[go: up one dir, main page]

JP2001221913A - Fabry-perot filter and ir gas analyzer - Google Patents

Fabry-perot filter and ir gas analyzer

Info

Publication number
JP2001221913A
JP2001221913A JP2000030823A JP2000030823A JP2001221913A JP 2001221913 A JP2001221913 A JP 2001221913A JP 2000030823 A JP2000030823 A JP 2000030823A JP 2000030823 A JP2000030823 A JP 2000030823A JP 2001221913 A JP2001221913 A JP 2001221913A
Authority
JP
Japan
Prior art keywords
mirror
electrode
insulating portion
fabry
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000030823A
Other languages
Japanese (ja)
Inventor
Kentaro Suzuki
健太郎 鈴木
Makoto Noro
誠 野呂
Hitoshi Hara
仁 原
Naoteru Kishi
直輝 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2000030823A priority Critical patent/JP2001221913A/en
Publication of JP2001221913A publication Critical patent/JP2001221913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a Fabry-Perot filter in which a plurality of wavelength can be stably selected. SOLUTION: The filter is equipped with a first mirror disposed on a substrate, a second mirror which is disposed facing the first mirror through a gap and which can be displaced from the first mirror by applying external force, and a stopping means to stop the second mirror and to fix the gap length when the second mirror is displaced by applying external force to make the gap variable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大気中などのガス
濃度を、赤外線を用いて測定する赤外線ガス分析計に使
用される、ファブリペローフィルタに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fabry-Perot filter used in an infrared gas analyzer for measuring a gas concentration in the atmosphere or the like using infrared rays.

【0002】[0002]

【従来の技術】ガス分析においては、ガスの種類によっ
て吸収される赤外線の波長が異なることを利用し、この
吸収量を検出することによりそのガス濃度を測定する、
非分散赤外線(Non−Dispersive Inf
raRed)ガス分析計(以下、NDIRガス分析計と
記す)が使用されている。
2. Description of the Related Art In gas analysis, utilizing the fact that the wavelength of infrared light absorbed differs depending on the type of gas, the concentration of the gas is measured by detecting the amount of absorption.
Non-Dispersive Inf
raRed) gas analyzer (hereinafter referred to as NDIR gas analyzer).

【0003】図5から図7は、従来のNDIRガス分析
計の構成図である。尚、以下においては、赤外線吸収波
長のピークが約4.25μmである二酸化炭素を被測定
ガスとして説明する。
FIGS. 5 to 7 are block diagrams of a conventional NDIR gas analyzer. In the following, carbon dioxide having a peak infrared absorption wavelength of about 4.25 μm will be described as the gas to be measured.

【0004】図5は、単光線2波長比較NDIRガス分
析計で、ガスが供給されるサンプルセル10と、光源1
1と、フィルタ12,13と、赤外線検出器14,15
とからなっている。図8に示すように、二酸化炭素の吸
収特性に合わせたフィルタ12と、参照光として約3.
1μm近傍の波長の赤外線を透過させるフィルタ13で
2波長を選択し、選択された赤外線は、それぞれ赤外線
検出器14,15により検出される。この場合、測定さ
れた参照光の吸収特性との比較によって、光源11の劣
化や、サンプルセル10の汚れ等による出力信号の経時
変化を補正することができる。
FIG. 5 shows a single-light / two-wavelength comparison NDIR gas analyzer in which a gas is supplied to a sample cell 10 and a light source 1.
1, filters 12, 13 and infrared detectors 14, 15
It consists of As shown in FIG. 8, a filter 12 adapted to the absorption characteristics of carbon dioxide and about 3.
Two wavelengths are selected by a filter 13 that transmits infrared light having a wavelength of about 1 μm, and the selected infrared light is detected by infrared detectors 14 and 15, respectively. In this case, by comparing with the measured absorption characteristics of the reference light, it is possible to correct a temporal change of the output signal due to the deterioration of the light source 11, the contamination of the sample cell 10, and the like.

【0005】図6は、単光線2波長比較NDIRガス分
析計で、円盤16に形成された二酸化炭素の吸収特性に
合わせたフィルタ12と、参照光のフィルタ13で2波
長を選択し、フィルタによって選択された赤外線は、そ
れぞれ赤外線検出器14により検出される。この場合、
測定された参照光の吸収特性との比較によって、光源1
1の劣化や、サンプルセル10の汚れ等による出力信号
の経時変化を補正することができる。
FIG. 6 shows a single-light two-wavelength comparison NDIR gas analyzer, in which two wavelengths are selected by a filter 12 adapted to the absorption characteristics of carbon dioxide formed on the disk 16 and a filter 13 of the reference light, and the filters are used. Each of the selected infrared rays is detected by the infrared ray detector 14. in this case,
The light source 1 is compared with the measured absorption characteristics of the reference light.
1 and a change with time of the output signal due to the contamination of the sample cell 10 or the like can be corrected.

【0006】図7は、単光線2波長ファブリペローND
IRガス分析計で、ファブリペローフィルタ17を構成
する2つの平行ミラー(図示しない)間のギャップを可
変とすることにより、被測定ガスの吸収特性に合わせた
波長と参照光の波長との2波長を選択し、選択された赤
外線は、それぞれ赤外線検出器14により検出される。
この場合、測定された参照光の吸収特性との比較によっ
て、光源11の劣化や、サンプルセル10の汚れ等によ
る出力信号の経時変化を補正することができる。
FIG. 7 shows a single-beam two-wavelength Fabry-Perot ND.
By making the gap between two parallel mirrors (not shown) constituting the Fabry-Perot filter 17 variable with the IR gas analyzer, two wavelengths, a wavelength matched to the absorption characteristic of the gas to be measured and a wavelength of the reference light, are provided. Is selected, and the selected infrared rays are respectively detected by the infrared ray detector 14.
In this case, by comparing with the measured absorption characteristics of the reference light, it is possible to correct a temporal change of the output signal due to the deterioration of the light source 11, the contamination of the sample cell 10, and the like.

【0007】[0007]

【発明が解決しようとする課題】しかし、上述のNDI
Rガス分析計においては、フィルタで選択できる赤外線
波長は参照光の波長を含めて2種類だけであった。従っ
て、複数のガスを測定したい場合は、フィルタを増設す
る必要があり、装置が大型化してしまう、コストが増大
してしまうという問題点があった。
However, the above-mentioned NDI
In the R gas analyzer, only two types of infrared wavelengths including the wavelength of the reference light can be selected by the filter. Therefore, when it is desired to measure a plurality of gases, it is necessary to add a filter, and there is a problem that the apparatus becomes large and the cost increases.

【0008】本発明は上述した問題点を解決するために
なされたものであり、複数の波長を安定して選択するこ
とができるファブリペローフィルタを実現することによ
り、小型で低コストに複数のガス濃度を測定可能とする
ガス分析計を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. By realizing a Fabry-Perot filter capable of stably selecting a plurality of wavelengths, a plurality of gases can be reduced in size and cost. It is an object of the present invention to provide a gas analyzer capable of measuring a concentration.

【0009】[0009]

【課題を解決するための手段】本発明の請求項1におい
ては、基板上に設けられた第一ミラーと、この第一ミラ
ーとの間にギャップを有して対向配置され、外力が加え
られることにより前記第一ミラーに対して変位可能に形
成された第二ミラーと、この第二ミラーに外力を加えて
変位させ前記ギャップの長さを可変とした場合に、前記
第二ミラーを静止させ、前記ギャップの長さを固定可能
とする静止手段と、を具備したことを特徴とするファブ
リペローフィルタである。
According to a first aspect of the present invention, an external force is applied to a first mirror provided on a substrate, and the first mirror is opposed to the first mirror with a gap therebetween. The second mirror formed so as to be displaceable with respect to the first mirror, and when the length of the gap is varied by applying an external force to the second mirror to make the length of the gap variable, the second mirror is stopped. , A stationary means for fixing the length of the gap, the Fabry-Perot filter.

