JP2001226737A - Low yield ratio and high tensile strength non-heattrated steel and its producing method - Google Patents
Low yield ratio and high tensile strength non-heattrated steel and its producing methodInfo
- Publication number
- JP2001226737A JP2001226737A JP2000037164A JP2000037164A JP2001226737A JP 2001226737 A JP2001226737 A JP 2001226737A JP 2000037164 A JP2000037164 A JP 2000037164A JP 2000037164 A JP2000037164 A JP 2000037164A JP 2001226737 A JP2001226737 A JP 2001226737A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- island
- low
- strength non
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ラインパイプや建
築用構造物等に使用される、低降伏比・高張力の両特性
及び優れた延性や靭性を満足する非調質鋼に関するもの
であり、特に、高い降伏応力を保持したまま降伏比を低
減させた低降伏比高張力非調質鋼に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-heat-treated steel used for line pipes and architectural structures, which satisfies both low yield ratio and high tensile properties and excellent ductility and toughness. More particularly, the present invention relates to a low-yield-ratio high-strength non-heat treated steel having a reduced yield ratio while maintaining a high yield stress.
【0002】[0002]
【従来の技術】近年、建築用構造物に使用される鋼材に
は、耐震性等の見地から厳しい強度、靭性及び溶接性等
の材質特性が要求されている。2. Description of the Related Art In recent years, steel materials used for building structures are required to have strict properties such as strength, toughness and weldability from the viewpoint of earthquake resistance and the like.
【0003】このような要求に対し、鋼の降伏比(以
下、YRと略すことがある)を低減させる従来技術とし
て、鋼材を熱間圧延し次いで冷却後、二相域に再加熱し
てフェライト組織中にベイナイト或いはマルテンサイト
を分散させる方法が提案されている(特開平8−283
838号公報、特公昭60−57490号公報)。しか
しこの方法では、YRの低減は達成できるものの降伏強
度(以下、YSと略すことがある)が極端に低くなる。
また、量産が困難で高コストとなる等の問題がある。[0003] As a conventional technique for reducing the yield ratio (hereinafter sometimes abbreviated as YR) of steel in response to such demands, a steel material is hot-rolled, cooled, and then reheated to a two-phase region to obtain a ferrite. A method of dispersing bainite or martensite in a structure has been proposed (JP-A-8-283).
No. 838, Japanese Patent Publication No. 60-57490). However, in this method, although the YR can be reduced, the yield strength (hereinafter sometimes abbreviated as YS) becomes extremely low.
In addition, there is a problem that mass production is difficult and the cost is high.
【0004】尚、本発明鋼をラインパイプ用鋼として
使用する場合には、引張特性や靭性を向上させると共
に、耐HIC(耐水素誘起割れ)性、及び耐SSC(耐
硫化物応力腐食割れ)性の向上も図る必要がある。従来
技術では、優れた耐HIC性及び耐SSC性を得る為
に、CとMnを低減させ、CrとMoを複合添加して高
強度化を図る方法が提案されている(例えば特開平5−
271766号公報)が、この方法ではYRの低減が困
難である。[0004] When the steel of the present invention is used as a steel for line pipes, the tensile properties and toughness are improved, and the HIC (hydrogen-induced cracking) resistance and SSC (sulfide stress corrosion cracking) resistance are improved. It is necessary to improve the performance. In the prior art, in order to obtain excellent HIC resistance and SSC resistance, a method has been proposed in which C and Mn are reduced and Cr and Mo are added in combination to increase the strength (see, for example, Japanese Patent Application Laid-Open No. H05-205).
However, in this method, it is difficult to reduce YR.
【0005】更に、耐HIC性及び耐SSC性を向上
させる鋼板製造技術として、圧延後の冷却を加速冷却で
行うことが提案されている(例えば特公昭63−136
9号公報)。しかし、加速冷却を行うと鋼の材質がばら
つき易い為、ラインパイプを製造する際に鋼板の曲がり
具合が不均一になる等の問題が生じ得る。Further, as a steel sheet manufacturing technique for improving the HIC resistance and the SSC resistance, it has been proposed to perform cooling after rolling by accelerated cooling (for example, Japanese Patent Publication No. 63-136).
No. 9). However, when accelerated cooling is performed, the material of the steel tends to vary, which may cause problems such as uneven bending of the steel plate when manufacturing the line pipe.
【0006】また、高強度かつ低温靭性の優れた鋼板
の製造方法として、圧延前のスラブ平均加熱温度を10
00℃以下にして初期オーステナイト粒径を小さくし、
微細フェライト−マルテンサイトの2相組織化を促進さ
せる方法が提案されている(特開平5−255744号
公報)。しかし、スラブ平均加熱温度を1000℃以下
にすると、析出強化させるために添加したNbやVが未
固溶の炭窒化物となる為、高価なNbやVの添加量に見
合うだけの強度が得られず不経済である。[0006] As a method for producing a steel sheet having high strength and excellent low-temperature toughness, an average heating temperature of a slab before rolling is set to 10%.
Reduce the initial austenite grain size to below 00 ° C,
A method for promoting the formation of a two-phase structure of fine ferrite-martensite has been proposed (JP-A-5-255744). However, when the average slab heating temperature is set to 1000 ° C. or lower, Nb and V added for strengthening precipitation become undissolved carbonitrides, so that a strength sufficient for the amount of expensive Nb and V added is obtained. It is uneconomical.
【0007】[0007]
【発明が解決しようとする課題】本発明はこの様な事情
に鑑みてなされたものであり、その目的とするところ
は、480N/mm2以上の高い降伏応力を維持したま
ま、降伏比を80%以下に低減させた低降伏比高張力鋼
を、非調質で製造して提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to maintain a high yield stress of 480 N / mm 2 or more while maintaining a yield ratio of 80%. % High-strength steel with a low yield ratio of not more than 10%.
