[go: up one dir, main page]

JP2001226259A - Method for preparing a pharmaceutical preparation with oxidative deterioration prevented, method for preparing a food with oxidative deterioration prevented - Google Patents

Method for preparing a pharmaceutical preparation with oxidative deterioration prevented, method for preparing a food with oxidative deterioration prevented

Info

Publication number
JP2001226259A
JP2001226259A JP2000039982A JP2000039982A JP2001226259A JP 2001226259 A JP2001226259 A JP 2001226259A JP 2000039982 A JP2000039982 A JP 2000039982A JP 2000039982 A JP2000039982 A JP 2000039982A JP 2001226259 A JP2001226259 A JP 2001226259A
Authority
JP
Japan
Prior art keywords
preparing
drug
bilirubin
lipid
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000039982A
Other languages
Japanese (ja)
Inventor
Makoto Suematsu
誠 末松
Hidetoshi Tsuchida
英俊 土田
Shinji Takeoka
真司 武岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2000039982A priority Critical patent/JP2001226259A/en
Publication of JP2001226259A publication Critical patent/JP2001226259A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicinal Preparation (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop an effective drug delivery system for preventing the oxidation of easily oxidizable drugs or nutritive substances. SOLUTION: A method for preparing a pharmacological preparation where the objective drug is prevented from oxedative deterioration is imparted by encapsulating the objective drug in lipid vesicles and by combining it with bilirubin; besides, a method for preparing food where the objective nutritive substance is prevented from oxidative deterioration is imparted by encapsulating the objective nutritive substance in lipid vesicles and by combining it with bilirubin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、目的薬剤を封入し
た脂質小胞体にビリルビンを結合し、当該目的薬剤の酸
化的劣化を防止した、薬学的製剤の調製方法に関する。
また、本発明は、目的栄養物質を封入した脂質小胞体に
ビリルビンを結合し、当該目的栄養物質の酸化的劣化を
防止した、食品の調製方法に関する。更に、本発明は油
滴と上記目的薬剤又は目的栄養物質とを懸濁させて形成
したリピッドマイクロスフェアにビリルビンを溶解し
て、当該目的薬剤又は当該目的栄養物質の酸化的劣化を
防止した、薬学的製剤又は食品を調製する方法に関す
る。
The present invention relates to a method for preparing a pharmaceutical preparation in which bilirubin is bound to a lipid vesicle encapsulating a target drug, thereby preventing the target drug from oxidative deterioration.
The present invention also relates to a method for preparing a food, in which bilirubin is bound to a lipid vesicle enclosing a target nutrient substance to prevent oxidative deterioration of the target nutrient substance. Further, the present invention provides a pharmaceutical preparation in which bilirubin is dissolved in lipid microspheres formed by suspending oil droplets and the above-mentioned target drug or nutrient substance to prevent oxidative deterioration of the target drug or nutrient substance. A method for preparing a pharmaceutical formulation or a food.

【0002】[0002]

【従来の技術】多くの薬剤又は栄養剤において、酸化に
よる劣化は大きな問題である。特に、本質的に酸化がク
リティカルである薬剤又は栄養剤においては、切実な問
題となる。酸化による劣化が起き易い薬剤又は栄養剤の
調製にあたっては、適切なドラッグデリバリーシステム
を採用することにより、劣化を防止する必要がある。人
工血液等の酸素運搬体や核酸医薬は、生体内で極めて迅
速に酸化的劣化を受ける性質がある。リポソームはその
様な目的で用いられているドラッグデリバリーシステム
の一つであり、人工血液等の酸素運搬体や核酸医薬の担
体として多用されている。この様な物質の酸化的劣化を
防止する手段として、リポソーム内にスーパーオキサイ
ドジスムターゼやカタラーゼ等の抗酸化酵素を封入する
という手段が用いられている。
BACKGROUND OF THE INVENTION For many drugs or nutrients, oxidative degradation is a major problem. This is particularly acute for drugs or nutrients where oxidation is critical in nature. In preparing a drug or nutrient that is susceptible to degradation due to oxidation, it is necessary to prevent degradation by employing an appropriate drug delivery system. Oxygen carriers such as artificial blood and nucleic acid drugs have the property of undergoing oxidative degradation very quickly in vivo. Liposomes are one of the drug delivery systems used for such purposes, and are widely used as oxygen carriers such as artificial blood and carriers for nucleic acid drugs. As means for preventing such substances from being oxidatively degraded, means for encapsulating an antioxidant enzyme such as superoxide dismutase or catalase in a liposome is used.

【0003】[0003]