【0010】本発明の請求項2においては、基板上に設
けられた第一ミラーと、この第一ミラーと平行に離間さ
れて設けられたアパーチャーと、前記第一ミラー前記ア
パーチャーとの間にそれぞれギャップを有して対向配置
され、前記第一ミラー及び前記アパーチャーに対してそ
れぞれ変位可能に設けられた第二ミラーと、前記第一ミ
ラーに設けられて前記第二ミラーに対向配置され、表面
に第一絶縁部が設けられた第一電極と、前記第二ミラー
に設けられて前記第一電極に対向配置され、表面に第二
絶縁部が設けられた第二電極と、前記アパーチャーに設
けられて前記第二ミラーに対向配置され、表面に第三絶
縁部が設けられた第三電極と、前記第二ミラーに設けら
れて前記第三電極に対向配置され、表面に第四絶縁部が
設けられた第四電極と、を具備し、前記第一電極と前記
第二電極に電位差を与えて前記第二ミラーを変位させた
場合は、前記第一絶縁部と前記第二絶縁部を接触させて
前記第二ミラーを静止させ、前記第三電極と前記第四電
極に電位差を与えて前記第二ミラーを変位させた場合
は、前記第三絶縁部と前記第四絶縁部を接触させて前記
第二ミラーを静止させ、前記第一ミラーと前記第二ミラ
ーとの間のギャップの長さを固定可能としたことを特徴
とするファブリペローフィルタである。
According to a second aspect of the present invention, each of a first mirror provided on the substrate, an aperture provided in parallel with and separated from the first mirror, and the first mirror is provided between the first mirror and the aperture. A second mirror provided to be opposed to the first mirror and the aperture is provided with a gap, and a second mirror provided to be displaceable with respect to the first mirror and the aperture. A first electrode provided with a first insulating portion, a second electrode provided on the second mirror and arranged to face the first electrode, and a second electrode provided with a second insulating portion on a surface, provided on the aperture; A third electrode provided to face the second mirror and provided with a third insulating portion on the surface; and a fourth insulating portion provided on the second mirror and provided to face the third electrode and provided on the surface. The fourth electric When the first mirror and the second electrode are displaced by applying a potential difference between the first electrode and the second electrode, the second mirror is brought into contact with the first insulating portion and the second insulating portion. When the second mirror is displaced by applying a potential difference between the third electrode and the fourth electrode, the third insulating portion and the fourth insulating portion are brought into contact with each other to stop the second mirror. And a length of a gap between the first mirror and the second mirror can be fixed.

【0011】本発明の請求項3においては、基板上に設
けられた第一ミラーと、この第一ミラーとの間にギャッ
プを有して対向配置され、前記第一ミラーに対して変位
可能に設けられた第二ミラーと、前記第一ミラー上に階
段状に設けられた複数の導電部を有する第一電極と、複
数の前記導電部の周囲に設けられ、複数の前記導電部を
互いに絶縁する階段状の第一絶縁部と、前記第二ミラー
に設けられて前記第一電極に対向配置される第二電極
と、前記第二電極の前記第一電極に対向する面に設けら
れた第二絶縁部と、を具備し、複数の前記導電部を切り
換えて前記第二電極との間に電位差を与えることによ
り、階段状の前記第一絶縁部と前記第二絶縁部を接触さ
せて前記第二ミラーを静止させ、前記ギャップの長さを
階段状に固定可能としたことを特徴とするファブリペロ
ーフィルタである。
According to a third aspect of the present invention, a first mirror provided on a substrate and a first mirror are opposed to each other with a gap therebetween, and are displaceable with respect to the first mirror. A second mirror provided, a first electrode having a plurality of conductive portions provided in a step-like manner on the first mirror, and a plurality of conductive portions provided around the plurality of conductive portions to insulate the plurality of conductive portions from each other A step-shaped first insulating portion, a second electrode provided on the second mirror and disposed to face the first electrode, and a second electrode provided on a surface of the second electrode facing the first electrode. By providing a potential difference between the second electrode by switching a plurality of the conductive portions, by contacting the step-shaped first insulating portion and the second insulating portion, comprising: With the second mirror stationary, the length of the gap can be fixed stepwise. It is Fabry-Perot filter according to claim.

【0012】本発明の請求項4においては、前記第一ミ
ラーと前記第二ミラーはシリコンであることを特徴とす
る請求項1から請求項3記載のファブリペローフィルタ
である。
According to a fourth aspect of the present invention, there is provided the Fabry-Perot filter according to any one of the first to third aspects, wherein the first mirror and the second mirror are made of silicon.

【0013】本発明の請求項5においては、前記第一電
極と前記第二電極と前記第三電極と前記第四電極は不純
物濃度の高いシリコンであることを特徴とする請求項1
から請求項4記載のファブリペローフィルタである。
According to a fifth aspect of the present invention, the first electrode, the second electrode, the third electrode, and the fourth electrode are made of silicon having a high impurity concentration.
To a Fabry-Perot filter according to claim 4.

【0014】本発明の請求項6においては、前記第一絶
縁部と前記第二絶縁部と前記第三絶縁部と前記第四絶縁
部は窒化シリコンであることを特徴とする請求項1から
請求項5記載のファブリペローフィルタである。
According to a sixth aspect of the present invention, the first insulating portion, the second insulating portion, the third insulating portion, and the fourth insulating portion are made of silicon nitride. Item 6. A Fabry-Perot filter according to Item 5.

【0015】本発明の請求項7においては、被測定ガス
に赤外線を照射する光源と、この光源からの赤外線を波
長選択的に透過させる波長選択フィルタと、この波長選
択フィルタを透過した赤外線を検出する赤外線検出器と
を有し、前記赤外線検出器の出力に基づいて前記被測定
ガスの濃度を測定する赤外線ガス分析計において、前記
波長選択フィルタとして、請求項1から請求項6記載の
ファブリペローフィルタを使用したことを特徴とするガ
ス分析計である。
According to a seventh aspect of the present invention, there is provided a light source for irradiating an infrared ray to a gas to be measured, a wavelength selection filter for selectively transmitting the infrared ray from the light source, and detecting the infrared ray transmitted through the wavelength selection filter. 7. An infrared gas analyzer for measuring the concentration of the gas to be measured based on the output of the infrared detector, comprising: This is a gas analyzer characterized by using a filter.

【0016】本発明の請求項8においては、前記被測定
ガスは二酸化炭素と水蒸気の2成分を含み、この2成分
の濃度を測定することを特徴とする請求項7記載の赤外
線ガス分析計である。
According to an eighth aspect of the present invention, in the infrared gas analyzer according to the seventh aspect, the measured gas contains two components of carbon dioxide and water vapor, and the concentration of the two components is measured. is there.

【0017】[0017]

【発明の実施の形態】次に、本発明の実施例について図
面を用いて説明する。図1は本発明の第一実施例の構成
を示す断面図である。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing the configuration of the first embodiment of the present invention.

【0018】図1において、シリコンの基板1上に第一
ミラー2が形成され、第二ミラー3は、第一ミラー2上
に形成されたシリコン酸化膜からなる絶縁膜4上に形成
されて第一ミラー2に対向配置されている。そして、第
一ミラー2と第二ミラー3の間には、絶縁膜4をエッチ
ングすることにより絶縁膜4の膜厚に相当するギャップ
h1が形成され、第二ミラー3は第一ミラー2の方向に
変位可能となっている。
In FIG. 1, a first mirror 2 is formed on a silicon substrate 1 and a second mirror 3 is formed on an insulating film 4 made of a silicon oxide film formed on the first mirror 2. It is arranged to face one mirror 2. Then, a gap h1 corresponding to the thickness of the insulating film 4 is formed by etching the insulating film 4 between the first mirror 2 and the second mirror 3, and the second mirror 3 is oriented in the direction of the first mirror 2. Can be displaced.

【0019】アパーチャー5は、第二ミラー3上に形成
された酸化膜からなる絶縁膜6上に形成され、第二ミラ
ー3に対向配置されている。そして、アパーチャー5と
第二ミラー3の間には、絶縁膜6をエッチングすること
により絶縁膜6の膜厚に相当するギャップが形成され、
第二ミラー3はアパーチャー5の方向に変位可能となっ
ている。
The aperture 5 is formed on an insulating film 6 made of an oxide film formed on the second mirror 3 and is arranged to face the second mirror 3. Then, a gap corresponding to the thickness of the insulating film 6 is formed between the aperture 5 and the second mirror 3 by etching the insulating film 6,
The second mirror 3 can be displaced in the direction of the aperture 5.

【0020】第一ミラー2及び第二ミラー3は例えば多
結晶シリコンであり、アパーチャー5は例えばシリコン
である。また、アパーチャー5の中心部には孔7が形成
され、アパーチャー5の表面には赤外線を透過させない
ように金属膜(図示しない)が設けられ、孔7の下方部
は光学的活性領域となっている。
The first mirror 2 and the second mirror 3 are made of, for example, polycrystalline silicon, and the aperture 5 is made of, for example, silicon. A hole 7 is formed in the center of the aperture 5 and a metal film (not shown) is provided on the surface of the aperture 5 so as not to transmit infrared rays. The lower part of the hole 7 is an optically active area. I have.