【0008】[0008]
【課題を解決するための手段】上記課題を解決すること
のできた本発明の鋼材とは、質量%で、C:0.06〜
0.14%、Si:0.5%以下、Mn:1〜2%、C
r:0.03%以下(0%を含む)、Mo:0.05〜
0.3%、V:0.01〜0.1%、Nb:0.01〜
0.1%、Ti:0.001〜0.02%、N:0.0
01〜0.008%、Al:0.05%以下を満たす鋼
であって、島状MA組織が体積分率で0.5〜3.0%
を占め、且つ島状MA組織の平均粒径が1〜4μmであ
ることを要旨とする。Means for Solving the Problems The steel material of the present invention which can solve the above-mentioned problems is defined as:
0.14%, Si: 0.5% or less, Mn: 1-2%, C
r: 0.03% or less (including 0%), Mo: 0.05 to
0.3%, V: 0.01 to 0.1%, Nb: 0.01 to
0.1%, Ti: 0.001 to 0.02%, N: 0.0
01-0.008%, steel satisfying Al: 0.05% or less, wherein the island-like MA structure has a volume fraction of 0.5-3.0%.
And the average particle size of the island-shaped MA structure is 1 to 4 μm.
【0009】更に他の元素として、Cu:0.5%以
下、Ni:0.5%以下、Ca:0.005%以下より
なる群から選択される少なくとも1種の元素を含んでも
よい。As another element, at least one element selected from the group consisting of Cu: 0.5% or less, Ni: 0.5% or less, and Ca: 0.005% or less may be contained.
【0010】また、本発明の製法は、上記低降伏比高張
力非調質鋼を製造する方法を特定するもので、仕上圧延
後の冷却工程でのAr3点から500℃までの平均冷却
速度を0.3〜3℃/secとするところに特徴を有して
いる。更に、本発明の製法では、鋳片を平均加熱温度1
000℃以上で30分間以上保持した上で熱間圧延に供
することが望ましい。The production method of the present invention specifies a method for producing the above-mentioned non-heat-treated steel having a low yield ratio and a high tensile strength, and the average cooling rate from the Ar 3 point to 500 ° C. in the cooling step after finish rolling. Is set to 0.3 to 3 ° C./sec. Furthermore, in the production method of the present invention, the slab is heated at an average heating temperature of 1
It is preferable to hold at 000 ° C. or more for 30 minutes or more before subjecting to hot rolling.
【0011】[0011]
【発明の実施の形態】本発明者らは、前述した様な状況
の下、高YSを保持させたまま低YR化を実現させた非
調質鋼の開発を期して鋭意研究を進めた結果、金属組織
中の島状MA組織のサイズ及び占有率を適正に制御する
ことが有効であることを見出した。そして、これらの知
見を利用することにより、YSを480N/mm2以上に
維持したままYRを80%以下に低減させた低降伏比高
張力鋼が、非調質で得られることを突き止めた。更に、
上記特性の発揮に寄与する最適サイズ且つ最適量の島状
MA組織を、非調質で得る為の化学成分と製造方法につ
いて、追求を重ねた結果、上記本発明に想到したもので
ある。BEST MODE FOR CARRYING OUT THE INVENTION Under the above-mentioned circumstances, the present inventors have conducted intensive research with the aim of developing a non-heat treated steel which has realized a low YR while maintaining a high YS. It has been found that it is effective to appropriately control the size and the occupancy of the island-like MA structure in the metal structure. By utilizing these findings, it has been found that a low-yield-ratio high-strength steel in which YS is reduced to 80% or less while YS is maintained at 480 N / mm 2 or more can be obtained without heat treatment. Furthermore,
The present invention has been conceived as a result of repeated pursuit of a chemical component and a production method for obtaining an island-shaped MA structure having an optimum size and an optimum amount contributing to exhibiting the above-mentioned characteristics without heat treatment.
【0012】以下、本発明において鋼材の金属組織や化
学成分等を定めた理由を述べる。Hereinafter, the reason why the metal structure, chemical composition, and the like of the steel material are determined in the present invention will be described.
【0013】島状MA組織とは、マルテンサイトとオー
ステナイトの複合組織を指すが、本発明鋼における島状
MA組織は、マルテンサイト単相に近い金属組織を示
す。島状MA組織が、鋼の高強度化及び低YR化に有効
である理由は、島状MA組織周辺のフェライトに可動転
位が導入されてYSの極端な向上が抑えられると共に、
島状MA組織自体が非常に硬いのでTSが向上する為と
推察される。The island-like MA structure refers to a composite structure of martensite and austenite. The island-like MA structure in the steel of the present invention shows a metal structure close to a martensite single phase. The reason why the island-like MA structure is effective for increasing the strength and lowering the YR of steel is that mobile dislocations are introduced into ferrite around the island-like MA structure, thereby suppressing an extreme improvement in YS.
It is presumed that TS is improved because the island-shaped MA structure itself is very hard.
【0014】島状MA組織は、この様に優れた引張特性
を得る上で有効に作用するが、その体積分率及びサイズ
が本発明の範囲を外れると、これらの優れた特性が得難
くなる。即ち、島状MA組織の体積分率が小さすぎる
と、MA組織周辺の可動転位密度が低下する為、YRを
低減させることができない。従って、島状MA組織は体
積分率で0.5%以上、好ましくは1.0%以上とす
る。しかし、島状MA組織の体積分率が大きすぎても、
延性、靭性が低下する為、3.0%以下、好ましくは
2.5%以下に抑える。The island-like MA structure effectively acts to obtain such excellent tensile properties. However, if the volume fraction and the size are out of the range of the present invention, it becomes difficult to obtain these excellent properties. . That is, if the volume fraction of the island-shaped MA structure is too small, the mobile dislocation density around the MA structure decreases, so that the YR cannot be reduced. Therefore, the volume fraction of the island-shaped MA structure is 0.5% or more, preferably 1.0% or more. However, even if the volume fraction of the island-like MA tissue is too large,
Since the ductility and toughness decrease, the content is controlled to 3.0% or less, preferably 2.5% or less.
【0015】また、島状MA組織の平均粒径が小さすぎ
ると、可動転位が導入され難い為、YRは低下しない。
従って、島状MA組織の平均粒径は1μm以上、好まし
くは2μm以上に制御する。しかし、島状MA組織の平
均粒径が大きすぎても、延性、特に靭性が低下する為、
その平均粒径は4μm以下、好ましくは3.5μm以下
に抑える。On the other hand, if the average grain size of the island-shaped MA structure is too small, it is difficult for mobile dislocations to be introduced, so that the YR does not decrease.
