JP2001217781A - Optical wavelength division multiplex transmitter, optical wavelength division multiplex receiver, optical repeater and optical wavelength division multiplex transmission system - Google Patents
Optical wavelength division multiplex transmitter, optical wavelength division multiplex receiver, optical repeater and optical wavelength division multiplex transmission systemInfo
- Publication number
- JP2001217781A JP2001217781A JP2000025764A JP2000025764A JP2001217781A JP 2001217781 A JP2001217781 A JP 2001217781A JP 2000025764 A JP2000025764 A JP 2000025764A JP 2000025764 A JP2000025764 A JP 2000025764A JP 2001217781 A JP2001217781 A JP 2001217781A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- wavelength
- signal light
- transmission line
- wavelength division
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Lasers (AREA)
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光波長分割多重送
信装置及び光波長分割多重受信装置及び光中継装置及び
光波長分割多重伝送システムに係り、特に、互いに波長
の異なる複数の光を複数の電気信号により変調し、これ
らを光波長フィルタ等の光受動部品により多重化して、
光ファイバ伝送路に送出し、受信側では波長多重化され
た信号光を波長毎に分割し、それらを光電気変換しても
との複数の電気信号に復調する光波長分割多重技術にお
ける光波長分割多重送信装置及び光波長分割多重受信装
置及び光中継装置及び光波長分割多重伝送システムに関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength division multiplex transmission apparatus, an optical wavelength division multiplex reception apparatus, an optical repeater, and an optical wavelength division multiplex transmission system. Modulated by electrical signals, multiplexed by optical passive components such as optical wavelength filters,
The optical wavelength in the optical wavelength division multiplexing technology is transmitted to an optical fiber transmission line, and the receiving side divides the wavelength-multiplexed signal light into individual wavelengths, converts them into optical signals and demodulates them into a plurality of original electrical signals. The present invention relates to a division multiplex transmitter, an optical wavelength division multiplex receiver, an optical repeater, and an optical wavelength division multiplex transmission system.
【0002】[0002]
【従来の技術】光波長分割多重技術は、互いに波長の異
なる複数の光を複数の電気信号により変調し、これらを
光波長フィルタ等の光受動部品により波長多重化して、
光ファイバ伝送路に送出し、受信側では波長多重化され
た信号光を波長毎に分離し、それらを光電気変換しても
との複数の電気信号に復調する技術であり、複数の信号
の多重分離を光受動部品のみによって容易に行うことが
でき、伝送システムの大容量化に有効な技術である。2. Description of the Related Art In an optical wavelength division multiplexing technique, a plurality of lights having different wavelengths are modulated by a plurality of electric signals, and these are wavelength-multiplexed by an optical passive component such as an optical wavelength filter.
This is a technology that sends out to the optical fiber transmission line and separates the wavelength-multiplexed signal light for each wavelength on the receiving side, and demodulates them into a plurality of original electrical signals after photoelectrically converting them. Demultiplexing can be easily performed only by optical passive components, and is an effective technique for increasing the capacity of a transmission system.
【0003】図11は、従来の光波長分割多重伝送シス
テムの構成を示す。FIG. 11 shows a configuration of a conventional optical wavelength division multiplex transmission system.
【0004】同図示す光波長分割多重伝送システムは、
波長の異なる複数の光を複数の電気信号に変調し、これ
らを波長多重化して送信する光送信装置10と、波長多
重化された複数の信号光を波長毎に分割し、それらを光
電気変換して複数の電気信号に復調する光受信装置2
0、光送信装置10と光受信装置20を結ぶ1本の光フ
ァイバ伝送路30から構成される。The optical wavelength division multiplex transmission system shown in FIG.
An optical transmitting apparatus 10 that modulates a plurality of lights having different wavelengths into a plurality of electric signals, multiplexes these signals and transmits the signals, and divides a plurality of wavelength-multiplexed signal lights into respective wavelengths and converts them into opto-electrical signals. Receiving device 2 for demodulating the signal into a plurality of electric signals
0, comprising one optical fiber transmission line 30 connecting the optical transmitting device 10 and the optical receiving device 20.
【0005】光送信装置10は、波長λ0+ΔλGより
短い波長の光源とこれらを変調する変調器11、変調器
11で変調された信号光を合成する合波器12、集中増
幅型光増幅器13、14、波長多重フィルタまたは、光
カプラ15、及び受信機17に増幅された信号光を分波
して出力する分波器16から構成される。The optical transmitter 10 comprises a light source having a wavelength shorter than the wavelength λ0 + ΔλG, a modulator 11 for modulating the light, a multiplexer 12 for synthesizing the signal light modulated by the modulator 11, and centralized amplifiers 13 and 14. , A wavelength division multiplexing filter or an optical coupler 15, and a demultiplexer 16 for demultiplexing and outputting the signal light amplified by the receiver 17.
【0006】光受信装置20は、波長分割フィルタまた
は、光カプラ21、集中増幅型光増幅器RL22、集中
増幅型増幅器SL23、増幅された信号光を分波する分
波器24、λ0+λGより長い波長の光源を変調する変
調器26から構成される。The optical receiver 20 includes a wavelength division filter or optical coupler 21, a centralized amplification type optical amplifier RL22, a centralized amplification type amplifier SL23, a demultiplexer 24 for demultiplexing the amplified signal light, and a wavelength longer than λ0 + λG. It comprises a modulator 26 for modulating the light source.
【0007】伝送路30は、平均零分散波長λ0の光フ
ァイバの伝送路である。The transmission path 30 is an optical fiber transmission path having an average zero dispersion wavelength λ0.
【0008】さらに、光増幅機能を有する光中継装置を
光ファイバ伝送路の途中に配置して光ファイバ伝送路に
おける損失を補償する光波長分割多重中継伝送システム
が特性・コスト面で有効であり、広く開発されている。Further, an optical wavelength division multiplex transmission system in which an optical repeater having an optical amplification function is arranged in the middle of an optical fiber transmission line to compensate for loss in the optical fiber transmission line is effective in terms of characteristics and cost. Widely developed.
【0009】光波長分割多重伝送に使用する複数の信号
光は、従来、エルビウム添加ファイバ増幅器(EDF
A)の利得帯域である波長1530nm〜1565nmに配
置されることが多かったが、近年の通信トラフィックの
増大に対応し、波長帯域の拡大が図られている(例え
ば、S.Aisawaら、“Ultra-wide band, long distance W
DMtransmission demonstration ”、1998年光ファイバ
国際会議、Postdeadline Paper 11)。波長1570〜1
610nm周辺の増幅には利得シフトエルビウム添加ファ
イバ増幅器の、また、波長1450〜1520nm周辺の
増幅にはツリウム添加ファイバ増幅器の開発が進んでい
ることから、石英系光ファイバの低損失波長領域( <
0.3dB/km )である波長1450から1650nmの領
域を利用した波長多重中継伝送システムを実現できる可
能性がある。[0009] Conventionally, a plurality of signal lights used for optical wavelength division multiplexing transmission have been erbium-doped fiber amplifiers (EDFs).
The wavelength band is often arranged at 1530 nm to 1565 nm, which is the gain band of A), but the wavelength band has been expanded in response to the recent increase in communication traffic (for example, S. Aisawa et al., “Ultra -wide band, long distance W
DM transmission demonstration ", 1998 Optical Fiber International Conference, Postdeadline Paper 11). Wavelength 1570-1
The development of a gain-shifted erbium-doped fiber amplifier for amplification around 610 nm and the development of a thulium-doped fiber amplifier for amplification around 1450-1520 nm have led to the low-loss wavelength region (<
There is a possibility that a wavelength division multiplex relay transmission system using a wavelength range of 1450 to 1650 nm, which is 0.3 dB / km 2, can be realized.
【0010】しかしながら、特に、分散シフトファイ
バ、または、ノンゼロ分散シフトファイバ上で、上記の
ように広帯域の光波長分割多重伝送システムを実現する
には、ファイバの分散に関係して生じる種々の非線形効
果の影響を最小にするように、システムを設計する必要
がある。However, in order to realize a wideband optical wavelength division multiplexing transmission system as described above, especially on a dispersion-shifted fiber or a non-zero dispersion-shifted fiber, various nonlinear effects caused by the dispersion of the fiber are required. Systems must be designed to minimize the effects of
【0011】以下、分散シフトファイバ、または、ノン
ゼロ分散シフトファイバ上の広帯域波長多重伝送システ
ムにおいて起こり得るファイバ非線形効果について詳述
する。Hereinafter, a fiber nonlinear effect that can occur in a broadband wavelength division multiplexing transmission system on a dispersion-shifted fiber or a non-zero dispersion-shifted fiber will be described in detail.
【0012】まず、伝送路ファイバの零分散波長が含ま
れる領域に配置された信号光は、「四光波混合」を引起
し、これによって新たに発生した光が信号光に対する干
渉雑音となる。これを抑圧する方法として、信号光の波
長を不等間隔に配置し、四光波混合によって新たに発生
する光の波長がどの信号光の波長にも一致しないように
する方法が提案されている(F.Forghieri ら、“Reduct
ion of Four-Wave Mixing Crosstalk in WDM Systems U
sing Unequally Spaced Channels”、IEEE Photonics T
echnology Letters, 6, pp. 754-756, 1994)。First, signal light arranged in a region of the transmission line fiber including the zero-dispersion wavelength causes "four-wave mixing", whereby newly generated light becomes interference noise for the signal light. As a method for suppressing this, a method has been proposed in which the wavelengths of signal light are arranged at unequal intervals so that the wavelength of light newly generated by four-wave mixing does not match the wavelength of any signal light ( F. Forghieri et al., “Reduct
ion of Four-Wave Mixing Crosstalk in WDM Systems U
sing Unequally Spaced Channels ”, IEEE Photonics T
echnology Letters, 6, pp. 754-756, 1994).
【0013】また、伝送路に励起光を入力し、信号光に
分布定数型ラマン増幅利得を与えることで光ファイバに
対する信号光の入力パワーを低減し、四光波混合の発生
効率を低減させる方法が提案されている(N.Takachio
ら、“32x10 Gbps distributedRaman amplification tr
ansmission with 50 GHz channel spacing in the zero
dispersion wavelenth region over 640 km of 1.55-
μm dispersion shiftedfiber”、1999年光ファイバ国
際会議、Postdeadline Paper 9) 。分布定数型ラマン増
幅は、励起光波長に対して数nmから110nm 長波長の光に
利得を与える。その利得は、励起光から100 〜110nm 長
波長の領域で最大となり、それより短波長になる従い、
徐々に減少する。また、この四光波混合は、零分散波長
が含まれる領域より短波長側に配置された信号光と、同
領域より長波長側に配置された信号光との間でも生じ
る。これによる劣化は、J.Kaniらの論文“Bi-direction
al transmission ofr suppressinginter-wavelength-ba
nd nonlinear interactions in ultra-wide band WDM t
ransmission systems”, IEEE Photonics Technology L
etters, vol. 11,pp. 376-378, 1999. に詳述されてい
る。このように、波長の離れた2領域の間で生じる四光
波混合による劣化は、同2領域を双方向に伝送させるこ
とで抑圧できることが同論文に述べられている。Further, there is a method of reducing the input power of the signal light to the optical fiber by inputting the pumping light to the transmission line and giving the signal light a distributed constant Raman amplification gain, thereby reducing the generation efficiency of four-wave mixing. Proposed (N.Takachio
Et al., “32x10 Gbps distributed Raman amplification tr
ansmission with 50 GHz channel spacing in the zero
dispersion wavelenth region over 640 km of 1.55-
μm dispersion shifted fiber ”, 1999, International Conference on Optical Fiber, Postdeadline Paper 9). Distributed-constant Raman amplification provides gain to light with wavelengths several nm to 110 nm longer than the pump light wavelength. As it becomes maximum in the region of 100-110 nm long wavelength and becomes shorter than that,
Decrease gradually. This four-wave mixing also occurs between signal light arranged on the shorter wavelength side than the region including the zero-dispersion wavelength and signal light arranged on the longer wavelength side from the same region. Deterioration due to this is described in J. Kani et al.'S Bi-direction
al transmission ofr suppressinginter-wavelength-ba
nd nonlinear interactions in ultra-wide band WDM t
ransmission systems ”, IEEE Photonics Technology L
etters, vol. 11, pp. 376-378, 1999. As described above, the same paper states that deterioration caused by four-wave mixing between two regions having different wavelengths can be suppressed by transmitting the two regions bidirectionally.