【発明が解決しようとする課題】しかし抗酸化酵素を用
いた方法は、高分子量の蛋白質を用いているために抗原
性を有するという問題があり、消去できる酸素種も特異
であるため、生体において薬剤酸化に関与する酸素種の
多様性に対応できない。またコストも高価であるため
に、有効な手段とはなっていない。そこで、抗原性の問
題がなく、コストも低価であり、かつ調製方法が容易で
ある、薬剤や栄養剤の酸化を抑制する方法が求められて
いた。
However, the method using an antioxidant enzyme has a problem of having antigenicity due to the use of a high-molecular-weight protein, and also has a unique oxygen species that can be eliminated. Inability to accommodate the diversity of oxygen species involved in drug oxidation. In addition, the cost is high, so that it is not an effective means. Therefore, there has been a demand for a method for suppressing the oxidation of drugs and nutrients, which has no problem of antigenicity, is inexpensive, and easy to prepare.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは生
体内で作られる抗酸化物質であり、コストも低価である
ビリルビンに注目した。少量のビリルビンを膜に吸着さ
せることにより局所の酸化反応を抑制することが可能で
あり、低分子物質であるから抗原性の問題もない。ビリ
ルビンとリポソーム等の脂質小胞体を混合して攪拌する
ことにより、容易にビリルビンが結合したリポソームを
調製することが可能である。その様にして調製したビリ
ルビン結合リポソーム内にヘモグロビンを封入すること
により、内毒素を投与した時に生体内で過剰生産され
る、一酸化窒素(NO)によるヘモグロビンの酸化が抑
制された。即ち、ヘモグロビン分子中のFe2+がFe3+
に変換された物質である、メトヘモグロビンの生成(以
下、メト化と称する)の抑制が認められた。メトヘモグ
ロビンは劣化したヘモグロビンであり、鉄が酸化されて
いるために酸素運搬能を有しない。
Accordingly, the present inventors have focused on bilirubin, which is an antioxidant produced in vivo and has a low cost. By adsorbing a small amount of bilirubin on the membrane, it is possible to suppress the local oxidation reaction, and since it is a low molecular substance, there is no problem of antigenicity. By mixing and stirring bilirubin and lipid vesicles such as liposomes, it is possible to easily prepare bilirubin-bound liposomes. By encapsulating hemoglobin in the bilirubin-binding liposome thus prepared, the oxidation of hemoglobin by nitric oxide (NO), which is overproduced in vivo when an endotoxin is administered, was suppressed. That is, Fe 2+ in the hemoglobin molecule is changed to Fe 3+
Inhibition of the production of methemoglobin (hereinafter, referred to as methemoglobin), which is a substance converted into methemoglobin, was observed. Methemoglobin is degraded hemoglobin and has no oxygen carrying capacity due to the oxidation of iron.

【0005】ビリルビンの抗酸化作用は古くから知られ
ており、その非結合型は脂溶性が高いために、脂質二重
膜に高い親和性を持つことが報告されている(Stocker
R, Glazer AN, Ames BN: Antioxidant activity of alb
umin-bound bilirubin. Proc.Natl.Acad.Sci.USA; 84:
5918-5922 )。しかし、実際にビリルビンを膜に結合さ
せることにより、リポソーム内の物質が、生体内での酸
化的劣化を防止する事を示した報告はない。
[0005] The antioxidant action of bilirubin has been known for a long time, and it has been reported that its unbound form has a high affinity for lipid bilayer membranes due to its high lipophilicity (Stocker).
R, Glazer AN, Ames BN: Antioxidant activity of alb
umin-bound bilirubin.Proc.Natl.Acad.Sci.USA; 84:
5918-5922). However, there is no report showing that the substance in the liposome prevents oxidative degradation in vivo by actually binding bilirubin to the membrane.

【0006】ビリルビンは、前記の抗酸化酵素と比較し
て、コストが非常に安価であり入手も容易である、とい
う利点を有する。また、抗酸化酵素は特定の種の活性酸
素しか消去する能力を有さないが、ビリルビンはスーパ
ーオキシド、ヒドロキシラジカル、脂質ヒドロペルオキ
シドラジカル、一酸化窒素ラジカル、1重項酸素等、多
種の活性酸素種に有効であるという利点を有する。
[0006] Bilirubin has the advantage of being very inexpensive and easy to obtain, as compared to the aforementioned antioxidant enzymes. In addition, antioxidant enzymes have the ability to scavenge only certain types of active oxygen, whereas bilirubin has many types of active oxygen, such as superoxide, hydroxyl radical, lipid hydroperoxide radical, nitric oxide radical, and singlet oxygen. It has the advantage of being effective on seeds.

【0007】また、本発明のビリルビンを用いた抗酸化
作用は、リポソーム等の小胞体を用いたドラッグデリバ
リーシステムのみならず、リピッドマイクロスフェアの
様な懸濁液系のドラッグデリバリーシステムにおいても
適用することができる。
The antioxidant effect using bilirubin of the present invention is applied not only to a drug delivery system using vesicles such as liposomes, but also to a suspension drug delivery system such as lipid microspheres. be able to.

【0008】[0008]

【発明の実施の形態】本発明は、酸化的劣化を受けやす
い物質を封入した脂質小胞体をビリルビンで処理を行う
ことにより、酸化的劣化を防止する方法である。即ち、
脂質小胞体内に目的薬剤を封入して薬剤封入脂質小胞体
を調製し、薬剤封入脂質小胞体にビリルビンを結合さ
せ、ビリルビン結合薬剤封入脂質小胞体を調製する過程
よりなる、薬学的製剤を調製する方法である。本発明の
方法により目的薬剤の酸化的劣化を防止することが可能
である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a method for preventing oxidative deterioration by treating lipid vesicles containing a substance susceptible to oxidative deterioration with bilirubin. That is,
Preparation of a pharmaceutical preparation comprising the steps of preparing a drug-encapsulated lipid vesicle by encapsulating a target drug in a lipid vesicle, binding bilirubin to the drug-encapsulated lipid vesicle, and preparing a bilirubin-bound drug-encapsulated lipid vesicle How to The method of the present invention makes it possible to prevent oxidative deterioration of a target drug.