Therefore, the average particle size of the island-shaped MA structure is controlled to 1 μm or more, preferably 2 μm or more. However, even if the average particle size of the island-like MA structure is too large, ductility, particularly toughness is reduced,
The average particle size is suppressed to 4 μm or less, preferably 3.5 μm or less.
【0016】次に、上記島状MA組織の生成には、化学
成分の制御が重要であることを図1〜3の金属組織写真
を用いて説明する。Next, the importance of controlling chemical components for the formation of the above-mentioned island-like MA structure will be described with reference to the metallographic photographs of FIGS.
【0017】図1は、C:0.1%、Mn:1.5%、
V:0.05%、Nb:0.025%を含有する鋼(以
下、ベース鋼という)にレペラ腐食(JOURNAL OF METAL
S 1980年3月 第38,39頁参照)を施し、顕微鏡撮影し
た金属組織写真である。FIG. 1 shows that C: 0.1%, Mn: 1.5%,
Repeller corrosion (JOURNAL OF METAL) on steel containing V: 0.05% and Nb: 0.025% (hereinafter referred to as base steel)
S, March 38, 1980, p. 38, 39) and a microstructure photograph.
【0018】島状MA組織は、レペラ腐食を施すこと
で、後述の図2に示す様に白く現出するが、図1には白
色部分が見られない。つまり、島状MA組織が生成して
おらず、上記の島状MA組織による効果を得ることが出
来ない。The island-shaped MA structure appears white as shown in FIG. 2 described later by performing repeller corrosion, but no white portion is seen in FIG. That is, the island-shaped MA structure is not generated, and the effect of the island-shaped MA structure cannot be obtained.
【0019】図2は、ベース鋼の上記化学成分に加えて
Moを0.25%含有させた鋼の金属組織であるが、白
色部分、即ち好適なサイズの島状MA組織が数多く発生
しており、上記島状MA組織の効果が発揮される望まし
い組織を示している。FIG. 2 shows the metal structure of steel containing 0.25% of Mo in addition to the above chemical components of the base steel. However, many white portions, that is, island-like MA structures of a suitable size are generated. This indicates a desirable structure in which the effect of the island-shaped MA structure is exhibited.
【0020】また、図3は、ベース鋼の上記化学成分に
加えてMoを0.2%及びCrを0.15%含有させた
鋼の金属組織であるが、Moを添加しているにもかかわ
らず島状MA組織は殆ど生成していない。この理由とし
て、Moがセメンタイトの生成を促進させることなく焼
入れ性を向上させる元素であるのに対し、Crは、焼入
れ性を向上させる一方、セメンタイトを形成する元素で
もあるので、Crの添加によりセメンタイトが生成し易
くなり、結果としてパーライト組織となり易く、島状M
A組織の生成が阻害されたものと推察される。FIG. 3 shows the metal structure of steel containing 0.2% of Mo and 0.15% of Cr in addition to the above chemical components of the base steel. Nevertheless, almost no island-like MA structure was generated. The reason for this is that Mo is an element that improves hardenability without promoting the formation of cementite, whereas Cr is an element that forms cementite while improving hardenability. Are easily formed, and as a result, a pearlite structure is easily formed.
It is presumed that generation of tissue A was inhibited.
【0021】即ち、本発明者らは、高YSを維持したま
ま低YR化を達成するのに必要な、最適サイズ且つ最適
量の島状MA組織を得るには、適量のMoを鋼中に含有
させ、且つCrの含有量を極力低減する必要があること
を見出した。That is, to obtain an optimum size and an optimum amount of the island-like MA structure necessary for achieving a low YR while maintaining a high YS, the present inventors need to add an appropriate amount of Mo into steel. It has been found that it is necessary to reduce the content of Cr as much as possible.
【0022】上述の通り、Moは島状MA組織の形成に
必須の元素である為、0.05%以上、好ましくは0.
15%以上含有させる。ただし、過剰に添加すると溶接
性を阻害する為、0.3%以下、好ましくは0.27%
以下に抑える。As described above, Mo is an element indispensable for the formation of the island-like MA structure, so that it is 0.05% or more, preferably 0.1% or more.
15% or more is contained. However, if added in excess, the weldability is impaired, so 0.3% or less, preferably 0.27%
Keep below.
【0023】またCrは、強度向上に有効な元素である
が、上述の通り島状MA組織の形成を阻害するため、そ
の含有量は極力小さいことが望ましく、少なくとも0.
03%以下に抑える。Further, Cr is an element effective for improving the strength. However, as described above, the content of Cr is desirably as small as possible.
Keep it below 03%.
【0024】また、本発明は強度を確保する為にV及び
Nbを添加している。C,Mnは強度確保には好ましい
が、溶接性を劣化させるので、これらの元素に代えてV
及びNbを添加し、高強度及び溶接性の両特性を確保し
た。In the present invention, V and Nb are added to secure the strength. Although C and Mn are preferable for securing strength, they deteriorate the weldability.
And Nb were added to secure both high strength and weldability.
【0025】特にVは、Moとの複合添加によりYRを
極端に上げることなく、強度を向上させるのに有効な元
素である。即ち、VCを単独で析出させると、その炭化
物サイズが微小となる為YRが極端に上がってしまう。
しかしMoを併存させると、MoがVC中に固溶してV
Cは適度な大きさとなる為、YRの極端な上昇が緩和さ
れるのである。In particular, V is an element effective for improving the strength without extremely increasing YR by the complex addition with Mo. That is, if VC is precipitated alone, the carbide size becomes very small, so that the YR extremely increases.
However, when Mo coexists, Mo forms a solid solution in VC and V
Since C has an appropriate size, an extreme increase in YR is alleviated.
【0026】また、Nbを添加すると、圧延時のオース
テナイト組織の回復・再結晶が抑制され、オーステナイ
トからフェライト変態する際のフェライトの核生成サイ
トが増加する為、フェライト結晶粒が微細化し、延性、
靭性が向上する。When Nb is added, the recovery and recrystallization of the austenite structure during rolling are suppressed, and the number of nucleation sites of ferrite during the transformation from austenite to ferrite is increased.
The toughness is improved.
