[go: up one dir, main page]

JP2001227851A - Cooling device - Google Patents

Cooling device

Info

Publication number
JP2001227851A
JP2001227851A JP2000038435A JP2000038435A JP2001227851A JP 2001227851 A JP2001227851 A JP 2001227851A JP 2000038435 A JP2000038435 A JP 2000038435A JP 2000038435 A JP2000038435 A JP 2000038435A JP 2001227851 A JP2001227851 A JP 2001227851A
Authority
JP
Japan
Prior art keywords
cooling
liquid helium
pipe
storage tank
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000038435A
Other languages
Japanese (ja)
Inventor
Narikazu Odawara
成計 小田原
Satoru Nakayama
哲 中山
Atsushi Nagata
篤士 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2000038435A priority Critical patent/JP2001227851A/en
Priority to US09/780,840 priority patent/US6474079B2/en
Publication of JP2001227851A publication Critical patent/JP2001227851A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/005Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure
    • F17C13/006Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure for Dewar vessels or cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • F17C3/085Cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/10Vessels not under pressure with provision for thermal insulation by liquid-circulating or vapour-circulating jackets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0518Semiconductors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0527Superconductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device for cooling either a specimen or a sensor down to such a boiling temperature of helium in which both time and work for performing a cooling operation can be saved without requiring any cooling in the device carried out in advance under application of liquid nitrogen. SOLUTION: This cooling device has a structure in which a liquid helium storing tank is not installed in a vacuum chamber, but in place of it, a port for feeding liquid helium is installed in view of thermal insulation, a liquid helium container and the port are connected by a vacuum thermal insulating pipe and liquid helium is supplied directly from the container.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、各種半導体素子
や半導体材料、あるいは超伝導材料、その他金属材料や
無機材料など、各種の素子や材料からなる試料につい
て、液化ガスの沸点温度に至る低温において計測または
観察、もしくは動作を行うにあたり、冷却し低温に保持
するための装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample made of various devices and materials, such as various semiconductor devices and semiconductor materials, or superconducting materials, other metal materials and inorganic materials, at a low temperature up to the boiling point of a liquefied gas. The present invention relates to a device for cooling and maintaining a low temperature when performing measurement, observation, or operation.

【0002】[0002]

【従来の技術】最近に至り、SQUID(超伝導量子干
渉計)顕微鏡と称されるマイクロメーター程度の空間分
解能を有する高感度磁束計が実用化され、各種素子や材
料についてSQUID顕微鏡を用いた計測を行うことが
多くなっている。SQUIDは超伝導を利用しているた
め液体窒素温度以下(数Kから77K)の低温に冷却し
ておく必要があり、また相手方の試料についても、低温
に保持する必要がある場合が多い。またSQUIDの
他、トンネル顕微鏡や原子間力顕微鏡等によって試料の
観察を行う場合にも、試料を低温に保持する場合があ
る。図2はセンサー側を低温に冷却する従来の冷却装置
の一例を示した概略図である。真空チャンバー10の中
には、3軸走査ステージ20、冷却ヘッド30、貯蔵タ
ンク40、センサー50、および試料60などが設置さ
れ、真空チャンバー10の外には、真空ポンプ70、液
体ヘリウムコンテナ80、真空断熱配管90が設置され
ている。
2. Description of the Related Art Recently, a high-sensitivity magnetometer having a spatial resolution of about a micrometer called a SQUID (superconducting quantum interferometer) microscope has been put into practical use, and various elements and materials have been measured using a SQUID microscope. To do more and more. Since SQUID uses superconductivity, it needs to be cooled to a low temperature of liquid nitrogen temperature or lower (several K to 77K), and the other party's sample often needs to be kept at a low temperature. In addition, when observing a sample with a tunnel microscope or an atomic force microscope in addition to the SQUID, the sample may be kept at a low temperature. FIG. 2 is a schematic view showing an example of a conventional cooling device for cooling a sensor side to a low temperature. Inside the vacuum chamber 10, a triaxial scanning stage 20, a cooling head 30, a storage tank 40, a sensor 50, a sample 60, and the like are installed. Outside the vacuum chamber 10, a vacuum pump 70, a liquid helium container 80, A vacuum insulation pipe 90 is provided.

【0003】真空チャンバー10はステンレスにて作製
され、外部との断熱を行うために内部は真空に保持され
ている。
The vacuum chamber 10 is made of stainless steel, and the inside thereof is kept at a vacuum in order to insulate the outside from the outside.

【0004】3軸走査ステージ20は試料60を設置
し、センサー50と試料60との相対的な位置を制御す
るために用いられる。
[0006] The triaxial scanning stage 20 is used for setting a sample 60 and controlling a relative position between the sensor 50 and the sample 60.

【0005】冷却ヘッド30は無酸素銅で作製され、セ
ンサー50を熱的に接触させた状態で保持している。
[0005] The cooling head 30 is made of oxygen-free copper and holds the sensor 50 in thermal contact.