【0021】第一電極2aは、例えば不純物濃度の高い
多結晶シリコンで、孔7を中心にして左右対称に第一ミ
ラー2上に形成されている。そして、第一電極2aの表
面には、例えば窒化シリコンからなる第一絶縁部2bが
形成されている。
The first electrode 2a is made of, for example, polycrystalline silicon having a high impurity concentration and is formed on the first mirror 2 symmetrically with respect to the hole 7. The first insulating portion 2b made of, for example, silicon nitride is formed on the surface of the first electrode 2a.

【0022】第二電極3aは、例えば不純物濃度の高い
多結晶シリコンで、孔7を中心にして左右対称に、第二
ミラー3の第一電極2aに対向する面に形成されてい
る。そして、第二電極3aの表面には、例えば窒化シリ
コンからなる第二絶縁部3bが形成され、この第二絶縁
部3bは、第一絶縁部2bに対向配置されている。
The second electrode 3a is made of, for example, polycrystalline silicon having a high impurity concentration, and is formed symmetrically about the hole 7 on the surface of the second mirror 3 facing the first electrode 2a. Then, a second insulating portion 3b made of, for example, silicon nitride is formed on the surface of the second electrode 3a, and the second insulating portion 3b is arranged to face the first insulating portion 2b.

【0023】第三電極5aは、例えば不純物濃度の高い
多結晶シリコンで、孔7を中心にして左右対称にアパー
チャー5の第二ミラー3に対向する面に形成されてい
る。そして、第三電極5aの表面には、例えば窒化シリ
コンからなる第三絶縁部5bが形成されている。
The third electrode 5a is made of, for example, polycrystalline silicon having a high impurity concentration, and is formed on the surface of the aperture 5 facing the second mirror 3 symmetrically about the hole 7 in the left-right direction. A third insulating portion 5b made of, for example, silicon nitride is formed on the surface of the third electrode 5a.

【0024】第四電極3cは、例えば不純物濃度の高い
多結晶シリコンで、孔7を中心にして左右対称に第二ミ
ラー3のアパーチャー5に対向する面に形成されてい
る。そして、第四電極3cの表面には、例えば窒化シリ
コンからなる第四絶縁部3dが形成され、この第四絶縁
部3dは、第三絶縁部5bに対向配置されている。
The fourth electrode 3c is made of, for example, polycrystalline silicon having a high impurity concentration, and is formed symmetrically about the hole 7 on the surface facing the aperture 5 of the second mirror 3. A fourth insulating portion 3d made of, for example, silicon nitride is formed on the surface of the fourth electrode 3c, and the fourth insulating portion 3d is arranged to face the third insulating portion 5b.

【0025】次に、動作を説明する。図2(a),
(b)は、図1に示したファブリペローフィルタの動作
説明図である。
Next, the operation will be described. FIG. 2 (a),
FIG. 2B is an operation explanatory diagram of the Fabry-Perot filter shown in FIG. 1.

【0026】図2(a)において、第一電極2aと第二
電極3aに電位差を与えると、第一電極2aと第二電極
3aとの間に静電吸引力が発生し、第二ミラー3は第一
ミラー2の方向に変位し、第一絶縁部2bと第二絶縁部
3bが接触することにより、第二ミラー3は静止する。
この場合、第一ミラー2と第二ミラー3とのギャップの
長さは、初期の長さh1よりも短いh2に固定される。
In FIG. 2A, when a potential difference is applied between the first electrode 2a and the second electrode 3a, an electrostatic attractive force is generated between the first electrode 2a and the second electrode 3a, and the second mirror 3 Is displaced in the direction of the first mirror 2, and the first insulating portion 2b comes into contact with the second insulating portion 3b, so that the second mirror 3 stops.
In this case, the length of the gap between the first mirror 2 and the second mirror 3 is fixed to h2, which is shorter than the initial length h1.

【0027】一方、図2(b)において、第三電極5a
と第四電極3cに電位差を与えると、第三電極5aと第
四電極3cとの間に静電吸引力が発生し、第二ミラー3
はアパーチャー5の方向に変位し、第三絶縁部5bと第
四絶縁部3dが接触することにより、第二ミラー3は静
止する。この場合、第一ミラー2と第二ミラー3とのギ
ャップの長さは、初期の長さh1よりも長いh3に固定
される。
On the other hand, in FIG. 2B, the third electrode 5a
When a potential difference is applied between the third mirror 5a and the fourth electrode 3c, an electrostatic attractive force is generated between the third electrode 5a and the fourth electrode 3c,
Is displaced in the direction of the aperture 5, and the third insulating portion 5b comes into contact with the fourth insulating portion 3d, so that the second mirror 3 stops. In this case, the length of the gap between the first mirror 2 and the second mirror 3 is fixed at h3 longer than the initial length h1.

【0028】このようにギャップの長さをh1,h2,
h3の3種類に設定することができるので、そのギャッ
プに応じた3種類の波長近傍の赤外線を透過させるファ
ブリペローフィルタを実現することができる。
As described above, the length of the gap is defined as h1, h2,
Since three types of h3 can be set, a Fabry-Perot filter that transmits infrared rays near three types of wavelengths according to the gap can be realized.

【0029】また、それぞれのギャップの長さは、絶縁
膜4,絶縁膜6の膜厚、第一電極2a、第二電極3a、
第三電極5a、第四電極3c、第一絶縁部2b、第二絶
縁部3b、第三絶縁部5b、第四絶縁部3dの厚さを任
意に設定することにより、目的のガスの赤外線吸収特性
に対応したギャップを得ることができるように調整可能
である。
The length of each gap is determined by the thicknesses of the insulating films 4 and 6, the first electrode 2a, the second electrode 3a,
By setting the thicknesses of the third electrode 5a, the fourth electrode 3c, the first insulating part 2b, the second insulating part 3b, the third insulating part 5b, and the fourth insulating part 3d arbitrarily, infrared absorption of a target gas can be achieved. It is adjustable so that a gap corresponding to the characteristic can be obtained.

【0030】上述のように、第一電極2a、第二電極3
a、第三電極5a、第四電極3c、第一絶縁部2b、第
二絶縁部3b、第三絶縁部5b、第四絶縁部3dは、第
二ミラー3の変位を静止させる静止手段として機能し、
ギャップの長さを固定させているので、外部から振動な
どの外乱を受けた場合も、そのギャップが変動すること
はなく、安定した波長選択を行うことができる。
As described above, the first electrode 2a and the second electrode 3
a, the third electrode 5a, the fourth electrode 3c, the first insulating portion 2b, the second insulating portion 3b, the third insulating portion 5b, and the fourth insulating portion 3d function as stationary means for stopping the displacement of the second mirror 3. And
Since the length of the gap is fixed, even when external disturbance such as vibration is applied, the gap does not change and stable wavelength selection can be performed.

【0031】そして、被測定ガスに赤外線を照射する光
源と、この光源からの赤外線を波長選択的に透過させる
波長選択フィルタと、この波長選択フィルタを透過した
赤外線を検出する赤外線検出器とを有し、赤外線検出器
の出力に基づいて被測定ガスの濃度を測定する赤外線ガ
ス分析計において、波長選択フィルタとして上述のよう
なファブリペローフィルタを使用して場合は、フィルタ
を増設することなく、参照光とは別に2種類のガス濃度
を測定することができる赤外線ガス分析計を実現でき
る。
There is provided a light source for irradiating the gas to be measured with infrared light, a wavelength selection filter for selectively transmitting infrared light from this light source, and an infrared detector for detecting infrared light transmitted through the wavelength selection filter. Then, in the infrared gas analyzer that measures the concentration of the gas to be measured based on the output of the infrared detector, when the Fabry-Perot filter as described above is used as the wavelength selection filter, without adding a filter, An infrared gas analyzer capable of measuring two types of gas concentrations separately from light can be realized.

【0032】例えば、電圧を印加しない状態でのギャッ
プh1(すなわち絶縁層4の膜厚)を約3.1μmと
し、この初期状態を参照光測定状態とした場合、図2
(a)に示したギャップh2が2.27μmとなるよう
にした場合は、二酸化炭素を測定対象とすることがで
き、図2(b)に示したギャップh3が約2.59μm
となるようにした場合は、水蒸気を測定対象とすること
ができる。
For example, when the gap h1 (that is, the film thickness of the insulating layer 4) when no voltage is applied is about 3.1 μm, and this initial state is a reference light measurement state, FIG.
When the gap h2 shown in (a) is set to be 2.27 μm, carbon dioxide can be measured, and the gap h3 shown in FIG.
In such a case, water vapor can be measured.