【0027】以上の効果を発揮させるには、Vを0.0
1%以上、Nbを0.01%以上含有させることが好ま
しい。しかし、V及びNbのいずれの元素も、過剰に添
加すると延性、靭性及び溶接性を阻害する為、夫々上限
を0.1%とする。In order to exert the above effects, V is set to 0.0
It is preferable to contain 1% or more and 0.01% or more of Nb. However, if any of the elements V and Nb are added excessively, ductility, toughness and weldability are impaired, so the upper limits are each set to 0.1%.
【0028】その他の化学成分を定めた理由を以下に述
べる。The reasons for defining the other chemical components are described below.
【0029】C:0.06〜0.14% Cは、引張強度の確保、並びに島状MA組織の生成に必
要な元素である為、0.06%以上、好ましくは0.0
9%以上含有させる。しかし、C含有量が過多になると
溶接性及び延性が劣化するので、0.14%以下、好ま
しくは0.12%以下に抑える。C: 0.06 to 0.14% C is an element necessary for securing the tensile strength and for forming the island-like MA structure, and hence is 0.06% or more, preferably 0.06% or more.
More than 9% is contained. However, if the C content is excessive, the weldability and ductility deteriorate, so that the content is suppressed to 0.14% or less, preferably 0.12% or less.
【0030】Si:0.5%以下(0%を含まない) Siは脱酸に必要な元素であるが、過剰に添加すると溶
接性、HAZ靭性を劣化させるので、0.5%以下、好
ましくは0.3%以下に抑える。Si: 0.5% or less (excluding 0%) Si is an element necessary for deoxidation, but if added excessively, it deteriorates weldability and HAZ toughness. Is suppressed to 0.3% or less.
【0031】Mn:1〜2% Mnは、鋼の焼入性を向上させて強度を確保するのに必
要な元素である為、1%以上、好ましくは1.2%以上
含有させる。Mn: 1-2% Mn is an element necessary for improving the hardenability of the steel and ensuring the strength, so that Mn is contained in an amount of 1% or more, preferably 1.2% or more.
【0032】尚、図4は、Mn含有量を1.5%から
2.3%へ増加させたことを除き、ベース鋼と同じ化学
成分を有する鋼に、前記図1〜3の場合と同じくレペラ
腐食を施して顕微鏡撮影した金属組織写真である。この
図4から、Mnを過剰に添加すると島状MA組織は多数
生成するが、結晶粒径が小さく低YR化が望めないこと
が分かる。またMnの過剰な添加は、靭性、溶接性を劣
化させる要因にもなるので、Mn含有量は2%以下、好
ましくは1.8%以下に抑える。FIG. 4 shows a steel having the same chemical composition as that of the base steel, except that the Mn content was increased from 1.5% to 2.3%, as in FIGS. It is a metallographic photograph which carried out the repeller corrosion and was photographed by the microscope. From FIG. 4, it can be seen that, when Mn is excessively added, a large number of island-like MA structures are formed, but the crystal grain size is small, and it is not possible to reduce the YR. Further, since excessive addition of Mn also causes deterioration of toughness and weldability, the Mn content is suppressed to 2% or less, preferably 1.8% or less.
【0033】Ti:0.001〜0.02% N :0.001〜0.008% Tiは溶接性確保に必要な元素である為、0.001%
以上、好ましくは0.002%以上含有させる。また、
Nは、Tiと高温でTiNを形成し、オーステナイト粒
の粗大化を抑制する為、0.001%以上含有させるこ
とが好ましい。しかし、TiNが過剰に生成されると延
性、靭性が劣化する為、Tiは0.02%以下、好まし
くは0.015%以下に、Nは0.008%以下、好ま
しくは0.006%以下に抑える。Ti: 0.001% to 0.02% N: 0.001% to 0.008% Since Ti is an element necessary for ensuring weldability, 0.001%
The content is preferably at least 0.002%. Also,
In order to form TiN at a high temperature with Ti and to suppress coarsening of austenite grains, N is preferably contained at 0.001% or more. However, since excessive ductility of TiN deteriorates ductility and toughness, Ti is 0.02% or less, preferably 0.015% or less, and N is 0.008% or less, preferably 0.006% or less. To keep.
【0034】Al:0.05%以下(0%を含まない) Alは、脱酸に必要な元素であるが、過剰に添加すると
靭性低下をまねく為、0.05%以下、好ましくは0.
04%以下に抑える。Al: 0.05% or less (excluding 0%) Al is an element necessary for deoxidation, but if added excessively, it causes a decrease in toughness. Therefore, Al is 0.05% or less, preferably 0.1% or less.
Keep it below 04%.
【0035】本発明における必須の元素は以上の通りで
あるが、必要によっては次の様な改善効果を得るため
に、Cu,Ni,Caよりなる群から選ばれる少なくとも
1種を適量含有させることも有効である。The essential elements in the present invention are as described above. If necessary, at least one element selected from the group consisting of Cu, Ni and Ca should be contained in an appropriate amount in order to obtain the following improvement effects. Is also effective.
【0036】Cu:0.5%以下、Ni:0.5%以下 Cu及びNiは、CやMn等と異なりCeqを上げずに強
度を向上させる元素であるので、溶接性の観点からMn
等の代替元素として添加する。しかし、過剰の添加は連
続鋳造時の割れを発生させるため、上限を夫々0.5
%、好ましくはCuを0.3%以下、Niを0.4%以
下に抑える。Cu: 0.5% or less, Ni: 0.5% or less Cu and Ni are elements which improve the strength without increasing Ceq unlike C and Mn.
Is added as an alternative element. However, excessive addition causes cracking during continuous casting, so the upper limit is 0.5
%, Preferably 0.3% or less of Cu and 0.4% or less of Ni.
【0037】Ca:0.005%以下 Caは硫化物の形態を制御し、耐水素誘起割れ性を向上
させる。従って、0.0005%以上含有させることが
望ましい。しかし過剰な添加は、粗大なCaSやCaO
等の介在物を形成して延性、靭性を劣化させる為、0.
005%以下、好ましくは0.004%以下に抑える。Ca: 0.005% or less Ca controls the form of sulfide and improves the resistance to hydrogen-induced cracking. Therefore, it is desirable to contain 0.0005% or more. However, excessive addition may lead to coarse CaS or CaO
In order to deteriorate the ductility and toughness by forming inclusions such as
005% or less, preferably 0.004% or less.