【0014】また、上記のように広波長域を利用した光
波長分割多重伝送システムにおいて、起こり得る別の非
線形効果に、「誘導ラマン散乱」がある。誘導ラマン散
乱は、波長の異なる2つの光が非線形媒質を伝搬した場
合に短波長の光が励起光となって長波長の光を増幅させ
る現象であり、これによって短波長側の信号光が過剰に
減衰し、伝送品質劣化となる。石英系光ファイバにおけ
る誘導ラマン散乱の発生効率は、2つの光の波長間隔が
大きくなると増大していき、100nm 程度で最大となるこ
とが知られている。In the optical wavelength division multiplexing transmission system using the wide wavelength region as described above, another possible nonlinear effect is "stimulated Raman scattering". Stimulated Raman scattering is a phenomenon in which, when two lights having different wavelengths propagate through a nonlinear medium, short-wavelength light becomes pumping light and amplifies long-wavelength light. And transmission quality is degraded. It is known that the generation efficiency of stimulated Raman scattering in a silica-based optical fiber increases as the wavelength interval between two lights increases, and reaches a maximum at about 100 nm.
【0015】これらの非線形効果による品質劣化を最小
限とする設計法が、J.Kaniらの論文“Inter-wavelength
-band nonlinear interactions and their suppression
inmulti-wavelength-band WDM transmission system
s”, IEEE Journal of Lightwave Technology, vol. 1
7, November, 1999.に詳述されている。ここで述べられ
ている方法の概念図を図12に示す。この方法による
と、零分散波長が含まれる領域に配置される信号光は、
その波長間隔が不等間隔となるように配置される。さら
に、零分散波長が含まれる領域及び、これにより短波長
側の領域に配置される信号光は、零分散波長が含まれる
領域より長波長側の領域に配置される信号光と、伝送路
ファイバを逆向きに伝播させる。つまり、双方向伝送を
行う。この設計により、前述の非線形効果による劣化の
うち特に四光波混合による劣化が最小化されることが同
論文に詳述されている。A design method for minimizing quality degradation due to these nonlinear effects is described in a paper by J. Kani et al., “Inter-wavelength.
-band nonlinear interactions and their suppression
inmulti-wavelength-band WDM transmission system
s ”, IEEE Journal of Lightwave Technology, vol. 1
7, November, 1999. FIG. 12 shows a conceptual diagram of the method described here. According to this method, the signal light arranged in the region including the zero dispersion wavelength is:
They are arranged so that their wavelength intervals are unequal. Further, the signal light arranged in the region including the zero-dispersion wavelength and the signal light arranged in the region on the shorter wavelength side by this means that the signal light arranged in the region on the longer wavelength side from the region including the zero-dispersion wavelength and the transmission line fiber Is propagated in the opposite direction. That is, bidirectional transmission is performed. The paper details that this design minimizes the degradation due to the four-wave mixing among the degradation due to the non-linear effect described above.
【0016】[0016]
【発明が解決しようとする課題】しかしながら、上記の
図12に示されるシステムでは、零分散波長において波
長が不等間隔となるように信号光を配置するために、同
領域において高密度かつ大容量な伝送を行うことができ
ないという問題がある。However, in the system shown in FIG. 12, the signal light is arranged so that the wavelengths are unequally spaced at the zero-dispersion wavelength. Transmission cannot be performed.
【0017】また、同方法において用いられる双方向伝
送は、その運用に複雑性をきたす場合があるという問題
がある。In addition, the bidirectional transmission used in the method has a problem that its operation may be complicated.
【0018】さらに、同方法においては、前述の非線形
効果のうち、誘導ラマン散乱によって短波長信号光が受
ける過剰損失がもたらす劣化は回避できないという問題
がある。Further, the method has a problem that, among the above-described nonlinear effects, deterioration caused by excess loss of short-wavelength signal light due to stimulated Raman scattering cannot be avoided.
【0019】本発明は、上記の点に鑑みなされたもの
で、分散シフトファイバ、または、ノンゼロ分散シフト
ファイバ上において、例えば、波長1450nm〜1650nmのよ
うな広い範囲にわたって信号光を配置する光波長分割多
重伝送システムにおいて、4 光波混合、誘導ラマン散乱
がもたらす品質劣化を最小限とするとともに、零分散波
長領域においても高密度な波長多重を実現し、かつ、す
べての信号光を光ファイバ伝送路の同一の方向へ伝播さ
せることが可能となるような光波長分割多重送信装置及
び光波長分割多重受信装置及び光中継装置及び光波長分
割多重伝送システムを提供することを目的とする。The present invention has been made in view of the above points, and has been made in consideration of the above points, and is an optical wavelength division multiplexing device that arranges signal light over a wide range such as a wavelength of 1450 nm to 1650 nm on a dispersion shifted fiber or a non-zero dispersion shifted fiber. In a multiplex transmission system, quality degradation caused by four-wave mixing and stimulated Raman scattering is minimized, high-density wavelength multiplexing is realized even in the zero-dispersion wavelength region, and all signal light is transmitted through the optical fiber transmission line. It is an object of the present invention to provide an optical wavelength division multiplexing transmission device, an optical wavelength division multiplexing reception device, an optical repeater, and an optical wavelength division multiplexing transmission system that can be propagated in the same direction.
【0020】[0020]
【課題を解決するための手段】図1は、本発明の原理構
成図である。FIG. 1 is a block diagram showing the principle of the present invention.
【0021】本発明(請求項1)は、波長の異なる複数
の光を複数の電気信号により変調する変調手段110及
び変調された信号光を波長多重化して送信する手段を有
する光波長分割多重送信装置100であって、光ファイ
バ伝送路300に励起光を入力することで該伝送路30
0を光増幅媒体とし、光ファイバ伝送路300の平均零
分散波長近辺に配置された信号光を含む、短波長側に配
置された複数の信号光の増幅に適用される分布定数型光
増幅手段と、光ファイバ伝送路300の平均零分散波長
近辺以外の、長波長側に配置された信号光の増幅に適用
される集中定数型光増幅手段とを有する光増幅手段13
0を有する。The present invention (claim 1) provides an optical wavelength division multiplexing transmission system having a modulating means 110 for modulating a plurality of lights having different wavelengths by a plurality of electric signals and a means for wavelength multiplexing and transmitting the modulated signal light. An apparatus 100 that inputs pump light into an optical fiber transmission line 300 to
0 is an optical amplifying medium, and a distributed constant type optical amplifying means applied to amplify a plurality of signal lights arranged on the short wavelength side including the signal light arranged near the average zero dispersion wavelength of the optical fiber transmission line 300. An optical amplifying means 13 having lumped-constant optical amplifying means applied to amplify signal light disposed on the long wavelength side other than the vicinity of the mean zero dispersion wavelength of the optical fiber transmission line 300
Has zero.
【0022】本発明(請求項2)は、光増幅手段130
を用いて、少なくとも零分散波長近辺に配置された信号
光の伝送路入力パワーを、−2dBm 以下に設定する。According to the present invention (claim 2), the optical amplifying means 130
, The transmission line input power of the signal light arranged at least near the zero dispersion wavelength is set to −2 dBm or less.
【0023】本発明(請求項3)は、波長多重化された
複数の信号光を波長毎に分離する分離手段230と、分
離された信号光を光電気変換して複数の電気信号に復調
する復調手段260とを有する光波長分割多重受信装置
200であって、光ファイバ伝送路300の平均零分散
波長近辺に配置された信号光を含む、短波長側に配置さ
れた複数の信号光の増幅に適用される分布定数型光増幅
手段と、光ファイバ伝送路300の平均零分散波長近辺
以外の、長波長側に配置された信号光の増幅に適用され
る集中定数型光増幅手段とを有する光増幅手段240を
有する。According to the present invention (claim 3), a separating means 230 for separating a plurality of wavelength-multiplexed signal lights for each wavelength, and a photoelectric conversion of the separated signal lights to demodulate them into a plurality of electric signals. An optical wavelength division multiplexing receiving apparatus 200 having demodulation means 260, comprising: amplifying a plurality of signal lights arranged on a short wavelength side, including signal lights arranged near an average zero dispersion wavelength of an optical fiber transmission line 300. And a lumped-constant-type optical amplifying means applied to amplify signal light arranged on the long wavelength side other than the vicinity of the mean zero dispersion wavelength of the optical fiber transmission line 300. It has optical amplification means 240.
【0024】本発明(請求項4)は、光増幅手段240
を用いて、少なくとも零分散波長近辺に配置された信号
光の伝送路入力パワーを、−2dBm 以下に設定する。The present invention (claim 4) provides an optical amplifier 240
, The transmission line input power of the signal light arranged at least near the zero dispersion wavelength is set to −2 dBm or less.
【0025】本発明(請求項5)は、光ファイバ伝送路
の途中に配置され、光ファイバ伝送路における損失を補
償するための光中継装置であって、伝送路に励起光を入
力することで伝送路を光増幅媒体とし、光ファイバ伝送
路の平均零分散波長近辺に配置された信号光を含む、短
波長側に配置された複数の信号光の増幅に適用される分
布定数型光増幅手段と、光ファイバ伝送路の平均零分散
波長近辺の、長波長側に配置された信号光の増幅に適用
される集中定数型光増幅手段とを有する。According to a fifth aspect of the present invention, there is provided an optical repeater disposed in the middle of an optical fiber transmission line for compensating for a loss in the optical fiber transmission line. Distributed constant type optical amplification means applied to amplify a plurality of signal lights arranged on the short wavelength side, including a signal light arranged near an average zero dispersion wavelength of an optical fiber transmission line, using a transmission line as an optical amplification medium. And a lumped-constant-type optical amplifying unit applied to amplify signal light disposed on the long wavelength side near the average zero dispersion wavelength of the optical fiber transmission line.
