8を次のような層構造にしたこ
とを除いては、上記実施例と同じ仕様の半導体レーザ素
子を製造した。すなわち、低屈折率層8における最下層
81をGaAs(屈折率3.54)で成膜し、順次エネ
ルギーギャップを増大させて最上層をGa0.89In0.01
As0. 78P0.22(屈折率3.45)で成膜した。Also, in the layer structure B of FIG. 1 using a GaAs substrate, a semiconductor laser device having the same specifications as in the above embodiment is manufactured except that the low refractive index layer 8 has the following layer structure. did. That is, the lowermost layer 8 1 in the low refractive index layer 8 is formed of GaAs (refractive index 3.54), and the energy gap is sequentially increased to make the uppermost layer Ga 0.89 In 0.01.
It was deposited by As 0. 78 P 0.22 (refractive index 3.45).
【0026】この半導体レーザ素子の場合も、低屈折率
層をAlGaAsで形成した上記半導体レーザ素子と同
じような性能を発揮した。更に、この半導体レーザ素子
の場合、低屈折率層8が全てAlを含まないAlフリー
層で構成されているため、材料の酸化に起因する素子の
劣化は生じない。なお、本発明は上記した実施例に限定
されるものではなく、低屈折率層8の等価屈折率を上述
したように適切に選択すれば、どのような組み合わせに
してもよい。In the case of this semiconductor laser device, the same performance as that of the semiconductor laser device in which the low refractive index layer was formed of AlGaAs was exhibited. Further, in the case of this semiconductor laser device, since the low-refractive-index layer 8 is entirely formed of an Al-free layer containing no Al, the device does not deteriorate due to oxidation of the material. Note that the present invention is not limited to the above-described embodiment, and any combination may be used as long as the equivalent refractive index of the low refractive index layer 8 is appropriately selected as described above.
【0027】また、低屈折率層8のエッチング制御のた
め上部クラッド層7aと低屈折率層8の間にエッチング
停止層を設けてもよい。Further, an etching stop layer may be provided between the upper cladding layer 7a and the low refractive index layer 8 for controlling the etching of the low refractive index layer 8.
【0028】[0028]
【発明の効果】以上の説明で明らかなように、本発明の
自己整合型レーザ素子は、高光出力で発振し、しかもC
OMDの発生が起こりづらく、更には高い長期信頼性を
備えている。これは、低屈折率層を活性層から遠ざかる
ほど屈折率が低くなるような傾斜組成の半導体材料で形
成したことによってもたらされた効果である。As is apparent from the above description, the self-aligned laser device of the present invention oscillates at a high light output,
OMD is unlikely to occur and has high long-term reliability. This is an effect brought about by forming the low refractive index layer from a semiconductor material having a gradient composition such that the refractive index decreases as the distance from the active layer increases.
【図1】本発明のレーザ素子の層構造Bを示す断面図で
ある。FIG. 1 is a sectional view showing a layer structure B of a laser device of the present invention.
【図2】従来の自己整合型レーザ素子の層構造Aを示す
斜視図である。FIG. 2 is a perspective view showing a layer structure A of a conventional self-aligned laser device.
【図3】図2の層構造Aを製造する際の従来の層構造A
0を示す断面図である。FIG. 3 shows a conventional layer structure A when manufacturing the layer structure A of FIG. 2;
0 is a sectional view showing a.
【図4】従来の層構造A1を示す断面図である。4 is a sectional view showing a conventional layer structure A 1.
【図5】従来の層構造A2を示す断面図である。5 is a cross-sectional view illustrating a conventional layered structure A 2.