【0006】貯蔵タンク40は冷却ヘッド30を冷却す
るための冷媒の保持を行う。冷媒としては液体ヘリウム
を使用しているため、貯蔵タンク40へ液体ヘリウムを
貯めるためには、真空断熱配管90を用いて液体ヘリウ
ムコンテナ80と接続して移送を行う。侵入熱を減らす
目的で、貯蔵タンク40の周りには断熱用冷媒タンク4
1を設置し、液体窒素を保持させている。
[0006] The storage tank 40 holds a refrigerant for cooling the cooling head 30. Since liquid helium is used as the refrigerant, in order to store liquid helium in the storage tank 40, the liquid helium is connected to the liquid helium container 80 using the vacuum insulated pipe 90 and transferred. In order to reduce heat intrusion, a refrigerant tank 4 for heat insulation is provided around the storage tank 40.
1 is installed to hold liquid nitrogen.

【0007】センサー50としては直径10μm程度の
検出コイルを有するSQUIDを用いた。SQUIDを
作製している超伝導材料としては、液体ヘリウムの沸点
温度程度で動作するニオブを用いた。
As the sensor 50, an SQUID having a detection coil having a diameter of about 10 μm was used. Niobium operating at about the boiling point of liquid helium was used as the superconducting material for producing the SQUID.

【0008】真空ポンプ70を作動させることで、貯蔵
タンク40に貯蔵されている冷媒は配管31を通じて冷
却ヘッド30へ輸送され、冷却ヘッド30を冷却した
後、配管32から真空ポンプ70を通じて外へ排出され
る。
By operating the vacuum pump 70, the refrigerant stored in the storage tank 40 is transported to the cooling head 30 through the pipe 31, cools the cooling head 30, and is discharged from the pipe 32 through the vacuum pump 70 to the outside. Is done.

【0009】試料60の磁場分布を計測する手順は、ま
ず貯蔵タンク40と断熱用冷媒タンク41へ液体窒素を
貯め、貯蔵タンク40の周辺を液体窒素の沸点温度まで
冷却させる。次に貯蔵タンク40に入っている液体窒素
を取り除き、貯蔵タンク40と液体ヘリウムコンテナ8
0とを真空断熱配管90で接続し、冷媒である液体ヘリ
ウムを貯蔵タンク40へ移送させる。その後、真空ポン
プ70を作動させて冷却ヘッド30へ液体ヘリウムを通
し、冷却ヘッド30をヘリウムの沸点温度程度まで冷却
した後、センサー50を動作させ、3軸走査ステージ2
0を用いてセンサー50と試料60との相対位置を制御
し、センサー50による信号を記録することで計測を行
う。
In the procedure for measuring the magnetic field distribution of the sample 60, first, liquid nitrogen is stored in the storage tank 40 and the insulating refrigerant tank 41, and the periphery of the storage tank 40 is cooled down to the boiling point of liquid nitrogen. Next, the liquid nitrogen contained in the storage tank 40 is removed, and the storage tank 40 and the liquid helium container 8 are removed.
0 is connected to the storage tank 40 by connecting the liquid helium as a refrigerant to the storage tank 40. Thereafter, the liquid helium is passed through the cooling head 30 by operating the vacuum pump 70, and the cooling head 30 is cooled to about the boiling point of helium.
The relative position between the sensor 50 and the sample 60 is controlled using 0, and measurement is performed by recording a signal from the sensor 50.

【0010】[0010]

【発明が解決しようとする課題】センサーあるいは試料
を低温に冷却する必要がある上記従来の冷却装置では、
真空チャンバーに備える貯蔵タンクへ液体ヘリウムを移
送し保持させる必要が有ることから、移送の前に一旦貯
蔵タンクへ液体窒素などの液化ガスを入れて予め液化ガ
スの沸点温度まで貯蔵タンクを冷却した後、液体ヘリウ
ム移送直前に液化ガスを抜き去る作業が必要となり、さ
らに、貯蔵タンクの周辺に設置された断熱用冷媒タンク
41へ液体窒素などの液化ガスを充填させる必要がある
ため、センサーあるいは試料を低温に冷却するまでに手
間と時間がかかり、また液体窒素などの冷媒を用意する
必要があるという問題があった。さらに一旦貯蔵タンク
へ液体ヘリウムを保持する必要性があることから、特に
センサーあるいは試料を低温に冷却する時間が短い場合
においては、貯蔵タンクの冷却のために消費される液体
ヘリウムの量が冷却ヘッドを冷却するために消費される
液体ヘリウムの量と比較して無視できなくなり、結果と
して液体ヘリウムの損失が多いという問題があった。さ
らにまた、真空チャンバーに液体ヘリウムの貯蔵タンク
を設けているために真空チャンバーが大型となり、冷却
装置の設置面積が大きくなるという問題があった。
In the above-mentioned conventional cooling device which needs to cool the sensor or the sample to a low temperature,
Since it is necessary to transfer and hold liquid helium to the storage tank provided in the vacuum chamber, before the transfer, once the liquefied gas such as liquid nitrogen is put into the storage tank and the storage tank is cooled to the boiling point of the liquefied gas in advance. It is necessary to remove the liquefied gas immediately before the transfer of the liquid helium, and furthermore, it is necessary to fill the liquefied gas such as liquid nitrogen into the heat-insulating refrigerant tank 41 installed around the storage tank. It takes time and effort to cool to a low temperature, and there is a problem that a refrigerant such as liquid nitrogen needs to be prepared. Furthermore, since it is necessary to hold liquid helium once in the storage tank, the amount of liquid helium consumed for cooling the storage tank is reduced by the cooling head, especially when the time to cool the sensor or sample to low temperature is short. There is a problem that the amount of liquid helium is not negligible compared to the amount of liquid helium consumed for cooling the liquid, and as a result, the loss of liquid helium is large. Furthermore, since the storage tank for liquid helium is provided in the vacuum chamber, there is a problem that the vacuum chamber becomes large and the installation area of the cooling device becomes large.