【0026】本発明(請求項6)は、波長の異なる複数
の光を複数の電気信号により変調する変調手段及び変調
された信号光を波長多重化して送信する手段を有する光
波長分割多重送信装置と、波長多重化された複数の信号
光を波長毎に分離する分離手段と、分離された信号光を
光電気変換して複数の電気信号に復調する復調手段とを
有する光波長分割多重受信装置から構成される光波長分
割多重伝送システムであって、光ファイバ伝送路の平均
零分散波長近辺に配置された信号光を含む、短波長側に
配置された複数の信号光の増幅に適用される第1の分布
定数型光増幅手段と、光ファイバ伝送路の平均零分散波
長近辺以外の、長波長側に配置された信号光の増幅に適
用される第1の集中定数型光増幅手段とを有し、光ファ
イバ伝送路の損失を補償する光増幅手段を、光波長分割
多重送信装置、光波長分割多重受信装置の両方または、
いずれか一方に備える。According to a sixth aspect of the present invention, there is provided an optical wavelength division multiplexing transmission apparatus having a modulating means for modulating a plurality of lights having different wavelengths with a plurality of electric signals, and a means for multiplexing and transmitting the modulated signal light. Wavelength division multiplex receiving apparatus comprising: a separating unit that separates a plurality of wavelength-multiplexed signal lights for each wavelength; and a demodulating unit that performs photoelectric conversion of the separated signal light and demodulates the separated signal lights into a plurality of electric signals. An optical wavelength division multiplexing transmission system comprising: amplification of a plurality of signal lights arranged on a short wavelength side, including signal lights arranged near an average zero dispersion wavelength of an optical fiber transmission line. The first distributed constant type optical amplifying means and the first lumped constant type optical amplifying means applied to the amplification of signal light arranged on the long wavelength side other than the vicinity of the mean zero dispersion wavelength of the optical fiber transmission line include: Have optical fiber transmission line loss An optical amplification means for compensating, optical wavelength division multiplexing transmission apparatus, both the optical wavelength-division multiplexing receiving apparatus or,
Prepare for either one.
【0027】本発明(請求項7)は、伝送路に励起光を
入力することで伝送路を光増幅媒体とし、光ファイバ伝
送路の平均零分散波長近辺に配置された信号光を含む、
短波長側に配置された複数の信号光の増幅に適用される
第2の分布定数型光増幅手段と、光ファイバ伝送路の平
均零分散波長近辺の、長波長側に配置された信号光の増
幅に適用される第2の集中定数型光増幅手段と、を有す
る光中継装置を更に有する。According to the present invention (claim 7), the transmission line is used as an optical amplification medium by inputting pumping light to the transmission line, and includes signal light arranged near the average zero dispersion wavelength of the optical fiber transmission line.
A second distributed constant type optical amplifying means applied to amplify a plurality of signal lights arranged on the short wavelength side, and a signal light arranged on the long wavelength side near the average zero dispersion wavelength of the optical fiber transmission line. And a second lumped-constant-type optical amplifying unit applied to the amplification.
【0028】本発明(請求項8)は、第1、第2の集中
定数型光増幅手段を用いて、少なくとも零分散波長近辺
に配置された信号光の伝送路入力パワーを−2dBm 以下
に設定する。According to the present invention (claim 8), the first and second lumped-constant type optical amplifiers are used to set the transmission line input power of the signal light arranged at least near the zero dispersion wavelength to -2 dBm or less. I do.
【0029】上記により、本発明は、分散シフトファイ
バ、または、ノンゼロ分散シフトファイバ上において、
例えば、波長1450nm〜1650nmのような広い範囲にわたっ
て信号光を配置する光波長分割多重伝送システムにおい
て、4 光波混合、誘導ラマン散乱がもたらす品質劣化を
最小限とするとともに、零分散波長領域においても高密
度な波長多重を実現すること、また、これらを、すべて
の信号光を光ファイバ伝送路の同一の方向へ伝播させる
という条件のもとに実現することができる。As described above, the present invention provides a method for controlling a dispersion-shifted fiber or a non-zero dispersion-shifted fiber,
For example, in an optical wavelength division multiplexing transmission system in which signal light is arranged over a wide range such as a wavelength of 1450 nm to 1650 nm, quality degradation caused by four-wave mixing and stimulated Raman scattering is minimized, and high quality is achieved even in the zero dispersion wavelength region. Density wavelength multiplexing can be realized, and these can be realized under the condition that all signal lights are propagated in the same direction on the optical fiber transmission line.
【0030】これは、零分散波長が含まれる領域に配置
された信号光が生じる四光波混合は、分布増幅を適用し
て、少なくとも零分散波長近辺の信号光のファイバ伝送
路への入力パワーを低減することで、その発生効率を大
幅に減ぜられる。This is because, in the four-wave mixing in which the signal light arranged in the region including the zero-dispersion wavelength is generated, distribution amplification is applied to reduce the input power of the signal light near the zero-dispersion wavelength to the fiber transmission line at least. By reducing, the generation efficiency can be greatly reduced.
【0031】零分散波長が含まれる領域よりも、短波長
側に配置された信号光と、零分散波長が含まれる領域よ
りも長波長側に配置された信号光の間で生じる四光波混
合は、分布増幅を適用して同信号光のうち短波長側の信
号光のファイバ伝送路への入力パワーを低減すること
で、その発生効率を大幅に減ぜられる。Four-wave mixing that occurs between the signal light arranged on the shorter wavelength side than the region including the zero-dispersion wavelength and the signal light arranged on the longer wavelength side than the region including the zero-dispersion wavelength occurs. By applying distributed amplification to reduce the input power to the fiber transmission line of the signal light on the short wavelength side of the same signal light, the generation efficiency can be greatly reduced.
【0032】誘導ラマン散乱を通じて短波長の信号光が
長波長の信号光から受ける過剰損失による伝送品質劣化
は、分布定数型増幅で適用される信号光の短波長側に分
布定数型光増幅の励起光を入れることにより、その過剰
損失が分布ラマン増幅によって補償させるため、減ぜら
れる。Transmission quality degradation due to excess loss of short-wavelength signal light from long-wavelength signal light through stimulated Raman scattering is caused by excitation of distributed-constant light amplification on the short-wavelength side of signal light applied in distributed-constant amplification. By introducing light, the excess loss is reduced because it is compensated by distributed Raman amplification.
【0033】[0033]
【発明の実施の形態】図2は、本発明の信号光波長と適
用される光増幅方式の関係を示す。FIG. 2 shows the relationship between the signal light wavelength of the present invention and the applied optical amplification method.
【0034】同図に示すように、光ファイバの平均零分
散波長近辺及びそれより短波長側に配置された複数の信
号光の増幅にラマン増幅による分布定数型光増幅を適用
し、光ファイバの平均零分散波長近辺より長波長側に配
置された信号光の増幅に集中定数型光増幅幅を適用し、
少なくとも平均零分散波長近辺の複数の信号光の各々の
伝送路入力パワーは、長波長側に配置された複数の信号
光の各々の伝送路入力パワーよも低く設定する。As shown in the figure, distributed constant type optical amplification by Raman amplification is applied to the amplification of a plurality of signal lights arranged near the average zero dispersion wavelength of the optical fiber and on the shorter wavelength side. Applying a lumped-constant optical amplification width to the amplification of signal light arranged on the long wavelength side from around the average zero dispersion wavelength,
At least the transmission line input power of each of the plurality of signal lights near the mean zero dispersion wavelength is set lower than the transmission line input power of each of the plurality of signal lights arranged on the long wavelength side.
【0035】これを実現するために、波長多重システム
における、光送信装置、光受信装置、光中継装置の一部
または全部において、伝送路に励起光を入力することで
伝送路を光増幅媒体とした分布定数型光増幅を行う機能
と、同光増幅装置の内部に光増幅媒体を含み、これによ
って集中定数型光増幅を行う機能を兼ね備えた光増幅機
能を備える。In order to realize this, in some or all of the optical transmitter, the optical receiver, and the optical repeater in the wavelength division multiplexing system, the transmission path is connected to the optical amplification medium by inputting the excitation light to the transmission path. The optical amplifying device has a function of performing distributed optical amplification and a function of performing lumped-constant optical amplification by including an optical amplifying medium inside the optical amplifying device.
【0036】ここで、平均零分散波長近辺及びそれより
短波長側に配置された信号光の分布定数型増幅利得を補
うために、同光送信装置、光受信装置、光中継装置の一
部または、全部において集中定数型増幅を配置してもよ
い。Here, in order to compensate for the distributed constant type amplification gain of the signal light arranged near the average zero dispersion wavelength and on the shorter wavelength side, a part of the optical transmitter, the optical receiver, the optical repeater or , A lumped-constant-type amplification may be arranged in all cases.
【0037】また、ここで述べた「平均零分散波長近
辺」とは、図2におけるλ0±ΔλGの領域を示すもの
とする。The term “around the mean zero dispersion wavelength” described herein indicates the region of λ0 ± ΔλG in FIG.
【0038】有限のΔλGを設ける理由の一つは、伝送
路ファイバの零分散波長の製造上のばらつきを考慮する
ものとである。許容される零分散波長の製造ばらつき
は、標準化されている値で±25nmである(ITU-T G653)。
中心波長を狙ってファイバを作製するため、実際のばら
つきはこれより少ない場合もある。このばらつきを考慮
してΔλG を設定する。One of the reasons for providing a finite ΔλG is to take into account manufacturing variations in the zero dispersion wavelength of the transmission line fiber. The allowable manufacturing dispersion of the zero-dispersion wavelength is ± 25 nm as a standardized value (ITU-T G653).
Since the fiber is manufactured aiming at the center wavelength, the actual variation may be smaller than this. ΔλG is set in consideration of this variation.
【0039】有限のΔλGを設ける理由のもう一つは、
四光波混合の発生効率に関するものである。四光波混合
による信号劣化が起こり得る領域は、零分散波長λ0±
ΔλG(FWM) であり、ΔλG(FWM)は有限であることが、
例えば、特開平7−107069「光波長多重伝送方式
及び光分散補償方式」に述べられている。同文献に、チ
ャネル数16、チャネル間隔150GHz、チャネル当たりの
伝送路入力パワー3dBm、伝送路長90kmの場合の数値列と
して、ΔλG(FWM)を10nm以上とする必要性が述べられて
いる。Another reason for providing a finite ΔλG is that
It relates to the generation efficiency of four-wave mixing. The area where signal degradation due to four-wave mixing can occur is the zero dispersion wavelength λ0 ±
ΔλG (FWM), and ΔλG (FWM) is finite.
For example, it is described in Japanese Patent Application Laid-Open No. 7-107069 "Optical wavelength division multiplexing transmission system and optical dispersion compensation system". The document states that ΔλG (FWM) needs to be 10 nm or more as a numerical sequence when the number of channels is 16, the channel interval is 150 GHz, the transmission path input power per channel is 3 dBm, and the transmission path length is 90 km.
【0040】上記のような理由から、図2に示したΔλ
G は、凡そ10〜35nm程度とするのがよい。当該伝送路フ
ァイバとして平均零分散波長およそ1550nmである分散シ
フトファイバを用い、ΔλG=20nmとした場合、当該分布
定数型光増幅は、波長1470nm以下の励起光を用いて、波
長1570nm以下に配置された信号光の増幅に適用され、当
該集中定数型光増幅は、波長およそ1570nm以上に配置さ
れた信号光の増幅に適用される。For the above reason, Δλ shown in FIG.