【0033】図3は本発明の第二実施例の構成を示す断
面図である。尚、以下の図面において、図1と重複する
部分は同一番号を付してその説明は適宜に省略する。
FIG. 3 is a sectional view showing the structure of the second embodiment of the present invention. In the following drawings, the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

【0034】図3において、シリコンの基板1上に第一
ミラー2が形成され、第二ミラー3は、第一ミラー2上
に形成されたシリコン酸化膜からなる絶縁膜4と、後述
の第二電極3aと、後述の第二絶縁部3bとを介して第
一ミラー2に対向配置されている。
Referring to FIG. 3, a first mirror 2 is formed on a silicon substrate 1, and a second mirror 3 includes an insulating film 4 made of a silicon oxide film formed on the first mirror 2 and a second mirror 2 described later. The first mirror 2 is arranged to face the first mirror 2 via an electrode 3a and a second insulating portion 3b described later.

【0035】第二ミラー3の第一ミラー2と対向する面
には、第二電極3aと第二絶縁部3bが第二ミラー3か
ら第一ミラー2の方向に順に形成され、この第二絶縁部
3bと第二電極3aの中心部には孔5が形成され、その
孔5の下方部は光学的活性領域となっている。
On the surface of the second mirror 3 facing the first mirror 2, a second electrode 3a and a second insulating portion 3b are formed in order from the second mirror 3 to the first mirror 2. A hole 5 is formed in the center of the portion 3b and the second electrode 3a, and the lower part of the hole 5 is an optically active area.

【0036】そして、第一ミラー2と第二ミラー3との
間には、孔5の下方にギャップh1が形成され、第二ミ
ラー3は第一ミラー2の方向に変位可能となっている。
A gap h1 is formed below the hole 5 between the first mirror 2 and the second mirror 3, and the second mirror 3 can be displaced in the direction of the first mirror 2.

【0037】そして、導電部2a1,2a2,2a3は、
光学的活性領域の中心より外側へ順に左右対称に第一ミ
ラー2上に設けられ、その高さは光学的活性領域の中心
から順に高くなり、全体として階段状となる第一電極2
aを形成している。
The conductive parts 2a 1 , 2a 2 , 2a 3
The first mirror 2 is provided on the first mirror 2 symmetrically in a laterally outward order from the center of the optically active region, and the height thereof increases in order from the center of the optically active region to form a step-like overall electrode.
a.

【0038】また、導電部2a1,2a2,2a3は、そ
の周囲が絶縁層2b1で覆われて互いに絶縁され、絶縁
層2b1の第二絶縁部3bと対向する面に相当する部分
は、第一絶縁部2bとなっている。
The conductive portions 2a 1 , 2a 2 , and 2a 3 are covered with an insulating layer 2b 1 and are insulated from each other, and correspond to the surface of the insulating layer 2b 1 facing the second insulating portion 3b. Are the first insulating portions 2b.

【0039】第一ミラー2と第二ミラー3は、例えば多
結晶シリコンであり、第一電極を構成する導電部2
1,2a2,2a3と第二電極3aは、例えば不純物濃
度の高い多結晶シリコンであり、第一絶縁部2bと第二
絶縁部3bは、例えば窒化シリコンである。
The first mirror 2 and the second mirror 3 are made of, for example, polycrystalline silicon and have a conductive portion 2 forming a first electrode.
a 1 , 2a 2 , 2a 3 and the second electrode 3a are, for example, polycrystalline silicon having a high impurity concentration, and the first insulating portion 2b and the second insulating portion 3b are, for example, silicon nitride.

【0040】次に、動作を説明する。図4(a),
(b)は図3に示したファブリペローフィルタの動作説
明図である。
Next, the operation will be described. FIG. 4 (a),
FIG. 4B is a diagram illustrating the operation of the Fabry-Perot filter shown in FIG. 3.

【0041】図4(a)において、第一電極2aの導電
部2a3と第二電極3aとの間に電位差を与えると、導
電部2a3と第二電極3aとの間に静電吸引力が発生
し、第二ミラー3は第一ミラー2の方向に変位し、導電
部2a3の直上の第一絶縁部2bと第二絶縁部3bが接
触することとなり、第二ミラー3は静止する。この場
合、第一ミラー2と第二ミラー3とのギャップの長さ
は、初期の長さh1よりも短いh2に固定される。
[0041] In FIG. 4 (a), the electrostatic attraction between the applying a potential difference, conductive portion 2a 3 and the second electrode 3a between the conductive portion 2a 3 of the first electrode 2a and the second electrode 3a Occurs, the second mirror 3 is displaced in the direction of the first mirror 2, and the first insulating portion 2b and the second insulating portion 3b immediately above the conductive portion 2a 3 come into contact with each other, and the second mirror 3 stops. . In this case, the length of the gap between the first mirror 2 and the second mirror 3 is fixed to h2, which is shorter than the initial length h1.

【0042】また、図4(b)において、第一電極2a
の導電部2a1と第二電極3aとの間に電位差を与える
と、導電部2a1と第二電極3aとの間に静電吸引力が
発生し、第二ミラー3は第一ミラー2の方向に変位し、
導電部2a1,2a2,2a3の直上の第一絶縁部2bと
第二絶縁部3bが階段状に接触することとなり、第二ミ
ラー3は静止する。この場合、第一ミラー2と第二ミラ
ー3とのギャップの長さは、h2よりも短いh4に固定
される。
Further, in FIG. 4B, the first electrode 2a
Of the conductive portion 2a 1 and given a potential difference between the second electrode 3a, the electrostatic attraction force between the conductive portion 2a 1 and the second electrode 3a is generated, the second mirror 3 of the first mirror 2 Displacement in the direction
The first insulating portion 2b and the second insulating portion 3b immediately above the conductive portions 2a 1 , 2a 2 , and 2a 3 come into contact in a stepwise manner, and the second mirror 3 stops. In this case, the length of the gap between the first mirror 2 and the second mirror 3 is fixed to h4 shorter than h2.

【0043】同様に、第一電極2aの導電部2a2と第
二電極3aとの間に電位差を与えると、導電部と2a2
第二電極3aとの間に静電吸引力が発生し、第二ミラー
3は第一ミラー2の方向に変位し(図示しない)、導電
部2a2,2a3の直上の第一絶縁部2bと第二絶縁部3
bが階段状に接触することにより、第二ミラー3は静止
する。この場合、第一ミラー2と第二ミラー3とのギャ
ップの長さは、h2とh4の中間の値h3(図示しな
い)に固定される。
Similarly, when a potential difference is applied between the conductive portion 2a 2 of the first electrode 2a and the second electrode 3a, the conductive portion 2a 2
Second electrostatic attraction between the electrode 3a is generated, the second mirror 3 is displaced in the direction of the first mirror 2 (not shown), the first insulating portion 2b immediately above the conductive portion 2a 2, 2a 3 And the second insulating part 3
The second mirror 3 comes to rest when b contacts in a stepwise manner. In this case, the length of the gap between the first mirror 2 and the second mirror 3 is fixed to an intermediate value h3 (not shown) between h2 and h4.

【0044】このようにギャップの長さをh1からh4
までの4種類に設定することができるので、そのギャッ
プに応じた4種類の波長近傍の赤外線を透過させるファ
ブリペローフィルタを実現することができる。
As described above, the length of the gap is changed from h1 to h4.
Since these four types can be set, it is possible to realize a Fabry-Perot filter that transmits infrared rays near four types of wavelengths according to the gap.

【0045】また、上記の説明においては、導電部の数
が3つの場合について説明したが、導電部の数はこれに
限定されるものではなく、任意の複数の導電部を形成す
れば、その数に応じた複数の波長の赤外線を透過させる
ファブリペローフィルタを実現することができる。
In the above description, the case where the number of conductive portions is three has been described. However, the number of conductive portions is not limited to this. It is possible to realize a Fabry-Perot filter that transmits infrared rays of a plurality of wavelengths according to the number.