【0038】尚、本発明鋼中に含まれる元素には、上記
説明したものの他、原料、資材、製造設備等の状況によ
って持ち込まれる不可避的不純物も含まれる。また、本
発明の課題達成に悪影響を与えない範囲で、更に他の元
素を積極的に含有させた鋼を使用することも可能であ
る。積極添加が許容される他の元素の例としては、耐H
IC性及び耐SSC性向上の効果を有するMg,Ce,
La,Zr等が挙げられる。The elements contained in the steel of the present invention include, in addition to those described above, unavoidable impurities brought in depending on the conditions of raw materials, materials, production facilities and the like. In addition, it is also possible to use steel containing other elements positively within a range that does not adversely affect the achievement of the object of the present invention. Examples of other elements that can be actively added include H-resistant
Mg, Ce, which has the effect of improving IC properties and SSC resistance
La, Zr and the like.
【0039】次に、本発明者らは、所望のサイズの島状
MA組織を適量得るには、製造時に熱間圧延前の鋳片平
均加熱温度、及び仕上げ圧延後の冷却速度を以下の通り
に制御すればよいことを見出した。尚、本発明は、いか
なる鋳造条件で鋳造された鋼片についても有効であるの
で、特に鋳造条件は特定しない。Next, in order to obtain an appropriate amount of island-like MA structure of a desired size, the present inventors set the average slab heating temperature before hot rolling during production and the cooling rate after finish rolling as follows. It was found that it would be better to control it. Note that the present invention is effective for steel slabs cast under any casting conditions, and thus no particular casting conditions are specified.
【0040】仕上げ圧延後の冷却速度:Ar3点から5
00℃までの冷却速度の制御は、島状MA組織を適切な
形態に形成させる上で極めて重要である。冷却速度が小
さすぎる場合には、島状MA組織が形成されずに擬似パ
ーライト組織或いはベイナイト組織となってしまうた
め、Ar3点から500℃までの平均冷却速度は、0.
3℃/sec以上、好ましくは0.5℃/sec以上とする。Cooling rate after finish rolling: Ar 3 to 5
Controlling the cooling rate to 00 ° C. is extremely important for forming an island-like MA structure in an appropriate form. If the cooling rate is too low, a pseudo pearlite structure or a bainite structure is formed without forming an island-like MA structure. Therefore, the average cooling rate from the Ar 3 point to 500 ° C. is 0.
3 ° C./sec or more, preferably 0.5 ° C./sec or more.
【0041】一方、冷却速度が大きすぎる場合には、上
述の通り材質がバラつく他、フェライト変態開始温度A
r3点が低下する為、フェライトから未変態のオーステ
ナイトへのCの濃縮が抑制されてMA組織が得られなく
なる。従って、Ar3点から500℃までの平均冷却速
度の上限は、3.0℃/sec、好ましくは2.5℃/sec
とする。尚、上記平均冷却速度は、鋼板の場合には板厚
中心での冷却速度をいう。On the other hand, if the cooling rate is too high, the material varies as described above, and the ferrite transformation start temperature A
Since the r 3 point is lowered, the concentration of C from ferrite to untransformed austenite is suppressed, and the MA structure cannot be obtained. Therefore, the upper limit of the average cooling rate from the Ar 3 point to 500 ° C. is 3.0 ° C./sec, preferably 2.5 ° C./sec.
And In the case of a steel sheet, the average cooling rate refers to the cooling rate at the center of the sheet thickness.
【0042】熱間圧延前の鋳片平均加熱温度:前述の様
に加熱温度が低いと、Nb、Vが析出強化元素として有
効に作用し難くなる。従って、Nb、Vを加熱時にオー
ステナイト中に十分固溶させて高いYS及びTSを確保
するには、平均加熱温度を1000℃以上、より好まし
くは1050℃以上とする必要がある。しかし、鋳片の
加熱温度が高すぎてもオーステナイト粒が粗大となる
為、1200℃以下に抑えることが望ましい。Average slab heating temperature before hot rolling: If the heating temperature is low as described above, it becomes difficult for Nb and V to effectively act as precipitation strengthening elements. Therefore, in order to ensure high YS and TS by sufficiently dissolving Nb and V in austenite during heating, it is necessary to set the average heating temperature to 1000 ° C. or higher, more preferably 1050 ° C. or higher. However, even if the heating temperature of the slab is too high, the austenite grains become coarse, so it is desirable to suppress the temperature to 1200 ° C or less.
【0043】[0043]
【実施例】以下、実施例を挙げて本発明をより具体的に
説明するが、本発明はもとより下記実施例によって制限
を受けるものではなく、前・後記の趣旨に適合し得る範
囲で適当に変更を加えて実施することも可能であり、そ
れらはいずれも本発明の技術的範囲に含まれる。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention is not limited thereto. Modifications can be made and implemented, all of which are included in the technical scope of the present invention.
【0044】即ち、以下の実施例では、本発明鋼を最終
形状として鋼板に成形しているが、本発明の規定と同様
の化学成分組成、圧延前の鋳片加熱温度、圧延後の冷却
速度条件を、最終形状の異なる条鋼、線材又は鋼管等へ
適用することも本発明範囲に含まれる。That is, in the following examples, the steel of the present invention is formed into a steel sheet as a final shape. However, the same chemical composition as specified in the present invention, the slab heating temperature before rolling, and the cooling rate after rolling are used. The application of the conditions to a bar, a wire, a steel pipe, or the like having a different final shape is also included in the scope of the present invention.
【0045】実施例 大気溶解炉にて、下記表1に示す化学成分組成を有する
鋼を溶製し、120mm×170mm×320mmの鋳
塊を得た。その後、表2に示す加熱温度で30〜110
分間再加熱し圧延を開始した。圧延は120tから最終
16tまで行い、圧延後の冷却は基本的に放冷を行っ
た。ただし、実験No.27は圧延後に熱処理炉で徐冷
を実施し、実験No.28は水冷を実施した。板厚中心
で測定した冷却速度を表2に併記する。Example Steel having the chemical composition shown in Table 1 below was melted in an air melting furnace to obtain an ingot of 120 mm × 170 mm × 320 mm. Then, at a heating temperature shown in Table 2, 30 to 110
Rolling was started for another minute. The rolling was performed from 120 t to the final 16 t, and the cooling after the rolling was basically allowed to cool. However, in Experiment No. In No. 27, annealing was performed in a heat treatment furnace after rolling. 28 performed water cooling. Table 2 also shows the cooling rates measured at the center of the sheet thickness.