【0011】[0011]

【課題を解決するための手段】(第1の手段)本発明
は、上記の課題を解決するために、真空チャンバーの中
に液体ヘリウムの貯蔵タンクを設置せず、代わりとして
断熱に配慮した液体ヘリウム導入用のポートを設置し、
液体ヘリウムのコンテナとポートとを真空断熱配管で接
続し、冷媒の液体ヘリウムをコンテナから直接供給する
構造としたものである。 (第2の手段)第1の手段にさらに、真空断熱配管を二
重真空配管とした。 (第3の手段)第1の手段にさらに、ポートの周辺に熱
遮蔽板を設置する構造とした。 (第4の手段)第3の手段にさらに、熱遮蔽板の内部に
冷却ヘッドから排気したヘリウムを通す構造とした。 (第5の手段)第3の手段にさらに、液体ヘリウムを導
入するポートを複数の材質で構成する構造とした。
Means for Solving the Problems (First Means) In order to solve the above-mentioned problems, the present invention does not provide a liquid helium storage tank in a vacuum chamber, but instead uses a liquid in consideration of heat insulation. Install a port for helium introduction,
The liquid helium container and the port are connected by a vacuum insulated pipe, and the liquid helium of the refrigerant is directly supplied from the container. (Second Means) In addition to the first means, the vacuum insulation pipe is a double vacuum pipe. (Third Means) In addition to the first means, a heat shield plate is provided around the port. (Fourth Means) The third means further has a structure in which helium exhausted from the cooling head is passed through the inside of the heat shield plate. (Fifth Means) In addition to the third means, a port for introducing liquid helium is constituted by a plurality of materials.

【0012】第1の手段による冷却装置の構造によれ
ば、熱容量の大きな貯蔵タンクへ液体ヘリウムを移送し
保持させる必要がなく、液体ヘリウムのコンテナから直
接断熱配管を通して冷却ヘッドにヘリウムを供給するた
め、液体窒素などの冷媒を用いて予め真空チャンバー内
を冷却する必要がなくなることから、手間と時間を省く
ことが可能となる。
According to the structure of the cooling device according to the first means, there is no need to transfer and hold the liquid helium to the storage tank having a large heat capacity, and the helium is supplied from the liquid helium container directly to the cooling head through the heat insulating pipe. In addition, since it is not necessary to previously cool the inside of the vacuum chamber using a refrigerant such as liquid nitrogen, it is possible to save time and labor.

【0013】第2の手段により、真空チャンバーとコン
テナ間の真空断熱配管での侵入熱を極力少なくすること
ができるため、液体ヘリウムの消費量を抑えることがで
きる。
According to the second means, the amount of heat entering the vacuum heat insulating pipe between the vacuum chamber and the container can be reduced as much as possible, so that the consumption of liquid helium can be suppressed.

【0014】第3の手段により、ポート周りの断熱用冷
媒タンクが必要なくなるため、断熱を行っている液体窒
素などの冷媒を用意する必要がなくなり、また、真空チ
ャンバーの小型化ができることから設置面積を小さくす
ることが可能となる。
According to the third means, a heat insulating refrigerant tank around the port is not required, so that it is not necessary to prepare a refrigerant such as liquid nitrogen for heat insulation, and the installation area can be reduced because the vacuum chamber can be downsized. Can be reduced.

【0015】第4の手段により、熱遮蔽板を冷却する能
力が向上するため、ポートや第一の配管への熱侵入が減
少し、液体ヘリウムを有効に使用することが可能とな
る。
According to the fourth means, since the ability to cool the heat shield plate is improved, heat intrusion into the port and the first pipe is reduced, and liquid helium can be used effectively.

【0016】第5の手段により、熱遮蔽板を冷却する能
力が向上し、またポートを伝導する外部からの侵入熱を
減少させることができるため、ポートや第一の配管への
熱侵入が減少し、液体ヘリウムを有効に使用することが
可能となる。
According to the fifth means, the ability to cool the heat shield plate is improved, and the amount of heat entering the port from outside can be reduced, so that the heat intrusion into the port and the first pipe is reduced. And liquid helium can be used effectively.