【0009】本発明において、前記目的薬剤として、ヘ
モグロビン又は人工ヘム錯体である人工血液、核酸医薬
若しくはプロスタグランジンが挙げられる。また、本発
明において、前記の脂質小胞体として、リポソームやリ
ピッドマイクロカプセルを用いることが可能である。こ
こで使用するリポソームやリピッドマイクロカプセル
は、本技術分野で一般的に用いられている方法により、
調製をすることができる。
In the present invention, the target drug includes hemoglobin or artificial blood which is an artificial heme complex, a nucleic acid drug or prostaglandin. In the present invention, a liposome or a lipid microcapsule can be used as the lipid vesicle. The liposomes and lipid microcapsules used here are obtained by a method generally used in the art.
Preparations can be made.

【0010】本発明において、脂質小胞体の替わりにリ
ピッドマイクロスフェアの様な懸濁液の系を用いること
も可能である。本発明は、油滴と目的薬剤とを懸濁させ
て薬剤懸濁リピッドマイクロスフェアを調製し、薬剤懸
濁リピッドマイクロスフェアにビリルビンを溶解し、ビ
リルビン添加薬剤懸濁リピッドマイクロスフェアを調製
する過程よりなる、薬学的製剤を調製する方法である。
本方法により目的薬剤の酸化的劣化を防止することが可
能である。ここで使用するリピッドマイクロスフェア
は、本技術分野で一般的に用いられている方法により、
調製をすることができる。
In the present invention, it is also possible to use a suspension system such as lipid microspheres instead of lipid vesicles. The present invention provides a method for preparing a drug-suspended lipid microsphere by suspending an oil droplet and a target drug, dissolving bilirubin in the drug-suspended lipid microsphere, and preparing a bilirubin-added drug-suspended lipid microsphere. A method for preparing a pharmaceutical formulation.
By this method, it is possible to prevent oxidative deterioration of the target drug. The lipid microsphere used here is obtained by a method generally used in this technical field.
Preparations can be made.

【0011】本発明の方法は、薬剤のみならす、食品に
適用することが可能である。即ち、ビリルビンを脂質小
胞体に結合させることにより、ビリルビン結合脂質小胞
体を調製し、当該ビリルビン結合脂質小胞体内に目的栄
養物質を封入する過程よりなる、食品を調製する方法で
ある。本方法により当該目的栄養物質の酸化的劣化を防
止することが可能である。
[0011] The method of the present invention can be applied to foods that are used only for drugs. That is, this is a method for preparing a food, comprising preparing bilirubin-bound lipid vesicles by binding bilirubin to lipid vesicles, and enclosing the target nutrient substance in the bilirubin-bound lipid vesicles. By this method, it is possible to prevent oxidative deterioration of the target nutrient.

【0012】本発明において、前記目的栄養物質とし
て、レチノイド又はカロチンであるビタミンが挙げられ
る。また、本発明において、前記の脂質小胞体として、
リポソームやリピッドマイクロカプセルを用いることが
可能である。また上述した様に、脂質小胞体の替わりに
リピッドマイクロスフェアの様な懸濁液の系を用いるこ
とも可能である。
In the present invention, the target nutrient includes vitamins which are retinoids or carotene. Further, in the present invention, as the lipid vesicle,
Liposomes and lipid microcapsules can be used. As described above, it is also possible to use a suspension system such as lipid microspheres instead of lipid vesicles.

【0013】本発明の方法により調製された薬学的製剤
及び食品も、本発明の範囲内である。以下の実施例によ
り本発明を説明するが、実施例は本発明の範囲を限定す
るものではない。
[0013] Pharmaceutical preparations and foods prepared by the method of the present invention are also within the scope of the present invention. The following examples illustrate the invention, but do not limit the scope of the invention.

【0014】[0014]

【実施例】(敗血症モデルの作成)NOによるヘモグロ
ビンのメト化を生体内で検討するために、NOを大量に
発生すると思われる、ラットの敗血症のモデルを作成し
た。即ち、内毒素(リポポリサッカライド:LPS,大
腸菌内毒素O111B4:シグマ社製)を生理食塩水に
溶解して、終濃度を2mg/mlとし、4mg/kgの
用量をラットに腹腔内注射により投与した。
EXAMPLES (Preparation of Sepsis Model) In order to examine in vivo the formation of hemoglobin by NO, a model of sepsis in rats, which seems to generate NO in large quantities, was prepared. That is, endotoxin (lipopolysaccharide: LPS, Escherichia coli endotoxin O111B4: manufactured by Sigma) is dissolved in physiological saline to a final concentration of 2 mg / ml, and a dose of 4 mg / kg is administered to rats by intraperitoneal injection. did.

【0015】(肝臓の生体外潅流)LPS処理によるN
Oの発生を検討するために、肝臓を潅流して潅流液中の
NO2 - を測定した。NOは分解の速いラジカルである
ために測定は不可能であるので、比較的安定なNOの代
謝産物であるNO2 - の量について測定を行った。即
ち、コントロール及びLPS投与を行ったラットの肝臓
を切除し、30μMのタウロコール酸ナトリウムを添加
したクレブスリンゲル液で、生体外で肝臓を潅流して、
潅流液中のNO2 - を定量した。潅流液は、門脈を通じ
て肝臓に通した。
(Ex vivo perfusion of liver) N by LPS treatment
To study the O of occurrence, NO 2 of perfusate was perfused livers - was measured. Since NO is a radical that decomposes rapidly and cannot be measured, the amount of NO 2 , a metabolite of NO that is relatively stable, was measured. That is, the liver of the rats to which the control and LPS were administered was excised, and the liver was perfused in vitro with a Krebs Ringer solution containing 30 μM sodium taurocholate,
NO of perfusate 2 - it was determined. The perfusate passed through the portal vein to the liver.