【0046】また、階段状の第一電極2aと第一絶縁部
2bは、第二ミラー3の変位を静止させる静止手段とし
て機能し、第一ミラー2と第二ミラー3とのギャップを
固定するので、外部から振動などの外乱を受けた場合
も、そのギャップは変動することはなく、安定した波長
選択を行うことができる。
The step-like first electrode 2a and the first insulating portion 2b function as stationary means for stopping the displacement of the second mirror 3, and fix the gap between the first mirror 2 and the second mirror 3. Therefore, even when external disturbance such as vibration is received, the gap does not fluctuate and stable wavelength selection can be performed.

【0047】そして、被測定ガスに赤外線を照射する光
源と、この光源からの所望の波長の赤外線を選択して透
過させる波長選択フィルタと、この波長選択フィルタを
透過した赤外線を検出する赤外線検出器とを有し、赤外
線検出器の出力に基づいて被測定ガスの濃度を測定する
赤外線ガス分析計において、上述のようなファブリペロ
ーフィルタを使用した場合、波長選択フィルタの枚数を
増加させずに被測定ガスの複数成分の濃度を同時に測定
することが可能となる。
A light source for irradiating the gas to be measured with infrared light, a wavelength selection filter for selecting and transmitting infrared light of a desired wavelength from the light source, and an infrared detector for detecting the infrared light transmitted through the wavelength selection filter In the infrared gas analyzer for measuring the concentration of the gas to be measured based on the output of the infrared detector, when the above Fabry-Perot filter is used, the number of wavelength selection filters is increased without increasing the number of wavelength selection filters. It is possible to simultaneously measure the concentrations of a plurality of components of the measurement gas.

【0048】[0048]

【発明の効果】以上説明したように、本発明の請求項1
から請求項6によれば、第二ミラーを静止させる静止手
段を設け、第一ミラーと第二ミラーとのギャップの長さ
を固定可能としたので、複数の波長を安定して選択する
ことができるファブリペローフィルタを提供することが
できる。また、請求項7によれば、請求項1から請求項
6記載のファブリペローフィルタを使用するようにした
ので、複数のガス濃度を測定可能な赤外線ガス分析計を
提供することができ、請求項8によれば、二酸化炭素と
水蒸気を同時に測定可能な赤外線ガス分析計を提供する
ことができる。
As described above, according to the first aspect of the present invention,
According to the sixth aspect, the stationary means for stopping the second mirror is provided, and the length of the gap between the first mirror and the second mirror can be fixed, so that a plurality of wavelengths can be stably selected. A Fabry-Perot filter can be provided. According to the seventh aspect, since the Fabry-Perot filter according to the first to sixth aspects is used, an infrared gas analyzer capable of measuring a plurality of gas concentrations can be provided. According to 8, an infrared gas analyzer capable of simultaneously measuring carbon dioxide and water vapor can be provided.

【0049】[0049]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例の構成を示す断面図であ
る。
FIG. 1 is a sectional view showing a configuration of a first embodiment of the present invention.

【図2】本発明の第一実施例の動作説明図である。FIG. 2 is an operation explanatory diagram of the first embodiment of the present invention.

【図3】本発明の第二実施例の構成を示す断面図であ
る。
FIG. 3 is a sectional view showing a configuration of a second embodiment of the present invention.

【図4】本発明の第二実施例の動作説明図である。FIG. 4 is an operation explanatory diagram of a second embodiment of the present invention.

【図5】従来のNDIRガス分析計の構成図である。FIG. 5 is a configuration diagram of a conventional NDIR gas analyzer.

【図6】従来のNDIRガス分析計の構成図である。FIG. 6 is a configuration diagram of a conventional NDIR gas analyzer.

【図7】従来のNDIRガス分析計の構成図である。FIG. 7 is a configuration diagram of a conventional NDIR gas analyzer.

【図8】フィルタの赤外線透過特性、吸収特性図であ
る。
FIG. 8 is a graph showing infrared transmission characteristics and absorption characteristics of a filter.

【符号の説明】[Explanation of symbols]

1 基板 2 第一ミラー 2a 第一電極 2a1,2a2,2a3 導電部 2b 第一絶縁部 3 第二ミラー 3a 第二電極 3b 第二絶縁部 3c 第四電極 3d 第四絶縁部 5 アパーチャー 5a 第三電極 5b 第三絶縁部1 substrate 2 first mirror 2a first electrode 2a 1, 2a 2, 2a 3 conductive part 2b first insulating portion 3 second mirror 3a second electrode 3b second insulating portion 3c fourth electrode 3d fourth insulating portion 5 aperture 5a Third electrode 5b Third insulating part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸 直輝 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 Fターム(参考) 2G020 AA03 BA02 BA12 CA02 CC27 2G059 AA01 BB01 CC04 CC09 EE01 EE11 FF10 HH01 JJ03 KK03 NN03 2G065 AA04 AB02 AB23 BA01 BB27 CA27 DA08 2H048 GA15 GA21 GA25 GA61  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Naoki Kishi 2-9-32 Nakamachi, Musashino-shi, Tokyo F-term in Yokogawa Electric Corporation (reference) 2G020 AA03 BA02 BA12 CA02 CC27 2G059 AA01 BB01 CC04 CC09 EE01 EE11 FF10 HH01 JJ03 KK03 NN03 2G065 AA04 AB02 AB23 BA01 BB27 CA27 DA08 2H048 GA15 GA21 GA25 GA61