1 GaAs基板 2 バッファ層(n−GaAs) 3 下部クラッド層(n−Al0.3Ga0.7A
s) 4 下部光閉じ込め層(i−Al0.1Ga0.9
As) 5 活性層(In0.2Ga0.8As/Al0.1
Ga0.9As) 6 上部光閉じ込め層(i−Al0.1Ga0.9
As) 7a,7b 上部クラッド層(p−Al0.3Ga0.7A
s) 8 低屈折率層(n−AlGaAs) 81,82,……8i Al組成比が異なるn−AlG
aAs層(屈折率が異なる層) 9 コンタクト層(p−GaAs) 10 チャンネル 10a チャンネル10の側面Reference Signs List 1 GaAs substrate 2 Buffer layer (n-GaAs) 3 Lower cladding layer (n-Al 0.3 Ga 0.7 A
s) 4 Lower optical confinement layer (i-Al 0.1 Ga 0.9
As) 5 active layer (In 0.2 Ga 0.8 As / Al 0.1
Ga 0.9 As) 6 upper optical confinement layer (i-Al 0.1 Ga 0.9
As) 7a, 7b Upper cladding layer (p-Al 0.3 Ga 0.7 A
s) 8 low refractive index layer (n-AlGaAs) 8 1, 8 2, ...... 8 i Al composition ratios are different n-AlGaAs
aAs layer (layer having different refractive index) 9 contact layer (p-GaAs) 10 channel 10a side surface of channel 10
Claims (3)
の近傍に形成されている自己整合型の半導体レーザ素子
において、 前記低屈折率層は、組成式:AlxGa1-xAs(0≦x
≦1)で示される化合物半導体の複数の層から成り、か
つ、前記活性層から離隔している化合物半導体層ほど低
屈折率になっていることを特徴とする半導体レーザ素
子。1. A self-aligned semiconductor laser device in which a low refractive index layer also serving as a current confinement layer is formed near an active layer, wherein the low refractive index layer has a composition formula: Al x Ga 1 -x As (0 ≦ x
≦ 1) A semiconductor laser device comprising a plurality of layers of a compound semiconductor represented by the formula (1) and having a lower refractive index as the compound semiconductor layer is more distant from the active layer.
半導体層ほど、そのAl組成比が高くなっている請求項
1の半導体レーザ素子。2. The semiconductor laser device according to claim 1, wherein an Al composition ratio is higher in the compound semiconductor layer that is more distant from the active layer.
の近傍に形成されている自己整合型の半導体レーザ素子
において、 前記低屈折率層は、組成式:GayIn1-yAszP
1-z(0≦y≦0.5,0≦z≦1)で示される化合物
半導体の複数の層から成り、かつ、前記活性層から離隔
している化合物半導体層ほど低屈折率になっていること
を特徴とする半導体レーザ素子。3. A self-aligned semiconductor laser device in which a low refractive index layer also serving as a current confinement layer is formed near an active layer, wherein the low refractive index layer has a composition formula: Ga y In 1-y As z P
1-z (0 ≦ y ≦ 0.5, 0 ≦ z ≦ 1) The compound semiconductor layer composed of a plurality of layers and separated from the active layer has a lower refractive index. A semiconductor laser device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000373151A JP4804623B2 (en) | 1999-12-10 | 2000-12-07 | Semiconductor laser element |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-350966 | 1999-12-10 | ||
JP35096699 | 1999-12-10 | ||
JP1999350966 | 1999-12-10 | ||
JP2000373151A JP4804623B2 (en) | 1999-12-10 | 2000-12-07 | Semiconductor laser element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001230496A true JP2001230496A (en) | 2001-08-24 |
JP4804623B2 JP4804623B2 (en) | 2011-11-02 |
Family
ID=26579302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000373151A Expired - Lifetime JP4804623B2 (en) | 1999-12-10 | 2000-12-07 | Semiconductor laser element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4804623B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002305355A (en) * | 2001-04-05 | 2002-10-18 | Furukawa Electric Co Ltd:The | Semiconductor laser element |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60110188A (en) * | 1983-11-18 | 1985-06-15 | Sharp Corp | semiconductor laser device |
JPS61115372A (en) * | 1984-11-12 | 1986-06-02 | Nec Corp | Semiconductor laser |
JPS62279688A (en) * | 1986-05-28 | 1987-12-04 | Oki Electric Ind Co Ltd | Manufacture of semiconductor laser element |
JPH01226191A (en) * | 1988-03-07 | 1989-09-08 | Nec Corp | Manufacture of algainp buried structure semiconductor laser |
JPH05129722A (en) * | 1991-10-31 | 1993-05-25 | Sony Corp | Semiconductor laser |
JPH05160514A (en) * | 1991-12-10 | 1993-06-25 | Furukawa Electric Co Ltd:The | Strained quantum well semiconductor laser element |
JPH0697575A (en) * | 1992-09-14 | 1994-04-08 | Sharp Corp | Semiconductor laser |
JPH06342957A (en) * | 1993-06-01 | 1994-12-13 | Matsushita Electron Corp | Semiconductor laser and manufacture thereof |
JPH0750445A (en) * | 1993-06-02 | 1995-02-21 | Rohm Co Ltd | Manufacture of semiconductor laser |
JPH08107247A (en) * | 1994-10-03 | 1996-04-23 | Rohm Co Ltd | Semiconductor laser |