【0017】なおこの発明におけるセンサーとは、SQ
UID顕微鏡におけるSQUIDのように、試料から発
生する磁束や各種放射線、試料の物性や特性などを計測
するセンサーのみならず、トンネル顕微鏡および原子間
力顕微鏡におけるプローブ等、試料の表面形状や状態を
観察するプローブをも含むこととする。
The sensor in the present invention is SQ
Observe the surface shape and state of the sample, such as probes for tunnel microscopes and atomic force microscopes, as well as sensors for measuring the magnetic flux and various radiations generated from the sample, such as the SQUID in a UID microscope, and the physical properties and characteristics of the sample. It also includes a probe to be used.

【0018】[0018]

【発明の実施の形態】以下に本発明の実施例について図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】(実施の形態1)図1は本発明の実施の形
態1を示す冷却装置の構造を示した概略図である。
(Embodiment 1) FIG. 1 is a schematic diagram showing the structure of a cooling device according to Embodiment 1 of the present invention.

【0020】真空チャンバー10の中には3軸走査ステ
ージ20、冷却ヘッド30、液体ヘリウム導入用のポー
ト42、センサー50、および試料60などが設置さ
れ、真空チャンバー10の外には真空ポンプ70、液体
ヘリウムコンテナ80、真空断熱配管90が設置されて
いる。
A three-axis scanning stage 20, a cooling head 30, a port 42 for introducing liquid helium, a sensor 50, a sample 60, and the like are installed in the vacuum chamber 10. A vacuum pump 70, A liquid helium container 80 and a vacuum insulation pipe 90 are provided.

【0021】真空チャンバー10はステンレスにて作製
され、外部との熱断熱を行うために真空に保持されてい
る。
The vacuum chamber 10 is made of stainless steel, and is kept in a vacuum for thermal insulation with the outside.

【0022】3軸走査ステージ20は試料60を設置
し、センサー50と試料60との相対的な位置を制御す
るために用いられる。
The three-axis scanning stage 20 is used for setting the sample 60 and controlling the relative position between the sensor 50 and the sample 60.

【0023】冷却ヘッド30は熱伝導を良くするために
無酸素銅で作製され、センサー50を熱的に接触させた
状態で保持している。
The cooling head 30 is made of oxygen-free copper to improve heat conduction, and holds the sensor 50 in a state of being in thermal contact.

【0024】ポート42は真空チャンバー内に設置され
る冷却ヘッド30へ液体ヘリウムを導入するためのもの
である。ポート42と液体ヘリウムコンテナ80との間
を真空断熱配管90で接続して、液体ヘリウムコンテナ
80に保管している液体ヘリウムを冷却ヘッド30へ導
入する。ポート42周辺での侵入熱を減らす目的で、ポ
ート42の周りを囲む形状の断熱用冷媒タンク41を設
置し、液体窒素を保持させている。
The port 42 is for introducing liquid helium to the cooling head 30 installed in the vacuum chamber. The liquid helium stored in the liquid helium container 80 is introduced into the cooling head 30 by connecting the port 42 and the liquid helium container 80 with a vacuum insulation pipe 90. In order to reduce heat intrusion around the port 42, a heat insulating refrigerant tank 41 having a shape surrounding the port 42 is installed to hold liquid nitrogen.

【0025】センサー50としては直径10μm程度の
検出コイルを有するSQUIDを用いた。SQUIDを
作製する超伝導材料としては、液体ヘリウムの沸点温度
程度で動作するニオブを用いた。
As the sensor 50, an SQUID having a detection coil having a diameter of about 10 μm was used. As a superconducting material for producing the SQUID, niobium operating at about the boiling point of liquid helium was used.

【0026】真空ポンプ70は第二の配管32、冷却ヘ
ッド30、第一の配管31、および真空断熱配管90の
内部の圧力を下げ、液体ヘリウムコンテナ80内の液体
ヘリウムを移送するために用いる。
The vacuum pump 70 is used to reduce the pressure inside the second pipe 32, the cooling head 30, the first pipe 31, and the vacuum insulation pipe 90, and to transfer the liquid helium in the liquid helium container 80.

【0027】試料60の磁場分布を計測する手順は、ま
ず断熱用冷媒タンク41へ液体窒素を貯め、ポート42
の周辺を液体窒素の沸点温度まで冷却させる。次にポー
ト42と液体ヘリウムコンテナ80を真空断熱配管90
で接続し、真空ポンプ70を作動させることで液体ヘリ
ウムコンテナ80内の液体ヘリウムを冷却ヘッド30へ
通すことで冷却ヘッド30をヘリウムの沸点温度程度ま
で冷却する。冷却ヘッド30の冷却後、センサー50を
動作させ、3軸走査ステージ20を用いてセンサー50
と試料60との相対位置を制御し、センサー50による
信号を記録することで計測を行う。 (実施の形態2)図3は本発明の実施の形態2を示す冷
却装置の構造を示した概略図である。真空断熱配管90
を二重真空配管としたこと以外の構成は実施の形態1と
なんら変わるところはない。
The procedure for measuring the magnetic field distribution of the sample 60 is as follows.
Is cooled to the boiling point of liquid nitrogen. Next, the port 42 and the liquid helium container 80 are connected to the vacuum insulation pipe 90.
By operating the vacuum pump 70, the liquid helium in the liquid helium container 80 is passed through the cooling head 30 to cool the cooling head 30 to about the boiling point of helium. After cooling the cooling head 30, the sensor 50 is operated, and the sensor 50 is
The measurement is performed by controlling the relative position between the sample and the sample 60 and recording the signal from the sensor 50. (Embodiment 2) FIG. 3 is a schematic diagram showing the structure of a cooling device according to Embodiment 2 of the present invention. Vacuum insulation pipe 90
There is no difference between the first embodiment and the first embodiment except that a double vacuum pipe is used.