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板上に設けられた第一ミラーと、 この第一ミラーとの間にギャップを有して対向配置さ
れ、外力が加えられることにより前記第一ミラーに対し
て変位可能に形成された第二ミラーと、 この第二ミラーに外力を加えて変位させ前記ギャップの
長さを可変とした場合に、前記第二ミラーを静止させ、
前記ギャップの長さを固定可能とする静止手段と、を具
備したことを特徴とするファブリペローフィルタ。
1. A first mirror provided on a substrate, and a first mirror is opposed to the first mirror with a gap therebetween, and is formed so as to be displaceable with respect to the first mirror when an external force is applied. When the length of the gap is changed by applying an external force to the second mirror and displacing the second mirror, the second mirror is stopped,
A Fabry-Perot filter, comprising: stationary means for fixing the length of the gap.
【請求項2】 基板上に設けられた第一ミラーと、 この第一ミラーと平行に離間されて設けられたアパーチ
ャーと、 前記第一ミラー前記アパーチャーとの間にそれぞれギャ
ップを有して対向配置され、前記第一ミラー及び前記ア
パーチャーに対してそれぞれ変位可能に設けられた第二
ミラーと、前記第一ミラーに設けられて前記第二ミラー
に対向配置され、表面に第一絶縁部が設けられた第一電
極と、 前記第二ミラーに設けられて前記第一電極に対向配置さ
れ、表面に第二絶縁部が設けられた第二電極と、 前記アパーチャーに設けられて前記第二ミラーに対向配
置され、表面に第三絶縁部が設けられた第三電極と、 前記第二ミラーに設けられて前記第三電極に対向配置さ
れ、表面に第四絶縁部が設けられた第四電極と、を具備
し、 前記第一電極と前記第二電極に電位差を与えて前記第二
ミラーを変位させた場合は、前記第一絶縁部と前記第二
絶縁部を接触させて前記第二ミラーを静止させ、前記第
三電極と前記第四電極に電位差を与えて前記第二ミラー
を変位させた場合は、前記第三絶縁部と前記第四絶縁部
を接触させて前記第二ミラーを静止させ、前記第一ミラ
ーと前記第二ミラーとの間のギャップの長さを固定可能
としたことを特徴とするファブリペローフィルタ。
2. A first mirror provided on a substrate, an aperture provided in parallel with and separated from the first mirror, and an opposing arrangement having a gap between the first mirror and the aperture. A second mirror provided so as to be displaceable with respect to the first mirror and the aperture, and a second mirror provided on the first mirror and opposed to the second mirror, and a first insulating portion provided on a surface. A first electrode, a second electrode provided on the second mirror and opposed to the first electrode, and a second electrode provided with a second insulating portion on a surface; and a second electrode provided on the aperture and facing the second mirror. A third electrode provided and provided with a third insulating portion on the surface, a fourth electrode provided on the second mirror and disposed to face the third electrode and provided with a fourth insulating portion on the surface, Comprising the first If the second mirror is displaced by applying a potential difference between the electrode and the second electrode, the second mirror is stopped by contacting the first insulating portion and the second insulating portion, and the third electrode and When the second mirror is displaced by applying a potential difference to the fourth electrode, the third mirror is brought into contact with the third insulating portion to stop the second mirror, and the first mirror and the fourth mirror are moved. A Fabry-Perot filter characterized in that the length of a gap between two mirrors can be fixed.
【請求項3】 基板上に設けられた第一ミラーと、 この第一ミラーとの間にギャップを有して対向配置さ
れ、前記第一ミラーに対して変位可能に設けられた第二
ミラーと、 前記第一ミラー上に階段状に設けられた複数の導電部を
有する第一電極と、 複数の前記導電部の周囲に設けられ、複数の前記導電部
を互いに絶縁する階段状の第一絶縁部と、 前記第二ミラーに設けられて前記第一電極に対向配置さ
れる第二電極と、 前記第二電極の前記第一電極に対向する面に設けられた
第二絶縁部と、を具備し、 複数の前記導電部を切り換えて前記第二電極との間に電
位差を与えることにより、階段状の前記第一絶縁部と前
記第二絶縁部を接触させて前記第二ミラーを静止させ、
前記ギャップの長さを階段状に固定可能としたことを特
徴とするファブリペローフィルタ。
3. A first mirror provided on a substrate, and a second mirror disposed so as to be opposed to the first mirror with a gap therebetween and displaceable with respect to the first mirror. A first electrode having a plurality of conductive portions provided in a stepwise manner on the first mirror; and a stepwise first insulation provided around the plurality of the conductive portions and insulating the plurality of the conductive portions from each other. A second electrode provided on the second mirror and disposed to face the first electrode; and a second insulating portion provided on a surface of the second electrode facing the first electrode. Then, by switching the plurality of conductive portions to give a potential difference between the second electrode, contact the step-shaped first insulating portion and the second insulating portion to stop the second mirror,
A Fabry-Perot filter, wherein the length of the gap can be fixed stepwise.
【請求項4】 前記第一ミラーと前記第二ミラーはシリ
コンであることを特徴とする請求項1から請求項3記載
のファブリペローフィルタ。
4. The Fabry-Perot filter according to claim 1, wherein the first mirror and the second mirror are made of silicon.
【請求項5】 前記第一電極と前記第二電極と前記第三
電極と前記第四電極は不純物濃度の高いシリコンである
ことを特徴とする請求項1から請求項4記載のファブリ
ペローフィルタ。
5. The Fabry-Perot filter according to claim 1, wherein the first electrode, the second electrode, the third electrode, and the fourth electrode are made of silicon having a high impurity concentration.
【請求項6】 前記第一絶縁部と前記第二絶縁部と前記
第三絶縁部と前記第四絶縁部は窒化シリコンであること
を特徴とする請求項1から請求項5記載のファブリペロ
ーフィルタ。
6. The Fabry-Perot filter according to claim 1, wherein the first insulating portion, the second insulating portion, the third insulating portion, and the fourth insulating portion are made of silicon nitride. .
【請求項7】 被測定ガスに赤外線を照射する光源
と、この光源からの赤外線を波長選択的に透過させる波
長選択フィルタと、この波長選択フィルタを透過した赤
外線を検出する赤外線検出器とを有し、前記赤外線検出
器の出力に基づいて前記被測定ガスの濃度を測定する赤
外線ガス分析計において、 前記波長選択フィルタとして、請求項1から請求項6記
載のファブリペローフィルタを使用したことを特徴とす
るガス分析計。
7. A light source for irradiating infrared light to a gas to be measured, a wavelength selection filter for selectively transmitting infrared light from the light source, and an infrared detector for detecting infrared light transmitted through the wavelength selection filter. An infrared gas analyzer for measuring the concentration of the gas to be measured based on an output of the infrared detector, wherein the Fabry-Perot filter according to any one of claims 1 to 6 is used as the wavelength selection filter. And a gas analyzer.
【請求項8】 前記被測定ガスは二酸化炭素と水蒸気の
2成分を含み、この2成分の濃度を測定することを特徴
とする請求項7記載の赤外線ガス分析計。
8. The infrared gas analyzer according to claim 7, wherein the gas to be measured contains two components of carbon dioxide and water vapor, and the concentration of the two components is measured.
JP2000030823A 2000-02-08 2000-02-08 Fabry-perot filter and ir gas analyzer Pending JP2001221913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030823A JP2001221913A (en) 2000-02-08 2000-02-08 Fabry-perot filter and ir gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030823A JP2001221913A (en) 2000-02-08 2000-02-08 Fabry-perot filter and ir gas analyzer

Publications (1)

Publication Number Publication Date
JP2001221913A true JP2001221913A (en) 2001-08-17

Family

ID=18555785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030823A Pending JP2001221913A (en) 2000-02-08 2000-02-08 Fabry-perot filter and ir gas analyzer

Country Status (1)

Country Link
JP (1) JP2001221913A (en)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453975B1 (en) * 2002-10-25 2004-10-20 전자부품연구원 Micro Fabry-Perot filter driven by magnetic force and gas analysis apparatus using the same
US6833957B2 (en) * 2002-06-04 2004-12-21 Nec Corporation Tunable filter, manufacturing method thereof and optical switching device comprising the tunable filter
JP2006099087A (en) * 2004-09-27 2006-04-13 Idc Llc Method and device for multi-state interferometric light modulation
US7385744B2 (en) 2006-06-28 2008-06-10 Qualcomm Mems Technologies, Inc. Support structure for free-standing MEMS device and methods for forming the same
US7460292B2 (en) 2005-06-03 2008-12-02 Qualcomm Mems Technologies, Inc. Interferometric modulator with internal polarization and drive method
US7492503B2 (en) 2004-09-27 2009-02-17 Idc, Llc System and method for multi-level brightness in interferometric modulation
US7515327B2 (en) 2004-09-27 2009-04-07 Idc, Llc Method and device for corner interferometric modulation
US7527995B2 (en) 2004-09-27 2009-05-05 Qualcomm Mems Technologies, Inc. Method of making prestructure for MEMS systems
US7542198B2 (en) 2004-09-27 2009-06-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US7550810B2 (en) 2006-02-23 2009-06-23 Qualcomm Mems Technologies, Inc. MEMS device having a layer movable at asymmetric rates
US7554714B2 (en) 2004-09-27 2009-06-30 Idc, Llc Device and method for manipulation of thermal response in a modulator
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US7612933B2 (en) 2008-03-27 2009-11-03 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US7612932B2 (en) 2004-09-27 2009-11-03 Idc, Llc Microelectromechanical device with optical function separated from mechanical and electrical function
US7629197B2 (en) 2006-10-18 2009-12-08 Qualcomm Mems Technologies, Inc. Spatial light modulator
US7630121B2 (en) 2007-07-02 2009-12-08 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7630119B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7643202B2 (en) 2007-05-09 2010-01-05 Qualcomm Mems Technologies, Inc. Microelectromechanical system having a dielectric movable membrane and a mirror
US7643199B2 (en) 2007-06-19 2010-01-05 Qualcomm Mems Technologies, Inc. High aperture-ratio top-reflective AM-iMod displays
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7704772B2 (en) 2004-05-04 2010-04-27 Qualcomm Mems Technologies, Inc. Method of manufacture for microelectromechanical devices
US7715085B2 (en) 2007-05-09 2010-05-11 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane and a mirror
US7715079B2 (en) 2007-12-07 2010-05-11 Qualcomm Mems Technologies, Inc. MEMS devices requiring no mechanical support
JP2010518418A (en) * 2007-01-29 2010-05-27 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Hybrid color composition for multi-state reflective modulator displays
US7746539B2 (en) 2008-06-25 2010-06-29 Qualcomm Mems Technologies, Inc. Method for packing a display device and the device obtained thereof
US7768690B2 (en) 2008-06-25 2010-08-03 Qualcomm Mems Technologies, Inc. Backlight displays
US7773286B2 (en) 2007-09-14 2010-08-10 Qualcomm Mems Technologies, Inc. Periodic dimple array
US7782517B2 (en) 2007-06-21 2010-08-24 Qualcomm Mems Technologies, Inc. Infrared and dual mode displays
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7847999B2 (en) 2007-09-14 2010-12-07 Qualcomm Mems Technologies, Inc. Interferometric modulator display devices
US7884989B2 (en) 2005-05-27 2011-02-08 Qualcomm Mems Technologies, Inc. White interferometric modulators and methods for forming the same
US7898723B2 (en) 2008-04-02 2011-03-01 Qualcomm Mems Technologies, Inc. Microelectromechanical systems display element with photovoltaic structure
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7944604B2 (en) 2008-03-07 2011-05-17 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7952787B2 (en) 2006-06-30 2011-05-31 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7969638B2 (en) 2008-04-10 2011-06-28 Qualcomm Mems Technologies, Inc. Device having thin black mask and method of fabricating the same
US7982700B2 (en) 2004-09-27 2011-07-19 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US7999993B2 (en) 2004-09-27 2011-08-16 Qualcomm Mems Technologies, Inc. Reflective display device having viewable display on both sides
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
CN102193184A (en) * 2010-03-15 2011-09-21 精工爱普生株式会社 Optical filter, optical filter module, analytical instrument, and optical apparatus
JP2011191554A (en) * 2010-03-15 2011-09-29 Seiko Epson Corp Optical filter, and analytical instrument and optical apparatus using the same
US8054527B2 (en) 2007-10-23 2011-11-08 Qualcomm Mems Technologies, Inc. Adjustably transmissive MEMS-based devices
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
US8081373B2 (en) 2007-07-31 2011-12-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
JP2012163664A (en) * 2011-02-04 2012-08-30 Seiko Epson Corp Optical filter, optical filter module, analytical instrument and optical instrument
JP2012173314A (en) * 2011-02-17 2012-09-10 Seiko Epson Corp Wavelength variable interference filter, optical module and electronic apparatus
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
JP2012198268A (en) * 2011-03-18 2012-10-18 Seiko Epson Corp Optical filter, optical filter module, analytical instrument and optical apparatus
JP2012220766A (en) * 2011-04-11 2012-11-12 Seiko Epson Corp Wavelength variable interference filter, optical module and electronic apparatus
JP2013072930A (en) * 2011-09-27 2013-04-22 Seiko Epson Corp Wavelength variable interference filter, optical filter device, optical module and electronic apparatus
EP2650715A1 (en) 2012-04-11 2013-10-16 Seiko Epson Corporation Variable wavelength interference filter, optical filter device, optical module, and electronic apparatus
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
CN103776799A (en) * 2012-10-28 2014-05-07 天津奇谱光电技术有限公司 Hydrogen sulfide gas sensing equipment
CN103776792A (en) * 2012-10-28 2014-05-07 天津奇谱光电技术有限公司 Gas sensing equipment employing tunable Fabry-Perot filter
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US8797628B2 (en) 2007-10-19 2014-08-05 Qualcomm Memstechnologies, Inc. Display with integrated photovoltaic device
US8797632B2 (en) 2010-08-17 2014-08-05 Qualcomm Mems Technologies, Inc. Actuation and calibration of charge neutral electrode of a display device
JP2014194562A (en) * 2014-05-12 2014-10-09 Seiko Epson Corp Optical filter, optical filter module, analytical instrument and optical apparatus
US8885244B2 (en) 2004-09-27 2014-11-11 Qualcomm Mems Technologies, Inc. Display device
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
JP2016053740A (en) * 2015-12-28 2016-04-14 セイコーエプソン株式会社 Optical filter and optical filter module, and analytical instrument and optical apparatus
CN105738997A (en) * 2014-12-26 2016-07-06 精工爱普生株式会社 Optical filter device, optical module, and electronic equipment
JP2017187799A (en) * 2017-06-27 2017-10-12 セイコーエプソン株式会社 Method for driving optical filter
JP2019061283A (en) * 2019-01-09 2019-04-18 セイコーエプソン株式会社 Optical filter, optical filter module, analytical instrument and optical instrument
US11029509B2 (en) * 2012-09-12 2021-06-08 Seiko Epson Corporation Optical module, electronic device, and driving method
CN112955721A (en) * 2018-10-31 2021-06-11 浜松光子学株式会社 Light splitting unit and light splitting module