【0016】(NO2 - の測定)上述した潅流肝より得
られた静脈潅流液を採取して、NO2 - と2,3−ジア
ミノナフタレンとを反応するため、蛍光によりNO2 -
を定量した。反応により蛍光物質である1−(H)−ナ
フトトリアゾールが生成した。励起光365nmにおけ
る450nmの蛍光を、既報の方法により蛍光分光光度
計で測定した(Misko TP, Schilling RJ, Salvemini D,
Moore WN, Currie MG: A fluorometric assay for the
measurement of nitrite in biological samples.Anal
yt Biochem1993; 21: 11-18. )。この際キャリブレー
ションは、濃度既知のNaNO2 の希釈系列を用いて行
った。
[0016] (NO 2 - measurement) were collected venous perfusate obtained from perfused liver as described above, NO 2 - and for reacting a 2,3-diaminonaphthalene, NO by fluorescence 2 -
Was quantified. The reaction produced 1- (H) -naphthotriazole as a fluorescent substance. The fluorescence at 450 nm at an excitation light of 365 nm was measured by a fluorescence spectrophotometer according to a method already reported (Misko TP, Schilling RJ, Salvemini D,
Moore WN, Currie MG: A fluorometric assay for the
measurement of nitrite in biological samples.Anal
yt Biochem1993; 21: 11-18.). At this time, the calibration was performed using a dilution series of NaNO 2 having a known concentration.

【0017】尚、本検討において、誘導性NO合成酵素
(iNOS)を抑制する作用を有するアミノグアニジン
を用いた系を作成して比較を行った。アミノグアニジン
存在下で蛍光が消滅することは、測定しているNO2 -
が、NOに由来していることを示している。コントロー
ルあるいはLPS処理肝臓を体外潅流し、肝臓の酸素消
費量が安定するまでのあいだ15分間潅流したあと、終
濃度5mMでアミノグアニジンを潅流液中に添加した。
この場合アミノグアニジン投与20分後に静脈潅流液を
採取しNO2 - の測定に供した。
In this study, a system using aminoguanidine having an action of suppressing inducible NO synthase (iNOS) was prepared and compared. The disappearance of the fluorescence in the presence of aminoguanidine indicates that the NO 2
Indicates that it is derived from NO. The control or LPS-treated liver was perfused extracorporeally and perfused for 15 minutes until the oxygen consumption of the liver was stabilized, and aminoguanidine was added to the perfusate at a final concentration of 5 mM.
In this case, the venous perfusate was collected 20 minutes after the administration of aminoguanidine and used for NO 2 measurement.

【0018】LPS処理後6時間の肝臓の潅流液中のN
2 - を測定した結果を、図1に示し、LPSを投与し
ないコントロールと比較を行った。図1において、コン
トロールとLPS処理6時間後における左側(黒色)の
カラムはアミノグアニジンなしの結果を、右側(白い)
のカラムはアミノグアニジン存在下の結果を示す。図1
より、コントロールの肝臓潅流液中にはNO2 - は検出
されなかったが、LPS処理後6時間の群の肝臓潅流液
中には顕著なNO2 - の生成が認められた。LPS処理
後24時間の群においては、NO2 - の生成はやや低下
していた。LPS処理によるNO2 - の生成は、右側の
カラムで見られる様に、アミノグアニジンの存在下でコ
ントロールレベルまで抑制された。よって、iNOSに
由来したNO2 - を測定していることが確認された。
尚、KC(−)で示す肝臓クッパー細胞を除去した群
(LPS処理後6時間)において、差は認められなかっ
た。
N in the liver perfusate 6 hours after LPS treatment
O 2 - the results of measurement of, shown in Figure 1, was compared to a control without administration of LPS. In FIG. 1, the column on the left (black) after 6 hours of LPS treatment with the control shows the results without aminoguanidine, and the column on the right (white).
Column shows the results in the presence of aminoguanidine. FIG.
As a result, NO 2 was not detected in the control liver perfusate, but significant production of NO 2 was observed in the liver perfusate of the group 6 hours after LPS treatment. In the group of 24 hours after LPS treatment, NO 2 - production of was slightly reduced. LPS treatment NO 2 by - product of, as seen in the right column, was inhibited in the presence of aminoguanidine to control levels. Therefore, it was confirmed that NO 2 derived from iNOS was measured.
No difference was observed in the group (6 hours after LPS treatment) from which the liver Kupffer cells indicated by KC (-) were removed.

【0019】(NO合成酵素の誘導)更にNOの生成を
裏付けるために、LPS処理時のiNOSの誘導につい
て検討を行った。LPSを投与後、各時間毎に液体窒素
で凍結させた肝臓組織を破砕し、ホモジェナイザーで処
理した。更にメルカプトエタノールによって蛋白を変性
させたのちウエスタンブロッティングを行い、市販(ア
マシャム社)のiNOSに対する抗体を用いて、抗原の
検出を行った結果を図2に示す。
(Induction of NO Synthase) In order to further support the production of NO, the induction of iNOS during LPS treatment was examined. After LPS administration, the liver tissue frozen with liquid nitrogen was crushed every hour, and treated with a homogenizer. Furthermore, after denaturing the protein with mercaptoethanol, Western blotting was performed, and the result of antigen detection using a commercially available (Amersham) antibody against iNOS is shown in FIG.