【0028】図4(A)は本発明の実施の形態2におけ
る真空断熱配管90の断面の構造を示した図で、図4
(B)はポート42および真空断熱配管90先端の構造
を示した図である。二重真空配管の中心配管は冷却ヘッ
ドへ輸送するヘリウムを通すための経路で、外周配管は
冷却ヘッドから排気するヘリウムを通すための経路であ
る。
FIG. 4A is a diagram showing a cross-sectional structure of a vacuum heat insulating pipe 90 according to the second embodiment of the present invention.
(B) is a diagram showing the structure of the port 42 and the tip of the vacuum insulation pipe 90. The central pipe of the double vacuum pipe is a path for passing helium transported to the cooling head, and the outer peripheral pipe is a path for passing helium exhausted from the cooling head.

【0029】真空断熱配管90の外周配管に接続した真
空ポンプ90を作動することで、真空断熱配管90の外
周配管、第二の配管32、冷却ヘッド30、第一の配管
31、および真空断熱配管90の中心配管の圧力が下が
り、液体ヘリウムコンテナ80内の液体ヘリウムが移送
される。ヘリウムの経路としては、液体ヘリウムコンテ
ナ80から真空断熱配管90の中心配管および第一の配
管31を通って冷却ヘッド30へ移送され、冷却ヘッド
30を冷却した後、第二の配管32から真空断熱配管9
0の外周配管を通り、真空ポンプ90から排気される。 (実施の形態3)図5は本発明の実施の形態3を示す冷
却装置の構造を示した概略図である。断熱用冷媒タンク
41を無くした代わりとして熱遮蔽板44を設置した以
外の構成は実施の形態2となんら変わるところはない。
By operating the vacuum pump 90 connected to the outer peripheral pipe of the vacuum heat insulating pipe 90, the outer peripheral pipe of the vacuum heat insulating pipe 90, the second pipe 32, the cooling head 30, the first pipe 31, and the vacuum heat insulating pipe The pressure of the central pipe 90 decreases, and the liquid helium in the liquid helium container 80 is transferred. The helium path is transferred from the liquid helium container 80 to the cooling head 30 through the central pipe of the vacuum insulation pipe 90 and the first pipe 31, and after cooling the cooling head 30, the vacuum insulation is performed from the second pipe 32. Piping 9
The gas is evacuated from the vacuum pump 90 through the outer peripheral pipe 0. (Embodiment 3) FIG. 5 is a schematic diagram showing a structure of a cooling device according to Embodiment 3 of the present invention. The configuration other than the configuration in which the heat shield plate 44 is provided in place of the elimination of the heat insulating refrigerant tank 41 is the same as that of the second embodiment.

【0030】図6に熱遮蔽板44周辺の構造を示す。熱
遮蔽板44は単板を加工して筒状に成型され、液体窒素
の沸点温度程度以下に冷却しているポート42の外壁に
熱的に接続されている。ポート42を熱遮蔽板44で覆
う場合には、側面の一部に穴をあけ、第一および第二の
配管31、32を通す。熱遮蔽板44は熱の伝導を良く
するために無酸素銅にて作製した。 (実施の形態4)図7は本発明の実施の形態4を示す冷
却装置の熱遮蔽板44の周辺構造を示した概略図であ
る。熱遮蔽板44の構造および第二の配管32とポート
42の接続方法以外の構成は実施の形態3となんら変わ
るところはない。
FIG. 6 shows the structure around the heat shield plate 44. The heat shielding plate 44 is formed by processing a single plate into a cylindrical shape, and is thermally connected to the outer wall of the port 42 which is cooled to a temperature not higher than the boiling point of liquid nitrogen. When the port 42 is covered with the heat shielding plate 44, a hole is made in a part of the side surface, and the first and second pipes 31 and 32 are passed. The heat shield plate 44 was made of oxygen-free copper to improve heat conduction. (Embodiment 4) FIG. 7 is a schematic diagram showing a peripheral structure of a heat shield plate 44 of a cooling device according to Embodiment 4 of the present invention. The configuration other than the structure of the heat shield plate 44 and the method of connecting the second pipe 32 and the port 42 are the same as those of the third embodiment.