G is preferably about 10 to 35 nm. When a dispersion-shifted fiber having an average zero-dispersion wavelength of about 1550 nm is used as the transmission line fiber and ΔλG = 20 nm, the distributed constant optical amplification is arranged at a wavelength of 1570 nm or less using pump light having a wavelength of 1470 nm or less. The lumped-constant optical amplification is applied to amplification of signal light arranged at a wavelength of about 1570 nm or more.
【0041】ここで、当該集中定数型光増幅として、波
長およそ1570nmから1620nmの範囲に配置された信号光の
増幅には、エルビウム添加光ファイバ増幅器を、波長16
20nm以上1650nm以下の信号光の増幅には、集中定数型ラ
マンファイバ増幅器を用いてもよい。Here, as the lumped constant type optical amplification, an erbium-doped optical fiber amplifier is used to amplify the signal light arranged in the wavelength range of about 1570 nm to 1620 nm.
A lumped-constant Raman fiber amplifier may be used for amplifying the signal light having a wavelength of 20 nm or more and 1650 nm or less.
【0042】また、波長及び1450nmから1520nmの範囲に
配置された信号光の分布定数型増幅利得は、ツリウム添
加光ファイバ増幅器による集中型増幅によって補っても
よい。さらに、およそ1450nmから1520nmの範囲に配置さ
れた信号光のうち、短波長側のものほど小さくなる分布
ラマン増幅利得を、ツリウム添加光ファイバ増幅器によ
る集中型増幅によって補ってもよい。The distributed constant amplification gain of the signal light arranged in the wavelength range and 1450 nm to 1520 nm may be compensated by lumped amplification using a thulium-doped optical fiber amplifier. Further, of the signal lights arranged in the range of about 1450 nm to 1520 nm, the distributed Raman amplification gain that becomes smaller as the wavelength becomes shorter may be supplemented by lumped amplification using a thulium-doped optical fiber amplifier.
【0043】[0043]
【実施例】以下、図面ともに本発明の実施例を説明す
る。Embodiments of the present invention will be described below with reference to the drawings.
【0044】[第1の実施例]本実施例では、前述の図
2に示すように、零分散波長近辺(波長λ0±ΔλG)
を含む短波長側に配置された信号光に分布定数型光増幅
を適用し、それ以外の長波長側に配置された信号光に集
中定数型光増幅を適用し、また、図2に示すように、少
なくとも零分散波長近辺に配置された信号光の伝送路パ
ワーは、長波長側に配置された信号光の伝送路入力パワ
ーよりも低く設定されるものである。[First Embodiment] In this embodiment, as shown in FIG. 2, the vicinity of the zero dispersion wavelength (wavelength λ0 ± ΔλG)
The distributed constant type optical amplification is applied to the signal light arranged on the short wavelength side including the above, and the lumped constant type optical amplification is applied to the signal light arranged on the other long wavelength side, as shown in FIG. In addition, the transmission line power of the signal light arranged at least near the zero-dispersion wavelength is set to be lower than the transmission line input power of the signal light arranged on the long wavelength side.
【0045】図3は、本発明の第1の実施例の光波長多
重伝送システムの構成を示す。FIG. 3 shows the configuration of an optical wavelength division multiplexing transmission system according to a first embodiment of the present invention.
【0046】同図に示すシステムは、波長の異なる複数
の光を複数の電気信号により変調しこれらを波長多重化
して送信する光送信装置100と、波長多重化された複
数の信号光を波長毎に分離し、それらを光電気変換して
複数の電気信号に復調する光受信装置200、及び、光
送信装置100と光受信装置200を結ぶ1本の光ファ
イバ伝送路300からなる。The system shown in FIG. 1 includes an optical transmitting apparatus 100 that modulates a plurality of lights having different wavelengths with a plurality of electric signals, multiplexes these signals, and transmits the multiplexed signal lights. And an optical receiver 200 for performing optical-to-electrical conversion and demodulating them into a plurality of electrical signals, and one optical fiber transmission line 300 connecting the optical transmitter 100 and the optical receiver 200.
【0047】光ファイバ伝送路300の平均零分散波長
をλ0として、光送信装置100は、波長λ0+ΔλG
以上の複数の光源101と、これらを変調する変調器1
10、変調された信号光を合波する合波器120、これ
らを増幅する集中型光増幅器SL130、波長λ0+Δ
λG 以下の複数の光源102と、これらを変調する変調
器140、変調された信号光を合波する合波器150、
波長λ0+ΔλG 以上の信号光と波長λ0+ΔλG 以下
の信号光を多重する波長多重フィルタまたは光カプラ1
61、分布定数型増幅のための励起光源170、この励
起光を伝送路へ送出するための波長多重フィルタまた
は、光カプラ162及び集中増幅型光増幅器SS180
から構成される。Assuming that the average zero-dispersion wavelength of the optical fiber transmission line 300 is λ0, the optical transmission device 100 operates at the wavelength λ0 + ΔλG
The plurality of light sources 101 and the modulator 1 that modulates them
10, a multiplexer 120 for multiplexing the modulated signal light, a centralized optical amplifier SL130 for amplifying these, a wavelength λ0 + Δ
a plurality of light sources 102 of λG or less, a modulator 140 for modulating these, a multiplexer 150 for multiplexing the modulated signal light,
Wavelength multiplexing filter or optical coupler 1 for multiplexing signal light of wavelength λ0 + ΔλG or more and signal light of wavelength λ0 + ΔλG or less
61, an excitation light source 170 for distributed constant type amplification, a wavelength multiplexing filter or an optical coupler 162 for transmitting this excitation light to a transmission line, and a lumped amplification type optical amplifier SS180
Consists of
【0048】当該光送信装置100内において、波長λ
0+ΔλG 以上の光源は、変調器110によって変調さ
れ、合波器120によって合成された後に、集中型光増
幅器SL130によって増幅され、伝送路300に送出
される。In the optical transmission device 100, the wavelength λ
Light sources equal to or greater than 0 + Δλ G are modulated by the modulator 110 and combined by the multiplexer 120, amplified by the centralized optical amplifier SL 130, and transmitted to the transmission line 300.
【0049】波長λ0+ΔλG 以下の光源は、変調器1
40によって変調され、合波器150によって合波され
た後に、伝送路300に送出される。波長λ0+ΔλG
以下の信号光は、例えば、合波器150の後で当該光送
信装置100の内部で受けた損失を補償するため、及び
分布定数型増幅利得を補うために、集中型光増幅器SS
180によって増幅されてもよい。The light source having a wavelength of λ0 + ΔλG or less is
After being modulated by 40 and multiplexed by the multiplexer 150, it is transmitted to the transmission line 300. Wavelength λ0 + ΔλG
The following signal light is, for example, a lumped optical amplifier SS for compensating for a loss received inside the optical transmitter 100 after the multiplexer 150 and for compensating for a distributed constant amplification gain.
180 may be amplified.
【0050】励起光源170は、波長λ0+ΔλG 以下
の信号光にラマン増幅を与えるために、波長λ0+Δλ
G から100nm 程度、または、それ以上短い波長を持つも
のであり、この励起光源は、複数の波長の異なる励起光
源が合成されたものであってもよい。The pumping light source 170 has a wavelength of λ0 + ΔλG for giving Raman amplification to the signal light having a wavelength of λ0 + ΔλG or less.
The excitation light source has a wavelength shorter than G by about 100 nm or more, and the excitation light source may be a combination of a plurality of excitation light sources having different wavelengths.
【0051】また、光受信装置200は、分布定数型増
幅のための励起光源220、及び、この励起光源を伝送
路300へ送出するための波長多重フィルタ210、波
長λ0+ΔλG 以上の信号光とλ0+ΔλG 以下の信号
光を多重する波長多重フィルタまたは、光カプラ23
0、波長λ0+ΔλG 以上の信号光を増幅する集中型光
増幅器RL240、集中増幅型光増幅器RS250,こ
れらを分波する分波器260、270これらを受信する
受信機280,290から構成されている。The optical receiver 200 includes a pump light source 220 for distributed constant amplification, a wavelength multiplexing filter 210 for transmitting the pump light source to the transmission line 300, a signal light having a wavelength of λ0 + ΔλG and a signal of λ0 + ΔλG or less. Wavelength multiplexing filter or optical coupler 23 for multiplexing the signal light of
0, a centralized optical amplifier RL240 for amplifying signal light having a wavelength of λ0 + ΔλG or more, a centralized amplifier optical amplifier RS250, and demultiplexers 260 and 270 for demultiplexing these, and receivers 280 and 290 for receiving these.
【0052】当該受信装置200内のいて、波長λ0+
ΔλG より長い信号光は、集中型光増幅器RL240に
よって増幅された後に分波器260で波長毎に分波さ
れ、受信機280で受信される。The wavelength λ0 +
The signal light longer than ΔλG is amplified by the centralized optical amplifier RL240, then split by the splitter 260 for each wavelength, and received by the receiver 280.
【0053】波長λ0+ΔλG 以下の信号光は、分波器
270で波長毎に分岐され、受信機290で受信され
る。波長λ0+ΔλG 以下の信号光は、例えば、分波器
270の後で、当該光受信装置200の内部で受ける損
失を補償するため、及び、分布定数型増幅利得を補うた
めに、集中型光増幅器RS250によって増幅されても
よい。The signal light having a wavelength of λ0 + ΔλG or less is split by the splitter 270 for each wavelength and received by the receiver 290. The signal light having a wavelength of λ0 + ΔλG or less, for example, after the demultiplexer 270, compensates for the loss received inside the optical receiver 200, and compensates for the distributed constant amplification gain. May be amplified.
【0054】図4は、本発明の第1の実施例の各増幅利
得の例を示す。FIG. 4 shows an example of each amplification gain of the first embodiment of the present invention.
【0055】分布定数型ラマン増幅利得の利得波長特性
は、一般には、図4(c)に示したように、短波長側に
いくほど減少するが、波長の異なる複数の励起光源を用
いることで、同図(a)に示したように、比較的平坦な
特性を得ることもできる。The gain-wavelength characteristic of the distributed constant type Raman amplification gain generally decreases toward the shorter wavelength side as shown in FIG. 4C, but by using a plurality of pumping light sources having different wavelengths. As shown in FIG. 2A, a relatively flat characteristic can be obtained.
【0056】前述したように、波長λ0+ΔλG 以下の
短波長側に配置された信号光は、同図(a)に示したよ
うに、分布定数型増幅利得によってすべての損失を補償
されてもよいし、同図(b)または、同図(c)に示し
たように、集中定数型増幅器SS180,RS250に
よって分布定数型増幅利得を補ってもよい。As described above, the signal light arranged on the short wavelength side of the wavelength λ0 + ΔλG or less may be compensated for all the losses by the distributed constant type amplification gain as shown in FIG. As shown in FIG. 3B or FIG. 3C, the distributed constant type amplification gain may be supplemented by the lumped constant type amplifiers SS180 and RS250.
【0057】また、集中型光増幅器SS180,RS2
50の利得波長特性は、図4(b)に示したように、ほ
ぼ平坦な分布定数型ラマン増幅利得を補償する形で、ほ
ぼ平坦であってもよいし、同図(c)に示したように、
短波長側にゆくほど減少する分布定数型ラマン増幅利得
を補償する形で、短波長側にゆくほど高利得な特性であ
ってもよい。The centralized optical amplifiers SS180, RS2
The gain wavelength characteristic 50 may be substantially flat as shown in FIG. 4B to compensate for the almost flat distributed constant Raman amplification gain, or shown in FIG. 4C. like,
In order to compensate for the distributed constant Raman amplification gain that decreases as the wavelength goes to the shorter wavelength side, the gain may be higher as the wavelength goes to the shorter wavelength side.