【0020】図2において3番目のレーンで見られる様
に、LPS投与6時間後にはiNOSは顕著に誘導され
た。そして5番目のレーンで見られる様に、24時間後
においてもiNOSの発現は持続していた。尚、4番目
のレーンは肝臓のクッパー細胞を除去したサンプルの結
果であるが、iNOSの発現量に差は認められなかっ
た。図1と図2の結果を合わせて考えると、LPS投与
によりNOが生成している事が強く示された。そこで、
その様にして生成したNOによる、HbVのメト化を検
討した。
As can be seen in the third lane in FIG. 2, iNOS was significantly induced 6 hours after LPS administration. And as seen in the fifth lane, iNOS expression was maintained even after 24 hours. The fourth lane is the result of the sample from which the Kupffer cells of the liver were removed, but no difference was observed in the expression level of iNOS. Considering the results of FIG. 1 and FIG. 2 together, it was strongly shown that NO was generated by LPS administration. Therefore,
The formation of HbV by the NO thus generated was examined.

【0021】上述した様に、NOはヘモグロビンの酸化
的劣化の産物であるメトヘモグロビンの生成を促進す
る。リポソームでカプセル化したヘモグロビン小胞体
(HbV)をビリルビンで処理する事が、HbVに含ま
れるヘモグロビンの、NOによるメト化に及ぼす影響を
検討した。HbVは直径の平均が約250nmのリポソ
ームであり、既報の方法に基づいて調製した。HbVの
調製方法は、文献中(Sakai H, Hamada K, Takeoka S,
Nishide H, Tsuchida E: Physical properties ofhemog
lobin vesicles as red cell substitutes. Biotechno
l.prog.1996; 12: 119-125)において詳細に述べられて
いる。
As mentioned above, NO promotes the production of methemoglobin, a product of oxidative degradation of hemoglobin. The effect of treating the hemoglobin endoplasmic reticulum (HbV) encapsulated with liposomes with bilirubin on the metformation of hemoglobin contained in HbV by NO was examined. HbV is a liposome having an average diameter of about 250 nm and was prepared based on a previously reported method. The method for preparing HbV is described in the literature (Sakai H, Hamada K, Takeoka S,
Nishide H, Tsuchida E: Physical properties ofhemog
lobin vesicles as red cell substitutes.Biotechno
l.prog. 1996; 12: 119-125).

【0022】(ビリルビン導入HbVの調製方法)ビリ
ルビンは、水に難溶性であるので、1N NaOHに溶
解させた後、希釈及びpH調整をして、ビリルビン溶液
(1mM、pH7.4 生理食塩水)とした。このビリ
ルビン溶液を、HbV分散液([Hb]=10g/d
L)に対して5μMになるように添加した。更に、10
℃で12時間攪拌した後、超遠心分離で洗浄して、ビリ
ルビン結合HbVを得た。
(Preparation method of bilirubin-introduced HbV) Since bilirubin is hardly soluble in water, it is dissolved in 1N NaOH, then diluted and adjusted for pH to obtain a bilirubin solution (1 mM, pH 7.4 physiological saline). And This bilirubin solution was added to an HbV dispersion ([Hb] = 10 g / d).
L) to 5 μM. Furthermore, 10
After stirring at 12 ° C. for 12 hours, the mixture was washed by ultracentrifugation to obtain bilirubin-bound HbV.

【0023】(敗血症モデルによるメト化に対するビリ
ルビンの影響)LPSを投与した敗血症ショックモデル
のラットに、LPSを投与して6時間後に、HbVを投
与した。ヘモグロビン当量において血液量の10%に相
当する量のHbVを静脈内投与した。HbVは、ヘモグ
ロビン濃度で10g/dlの溶液とし、ラットの体重の
0.6%に当たる量(300gラットで1.8ml)
を、2分間かけて投与した。投与終了直後から2時間毎
に頸動脈から0.4−0.6ml採血を行い、ただちに
遠心してHbVを含む上清を採取し、既報の方法により
HbV内のヘモグロビン総量に対するメトヘモグロビン
の割合(%)を分光学的に測定した。
(Effect of bilirubin on methemoglobin formation by sepsis model) HbV was administered 6 hours after LPS administration to rats in a septic shock model administered LPS. HbV was administered intravenously in an amount equivalent to 10% of the blood volume in hemoglobin equivalent. HbV was prepared as a solution having a hemoglobin concentration of 10 g / dl, and an amount corresponding to 0.6% of the body weight of the rat (1.8 ml for a 300 g rat).
Was administered over 2 minutes. Immediately after the end of the administration, 0.4-0.6 ml of blood was collected from the carotid artery every 2 hours, immediately centrifuged to collect the supernatant containing HbV, and the ratio of methemoglobin to the total amount of hemoglobin in HbV (% ) Was measured spectrophotometrically.