【0031】熱遮蔽板44は図7の破線で示した内部に
密封された空間を持つ二重構造の筒で、第二の配管32
およびポート42と接続される。熱遮蔽板44の内部の
空間に冷却ヘッド30を冷やした後のヘリウムを通す構
造とした。内部の空間は空洞としたが、無酸素銅の網や
粒子、その他の材料を蓄冷材として挿入しても良い。熱
遮蔽板44は熱の伝導を良くするために無酸素銅を用い
て作製した。 (実施の形態5)図8は本発明の実施の形態5を示す冷
却装置におけるポート42の周辺を示した概略図であ
る。ポート42の材料以外は実施の形態3となんら変わ
るところはない。ポート42において真空チャンバー1
0の外壁に直接接触しているAの部分を熱伝導率の低い
材料にて作製し、Bの部分を熱伝導率の高い材料にて作
製する構造とした。具体的には、熱伝導率の低い材料と
してはG−FRPを用い、熱伝導率の高い材料としては
無酸素銅を用いた。
The heat shield plate 44 is a double-structured cylinder having a sealed space inside as shown by a broken line in FIG.
And port 42. Helium after cooling the cooling head 30 is passed through the space inside the heat shielding plate 44. Although the internal space is hollow, a net or particles of oxygen-free copper may be inserted as a cold storage material. The heat shield plate 44 was made of oxygen-free copper to improve heat conduction. (Embodiment 5) FIG. 8 is a schematic diagram showing the periphery of a port 42 in a cooling device according to Embodiment 5 of the present invention. Other than the material of the port 42, there is no difference from the third embodiment. Vacuum chamber 1 at port 42
The portion A which is in direct contact with the outer wall 0 is made of a material having a low thermal conductivity, and the portion B is made of a material having a high thermal conductivity. Specifically, G-FRP was used as a material having a low thermal conductivity, and oxygen-free copper was used as a material having a high thermal conductivity.

【0032】[0032]

【発明の効果】本発明によれば、真空チャンバー内に液
体ヘリウムの貯蔵タンクを設置しなくて良いため、ヘリ
ウムを移送する前に液体窒素などの液化ガスを用いて予
め貯蔵タンクを冷却する必要がなく、よって液化ガスを
抜き去る作業も必要ないことから、センサーあるいは試
料を低温に冷却するまでの手間と時間を省くことができ
る。
According to the present invention, it is not necessary to install a liquid helium storage tank in a vacuum chamber. Therefore, it is necessary to cool the storage tank in advance using a liquefied gas such as liquid nitrogen before transferring helium. Since there is no need to perform the operation of extracting the liquefied gas, the labor and time required for cooling the sensor or the sample to a low temperature can be saved.

【0033】また、貯蔵タンクの周辺に設置された断熱
用冷媒タンク41が必要なくなるため、冷媒の充填の手
間が省け、液体窒素などの冷媒を用意する必要がなくな
る。
Further, since the heat-insulating refrigerant tank 41 installed around the storage tank is not required, labor for filling the refrigerant can be saved, and it is not necessary to prepare a refrigerant such as liquid nitrogen.

【0034】さらに、特にセンサーあるいは試料を低温
に冷却する時間が短い場合においても、冷却が必要な時
だけ冷却ヘッドへヘリウムを輸送させることから、液体
ヘリウムの損失を抑えることができる。
Furthermore, even when the time for cooling the sensor or the sample to a low temperature is short, helium is transported to the cooling head only when cooling is necessary, so that loss of liquid helium can be suppressed.

【0035】さらにまた、真空チャンバーに液体ヘリウ
ムの貯蔵タンクを設けないため、真空チャンバーが小型
となり、冷却装置の設置面積が小さくできる。
Further, since no liquid helium storage tank is provided in the vacuum chamber, the vacuum chamber can be reduced in size, and the installation area of the cooling device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1を示す冷却装置の構造を
示した概略図である。
FIG. 1 is a schematic diagram showing a structure of a cooling device according to a first embodiment of the present invention.

【図2】従来の冷却装置の構造を示した概略図である。FIG. 2 is a schematic diagram showing a structure of a conventional cooling device.

【図3】本発明の実施の形態2を示す冷却装置の構造を
示した概略図である。
FIG. 3 is a schematic diagram illustrating a structure of a cooling device according to a second embodiment of the present invention.

【図4】(A)は本発明の実施の形態2における真空断
熱配管90の断面の構造を示した図である。 (B)は本発明の実施の形態2におけるポート42およ
び真空断熱配管90の先端の構造を示した図である。
FIG. 4A is a diagram showing a cross-sectional structure of a vacuum heat insulating pipe 90 according to Embodiment 2 of the present invention. (B) is a diagram showing the structure of the port 42 and the distal end of the vacuum insulation pipe 90 according to Embodiment 2 of the present invention.

【図5】本発明の実施の形態3を示す冷却装置の構造を
示した概略図である。
FIG. 5 is a schematic diagram illustrating a structure of a cooling device according to a third embodiment of the present invention.

【図6】本発明の実施の形態3における熱遮蔽板44の
周辺の構造を示した図である。
FIG. 6 is a diagram showing a structure around a heat shielding plate 44 according to Embodiment 3 of the present invention.