【0058】図5は、本発明の第1の実施例の短波長側
ほど小さくなる分布ラマン増幅利得を補うための各信号
波長における入力パワーを示す。各増幅器の利得の割合
を図4(c)のようにした場合、各信号波長の伝送路入
力パワーは、図5のように、少なくとも平均零分散波長
以下の領域において短波長側にゆくほど大きく設定する
ことになる。FIG. 5 shows the input power at each signal wavelength for compensating for the distributed Raman amplification gain that becomes smaller as the wavelength becomes shorter in the first embodiment of the present invention. When the gain ratio of each amplifier is set as shown in FIG. 4C, the transmission line input power of each signal wavelength becomes larger as it goes to the shorter wavelength side at least in a region equal to or less than the average zero dispersion wavelength as shown in FIG. Will be set.
【0059】上記において説明した構成により、伝送路
300の零分散波長範囲を含む広い範囲にわたって信号
光を配置する光波長分割多重伝送システムにおいて、零
分散波長領域においても高密度な波長多重を実現するこ
と、また、これらをすべての信号光を光ファイバ伝送路
の同一の方向へ伝播させるという条件のもとに四光波混
合、誘導ラマン散乱がもたらす品質劣化を最小限とする
ことができる。この理由は前述の通りである。With the above-described configuration, in an optical wavelength division multiplexing transmission system in which signal light is arranged over a wide range including the zero dispersion wavelength range of the transmission line 300, high-density wavelength multiplexing is realized even in the zero dispersion wavelength region. In addition, under the condition that all the signal lights are propagated in the same direction in the optical fiber transmission line, the quality deterioration caused by four-wave mixing and stimulated Raman scattering can be minimized. The reason is as described above.
【0060】ΔλG は、前述した理由により10〜35
nmであり、例えば、20nmである。 [第2の実施例]本実施例では、光ファイバ伝送路にお
ける損失を補償するための光中継装置を用いた波長多重
多中継伝送システムについて説明する。ΔλG is 10 to 35 for the above-mentioned reason.
nm, for example, 20 nm. [Second Embodiment] In this embodiment, a wavelength division multiplexing multi-relay transmission system using an optical repeater for compensating for a loss in an optical fiber transmission line will be described.
【0061】図6は、本発明の第2の実施例の波長多重
多中継伝送システムの構成を示す。本実施例において、
信号光波長と適用される光増幅方式の関係は、前述の第
1の実施例と同じであり、図2または、図5に示す概念
図のとおりである。FIG. 6 shows the configuration of a wavelength division multiplexing multi-relay transmission system according to a second embodiment of the present invention. In this embodiment,
The relationship between the signal light wavelength and the applied optical amplification method is the same as in the first embodiment described above, and is as shown in the conceptual diagram of FIG. 2 or FIG.
【0062】図6に示すシステムにおける光送信装置1
00、光受信装置200は、例えば、前述の第1の実施
例と同様の構成である。中継装置400は、中継装置4
00の前段の伝送路300における分布定数型増幅のた
めの励起光源401、この励起光を伝送路300に送出
するための波長多重フィルタ、光サーキュレータまた
は、光カプラ410、波長λ0+ΔλG より長い信号光
と波長λ0+ΔλG 以下の信号光を分離する波長分離フ
ィルタまたは、光カプラ420、波長λ0+ΔλG より
長い信号光を増幅する集中型光増幅器L430、波長λ
0+ΔλG より長い信号光と波長λ0+ΔλG 以下の信
号光を合波する波長多重フィルタまたは、光カプラ44
0、中継装置400の後段側の伝送路300における分
布定数型増幅のための励起光源402、この励起光を伝
送路300に送出するための波長多重フィルタまたは、
光カプラ450から構成される。The optical transmitter 1 in the system shown in FIG.
The optical receiver 200 has, for example, the same configuration as that of the first embodiment. The relay device 400 is a relay device 4
00, a pump light source 401 for distributed constant amplification in the transmission line 300, a wavelength multiplexing filter for transmitting the pump light to the transmission line 300, an optical circulator or an optical coupler 410, and a signal light longer than the wavelength λ0 + ΔλG. A wavelength separating filter or an optical coupler 420 for separating signal light of wavelength λ0 + ΔλG or less, a centralized optical amplifier L430 for amplifying signal light longer than wavelength λ0 + ΔλG, a wavelength λ
A wavelength multiplexing filter or optical coupler 44 for multiplexing a signal light longer than 0 + ΔλG and a signal light having a wavelength of λ0 + ΔλG or less.
0, an excitation light source 402 for distributed constant amplification in the transmission line 300 at the subsequent stage of the relay device 400, a wavelength multiplexing filter for transmitting the excitation light to the transmission line 300, or
It comprises an optical coupler 450.
【0063】当該中継装置400において、波長λ0+
ΔλG より長い信号光は、波長分離フィルタまたは、光
カプラ420によって分離され、集中型光増幅器L43
0によって増幅された後に合波器で再び他の波長の光と
合波され、次の光ファイバ伝送路300に送出される。In the relay device 400, the wavelength λ0 +
The signal light longer than ΔλG is separated by a wavelength separation filter or an optical coupler 420 and the lumped optical amplifier L43
After being amplified by 0, it is multiplexed again with light of another wavelength by the multiplexer, and transmitted to the next optical fiber transmission line 300.
【0064】波長λ0+ΔλG 以下の信号光は、波長分
離フィルタまたは、光カプラによって分離された後に、
波長多重フィルタまたは、光カプラで再び他の波長の光
と合波され、次に光ファイバ伝送路300に送出され
る。ここで、λ0+ΔλG 以下の信号光は、例えば、波
長分離フィルタまたは、光カプラ420の後で、当該光
中継装置400の内部で受ける損失を補償するため、及
び、分布定数型増幅利得を補うために、集中型光増幅器
S460によって増幅されてもよい。The signal light having a wavelength of λ0 + ΔλG or less is separated by a wavelength separation filter or an optical coupler.
The light is again multiplexed with light of another wavelength by a wavelength multiplexing filter or an optical coupler, and then transmitted to the optical fiber transmission line 300. Here, the signal light of λ0 + ΔλG or less is used, for example, to compensate for a loss received inside the optical repeater 400 after the wavelength separation filter or the optical coupler 420 and to compensate for a distributed constant type amplification gain. , May be amplified by the centralized optical amplifier S460.
【0065】各光増幅利得の割合は、第1の実施例と同
様に、例えば、図4に示すようになる。The ratio of each optical amplification gain is, for example, as shown in FIG. 4, as in the first embodiment.
【0066】図6に示す構成により、伝送路の零分散波
長範囲を含む広い範囲にわたって、信号光を配置する光
波長多重多中継伝送システムにおいて、四光波混合、誘
導ラマン散乱がもたらす品質劣化を最小限にすると共
に、零分散波長領域においても、高密度な波長多重を実
現すること、また、これらをすべての信号光を光ファイ
バ伝送路の同一の方向へ伝播させるという条件のもとに
実現することができる。 [第3の実施例]本実施例では、光波長多重伝送システ
ムにおいて、光ファイバ伝送路として、平均零分散波長
がおよそ1550nmである分散シフトファイバを用いている
例を説明する。本実施例では、第1及び第2の実施例で
示した光波長多重伝送システムにおいて、光ファイバ伝
送路として、平均例分散波長がおよそ1550nmである分散
シフトファイバを用いている。図7は、本発明の第3の
実施例の信号光波長と適用される光増幅方式の関係を示
す。同図に示すように、およそ1570nm以下の波長領域に
配置された信号光の増幅には、分布定数型光増幅が適用
され、およそ1570nm以上の波長領域に配置された信号光
の増幅には、集中定数型光増幅が適用される。波長1570
nm以下の信号光をラマン増幅を用いて分布定数型増幅す
るために、1470nm以下の波長領域に励起光を配置する。
励起光源は、複数の波長の異なる励起光源が合成された
ものであってもよい。The configuration shown in FIG. 6 minimizes the quality deterioration caused by four-wave mixing and stimulated Raman scattering in an optical wavelength division multiplexing multi-repeater transmission system in which signal light is arranged over a wide range including the zero dispersion wavelength range of the transmission line. To achieve high-density wavelength multiplexing even in the zero-dispersion wavelength region, and to realize these under the condition that all signal lights are propagated in the same direction on the optical fiber transmission line. be able to. [Third Embodiment] In this embodiment, an example will be described in which an optical wavelength multiplex transmission system uses a dispersion-shifted fiber having an average zero dispersion wavelength of about 1550 nm as an optical fiber transmission line. In this embodiment, in the optical wavelength division multiplexing transmission systems shown in the first and second embodiments, a dispersion-shifted fiber having an average dispersion wavelength of about 1550 nm is used as an optical fiber transmission line. FIG. 7 shows the relationship between the signal light wavelength and the applied optical amplification method according to the third embodiment of the present invention. As shown in the figure, distributed signal type optical amplification is applied to the amplification of the signal light arranged in the wavelength region of about 1570 nm or less, and the amplification of the signal light arranged in the wavelength region of about 1570 nm or more includes: Lumped constant optical amplification is applied. Wavelength 1570
In order to amplify the signal light of nm or less by distributed constant amplification using Raman amplification, pump light is arranged in a wavelength region of 1470 nm or less.
The excitation light source may be a combination of a plurality of excitation light sources having different wavelengths.
【0067】本実施例において、信号光は例えば、波長
1470nmから1650nmの領域に配置される。In this embodiment, the signal light has, for example, a wavelength
It is arranged in the region from 1470 nm to 1650 nm.
【0068】図8は、本発明の第3の実施例の光波長多
重伝送システムの構成を示す。FIG. 8 shows the configuration of an optical wavelength division multiplexing transmission system according to a third embodiment of the present invention.
【0069】同図に示すように、光送信装置100にお
いて、波長1570nm以上の複数の光源は、変調器121に
よって変調され、合波器131によって合波された後
に、集中型光増幅器L113によって増幅され、伝送路
300に送出される。As shown in the figure, in the optical transmission device 100, a plurality of light sources having a wavelength of 1570 nm or more are modulated by the modulator 121 and multiplexed by the multiplexer 131, and then amplified by the centralized optical amplifier L113. Is transmitted to the transmission path 300.
【0070】波長1570nm以下の光源のうち、例えば、波
長1520nm以上の光源は、変調器121によって変調さ
れ、合波器131によって合波された後に、伝送路30
0に送出される。波長1520nm以上1570nm以下の信号光
は、例えば、合波器131の後で、当該光送信装置10
0の内部で受けた損失を補償するため、及び、分布定数
型増幅利得を補うために、集中型光増幅器M111によ
って増幅されてもよい。Among the light sources having a wavelength of 1570 nm or less, for example, a light source having a wavelength of 1520 nm or more is modulated by the modulator 121 and multiplexed by the multiplexer 131,
Sent to 0. The signal light having a wavelength of 1520 nm or more and 1570 nm or less, for example, after the multiplexer 131,
It may be amplified by the lumped optical amplifier M111 in order to compensate for the loss received inside 0 and to compensate for the distributed gain.