【0046】金属組織観察は、鋼板の圧延方向に垂直な
断面を表面研磨した後に、上述のレペラ腐食を行って島
状MA組織を現出させ、その形態を画像解析ソフトImag
e-Pro Plus(Media Cybernetics社)を用いて解析し
た。In the metallographic observation, the surface of a cross section perpendicular to the rolling direction of the steel sheet was polished, and then the above-described repeller corrosion was performed to reveal an island-like MA structure.
Analysis was performed using e-Pro Plus (Media Cybernetics).
【0047】平均島状MA体積分率は、以下の様にして
求めた。即ち、レペラ腐食にて島状MA組織を現出させ
た後に、16tの板厚の中心〜1/4tの範囲を光学顕
微鏡を用いて倍率400倍で写真撮影し、70×90m
mの写真全体について画像解析を行った。測定は、島状
MAを表す白色の部分のみの面積率を求めた。この様な
要領で測定した3視野についての平均値を平均島状MA
体積分率とした。The average island volume MA volume fraction was determined as follows. That is, after the island-like MA structure was revealed by repeller corrosion, a photograph of the center of the thickness of 16 t to 1/4 t was photographed at a magnification of 400 times using an optical microscope, and 70 × 90 m
Image analysis was performed on the entire m photo. In the measurement, the area ratio of only the white portion representing the island-shaped MA was obtained. The average value for the three visual fields measured in this manner is calculated as the average island-shaped MA.
The volume fraction was used.
【0048】また、平均島状MAサイズは以下の様にし
て求めた。即ち、上記と同様にして写真撮影を行い、画
像解析にて白色の島状MA組織を円換算し、その直径の
平均値を算出した。この様な要領で測定した3視野につ
いての平均値を島状MA組織の平均粒径とした。The average island-like MA size was determined as follows. That is, a photograph was taken in the same manner as described above, and the white island-like MA tissue was converted into a circle by image analysis, and the average value of the diameter was calculated. The average value of the three visual fields measured in such a manner was defined as the average particle size of the island-shaped MA structure.
【0049】機械的特性として、0.5%降伏応力Y
S、引張強度TS、降伏比YR、伸びEL、−20℃で
のシャルピー吸収エネルギーを評価し、YSが480N
/mm 2以上、YRが80%以下、伸び35%以上、−
20℃でのシャルピー吸収エネルギーが190以上の全
てを満たす場合を合格とした。その結果を表2に示す。As a mechanical property, a 0.5% yield stress Y
S, tensile strength TS, yield ratio YR, elongation EL, at -20 ° C
Of Charpy absorbed energy of 480N
/ Mm TwoAs described above, YR is 80% or less, elongation is 35% or more,-
Charpy absorbed energy at 20 ° C is more than 190
Passed when satisfying all. Table 2 shows the results.
【0050】尚、引張試験はAPI(米国石油協会)規
格のラインパイプ用鋼の試験方法で行った。ゲージ長は
50mm、試験片は全厚さのままで平行部の幅は38m
mとした。また、シャルピー試験に用いたフルサイズ試
験片は、板中心部より採取し、2mmVノッチを破面が
板面に垂直、且つ圧延方向に平行になるように入れた。The tensile test was carried out according to the API (American Petroleum Institute) standard line pipe steel test method. The gauge length is 50mm, the width of the parallel part is 38m while the test piece remains the full thickness
m. The full-size test piece used for the Charpy test was collected from the center of the plate, and a 2 mm V notch was inserted so that the fracture surface was perpendicular to the plate surface and parallel to the rolling direction.
【0051】[0051]
【表1】 [Table 1]
【0052】[0052]
【表2】 [Table 2]
【0053】表1及び表2における実験No.1〜12
は、請求項1の規定要件を全て満たしている為、いずれ
も480N/mm2以上の高いYSを維持したまま、80
%以下の低YRを実現しており、更に伸びELが35%
以上の優れた延性、及び−20℃でのシャルピー吸収エ
ネルギーが190J以上の優れた低温靭性も満足してい
ることが分かる。Experiment Nos. In Tables 1 and 2 1-12
Satisfies all of the requirements of claim 1, so that all of them satisfy the requirement of 480 N / mm 2 or more while maintaining high YS.
% And low elongation EL of 35%
It can be seen that the above excellent ductility and the excellent low-temperature toughness having a Charpy absorbed energy at −20 ° C. of 190 J or more are also satisfied.
【0054】これに対して、実験No.13〜28は、
請求項1で定める要件のいずれかを欠き、下記の如く引
張強度、YR、伸び、又は靱性のいずれかが不良で本発
明の目的を達成することができない。On the other hand, in Experiment No. 13-28
It lacks any of the requirements defined in claim 1 and fails to achieve the object of the present invention due to poor tensile strength, YR, elongation, or toughness as described below.
【0055】即ち、実験No.13はMoが添加されて
おらず、また、実験No.21はMo含有量が規定量に
及ばず不足している為、いずれも島状MA組織が十分に
生成せずYRが高くなった。That is, in Experiment No. No. 13 had no Mo added thereto, and the experiment no. In No. 21, since the Mo content was below the specified amount and was insufficient, in any case, the island-like MA structure was not sufficiently formed, and the YR was high.
【0056】実験No.14は、Nbを添加していない
為にフェライト結晶粒が微細にならず、靭性の劣る結果
となった。実験No.15は、Vを添加していない為に
YSが低くなった。Experiment No. In No. 14, since Nb was not added, the ferrite crystal grains did not become fine, resulting in poor toughness. Experiment No. In No. 15, YS was low because V was not added.
【0057】実験No.16は、Crが過剰に添加され
ている為に、島状MA組織の生成が阻まれYRが高くな
った。また、実験No.17は、Crが過剰に添加され
ている為に、最適なサイズ且つ適正量の平均島状MA組
織が生成されず、YR値が高く、伸びは小さく、更にシ
ャルピー吸収エネルギーが小さく靭性の劣る結果となっ
た。Experiment No. In No. 16, the excessive addition of Cr prevented the formation of the island-like MA structure and increased the YR. Experiment No. No. 17 shows that an optimum size and an appropriate amount of an average island-like MA structure were not generated due to excessive addition of Cr, the YR value was high, the elongation was small, the Charpy absorbed energy was small, and the toughness was poor. It became.
【0058】実験No.18は、C含有量が過剰である
為、伸びが小さく、またシャルピー吸収エネルギーも小
さくなり延性及び溶接性の劣る結果となった。実験N
o.19は、C含有量が規定範囲に及ばず不足している
為、島状MA組織が十分に成長せずサイズの小さいもの
となり、YRが高くなった。Experiment No. In No. 18, since the C content was excessive, the elongation was small and the Charpy absorbed energy was small, resulting in poor ductility and poor weldability. Experiment N
o. In No. 19, since the C content was short of the specified range and was insufficient, the island-like MA structure did not grow sufficiently and was small in size, and the YR was high.
【0059】実験No.20は、Moが過剰に添加さ
れ、島状MA組織が規定量を超えて生成している為に、
伸びは小さく、更にシャルピー吸収エネルギーが小さく
靭性の劣る結果となった。Experiment No. In the case of No. 20, since Mo was added in excess and the insular MA structure was generated in excess of the specified amount,
The elongation was small and the Charpy absorbed energy was small, resulting in poor toughness.
【0060】実験No.22はV及びNbの含有量が、
実験No.23はV含有量が規定含有量に及ばず不足し
ており、YSの低いものとなった。実験No.24はV
が過剰に、実験No.25はV及びNbのいずれもが過
剰に添加されている為、低い降伏比が得られない結果と
なった。Experiment No. 22 has V and Nb contents,
Experiment No. In No. 23, the V content was insufficient to reach the specified content and was insufficient, resulting in a low YS. Experiment No. 24 is V
Is excessive, and the experiment No. In No. 25, since both V and Nb were excessively added, a low yield ratio was not obtained.
【0061】実験No.26は、Ti及びNがいずれも
過剰に添加されている為に、TiNが多く生成され、シ
ャルピー吸収エネルギーが小さく溶接性の劣る結果とな
った。Experiment No. In No. 26, since both Ti and N were excessively added, a large amount of TiN was generated, and the Charpy absorbed energy was small, resulting in poor weldability.
【0062】実験No.27は仕上げ圧延後の冷却速度
が小さすぎる為に、また、実験No.28は仕上げ圧延
後の冷却速度が大きすぎる為に、いずれも島状MA組織
が十分に形成されず、YRが高くなった。Experiment No. In Test No. 27, the cooling rate after finish rolling was too low. In No. 28, since the cooling rate after the finish rolling was too high, the island-like MA structure was not sufficiently formed, and the YR was high.
【0063】[0063]
【発明の効果】本発明は以上の様に構成されており、上
記の通り化学成分を特定した鋼において、平均粒径が1
〜4μmの島状MA組織を、体積分率で0.5〜3.0
%占める様にすることで、480N/mm2以上の高YS
を維持したまま降伏比を80%以下に低減し、更に伸び
ELが35%以上、シャルピー吸収エネルギーが190
J以上の優れた延性及び靭性を併せ持つ画期的な鋼を提
供し得ることとなった。The present invention is constituted as described above. In the steel whose chemical composition is specified as described above, the average particle size is 1%.
44 μm insular MA tissue was obtained at a volume fraction of 0.5 to 3.0.
%, The high YS of 480 N / mm 2 or more
The yield ratio is reduced to 80% or less while maintaining the elongation, the elongation EL is 35% or more, and the Charpy absorbed energy is 190%.
It has become possible to provide an epoch-making steel having both excellent ductility and toughness of J or more.
【0064】こうした低降伏比高張力鋼の実現によっ
て、過酷な使用条件に耐え得るラインパイプ用鋼板、建
築用鋼板等を提供し得ることとなった。The realization of such a low-yield-ratio high-strength steel has made it possible to provide a steel sheet for line pipes, a steel sheet for construction, and the like that can withstand severe use conditions.
【図1】C:0.1%、Mn:1.5%、V:0.05
%、Nb:0.025%を含有する鋼(ベース鋼)の金
属組織を示す写真である。FIG. 1 C: 0.1%, Mn: 1.5%, V: 0.05
5 is a photograph showing a metal structure of a steel (base steel) containing% and Nb: 0.025%.
【図2】ベース鋼の上記化学成分に加えてMoを0.2
5%含有させた鋼の金属組織を示す写真である。FIG. 2 shows the addition of Mo to 0.2 in addition to the above chemical components of the base steel.
It is a photograph which shows the metallographic structure of steel which contained 5%.
【図3】ベース鋼の上記化学成分に加えてMoを0.2
%及びCrを0.15%含有させた鋼の金属組織を示す
写真である。FIG. 3 In addition to the above chemical components of the base steel,
5 is a photograph showing a metal structure of steel containing 0.15% and 0.15% of Cr.
【図4】Mn含有量を1.5%から2.3%に増加させ
たことを除き、ベース鋼と同じ化学成分を有する鋼の金
属組織を示す写真である。FIG. 4 is a photograph showing the metallographic structure of steel having the same chemical composition as the base steel, except that the Mn content was increased from 1.5% to 2.3%.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 川野 晴弥 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 Fターム(参考) 4K032 AA01 AA04 AA05 AA08 AA11 AA14 AA16 AA19 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 BA01 CA02 CD01 CD02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Haruya Kawano 1 Kanazawacho, Kakogawa-shi, Hyogo Prefecture Kobe Steel Works Kakogawa Works F-term (reference) 4K032 AA01 AA04 AA05 AA08 AA11 AA14 AA16 AA19 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 BA01 CA02 CD01 CD02
Claims (4)
6〜0.14%、Si:0.5%以下、Mn:1〜2
%、Cr:0.03%以下(0%を含む)、Mo:0.
05〜0.3%、V :0.01〜0.1%、Nb:
0.01〜0.1%、Ti:0.001〜0.02%、
N :0.001〜0.008%、Al:0.05%以
下を満たす鋼であって、島状MA組織が体積分率で0.
5〜3.0%を占め、且つ島状MA組織の平均粒径が1
〜4μmであることを特徴とする低降伏比高張力非調質
鋼。1. C: 0.0% by mass (hereinafter the same)
6-0.14%, Si: 0.5% or less, Mn: 1-2
%, Cr: 0.03% or less (including 0%), Mo: 0.
05 to 0.3%, V: 0.01 to 0.1%, Nb:
0.01-0.1%, Ti: 0.001-0.02%,
N: 0.001% to 0.008% and Al: 0.05% or less, wherein the island-like MA structure has a volume fraction of 0.1%.
5 to 3.0%, and the average particle size of the island-like MA structure is 1
Low yield ratio, high tensile strength non-heat treated steel characterized by having a thickness of up to 4 μm.
下、Ni:0.5%以下、Ca:0.005%以下より
なる群から選択される少なくとも1種の元素を含むもの
である請求項1に記載の低降伏比高張力非調質鋼。2. The method according to claim 1, further comprising at least one element selected from the group consisting of Cu: 0.5% or less, Ni: 0.5% or less, and Ca: 0.005% or less. Item 4. A low-yield-ratio high-strength non-heat treated steel according to item 1.
非調質鋼を製造する方法であって、仕上圧延後の冷却過
程において、Ar3点から500℃までの平均冷却速度
が0.3〜3℃/secであることを特徴とする低降伏比
高張力非調質鋼の製造方法。3. The method for producing a low-yield-ratio high-strength non-heat-treated steel according to claim 1 or 2, wherein an average cooling rate from the Ar 3 point to 500 ° C. in a cooling process after finish rolling is performed. A method for producing a low-yield-ratio high-strength non-heat treated steel, which is at a rate of 0.3 to 3 ° C / sec.
0分間以上保持した上で熱間圧延に供する請求項3に記
載の低降伏比高張力非調質鋼の製造方法。4. A slab is heated at an average heating temperature of at least 1000 ° C.
The method for producing a low-yield-ratio high-strength non-heat treated steel according to claim 3, wherein the steel is subjected to hot rolling after being held for 0 minutes or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000037164A JP2001226737A (en) | 2000-02-15 | 2000-02-15 | Low yield ratio and high tensile strength non-heattrated steel and its producing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000037164A JP2001226737A (en) | 2000-02-15 | 2000-02-15 | Low yield ratio and high tensile strength non-heattrated steel and its producing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001226737A true JP2001226737A (en) | 2001-08-21 |
Family
ID=18561092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000037164A Withdrawn JP2001226737A (en) | 2000-02-15 | 2000-02-15 | Low yield ratio and high tensile strength non-heattrated steel and its producing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001226737A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008169440A (en) * | 2007-01-12 | 2008-07-24 | Jfe Steel Kk | Thin-walled low-yield-ratio high-tensile steel plate and method for producing the same |
CN100463993C (en) * | 2007-02-28 | 2009-02-25 | 天津钢管集团股份有限公司 | Low carbon equivalent micro-alloy steel pipe and on-line normalizing process thereof |
KR100961379B1 (en) | 2002-12-27 | 2010-06-07 | 주식회사 포스코 | Manufacturing method of high yield ratio type high strength steel sheet |
JP2014523478A (en) * | 2011-06-07 | 2014-09-11 | アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ | Cold-rolled steel sheet coated with zinc or zinc alloy, method for producing the same, and use of such steel sheet |
-
2000
- 2000-02-15 JP JP2000037164A patent/JP2001226737A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100961379B1 (en) | 2002-12-27 | 2010-06-07 | 주식회사 포스코 | Manufacturing method of high yield ratio type high strength steel sheet |
JP2008169440A (en) * | 2007-01-12 | 2008-07-24 | Jfe Steel Kk | Thin-walled low-yield-ratio high-tensile steel plate and method for producing the same |
CN100463993C (en) * | 2007-02-28 | 2009-02-25 | 天津钢管集团股份有限公司 | Low carbon equivalent micro-alloy steel pipe and on-line normalizing process thereof |
JP2014523478A (en) * | 2011-06-07 | 2014-09-11 | アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ | Cold-rolled steel sheet coated with zinc or zinc alloy, method for producing the same, and use of such steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3990724B2 (en) | High strength secondary hardened steel with excellent toughness and weldability | |
JP5029749B2 (en) | High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method | |
CA2295582C (en) | Ultra-high strength, weldable steels with excellent ultra-low temperature toughness | |
JP5233142B2 (en) | High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same | |
AU736078B2 (en) | Ultra-high strength, weldable, boron-containing steels with superior toughness | |
AU736152B2 (en) | Ultra-high strength, weldable, essentially boron-free steels with superior toughness | |
CN105378132B (en) | High-carbon hot-rolled steel sheet and its manufacture method | |
KR101624439B1 (en) | High-strength steel sheet and method for producing the same | |
JP2003138345A (en) | High strength and high ductility steel and steel sheet having excellent local ductility, and method of producing the steel sheet | |
JP2008208454A (en) | High-strength steel excellent in delayed fracture resistance and its production method | |
JP2005336526A (en) | High strength steel sheet having excellent workability and its production method | |
JP4085826B2 (en) | Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same | |
JP6989606B2 (en) | High-strength steel with excellent fracture initiation and propagation resistance at low temperatures, and its manufacturing method | |
JP4077167B2 (en) | Steel plate with excellent arrest properties and its manufacturing method | |
JP2020059881A (en) | Steel material and manufacturing method thereof | |
JP5139015B2 (en) | Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same | |
JP4506434B2 (en) | High strength steel plate with excellent rigidity and method for producing the same | |
JP3417878B2 (en) | High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method | |
JP7048378B2 (en) | High strength and high ductility steel sheet | |
JP4405026B2 (en) | Method for producing high-tensile strength steel with fine grain | |
JP4661002B2 (en) | High tensile hot-rolled steel sheet excellent in bake hardenability and ductility and method for producing the same | |
JP3242303B2 (en) | High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same | |
JP2002003983A (en) | Low yield ratio high strength steel excellent in weldability and low temperature toughness and method for producing the same | |
JP4284258B2 (en) | Steel sheet with low yield ratio and excellent toughness and welded joint toughness and its manufacturing method | |
JP2001226737A (en) | Low yield ratio and high tensile strength non-heattrated steel and its producing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070501 |