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833957B2 (en) * 2002-06-04 2004-12-21 Nec Corporation Tunable filter, manufacturing method thereof and optical switching device comprising the tunable filter
US6954294B2 (en) 2002-06-04 2005-10-11 Denso Corporation Tunable filter, manufacturing method thereof and optical switching device comprising the tunable filter
KR100453975B1 (en) * 2002-10-25 2004-10-20 전자부품연구원 Micro Fabry-Perot filter driven by magnetic force and gas analysis apparatus using the same
US7704772B2 (en) 2004-05-04 2010-04-27 Qualcomm Mems Technologies, Inc. Method of manufacture for microelectromechanical devices
US7948671B2 (en) 2004-09-27 2011-05-24 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US8638491B2 (en) 2004-09-27 2014-01-28 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8885244B2 (en) 2004-09-27 2014-11-11 Qualcomm Mems Technologies, Inc. Display device
US7492503B2 (en) 2004-09-27 2009-02-17 Idc, Llc System and method for multi-level brightness in interferometric modulation
US7515327B2 (en) 2004-09-27 2009-04-07 Idc, Llc Method and device for corner interferometric modulation
US7527995B2 (en) 2004-09-27 2009-05-05 Qualcomm Mems Technologies, Inc. Method of making prestructure for MEMS systems
US7542198B2 (en) 2004-09-27 2009-06-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7554714B2 (en) 2004-09-27 2009-06-30 Idc, Llc Device and method for manipulation of thermal response in a modulator
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US9097885B2 (en) 2004-09-27 2015-08-04 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US7612932B2 (en) 2004-09-27 2009-11-03 Idc, Llc Microelectromechanical device with optical function separated from mechanical and electrical function
US8081370B2 (en) 2004-09-27 2011-12-20 Qualcomm Mems Technologies, Inc. Support structures for electromechanical systems and methods of fabricating the same
JP4550693B2 (en) * 2004-09-27 2010-09-22 クゥアルコム・メムス・テクノロジーズ・インコーポレイテッド Method and apparatus for multi-state interferometric light modulation
US7630119B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US8289613B2 (en) 2004-09-27 2012-10-16 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8405899B2 (en) 2004-09-27 2013-03-26 Qualcomm Mems Technologies, Inc Photonic MEMS and structures
US7787173B2 (en) 2004-09-27 2010-08-31 Qualcomm Mems Technologies, Inc. System and method for multi-level brightness in interferometric modulation
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US9086564B2 (en) 2004-09-27 2015-07-21 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US7982700B2 (en) 2004-09-27 2011-07-19 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US9001412B2 (en) 2004-09-27 2015-04-07 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7889415B2 (en) 2004-09-27 2011-02-15 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
JP2006099087A (en) * 2004-09-27 2006-04-13 Idc Llc Method and device for multi-state interferometric light modulation
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US8970939B2 (en) 2004-09-27 2015-03-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US8213075B2 (en) 2004-09-27 2012-07-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US7999993B2 (en) 2004-09-27 2011-08-16 Qualcomm Mems Technologies, Inc. Reflective display device having viewable display on both sides
US7839557B2 (en) 2004-09-27 2010-11-23 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US7884989B2 (en) 2005-05-27 2011-02-08 Qualcomm Mems Technologies, Inc. White interferometric modulators and methods for forming the same
US7460292B2 (en) 2005-06-03 2008-12-02 Qualcomm Mems Technologies, Inc. Interferometric modulator with internal polarization and drive method
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7550810B2 (en) 2006-02-23 2009-06-23 Qualcomm Mems Technologies, Inc. MEMS device having a layer movable at asymmetric rates
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7385744B2 (en) 2006-06-28 2008-06-10 Qualcomm Mems Technologies, Inc. Support structure for free-standing MEMS device and methods for forming the same
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7952787B2 (en) 2006-06-30 2011-05-31 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8102590B2 (en) 2006-06-30 2012-01-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8964280B2 (en) 2006-06-30 2015-02-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7629197B2 (en) 2006-10-18 2009-12-08 Qualcomm Mems Technologies, Inc. Spatial light modulator
JP2012098746A (en) * 2007-01-29 2012-05-24 Qualcomm Mems Technologies Inc Hybrid color synthesis for multistate reflective modulator displays
JP2010518418A (en) * 2007-01-29 2010-05-27 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Hybrid color composition for multi-state reflective modulator displays
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US7715085B2 (en) 2007-05-09 2010-05-11 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane and a mirror
US7643202B2 (en) 2007-05-09 2010-01-05 Qualcomm Mems Technologies, Inc. Microelectromechanical system having a dielectric movable membrane and a mirror
US8098417B2 (en) 2007-05-09 2012-01-17 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane
US7643199B2 (en) 2007-06-19 2010-01-05 Qualcomm Mems Technologies, Inc. High aperture-ratio top-reflective AM-iMod displays
US7782517B2 (en) 2007-06-21 2010-08-24 Qualcomm Mems Technologies, Inc. Infrared and dual mode displays
US7630121B2 (en) 2007-07-02 2009-12-08 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7920319B2 (en) 2007-07-02 2011-04-05 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8736949B2 (en) 2007-07-31 2014-05-27 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8081373B2 (en) 2007-07-31 2011-12-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US7773286B2 (en) 2007-09-14 2010-08-10 Qualcomm Mems Technologies, Inc. Periodic dimple array
US7847999B2 (en) 2007-09-14 2010-12-07 Qualcomm Mems Technologies, Inc. Interferometric modulator display devices
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
US8797628B2 (en) 2007-10-19 2014-08-05 Qualcomm Memstechnologies, Inc. Display with integrated photovoltaic device
US8054527B2 (en) 2007-10-23 2011-11-08 Qualcomm Mems Technologies, Inc. Adjustably transmissive MEMS-based devices
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US7715079B2 (en) 2007-12-07 2010-05-11 Qualcomm Mems Technologies, Inc. MEMS devices requiring no mechanical support
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US8174752B2 (en) 2008-03-07 2012-05-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US7944604B2 (en) 2008-03-07 2011-05-17 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8693084B2 (en) 2008-03-07 2014-04-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8068269B2 (en) 2008-03-27 2011-11-29 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US7612933B2 (en) 2008-03-27 2009-11-03 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US7898723B2 (en) 2008-04-02 2011-03-01 Qualcomm Mems Technologies, Inc. Microelectromechanical systems display element with photovoltaic structure
US7969638B2 (en) 2008-04-10 2011-06-28 Qualcomm Mems Technologies, Inc. Device having thin black mask and method of fabricating the same
US7746539B2 (en) 2008-06-25 2010-06-29 Qualcomm Mems Technologies, Inc. Method for packing a display device and the device obtained thereof
US7768690B2 (en) 2008-06-25 2010-08-03 Qualcomm Mems Technologies, Inc. Backlight displays
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US9121979B2 (en) 2009-05-29 2015-09-01 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US9134470B2 (en) 2010-03-15 2015-09-15 Seiko Epson Corporation Optical filter including a step section, and analytical instrument and optical apparatus using the optical filter
CN102193184A (en) * 2010-03-15 2011-09-21 精工爱普生株式会社 Optical filter, optical filter module, analytical instrument, and optical apparatus
US10578859B2 (en) 2010-03-15 2020-03-03 Seiko Epson Corporation Optical filter including ring-shaped electrode having a slit
US9921403B2 (en) 2010-03-15 2018-03-20 Seiko Epson Corporation Optical filter including ring-shaped electrode having a slit
US9606276B2 (en) 2010-03-15 2017-03-28 Seiko Epson Corporation Optical filter including a step section, and analytical instrument and optical apparatus using the optical filter
US8917449B2 (en) 2010-03-15 2014-12-23 Seiko Epson Corporation Optical filter including a step section, and analytical instrument and optical apparatus using the optical filter
JP2011191492A (en) * 2010-03-15 2011-09-29 Seiko Epson Corp Optical filter, optical filter module, analytical instrument and optical apparatus
JP2011191554A (en) * 2010-03-15 2011-09-29 Seiko Epson Corp Optical filter, and analytical instrument and optical apparatus using the same
CN106094197A (en) * 2010-03-15 2016-11-09 精工爱普生株式会社 Optical filter and optical filter module and analytical equipment and light device
US9030743B2 (en) 2010-03-15 2015-05-12 Seiko Epson Corporation Optical filter including ring-shaped electrode having a slit
US8797632B2 (en) 2010-08-17 2014-08-05 Qualcomm Mems Technologies, Inc. Actuation and calibration of charge neutral electrode of a display device
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
JP2012163664A (en) * 2011-02-04 2012-08-30 Seiko Epson Corp Optical filter, optical filter module, analytical instrument and optical instrument
US8970957B2 (en) 2011-02-17 2015-03-03 Seiko Epson Corporation Tunable interference filter, optical module, and electronic device
JP2012173314A (en) * 2011-02-17 2012-09-10 Seiko Epson Corp Wavelength variable interference filter, optical module and electronic apparatus
JP2012198268A (en) * 2011-03-18 2012-10-18 Seiko Epson Corp Optical filter, optical filter module, analytical instrument and optical apparatus
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
JP2012220766A (en) * 2011-04-11 2012-11-12 Seiko Epson Corp Wavelength variable interference filter, optical module and electronic apparatus
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
JP2013072930A (en) * 2011-09-27 2013-04-22 Seiko Epson Corp Wavelength variable interference filter, optical filter device, optical module and electronic apparatus
US9081188B2 (en) 2011-11-04 2015-07-14 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
EP2650715A1 (en) 2012-04-11 2013-10-16 Seiko Epson Corporation Variable wavelength interference filter, optical filter device, optical module, and electronic apparatus
US9753199B2 (en) 2012-04-11 2017-09-05 Seiko Epson Corporation Variable wavelength interference filter, optical filter device, optical module, and electronic apparatus
US11029509B2 (en) * 2012-09-12 2021-06-08 Seiko Epson Corporation Optical module, electronic device, and driving method
CN103776792A (en) * 2012-10-28 2014-05-07 天津奇谱光电技术有限公司 Gas sensing equipment employing tunable Fabry-Perot filter
CN103776799A (en) * 2012-10-28 2014-05-07 天津奇谱光电技术有限公司 Hydrogen sulfide gas sensing equipment
JP2014194562A (en) * 2014-05-12 2014-10-09 Seiko Epson Corp Optical filter, optical filter module, analytical instrument and optical apparatus
CN105738997B (en) * 2014-12-26 2020-02-18 精工爱普生株式会社 Optical filter device, optical module, and electronic equipment
CN105738997A (en) * 2014-12-26 2016-07-06 精工爱普生株式会社 Optical filter device, optical module, and electronic equipment
JP2016053740A (en) * 2015-12-28 2016-04-14 セイコーエプソン株式会社 Optical filter and optical filter module, and analytical instrument and optical apparatus
JP2017187799A (en) * 2017-06-27 2017-10-12 セイコーエプソン株式会社 Method for driving optical filter
CN112955721A (en) * 2018-10-31 2021-06-11 浜松光子学株式会社 Light splitting unit and light splitting module
US11971301B2 (en) 2018-10-31 2024-04-30 Hamamatsu Photonics K.K. Spectroscopic unit and spectroscopic module
JP2019061283A (en) * 2019-01-09 2019-04-18 セイコーエプソン株式会社 Optical filter, optical filter module, analytical instrument and optical instrument

Similar Documents

Publication Publication Date Title
JP2001221913A (en) Fabry-perot filter and ir gas analyzer
CN103635785B (en) Integrate CMOS-FTIR measures and Raman measures spectrogrph and method thereof
EP0693683B1 (en) Selective infrared detector
US20160139038A1 (en) Gas sensor
EP0608049B1 (en) Single-channel gas concentration measurement apparatus
US20030116711A1 (en) Fabry-perot filter, wavelength-selective infrared detector and infrared gas analyzer using the filter and detector
JP4158076B2 (en) Wavelength selective infrared detector and infrared gas analyzer
US11346774B2 (en) Infra red spectrometer
US20100032788A1 (en) Thermopile sensor and method of manufacturing same
US20050030628A1 (en) Very low cost narrow band infrared sensor
US20030209669A1 (en) Miniaturized infrared gas analyzing apparatus
WO2023283266A1 (en) Self-calibrated spectroscopic and ai-based gas analyzer
JP4457455B2 (en) Fabry-Perot filter and infrared gas analyzer
JP2024023410A (en) Spectrometer with self-compensation of misalignment
Willing et al. Gas spectrometry based on pyroelectric thin-film arrays integrated on silicon
TWI487888B (en) Scanning grating spectrometer
FI20215541A1 (en) Optical filter device and method for controlling optical filter device
JP2003177093A (en) Infrared analysis apparatus
US11385421B2 (en) Optical device, gas sensor, methods of forming and operating the same
US10281327B2 (en) Spectrometers with self-compensation of rotational misalignment
Yang et al. Micro-electro-mechanical-systems-based infrared spectrometer composed of multi-slit grating and bolometer array
JP2001228086A (en) Infrared gas analyzer
US20200173852A1 (en) Filter controlling expression derivation method, light measurement system, control method for fabry-perot interference filter, and filter control program
JPH09321107A (en) Device for measuring layer thickness of semiconductor
WO2017139008A1 (en) Broadband visible-shortwave infrared spectrometer