【0071】波長1570nm以下の光源のうち、例えば、波
長1520nm以下の光源は、変調器によって変調され、合波
器によって合波された後に、伝送路300に送出され
る。波長1520nm以下の信号光は、例えば、合波器131
の後で、当該光送信装置100の内部で受けた損失を補
償するため、および、分布定数型増幅利得を補うため
に、集中型光増幅器S112によって増幅されてもよ
い。Of the light sources having a wavelength of 1570 nm or less, for example, a light source having a wavelength of 1520 nm or less is modulated by a modulator, multiplexed by a multiplexer, and transmitted to the transmission line 300. The signal light having a wavelength of 1520 nm or less is, for example, a multiplexer 131
After that, the signal may be amplified by the lumped optical amplifier S112 to compensate for the loss received inside the optical transmission device 100 and to compensate for the distributed constant amplification gain.
【0072】集中型光増幅器S112の利得波長特性
は、短波長側にゆくほど減少する分布定数型ラマン増幅
利得を補償する形で、短波長側にゆくほど高利得な特性
であってもよい。The gain wavelength characteristic of the lumped optical amplifier S112 may be such that the gain becomes higher toward the shorter wavelength side in such a manner as to compensate for the distributed constant type Raman amplification gain that decreases as the wavelength decreases toward the shorter wavelength side.
【0073】また、同じく、図8に示したように、光中
継装置400において、波長1570nm以上の複数の信号光
は、波長分離フィルタまたは、光カプラによって分離さ
れた後に、集中型光増幅器L473によって増幅され、
波長合波フィルタまたは、光カプラによって他の信号光
と再び合波された後、次の伝送路300に送出される。Similarly, as shown in FIG. 8, in the optical repeater 400, a plurality of signal lights having a wavelength of 1570 nm or more are separated by a wavelength separation filter or an optical coupler, and then separated by a centralized optical amplifier L473. Amplified
After being multiplexed with another signal light again by a wavelength multiplexing filter or an optical coupler, it is transmitted to the next transmission line 300.
【0074】波長1570nm以下の複数の信号光のうち、例
えば、波長1520nm以下の複数の信号光は、図8に示すよ
うに、波長分離フィルタまたは、光カプラによって分離
され、波長合波フィルタまたは、光カプラによって他の
信号光と再び合波された後、次の伝送路300に送出さ
れる。ここで、同信号光は、当該光受信装置200の内
部で受けた損失を補償するため、及び、分布定数型増幅
利得を補うために、例えば、分波器の前で集中型光増幅
器S472によって増幅されてもよい。Of the plurality of signal lights having a wavelength of 1570 nm or less, for example, a plurality of signal lights having a wavelength of 1520 nm or less are separated by a wavelength separation filter or an optical coupler as shown in FIG. After being multiplexed again with another signal light by the optical coupler, it is transmitted to the next transmission line 300. Here, in order to compensate for the loss received inside the optical receiving device 200 and to compensate for the distributed constant amplification gain, the signal light is transmitted by, for example, a centralized optical amplifier S472 in front of a demultiplexer. It may be amplified.
【0075】波長1570nm以下の複数の信号光のうち、例
えば、波長1520nm以上の複数の信号光は、図8に示すよ
うに、波長分離フィルタまたは、光カプラによって分離
された後に、波長合波フィルタまたは、光カプラによっ
て他の信号光と再び合波された後、次に伝送路300に
送出される。ここで、同信号光は、当該光受信装置20
0の内部で受けた損失を補償するため、及び、分布定数
型増幅利得を補うために、例えば、分波器の前で集中型
光増幅器M471によって増幅されてもよい。さらに、
光受信装置200においては、波長1570nm以上の複数の
信号光は、波長分離フィルタまたは、光カプラによって
分離され、集中型光増幅器L243によって増幅され、
分波器263によって波長毎に分波された後に、受信機
283によって受信される。As shown in FIG. 8, of a plurality of signal lights having a wavelength of 1570 nm or less, for example, a plurality of signal lights having a wavelength of 1520 nm or more are separated by a wavelength separation filter or an optical coupler, and then, combined with a wavelength multiplexing filter. Alternatively, after being multiplexed again with another signal light by the optical coupler, it is then transmitted to the transmission line 300. Here, the signal light is transmitted to the optical receiver 20.
To compensate for the loss received inside 0 and to compensate for the distributed gain, for example, it may be amplified by a lumped optical amplifier M471 in front of a demultiplexer. further,
In the optical receiver 200, a plurality of signal lights having a wavelength of 1570 nm or more are separated by a wavelength separation filter or an optical coupler, and amplified by a centralized optical amplifier L243.
After being demultiplexed for each wavelength by the demultiplexer 263, it is received by the receiver 283.
【0076】波長1570nm以下の複数の信号光のうち、例
えば、波長1520nm以下の複数の信号光は、図8に示すよ
うに、波長分離フィルタまたは、光カプラによって分離
され、分波器262によって波長毎に分波された後に、
受信機282によって受信される。ここで、当該信号光
は、当該光受信装置200の内部で受けた損失を補償す
るため、及び、分布定数型増幅利得を補うために、例え
ば、分波器262の前段で集中型光増幅器S242によ
って増幅されてもよい。Among the plurality of signal lights having a wavelength of 1570 nm or less, for example, a plurality of signal lights having a wavelength of 1520 nm or less are separated by a wavelength separation filter or an optical coupler as shown in FIG. After each splitting,
Received by receiver 282. Here, in order to compensate for the loss received inside the optical receiving device 200 and to compensate for the distributed gain, for example, the signal light is lumped to a centralized optical amplifier S 242 before the splitter 262. May be amplified.
【0077】波長1570nm以下の複数の信号光のうち、例
えば、波長1520nm以上の複数の信号光は、図8に示すよ
うに、波長分離フィルタまたは、光カプラによって分離
された後に、分波器262によって波長毎に分波された
後に、受信機282によって受信される。ここで、同信
号光は、当該光受信装置200の内部で受けた損失を補
償するため、及び、分布定数型増幅利得を補うために、
例えば、分波器261の前段で集中型光増幅器M241
によって増幅されてもよい。Of the plurality of signal lights having a wavelength of 1570 nm or less, for example, a plurality of signal lights having a wavelength of 1520 nm or more are separated by a wavelength separation filter or an optical coupler as shown in FIG. , And is received by the receiver 282. Here, the signal light is used to compensate for the loss received inside the optical receiving device 200 and to compensate for the distributed constant amplification gain.
For example, a centralized optical amplifier M241 is provided at a stage before the duplexer 261.
May be amplified.
【0078】集中型光増幅器S242は、例えば、およ
そ1450nm〜1520nmの波長領域に利得を与えるツリウム添
加光増幅器であってもよく、また、励起光波長の選択に
より任意の波長領域に利得を与えることができる集中定
数型ラマン増幅器であってもよく、また、これらの組み
合わせであってもよい。集中型光増幅器M241は、例
えば、およそ1530nm〜1570nmの波長領域に利得を与える
エルビウム添加光増幅器であってもよく、また、励起光
波長の選択により任意の波長領域に利得を与えることが
できる集中定数型ラマン増幅器であってもよく、また、
これらの組み合わせであってもよい。集中型光増幅器L
243は、例えば、およそ1570nm〜1610nmの波長領域に
利得を与える利得シフト型のエルビウム添加光増幅器で
あってもよく、また、励起光波長の選択により任意の波
長領域に利得を与えることができる集中定数型ラマン増
幅器であってもよく、また、これらの組み合わせであっ
てもよい。The centralized optical amplifier S242 may be, for example, a thulium-doped optical amplifier that provides a gain in a wavelength region of about 1450 nm to 1520 nm, or may provide a gain in an arbitrary wavelength region by selecting a pump light wavelength. May be a lumped-constant-type Raman amplifier, or a combination thereof. The centralized optical amplifier M241 may be, for example, an erbium-doped optical amplifier that provides a gain in a wavelength region of about 1530 nm to 1570 nm, or a concentrated optical amplifier that can provide a gain in an arbitrary wavelength region by selecting a pumping light wavelength. It may be a constant type Raman amplifier,
A combination of these may be used. Centralized optical amplifier L
243 may be, for example, a gain-shift type erbium-doped optical amplifier that provides a gain in a wavelength region of about 1570 nm to 1610 nm, or a concentrated light that can provide a gain in an arbitrary wavelength region by selecting a pump light wavelength. It may be a constant Raman amplifier or a combination thereof.
【0079】図9は、本発明の第3の実施例における各
増幅利得の例を示す。FIG. 9 shows an example of each amplification gain in the third embodiment of the present invention.
【0080】波長1570nm以上に配置された信号光に対し
ては、100%集中定数型光増幅を適用する。波長1570nm以
上に配置された信号光のうち、例えば、1570nm〜16190n
m に配置された信号光には、エルビウム添加光増幅器を
適用し、1610〜1650nmに配置された信号光には、集中定
数型ラマン増幅器を適用する。波長1570nm以下に配置さ
れた信号光に対しては、分布定数型ラマン光増幅を適用
する。このうち、より短波長側の信号光に対しては、短
波長になるほど減少する分布定数型ラマン利得を補うた
めに、短波長ほど大きな集中定数型増幅利得を与える。
例えば、波長1470nm〜1520nmに配置された信号光に、ツ
リウム添加光増幅器を用いて、短波長側ほど大きな集中
定数型増幅利得を与える。上記により、分散システムフ
ァイバを用いて、広い波長範囲にわたって信号光を配置
する光波長多重伝送システム及び同多中継伝送システム
において、四光波混合、誘導ラマン散乱がもたらす品質
劣化を最小限にすると共に、零分散波長領域においても
高密度な波長多重を実現すること、また、これらをすべ
ての信号光を光ファイバ伝送路の同一の方向へ伝播させ
るという条件のもとに実現することができる。For signal light having a wavelength of 1570 nm or longer, 100% lumped-constant type optical amplification is applied. Of the signal light arranged at a wavelength of 1570 nm or more, for example, 1570 nm to 16190 n
An erbium-doped optical amplifier is applied to the signal light arranged at m, and a lumped-constant Raman amplifier is applied to the signal light arranged at 1610 to 1650 nm. Distributed signal Raman amplification is applied to signal light arranged at a wavelength of 1570 nm or less. Among them, a larger lumped-constant-type amplification gain is given to a shorter wavelength side signal light in order to compensate for a distributed constant-type Raman gain that decreases as the wavelength becomes shorter.
For example, using a thulium-doped optical amplifier, a lumped-constant-type amplification gain is provided on the shorter wavelength side to signal light arranged at a wavelength of 1470 nm to 1520 nm. By the above, in the optical wavelength division multiplexing transmission system and the multi-repeater transmission system in which signal light is arranged over a wide wavelength range using the dispersion system fiber, four-wave mixing, while minimizing the quality degradation caused by stimulated Raman scattering, High-density wavelength multiplexing can be realized even in the zero-dispersion wavelength region, and these can be realized under the condition that all signal lights are propagated in the same direction on the optical fiber transmission line.
【0081】図10は、本発明の零分散波長帯と非零分
散波長帯におけるチャネル当たりの信号入力パワーと感
度劣化の関係を示す。FIG. 10 shows the relationship between signal input power per channel and sensitivity degradation in the zero dispersion wavelength band and the non-zero dispersion wavelength band of the present invention.