【0024】即ち、HbV中のヘモグロビンのメト化率
は、紫外/可視吸収スペクトルにより算出した。小包体
を界面活性剤で破壊することは困難であり、一般のシア
ノメトヘモグロビン法では測定値に誤差を生じるので、
非破壊法により測定を行った。まず、採血液をヘマトク
リット管に入れて遠心分離し、上澄みにHbVの浮遊液
を得た。約20μlを採取して、生理食塩水4mlに希
釈し、光路超1cmのゴム管で密閉のできるキュベット
に入れた。5分間窒素で通気して脱酸素化すると、デオ
キシヘモグロビンとメトヘモグロビンの2成分系にな
り、両者のソレット帯のλmaxはそれぞれ430nm
と405nmであるので、この吸光度比からメト化率を
算出した。予め100%デオキシヘモグロビンを有する
HbVと100%デオキシヘモグロビンを有するHbV
を調製し、混合比を変化させてスペクトル測定し、検量
線を作成しておいた。検量線の作成法は、文献に詳しく
述べられている(濱田ら、人工血液 vol.3,96-101,199
5)。
That is, the methemoglobin conversion rate in HbV was calculated from an ultraviolet / visible absorption spectrum. Since it is difficult to destroy the parcel with a surfactant, and the general cyanomethemoglobin method causes an error in the measured value,
The measurement was performed by a non-destructive method. First, the collected blood was placed in a hematocrit tube and centrifuged to obtain a suspension of HbV in the supernatant. Approximately 20 μl was collected, diluted in 4 ml of physiological saline, and placed in a cuvette that could be sealed with a rubber tube having a length exceeding 1 cm. When deoxygenated by aeration with nitrogen for 5 minutes, a two-component system consisting of deoxyhemoglobin and methemoglobin is obtained.
And 405 nm, the methation ratio was calculated from the absorbance ratio. HbV with 100% deoxyhemoglobin and HbV with 100% deoxyhemoglobin
Was prepared, the spectrum was measured while changing the mixing ratio, and a calibration curve was prepared. The method of preparing the calibration curve is described in detail in the literature (Hamada et al., Artificial Blood vol. 3, 96-101, 199).
Five).

【0025】メト化率の測定結果を図3に示す。図3に
おいて、○と●とはLPSを投与していないラットの結
果であり、○はビリルビンを結合していないHbVのメ
ト化率、●はビリルビンを結合したHbVのメト化率を
示す。また、□と■とはLPSを投与したラットの結果
であり、□はビリルビンを結合していないHbVのメト
化率、■はビリルビンを結合したHbVのメト化率を示
す。横軸は、HbVを投与してからの時間を示す。
FIG. 3 shows the measurement results of the methation ratio. 3. In FIG. 3, .largecircle. And .circle-solid. Are the results of rats to which LPS was not administered, and .largecircle. Indicates the methionization rate of HbV not binding bilirubin, and .circle-solid. □ and ■ indicate the results of rats to which LPS was administered, □ indicates the methionization rate of bilirubin-bound HbV, and ■ indicates the bilirubin-conjugated HbV methation rate. The horizontal axis shows the time since HbV was administered.

【0026】本敗血症モデルで投与されたHbVは、2
時間でほぼ25%、4時間で70%程度メト化した。即
ち、ショックの病態に本剤を投与しても酸素運搬能のな
いメトヘモグロビンに急速に変換してしまうことが明ら
かになった(□)。一方ビリルビンを膜に結合させたH
bVでは、メト化率が2−4時間で有意に抑制された
(■)。一方、正常ラットにHbVを投与した場合には
6時間でのメト化は約30%であり、ビリルビンを結合
させたものでもメト化率には有為な抑制効果は認められ
なかった。これは、内毒素ショックで特異的に上昇した
NOがヘモグロビンのメト化に重要な役割を果たしてい
る事、ビリルビンはこれによるメト化の促進を抑制でき
ることを示唆している。
HbV administered in the present sepsis model was 2
Almost 25% in time and about 70% in 4 hours. In other words, it was clarified that even if this drug was administered to the pathological condition of shock, it was rapidly converted to methemoglobin having no oxygen carrying ability (□). On the other hand, H with bilirubin bound to the membrane
In bV, the methation rate was significantly suppressed between 2 and 4 hours (■). On the other hand, when HbV was administered to normal rats, the methation in 6 hours was about 30%, and even if bilirubin was bound, no significant inhibitory effect on the methation rate was observed. This suggests that NO specifically increased by endotoxin shock plays an important role in hemoglobin metformation, and that bilirubin can suppress the promotion of metformation by this.

【0027】[0027]

【発明の効果】本発明により、ビリルビンを結合させた
脂質小胞体内に目的薬剤を封入し、当該目的薬剤の酸化
的劣化を防止した、薬学的製剤の調製方法が与えられ
た。また、本発明より、ビリルビンを結合させた脂質小
胞体内に目的栄養物質を封入し、当該目的栄養物質の酸
化的劣化を防止した、食品の調製方法が与えられた。
Industrial Applicability According to the present invention, there is provided a method for preparing a pharmaceutical preparation in which a target drug is encapsulated in a lipid vesicle to which bilirubin is bound, and the oxidative deterioration of the target drug is prevented. Further, the present invention provides a method for preparing a food, in which a target nutrient substance is encapsulated in a lipid vesicle to which bilirubin is bound, and oxidative deterioration of the target nutrient substance is prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、LPSの投与によるNO2 - の生成
を示すグラフである。
FIG. 1 is a graph showing production of NO 2 by administration of LPS.

【図2】 図2は、LPSの投与によるiNOSの誘導
を示す、ウエスタンブロッティングの写真である。
FIG. 2 is a photograph of Western blotting showing induction of iNOS by administration of LPS.