JPH08264889A (en) * | 1995-03-28 | 1996-10-11 | Sharp Corp | Semiconductor laser element |
JPH09129962A (en) * | 1995-10-27 | 1997-05-16 | Nippon Telegr & Teleph Corp <Ntt> | Vertical cavity type semiconductor laser device and manufacturing method thereof |
-
2000
- 2000-12-07 JP JP2000373151A patent/JP4804623B2/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60110188A (en) * | 1983-11-18 | 1985-06-15 | Sharp Corp | semiconductor laser device |
JPS61115372A (en) * | 1984-11-12 | 1986-06-02 | Nec Corp | Semiconductor laser |
JPS62279688A (en) * | 1986-05-28 | 1987-12-04 | Oki Electric Ind Co Ltd | Manufacture of semiconductor laser element |
JPH01226191A (en) * | 1988-03-07 | 1989-09-08 | Nec Corp | Manufacture of algainp buried structure semiconductor laser |
JPH05129722A (en) * | 1991-10-31 | 1993-05-25 | Sony Corp | Semiconductor laser |
JPH05160514A (en) * | 1991-12-10 | 1993-06-25 | Furukawa Electric Co Ltd:The | Strained quantum well semiconductor laser element |
JPH0697575A (en) * | 1992-09-14 | 1994-04-08 | Sharp Corp | Semiconductor laser |
JPH06342957A (en) * | 1993-06-01 | 1994-12-13 | Matsushita Electron Corp | Semiconductor laser and manufacture thereof |
JPH0750445A (en) * | 1993-06-02 | 1995-02-21 | Rohm Co Ltd | Manufacture of semiconductor laser |
JPH08107247A (en) * | 1994-10-03 | 1996-04-23 | Rohm Co Ltd | Semiconductor laser |
JPH08264889A (en) * | 1995-03-28 | 1996-10-11 | Sharp Corp | Semiconductor laser element |
JPH09129962A (en) * | 1995-10-27 | 1997-05-16 | Nippon Telegr & Teleph Corp <Ntt> | Vertical cavity type semiconductor laser device and manufacturing method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002305355A (en) * | 2001-04-05 | 2002-10-18 | Furukawa Electric Co Ltd:The | Semiconductor laser element |
Also Published As
Publication number | Publication date |
---|---|
JP4804623B2 (en) | 2011-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0669585A (en) | Surface emitting semiconductor laser and manufacturing method thereof | |
JP5005300B2 (en) | Semiconductor laser device | |
JPH11243259A (en) | Semiconductor laser and drive method thereof | |
US6580738B2 (en) | High-power semiconductor laser device in which near-edge portions of active layer are removed | |
JP5323802B2 (en) | Semiconductor laser element | |
JPH08191171A (en) | Nitride semiconductor laser element | |
US7852893B2 (en) | Semiconductor laser device | |
JP4168202B2 (en) | Vertical cavity semiconductor surface emitting laser device and optical system using the laser device | |
JP2007095758A (en) | Semiconductor laser | |
JP2009016684A (en) | Semiconductor laser device | |
JPH11330607A (en) | Semiconductor laser and manufacture thereof | |
JP2006269759A (en) | Window structure semiconductor laser device and its manufacturing method | |
JP4804623B2 (en) | Semiconductor laser element | |
JP4809541B2 (en) | Semiconductor laser element | |
JPH11186650A (en) | Compd. semiconductor laser device | |
JP2001144375A (en) | Semiconductor light-emitting device | |
JP2004103679A (en) | Semiconductor light emitting device and semiconductor light emitting device module | |
JP2860217B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP6120903B2 (en) | Semiconductor laser element | |
JPH06188513A (en) | Semiconductor laser and manufacturing method thereof | |
US6690701B2 (en) | Semiconductor laser device | |
US20010038657A1 (en) | Semiconductor laser device | |
JP3403180B2 (en) | Semiconductor laser | |
JP2001298241A (en) | Semiconductor laser device | |
JP2003023218A (en) | Semiconductor laser element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20050922 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100514 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100709 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100709 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110519 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110726 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110810 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4804623 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
EXPY | Cancellation because of completion of term |