【0082】同図は、200GHz間隔8チャネルの波長多重
信号光が40kmの分散シフトファイバを伝搬した場合
の、チャネル当たりのファイバ入力パワーに対する信号
受信感度劣化(実験値)を示したものである。This figure shows the signal reception sensitivity degradation (experimental value) with respect to the fiber input power per channel when the wavelength multiplexed signal light of eight channels of 200 GHz propagates through the dispersion shift fiber of 40 km.
【0083】用いた分散シフトファイバの零分散波長は
約1552nmであり、波長1552nmを中心とした零分散波長帯
に配置した信号光に対する結果を黒丸で示し、波長1585
nmを中心とした非零分散波長帯に配置した信号光に対す
る結果を三角で示す。The zero-dispersion wavelength of the dispersion-shifted fiber used is about 1552 nm, and the results for signal light arranged in the zero-dispersion wavelength band centered at the wavelength of 1552 nm are indicated by black circles and the wavelength is 1585 nm.
Triangles indicate the results for signal light arranged in a non-zero dispersion wavelength band centered at nm.
【0084】同図からわかるように、零分散波長帯に配
置した信号光に対して入力パワーを大きくすると、四光
波混合の発生により激しい劣化が生じる(この場合、劣
化の要因が四光波混合であることは、M.Jinno らの文献
“First demonstration of 1580nm wavelength band WD
M transmission”, Electron. Lett., vol.33,pp. 882
-883に詳述されている)。As can be seen from the figure, when the input power is increased with respect to the signal light arranged in the zero-dispersion wavelength band, four-wave mixing causes severe deterioration (in this case, the deterioration is caused by four-wave mixing). One thing is that M. Jinno et al., “First demonstration of 1580 nm wavelength band WD
M transmission ”, Electron. Lett., Vol. 33, pp. 882
-883).
【0085】同図より、本発明において零分散波長近辺
に配置された信号光のファイバ入力パワーは、例えば、
−2dBm 以下に設定すると効果的であることがわかる
(なお、低ければ低いほどよく、−4dBm 以下、−6dB
m 以下、−8dBm 以下でもよい)。As shown in the figure, the fiber input power of the signal light arranged near the zero dispersion wavelength in the present invention is, for example,
It can be seen that setting to -2 dBm or less is effective (the lower the better, the better, -4 dBm or less, -6 dB
m or -8 dBm or less).
【0086】なお、本発明は、上記の実施例に限定され
ることなく、特許請求の範囲内において、種々変更・応
用が可能である。The present invention is not limited to the above embodiment, but can be variously modified and applied within the scope of the claims.
【0087】[0087]
【発明の効果】上述のように、本発明によれば、分散シ
フトファイバ、または、ノンゼロ分散シフトファイバ上
において、例えば、1450nm〜1650nmのような広い範囲に
わたって信号光を配置する光波長分割多重伝送システム
において、四光波混合、誘導ラマン散乱がもたらす品質
劣化を最小限とすると共に、零分散波長領域においても
高密度な波長多重を実現し、かつ、すべての信号光を光
ファイバ伝送路の同一の方向へ伝播させることができ
る。As described above, according to the present invention, optical wavelength division multiplexing transmission for arranging signal light over a wide range, for example, 1450 nm to 1650 nm, on a dispersion-shifted fiber or a non-zero dispersion-shifted fiber. In the system, quality degradation caused by four-wave mixing and stimulated Raman scattering is minimized, high-density wavelength multiplexing is realized even in the zero-dispersion wavelength region, and all signal lights are transmitted to the same optical fiber transmission line. Direction.
【図1】本発明の原理構成図である。FIG. 1 is a principle configuration diagram of the present invention.
【図2】本発明の信号光波長と適用される光増幅方式の
関係を示す図である。FIG. 2 is a diagram showing the relationship between the signal light wavelength of the present invention and the applied optical amplification method.
【図3】本発明の第1の実施例の光波長多重伝送システ
ムの構成図である。FIG. 3 is a configuration diagram of an optical wavelength division multiplexing transmission system according to a first example of the present invention.
【図4】本発明の第1の実施例の各増幅利得の零であ
る。FIG. 4 shows zero of each amplification gain in the first embodiment of the present invention.
【図5】本発明の第1の実施例の短波長側ほど小さくな
る分布ラマン増幅利得を補うための各信号波長における
入力パワーを示す図である。FIG. 5 is a diagram showing input power at each signal wavelength for compensating for a distributed Raman amplification gain that becomes smaller on a shorter wavelength side according to the first embodiment of the present invention.
【図6】本発明の第2の実施例の波長多重多中継伝送シ
ステムの構成図である。FIG. 6 is a configuration diagram of a wavelength division multiplexing multi-relay transmission system according to a second embodiment of the present invention.
【図7】本発明の第3の実施例の信号光波長と適用され
る光増幅方式の関係を示す図である。FIG. 7 is a diagram illustrating a relationship between a signal light wavelength and an applied optical amplification method according to a third embodiment of the present invention.
【図8】本発明の第3の実施例の光波長多重伝送システ
ムの構成図である。FIG. 8 is a configuration diagram of an optical wavelength division multiplexing transmission system according to a third embodiment of the present invention.
【図9】本発明の第3の実施例の各増幅利得の例であ
る。FIG. 9 is an example of each amplification gain of the third embodiment of the present invention.
【図10】本発明の零分散波長帯と非零分散波長帯にお
けるチャネル当たりの信号入力パワーと感度劣化の関係
を示す図である。FIG. 10 is a diagram illustrating a relationship between signal input power per channel and sensitivity degradation in a zero dispersion wavelength band and a non-zero dispersion wavelength band according to the present invention.
【図11】従来の零分散波長領域を含む超広帯域光波長
多重伝送システムの概念図である。FIG. 11 is a conceptual diagram of a conventional ultra-wideband optical wavelength multiplex transmission system including a zero dispersion wavelength region.
【図12】従来の光波長分割多重伝送システムの構成図
である。FIG. 12 is a configuration diagram of a conventional optical wavelength division multiplex transmission system.
100 光送信装置 101 λ0+ΔλG より長い波長の光源 102 λ0+ΔλG より以下の波長の光源 110 変調手段、変調器 111 光増幅器M 112 光増幅器S 113 光増幅器L 120 合波器 121 変調器 130 光増幅手段、集中増幅型光増幅器SL 131 合波器 140 変調器 150 合波器 161 波長多重フィルタまたは、光カプラ 162 波長多重フィルタまたは、光カプラ 170 λ0+ΔλG より短波長領域に配置された信号
光を分布定数型増幅するための励起光源 171 分布定数型光増幅用励起光源 180 集中増幅型光増幅器SS 200 光受信装置 210 サーキュレータまたは、波長多重フィルタ 220 分離手段、λ0+ΔλG より短波長領域に配置
された信号光を分布定数型増幅するための励起光源 221 分布定数型光増幅用励起光源 230 波長分離フィルタまたは、光カプラ 240 光増幅手段、集中増幅型光増幅器RL 241 光増幅器M 242 光増幅器S 243 光増幅器L 250 復調手段、集中増幅型光増幅器RS 260,270 分波器 261,262,263 分波器 280,290 受信機 281,282,283 受信機 300 平均零分散波長λ0の光ファイバ伝送路 400 光中継装置 401 励起光源 402 分布定数型光増幅用励起光源 403 分布定数型光増幅用励起光源 410 サーキュレータまたは、波長多重フィルタ 420 波長分離フィルタ 430 集中増幅型光増幅器L 440 波長多重フィルタまたは、光カプラ 450 サーキュレータまたは、波長多重フィルタ 460 集中増幅型光増幅器S 471 光増幅器M 472 光増幅器S 473 光増幅器LREFERENCE SIGNS LIST 100 Optical transmission device 101 Light source having wavelength longer than λ0 + ΔλG 102 Light source having wavelength shorter than λ0 + ΔλG 110 Modulating means, modulator 111 Optical amplifier M 112 Optical amplifier S 113 Optical amplifier L 120 Multiplexer 121 Modulator 130 Optical amplifying means, concentrated Amplifying optical amplifier SL 131 Multiplexer 140 Modulator 150 Multiplexer 161 Wavelength multiplexing filter or optical coupler 162 Wavelength multiplexing filter or optical coupler 170 Amplifies signal light arranged in a wavelength region shorter than λ0 + ΔλG by distributed constant type. Light source for distributed light 171 Pump light source for distributed constant optical amplification 180 Centralized amplification type optical amplifier SS 200 Optical receiver 210 Circulator or wavelength multiplexing filter 220 Separating means, Distributed light of distributed wavelength type shorter than λ0 + ΔλG Excitation light source for amplification 221 Distribution constant Excitation light source for optical amplification 230 Wavelength separation filter or optical coupler 240 Optical amplification means, Centralized amplification type optical amplifier RL 241 Optical amplifier M 242 Optical amplifier S 243 Optical amplifier L 250 Demodulation means, Centralized amplification type optical amplifier RS 260, 270 min Wavers 261, 262, 263 Demultiplexers 280, 290 Receivers 281, 282, 283 Receiver 300 Optical fiber transmission line with average zero dispersion wavelength λ0 400 Optical repeater 401 Excitation light source 402 Distributed excitation light source for optical amplification 403 Excitation light source 410 for distributed constant type optical amplification 410 circulator or wavelength multiplexing filter 420 wavelength separation filter 430 centralized amplification type optical amplifier L 440 wavelength multiplexed filter or optical coupler 450 circulator or wavelength multiplexed filter 460 centralized amplification type optical amplifier S 471 light Amplifier M 472 Amplifier S 473 optical amplifiers L
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04J 14/00 14/02 (72)発明者 増田 浩次 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 5F072 AB09 AK06 JJ20 KK11 KK15 MM03 MM07 QQ04 QQ07 YY17 5K002 AA01 AA03 AA06 BA04 BA05 CA01 CA13 DA02 FA01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H04J 14/00 14/02 (72) Inventor Koji Masuda 2-3-1 Otemachi, Chiyoda-ku, Tokyo Date F-term (reference) in this telegraph and telephone company 5F072 AB09 AK06 JJ20 KK11 KK15 MM03 MM07 QQ04 QQ07 YY17 5K002 AA01 AA03 AA06 BA04 BA05 CA01 CA13 DA02 FA01
Claims (8)
により変調する手段及び変調された信号光を波長多重化
して送信する手段を有する光波長分割多重送信装置であ
って、 光ファイバ伝送路に励起光を入力することで伝送路を光
増幅媒体とし、光ファイバ伝送路の平均零分散波長近辺
に配置された信号光を含む、短波長側に配置された複数
の信号光の増幅に適用される分布定数型光増幅手段と、 前記光ファイバ伝送路の平均零分散波長近辺以外の、長
波長側に配置された信号光の増幅に適用される集中定数
型光増幅手段とを有する光増幅手段を有することを特徴
とする光波長分割多重送信装置。1. An optical wavelength division multiplexing transmission apparatus comprising: means for modulating a plurality of lights having different wavelengths by a plurality of electric signals; and means for multiplexing and transmitting the modulated signal light. Applying pumping light to the transmission line as an optical amplifying medium, applied to the amplification of multiple signal lights arranged on the short wavelength side, including signal light arranged near the average zero dispersion wavelength of the optical fiber transmission line And a lumped-constant-type optical amplifying unit applied to amplify signal light arranged on a long wavelength side other than the vicinity of the mean zero dispersion wavelength of the optical fiber transmission line. An optical wavelength division multiplexing transmission device comprising:
分散波長近辺に配置された信号光の伝送路入力パワーを
−2dBm 以下に設定する請求項1記載の光波長分割多重
送信装置。2. The optical wavelength division multiplexing transmission apparatus according to claim 1, wherein the transmission line input power of the signal light arranged at least near the zero dispersion wavelength is set to −2 dBm or less by using the optical amplification means.