【図7】本発明の実施の形態4を示す冷却装置の熱遮蔽
板44周辺の構造を示した概略図である。
FIG. 7 is a schematic diagram showing a structure around a heat shield plate 44 of a cooling device according to a fourth embodiment of the present invention.

【図8】本発明の実施の形態5を示す冷却装置における
ポート42の周辺を示した概略図である。
FIG. 8 is a schematic diagram illustrating a periphery of a port in a cooling device according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 真空チャンバー 20 3軸走査ステージ 30 冷却ヘッド 31 第一の配管 32 第二の配管 40 貯蔵タンク 41 断熱用冷媒タンク 42 ポート 44 熱遮蔽板 50 センサー 60 試料 70 真空ポンプ 80 液体ヘリウムコンテナ 90 真空断熱配管 DESCRIPTION OF SYMBOLS 10 Vacuum chamber 20 3-axis scanning stage 30 Cooling head 31 First piping 32 Second piping 40 Storage tank 41 Insulating refrigerant tank 42 Port 44 Heat shielding plate 50 Sensor 60 Sample 70 Vacuum pump 80 Liquid helium container 90 Vacuum insulated piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永田 篤士 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 Fターム(参考) 2G017 AC04 AD32 3L044 AA04 BA07 BA08 CA16 CA17 DB03 FA08 KA04 KA05  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Atsushi Nagata 1-8-8 Nakase, Mihama-ku, Chiba-shi, Chiba F-term (reference) in Seiko Instruments Inc.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液化ガスの沸点温度程度に冷却するため
の冷却ヘッドと、前記冷却ヘッドを冷却するための液体
ヘリウムを貯蔵する貯蔵タンクと、前記貯蔵タンクから
前記冷却ヘッドにヘリウムを輸送して排気するためのポ
ンプと、前記貯蔵タンクと前記冷却ヘッドを結ぶ第一の
配管と、前記冷却ヘッドと前記ポンプを結ぶ第二の配管
と、前記冷却ヘッドと前記貯蔵タンクと前記第一の配管
と少なくとも一部分の前記第二の配管とを外気から断熱
する真空チャンバーと、液体ヘリウムを充填し輸送する
ための液体ヘリウムコンテナと、液体ヘリウムを前記液
体ヘリウムコンテナから前記貯蔵タンクへ輸送するため
の真空断熱配管と、から構成される冷却装置において、
前記真空チャンバー内に前記貯蔵タンクを設けず、代わ
りとして前記真空チャンバーに液体ヘリウムを導入する
ためのポートを備えたことを特徴とする冷却装置。
A cooling head for cooling the liquefied gas to about the boiling point, a storage tank for storing liquid helium for cooling the cooling head, and helium transported from the storage tank to the cooling head. A pump for exhausting, a first pipe connecting the storage tank and the cooling head, a second pipe connecting the cooling head and the pump, the cooling head, the storage tank, and the first pipe. A vacuum chamber that insulates at least a portion of the second pipe from the outside air, a liquid helium container for filling and transporting liquid helium, and a vacuum insulation for transporting liquid helium from the liquid helium container to the storage tank. In a cooling device composed of a pipe and
A cooling device, wherein the storage tank is not provided in the vacuum chamber, and a port for introducing liquid helium into the vacuum chamber is provided instead.
【請求項2】 前記真空断熱配管を同軸状二重真空配管
としたことを特徴とする請求項1記載の冷却装置。
2. The cooling device according to claim 1, wherein said vacuum insulation pipe is a coaxial double vacuum pipe.
【請求項3】 前記断熱用冷媒タンクを設けず、代わり
として前記ポートの周りに熱遮蔽板を備えたことを特徴
とする請求項1記載の冷却装置。
3. The cooling device according to claim 1, wherein the heat insulating refrigerant tank is not provided, and a heat shield plate is provided around the port instead.
【請求項4】 前記熱遮蔽板を密閉容器とし、前記第二
の配管からのヘリウムを前記熱遮蔽板の内部へ導入し、
前記ポートへ排気する構造としたことを特徴とする請求
項3記載の冷却装置。
4. The heat shield plate is a sealed container, and helium from the second pipe is introduced into the heat shield plate.
4. The cooling device according to claim 3, wherein the port is evacuated.
【請求項5】 前記ポートを熱伝導率の異なる複数の材
料を用いて作製したことを特徴とする請求項3記載の冷
却装置。
5. The cooling device according to claim 3, wherein said port is made of a plurality of materials having different thermal conductivities.
JP2000038435A 2000-02-16 2000-02-16 Cooling device Pending JP2001227851A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000038435A JP2001227851A (en) 2000-02-16 2000-02-16 Cooling device
US09/780,840 US6474079B2 (en) 2000-02-16 2001-02-09 Cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000038435A JP2001227851A (en) 2000-02-16 2000-02-16 Cooling device

Publications (1)

Publication Number Publication Date
JP2001227851A true JP2001227851A (en) 2001-08-24

Family

ID=18562169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000038435A Pending JP2001227851A (en) 2000-02-16 2000-02-16 Cooling device

Country Status (2)

Country Link
US (1) US6474079B2 (en)
JP (1) JP2001227851A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109121281A (en) * 2018-11-03 2019-01-01 上海辰光医疗科技股份有限公司 Docking structure for cyclotron superconducting magnet and after-condenser
CN113362970A (en) * 2021-06-16 2021-09-07 合肥聚能电物理高技术开发有限公司 Elastic insulating and heat-insulating support for NBI low-temperature transmission line
CN114013827A (en) * 2021-10-27 2022-02-08 冰山松洋生物科技(大连)有限公司 Self-sustaining liquid nitrogen type biological preservation container

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502778A (en) * 2002-10-16 2006-01-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ MR device cooling device
EP1813854A1 (en) * 2006-01-27 2007-08-01 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and arrangement for filling high pressure gas containers using a filling tube
EP2817566A4 (en) * 2012-02-22 2015-12-16 Clearsign Comb Corp Cooled electrode and burner system including a cooled electrode
CN105698458A (en) * 2014-11-26 2016-06-22 安徽智新生化有限公司 Deep cooling device
US11047779B2 (en) 2017-12-04 2021-06-29 Montana Instruments Corporation Analytical instruments, methods, and components
US12181202B2 (en) 2019-06-04 2024-12-31 Montana Instruments Corporation Thermal connection assemblies and methods
US11956924B1 (en) 2020-08-10 2024-04-09 Montana Instruments Corporation Quantum processing circuitry cooling systems and methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564338B2 (en) * 1987-12-07 1996-12-18 株式会社日立製作所 Superconducting coil cooling method and superconducting device
US4909038A (en) * 1988-12-15 1990-03-20 Ncr Corporation Control system for dispensing a cryogenic fluid
US5335503A (en) * 1992-06-10 1994-08-09 The Boc Group, Inc. Cooling method and apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109121281A (en) * 2018-11-03 2019-01-01 上海辰光医疗科技股份有限公司 Docking structure for cyclotron superconducting magnet and after-condenser
CN109121281B (en) * 2018-11-03 2023-09-22 上海辰光医疗科技股份有限公司 Docking structure for cyclotron superconducting magnet and recondensor
CN113362970A (en) * 2021-06-16 2021-09-07 合肥聚能电物理高技术开发有限公司 Elastic insulating and heat-insulating support for NBI low-temperature transmission line
CN113362970B (en) * 2021-06-16 2023-10-27 合肥聚能电物理高技术开发有限公司 Elastic insulating and heat-insulating support for NBI low-temperature transmission line
CN114013827A (en) * 2021-10-27 2022-02-08 冰山松洋生物科技(大连)有限公司 Self-sustaining liquid nitrogen type biological preservation container
CN114013827B (en) * 2021-10-27 2023-07-07 冰山松洋生物科技(大连)有限公司 Self-maintaining liquid nitrogen type biological preservation container

Also Published As

Publication number Publication date
US20010023592A1 (en) 2001-09-27
US6474079B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
US6489769B2 (en) Nuclear magnetic resonance apparatus
JP5723299B2 (en) MRI system having a main superconducting magnet, a superconducting gradient field coil and a cooled RF coil
US6332324B1 (en) Cryostat and magnetism measurement apparatus using the cryostat
JPH04230880A (en) High-frequency receiving winding device of nuclear magnetic resonance spectrometer
JPH08128742A (en) Extremely low temperature device
JP2001227851A (en) Cooling device
WO2015079921A1 (en) Magnetic resonance imaging apparatus
US6545474B2 (en) Controlling method of superconductor magnetic field application apparatus, and nuclear magnetic resonance apparatus and superconducting magnet apparatus using the method
JP2025023175A (en) Cryogenic apparatus for operation with liquid helium and method of operating same - Patents.com
JP2005344991A (en) Cryogenic cryostat
JP4043892B2 (en) Prober device with superconducting electromagnet and cooling device for superconducting electromagnet
US20220373625A1 (en) Nmr measuring assembly with cold bore of the cryostat
US6810679B2 (en) Cooling apparatus and squid microscope using same
JPH05264693A (en) Superconducting magnetic shield vessel
US6583619B2 (en) Squid microscope
JP2010046344A (en) Living body magnetic field measuring instrument
JPH04263768A (en) Cooling method and device for superconducting magnetically shielded container
JP3851933B2 (en) Multi-limit probing system
CN222734269U (en) Magnetic resonance apparatus
Yoshida et al. 3He-free Cryostat Based on Adiabatic Demagnetization and 4He Heat Conduction down to 0.5 K
JP2001066354A (en) Cryogenic container for storing superconducting quantum interference devices
Oram et al. Simple guarded hot plate technique for making thermal conductivity measurements of composite materials at cryogenic temperatures
JP2654756B2 (en) Cryostat for SQUID magnetometer
JP2005121455A (en) Noise to mask ratio measuring arrangement
JPH0420886A (en) Squid fluxmeter

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310