【図3】 図3は、LPSの投与によるHbVのメト化
率の経時変化を、ビリルビン処理の有無で比較したグラ
フである。
FIG. 3 is a graph comparing the change over time of the HbV met-formation rate with LPS administration with and without bilirubin treatment.

フロントページの続き Fターム(参考) 4B018 MD07 MD24 ME06 4C076 AA61 CC14 CC23 CC29 CC40 CC41 CC50 DD63 FF51 Continued on the front page F term (reference) 4B018 MD07 MD24 ME06 4C076 AA61 CC14 CC23 CC29 CC40 CC41 CC50 DD63 FF51

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 脂質小胞体内に目的薬剤を封入して薬剤
封入脂質小胞体を調製し、当該薬剤封入脂質小胞体にビ
リルビンを結合してビリルビン結合薬剤封入脂質小胞体
を調製する過程よりなり、前記目的薬剤の酸化的劣化を
防止することを特徴とする、薬学的製剤を調製する方
法。
The method comprises the steps of: preparing a drug-encapsulated lipid vesicle by encapsulating a target drug in a lipid vesicle; and binding bilirubin to the drug-encapsulated lipid vesicle to prepare a bilirubin-bound drug-encapsulated lipid vesicle. A method for preparing a pharmaceutical preparation, which comprises preventing oxidative deterioration of the target drug.
【請求項2】 前記脂質小胞体が、リポソーム又はリピ
ッドマイクロカプセルである、請求項1記載の薬学的製
剤を調製する方法。
2. The method for preparing a pharmaceutical preparation according to claim 1, wherein the lipid vesicle is a liposome or a lipid microcapsule.
【請求項3】 前記目的薬剤がヘモグロビン又は人工ヘ
ム錯体である人工血液、核酸医薬若しくはプロスタグラ
ンジンである、請求項1記載の薬学的製剤を調製する方
法。
3. The method for preparing a pharmaceutical preparation according to claim 1, wherein the target drug is hemoglobin or artificial blood which is an artificial heme complex, a nucleic acid drug or prostaglandin.
【請求項4】 請求項1記載の方法により調製された、
薬学的製剤。
4. Prepared by the method of claim 1,
Pharmaceutical preparations.
【請求項5】 脂質小胞体、当該脂質小胞体内部に封入
された目的薬剤及び当該脂質小胞体外部に結合したビリ
ルビンにより構成された、薬学的製剤。
5. A pharmaceutical preparation comprising a lipid vesicle, a drug of interest encapsulated inside the lipid vesicle, and bilirubin bound to the outside of the lipid vesicle.
【請求項6】 油滴と目的薬剤とを懸濁させて薬剤懸濁
リピッドマイクロスフェアを調製し、当該薬剤懸濁リピ
ッドマイクロスフェアにビリルビンを溶解してビリルビ
ン添加薬剤懸濁リピッドマイクロスフェアを調製する過
程よりなり、前記目的薬剤の酸化的劣化を防止すること
を特徴とする、薬学的製剤を調製する方法。
6. A drug suspension lipid microsphere is prepared by suspending an oil droplet and a target drug, and bilirubin is dissolved in the drug suspension lipid microsphere to prepare a drug suspension lipid microsphere with bilirubin added. A method for preparing a pharmaceutical preparation, comprising the steps of preventing oxidative deterioration of the target drug.
【請求項7】 前記目的薬剤がヘモグロビン又は人工ヘ
ム錯体である人工血液、核酸医薬若しくはプロスタグラ
ンジンである、請求項6記載の薬学的製剤を調製する方
法。
7. The method for preparing a pharmaceutical preparation according to claim 6, wherein the target drug is hemoglobin or artificial blood which is an artificial heme complex, a nucleic acid drug or prostaglandin.
【請求項8】 請求項6記載の方法により調製された、
薬学的製剤。
8. Prepared by the method of claim 6, wherein
Pharmaceutical preparations.
【請求項9】 脂質小胞体内に目的栄養物質を封入して
栄養物質封入脂質小胞体を調製し、当該栄養物質封入脂
質小胞体にビリルビンを結合してビリルビン結合栄養物
質封入脂質小胞体を調製する過程よりなり、前記目的栄
養物質の酸化的劣化を防止することを特徴とする、食品
を調製する方法。
9. A nutrient substance-encapsulated lipid vesicle is prepared by enclosing a target nutrient substance in a lipid vesicle, and bilirubin is bound to the nutrient substance-encapsulated lipid vesicle to prepare a bilirubin-bound nutrient substance-encapsulated lipid vesicle. A method of preparing a food, comprising preventing the oxidative deterioration of the target nutrient substance.
【請求項10】 前記脂質小胞体が、リポソーム又はリ
ピッドマイクロカプセルである、請求項9記載の食品を
調製する方法。
10. The method of preparing a food according to claim 9, wherein the lipid vesicle is a liposome or a lipid microcapsule.
【請求項11】 前記目的栄養物質がレチノイド又はカ
ロチン等のビタミンである、請求項9記載の食品を調製
する方法。
11. The method for preparing a food according to claim 9, wherein the target nutrient is a vitamin such as retinoid or carotene.
【請求項12】 請求項9記載の方法により調製され
た、食品。
12. A food product prepared by the method of claim 9.
【請求項13】 脂質小胞体、当該脂質小胞体内部に封
入された目的栄養物質及び当該脂質小胞体外部に結合し
たビリルビンにより構成された、食品。
13. A food comprising a lipid vesicle, a target nutrient substance encapsulated in the lipid vesicle, and bilirubin bound to the outside of the lipid vesicle.
【請求項14】 油滴と目的栄養物質とを懸濁させて栄
養物質懸濁リピッドマイクロスフェアを調製し、栄養物
質懸濁リピッドマイクロスフェアにビリルビンを溶解し
てビリルビン添加栄養物質懸濁リピッドマイクロスフェ
アを調製する過程よりなり、前記目的栄養物質の酸化的
劣化を防止することを特徴とする、食品を調製する方
法。
14. A nutrient suspension lipid microsphere prepared by suspending an oil droplet and a target nutrient, and dissolving bilirubin in the nutrient suspension lipid microsphere. A method for preparing a food, comprising preventing oxidative deterioration of the target nutrient substance.
【請求項15】 前記目的栄養物質がレチノイド又はカ
ロチン等のビタミンである、請求項14記載の食品を調
製する方法。
15. The method for preparing a food according to claim 14, wherein the target nutrient is a vitamin such as retinoid or carotene.
【請求項16】 請求項14記載の方法により調製され
た、食品。
16. A food product prepared by the method of claim 14.
JP2000039982A 2000-02-17 2000-02-17 Method for preparing a pharmaceutical preparation with oxidative deterioration prevented, method for preparing a food with oxidative deterioration prevented Pending JP2001226259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000039982A JP2001226259A (en) 2000-02-17 2000-02-17 Method for preparing a pharmaceutical preparation with oxidative deterioration prevented, method for preparing a food with oxidative deterioration prevented

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000039982A JP2001226259A (en) 2000-02-17 2000-02-17 Method for preparing a pharmaceutical preparation with oxidative deterioration prevented, method for preparing a food with oxidative deterioration prevented

Publications (1)

Publication Number Publication Date
JP2001226259A true JP2001226259A (en) 2001-08-21

Family

ID=18563457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000039982A Pending JP2001226259A (en) 2000-02-17 2000-02-17 Method for preparing a pharmaceutical preparation with oxidative deterioration prevented, method for preparing a food with oxidative deterioration prevented

Country Status (1)

Country Link
JP (1) JP2001226259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103005458A (en) * 2012-12-20 2013-04-03 宁波大学 Dunaliella salina teodoresce beta-carotene microcapsule and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103005458A (en) * 2012-12-20 2013-04-03 宁波大学 Dunaliella salina teodoresce beta-carotene microcapsule and preparation method thereof

Similar Documents

Publication Publication Date Title
RU2744659C2 (en) Pharmaceutical composition comprising erythrocytes containing enzyme dependent on pyridoxalphosphate and cofactor thereof
US5789376A (en) Transfusions with stabilized hemoglobin covalently bound to a nitroxide or polymers thereof
Sakai et al. Review of hemoglobin‐vesicles as artificial oxygen carriers
AU2006238917C1 (en) Erythrocytes containing arginine deiminase
TWI377947B (en) A method for the preparation of a high-temperature stable oxygen-carrier-containing pharmaceutical composition and the use thereof
JPH11502846A (en) Compositions and methods for using nitroxides in combination with biocompatible polymers
MXPA04006733A (en) Methods and compositions for oxygen transport comprising a high oyzgen affinity.
JPS62500662A (en) Granular compositions and their use as antibacterial agents
FR2531857A1 (en) INJECTABLE COMPOSITION FOR EXTENDING THE STABILITY AND RETENTION OF COATED PARTICLES INJECTED IN THE BLOOD FLOW OF ANIMALS AND HUMAN BEINGS
CN108815520A (en) A kind of bionical binary synergic nano carrier and the preparation method and application thereof
Yadav et al. Nanovesicular liposome-encapsulated hemoglobin (LEH) prevents multi-organ injuries in a rat model of hemorrhagic shock
JPH11512437A (en) Red blood cells loaded with S-nitrosothiol and uses thereof
CN114699537B (en) A ROS-responsive anticancer drug that improves the efficacy of hypoxia-sensitized PD-1 antibodies
WO2001095930A1 (en) Method of photoreduction of hemoglobin vesicles
Okamoto et al. Poly (2-ethyl-2-oxazoline)-Conjugated hemoglobins as a red blood cell substitute
Kędziora‐Kornatowska et al. Effect of aminoguanidine on lipid peroxidation and activities of antioxidant enzymes in the diabetic kidney
JP2001226259A (en) Method for preparing a pharmaceutical preparation with oxidative deterioration prevented, method for preparing a food with oxidative deterioration prevented
WO2003072130A1 (en) Oxygen carrier system, artificial oxygen carrier and reducing agent
JP6831589B2 (en) Artificial erythrocytes capable of suppressing hemoglobin methylation
CA2383977C (en) Stably preserving oxygen infusion
CN116173233A (en) Nano-preparation, preparation and application of PD-1 targeting loaded curcumin in kidney diseases
JP2002542279A (en) Use of N-acetylcysteine in the manufacture of a medicament suitable for intravenous administration to prevent oxidative stress in dialysis patients
CN116459233A (en) Dual-path energy-inhibiting enzyme-based nano-therapeutic agent and its preparation method and application
EP1576961A1 (en) Pharmaceutical compound containing silymarin and carbopol, production method thereof and use of same as a regenerator of tissue and pancreatic cells with endogenous secretion damaged by diabetes mellitus
JPH02178233A (en) Liposome containing hemoglobin and preparation thereof