に分離する分離手段と、分離された信号光を光電気変換
して複数の電気信号に復調する復調手段とを有する光波
長分割多重受信装置であって、 光ファイバ伝送路の平均零分散波長近辺に配置された信
号光を含む、短波長側に配置された複数の信号光の増幅
に適用される分布定数型光増幅手段と、 前記光ファイバ伝送路の平均零分散波長近辺以外の、長
波長側に配置された信号光の増幅に適用される集中定数
型光増幅手段とを有する光増幅手段を有することを特徴
とする光波長分割多重受信装置。3. An optical wavelength division unit comprising: a separating unit that separates a plurality of wavelength-multiplexed signal lights for each wavelength; and a demodulating unit that performs photoelectric conversion of the separated signal light and demodulates the separated signal lights into a plurality of electric signals. A multiplex receiving apparatus, including a signal light disposed near an average zero dispersion wavelength of the optical fiber transmission line, and a distributed constant type optical amplification means applied to amplify a plurality of signal lights disposed on a short wavelength side; A light amplifying unit having a lumped-constant type optical amplifying unit applied to amplification of signal light disposed on a long wavelength side other than around the average zero dispersion wavelength of the optical fiber transmission line. Wavelength division multiplex receiver.
分散波長近辺に配置された信号光の伝送路入力パワーを
−2dBm 以下に設定する請求項3記載の光波長分割多
重受信装置。4. The optical wavelength division multiplexing receiver according to claim 3, wherein the optical amplifier means is used to set the transmission line input power of the signal light arranged at least near the zero dispersion wavelength to -2 dBm or less.
光ファイバ伝送路における損失を補償するための光中継
装置であって、 光ファイバ伝送路に励起光を入力することで伝送路を光
増幅媒体とし、該光ファイバ伝送路の平均零分散波長近
辺に配置された信号光を含む、短波長側に配置された複
数の信号光の増幅に適用される分布定数型光増幅手段
と、 前記光ファイバ伝送路の平均零分散波長近辺の、長波長
側に配置された信号光の増幅に適用される集中定数型光
増幅手段とを有することを特徴とする光中継装置。5. An optical repeater disposed in the middle of an optical fiber transmission line for compensating for a loss in the optical fiber transmission line. Amplifying medium, including signal light arranged near the average zero dispersion wavelength of the optical fiber transmission line, distributed constant type optical amplification means applied to amplification of a plurality of signal lights arranged on the short wavelength side, An optical repeater comprising lumped-constant-type optical amplifying means applied to amplify signal light disposed on a long wavelength side near an average zero dispersion wavelength of an optical fiber transmission line.
により変調する手段及び変調された信号光を波長多重化
して送信する手段を有する光波長分割多重送信装置と、
波長多重化された複数の信号光を波長毎に分離する分離
手段と、分離された信号光を光電気変換して複数の電気
信号に復調する復調手段とを有する光波長分割多重受信
装置から構成される光波長分割多重伝送システムであっ
て、 光ファイバ伝送路の平均零分散波長近辺に配置された信
号光を含む、短波長側に配置された複数の信号光の増幅
に適用される第1の分布定数型光増幅手段と、 光ファイバ伝送路の平均零分散波長近辺以外の、長波長
側に配置された信号光の増幅に適用される第1の集中定
数型光増幅手段とを有し、光ファイバ伝送路の損失を補
償する光増幅手段を、 前記光波長分割多重送信装置、前記光波長分割多重受信
装置の両方または、いずれか一方に備えることを特徴と
する光波長分割多重伝送システム。6. An optical wavelength division multiplexing transmission device having means for modulating a plurality of lights having different wavelengths with a plurality of electric signals and means for multiplexing and transmitting the modulated signal light,
An optical wavelength division multiplexing receiver comprising: a separating unit that separates a plurality of wavelength-multiplexed signal lights for each wavelength; and a demodulating unit that performs photoelectric conversion on the separated signal light and demodulates the separated signal lights into a plurality of electric signals. Wavelength division multiplexing transmission system, comprising: a first signal applied to amplify a plurality of signal lights arranged on a short wavelength side, including a signal light arranged near an average zero dispersion wavelength of an optical fiber transmission line. And a first lumped-constant-type optical amplifying means applied to the amplification of signal light arranged on a long wavelength side other than the vicinity of the mean zero dispersion wavelength of the optical fiber transmission line. An optical wavelength division multiplexing transmission system comprising: an optical amplification unit that compensates for a loss in an optical fiber transmission line; and / or both of the optical wavelength division multiplexing transmission device and the optical wavelength division multiplexing reception device. .
とで伝送路を光増幅媒体とし、該光ファイバ伝送路の平
均零分散波長近辺に配置された信号光を含む、短波長側
に配置された複数の信号光の増幅に適用される第2の分
布定数型光増幅手段と、 前記光ファイバ伝送路の平均零分散波長近辺の、長波長
側に配置された信号光の増幅に適用される第2の集中定
数型光増幅手段とを有する光中継装置を更に有する請求
項6記載の光波長分割多重伝送システム。7. A transmission line is used as an optical amplifying medium by inputting pumping light to an optical fiber transmission line, and is arranged on a short wavelength side including signal light arranged near an average zero dispersion wavelength of the optical fiber transmission line. A second distributed constant type optical amplifying means applied to the amplification of the plurality of signal lights obtained, and applied to the amplification of the signal lights arranged near the long wavelength side near the average zero dispersion wavelength of the optical fiber transmission line. 7. The optical wavelength division multiplexing transmission system according to claim 6, further comprising an optical repeater having a second lumped constant type optical amplifying means.
第2の集中定数型光増幅手段を用いて、少なくとも零分
散波長近辺に配置された信号光の伝送路入力パワーを、
−2dBm 以下に設定する請求項6または、7記載の光波
長分割多重伝送システム。8. Using the first lumped-constant-type optical amplifying unit and the second lumped-constant-type optical amplifying unit, reduce at least the transmission-line input power of signal light arranged near the zero-dispersion wavelength.
The optical wavelength division multiplexing transmission system according to claim 6 or 7, wherein the optical wavelength division multiplex transmission system is set to -2 dBm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000025764A JP3596403B2 (en) | 2000-02-02 | 2000-02-02 | Optical wavelength division multiplex transmitter, optical wavelength division multiplex receiver, optical repeater, and optical wavelength division multiplex transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000025764A JP3596403B2 (en) | 2000-02-02 | 2000-02-02 | Optical wavelength division multiplex transmitter, optical wavelength division multiplex receiver, optical repeater, and optical wavelength division multiplex transmission system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001217781A true JP2001217781A (en) | 2001-08-10 |
JP3596403B2 JP3596403B2 (en) | 2004-12-02 |
Family
ID=18551577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000025764A Expired - Fee Related JP3596403B2 (en) | 2000-02-02 | 2000-02-02 | Optical wavelength division multiplex transmitter, optical wavelength division multiplex receiver, optical repeater, and optical wavelength division multiplex transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3596403B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002122897A (en) * | 2000-10-17 | 2002-04-26 | Furukawa Electric Co Ltd:The | Optical transmission system |
US6999230B2 (en) | 2002-02-12 | 2006-02-14 | Hitachi, Ltd. | Optical transmission equipment for suppressing a four wave mixing and optical transmission system |
CN105642579A (en) * | 2013-04-28 | 2016-06-08 | 重庆润泽医药有限公司 | Cleaning tank of electric coagulation forceps |
-
2000
- 2000-02-02 JP JP2000025764A patent/JP3596403B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002122897A (en) * | 2000-10-17 | 2002-04-26 | Furukawa Electric Co Ltd:The | Optical transmission system |
US6999230B2 (en) | 2002-02-12 | 2006-02-14 | Hitachi, Ltd. | Optical transmission equipment for suppressing a four wave mixing and optical transmission system |
US7064888B2 (en) | 2002-02-12 | 2006-06-20 | Hitachi, Ltd. | Optical transmission equipment for suppressing a four wave mixing and optical transmission system |
CN105642579A (en) * | 2013-04-28 | 2016-06-08 | 重庆润泽医药有限公司 | Cleaning tank of electric coagulation forceps |
Also Published As
Publication number | Publication date |
---|---|
JP3596403B2 (en) | 2004-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102742197B (en) | Channel power management in the optical communication system of branch | |
JP4612228B2 (en) | Optical communication apparatus and wavelength division multiplexing transmission system | |
WO1998036514A1 (en) | Wavelength division multiplexing optical transmission system | |
EP1199823A2 (en) | Bidirectional wavelength division multiplexed optical transmission system | |
US6661973B1 (en) | Optical transmission systems, apparatuses, and methods | |
JPH09116492A (en) | Wavelength multiplex light amplifying/repeating method/ device | |
JP4487420B2 (en) | Optical amplification transmission system | |
JPH10173264A (en) | Gain equalizer | |
JP3779691B2 (en) | Broadband erbium-doped optical fiber amplifier and wavelength division multiplexing optical transmission system employing the same | |
US6377375B1 (en) | Optical wavelength division multiplexed signal amplifying repeater and optical communication transmission line with very large capacity | |
JP2003524931A (en) | Multi-wavelength optical communication system with optical amplifier | |
JPH06258545A (en) | Optical demultiplexer | |
US10567081B2 (en) | Transmission system and transmission method | |
JP2003188830A (en) | Wavelength multiplex light transmission apparatus, relaying apparatus, distribution apparatus, and wavelength multiplex light transmission system | |
JP2001103014A (en) | Optical fiber communication system using wavelength converter for broad-band transmission | |
US8195048B2 (en) | Optical transport system architecture for remote terminal connectivity | |
JP2013509136A (en) | Separate dispersion compensation for coherent and non-coherent channels | |
JP2002164845A (en) | Wavelength division multiplexing optical transmitter and receiver, wavelength division multiplexing optical repeater, and wavelength division multiplexing optical communication system | |
US8503881B1 (en) | Systems for extending WDM transmission into the O-band | |
JP3596403B2 (en) | Optical wavelength division multiplex transmitter, optical wavelength division multiplex receiver, optical repeater, and optical wavelength division multiplex transmission system | |
JP3756354B2 (en) | WDM transmission system | |
JP3866592B2 (en) | Optical transmission system using Raman amplification | |
Iannone et al. | Hybrid SOA-Raman amplifiers for fiber-to-the-home and metro networks | |
US6621626B1 (en) | Modular optical amplifier structure for highly dense interleaved WDM systems | |
JP2002077054A (en) | Optical transmission system with reduced Raman effect loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040817 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040830 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080917 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080917 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090917 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090917 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100917 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100917 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110917 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120917 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130917 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |