[go: up one dir, main page]

JP2001208732A - Ultrasonic measuring method from inner surface side of tube - Google Patents

Ultrasonic measuring method from inner surface side of tube

Info

Publication number
JP2001208732A
JP2001208732A JP2000020694A JP2000020694A JP2001208732A JP 2001208732 A JP2001208732 A JP 2001208732A JP 2000020694 A JP2000020694 A JP 2000020694A JP 2000020694 A JP2000020694 A JP 2000020694A JP 2001208732 A JP2001208732 A JP 2001208732A
Authority
JP
Japan
Prior art keywords
ultrasonic
tube
balloon
medium liquid
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000020694A
Other languages
Japanese (ja)
Inventor
Hideki Tani
英樹 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2000020694A priority Critical patent/JP2001208732A/en
Publication of JP2001208732A publication Critical patent/JP2001208732A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an ultrasonic-wave transmitting medium liquid from directly wetting the inner surfaces of a tube and to reduce the amount of use of the ultrasonic- wave transmitting medium liquid when ultrasonic measurement is a performed from the inner surface side of the tube. SOLUTION: When wall thickness measurement and flaw detection are performed on a tube 3 from the inner surface side of the tube 3 through the use of an ultrasonic sensor 1, the gap between the ultrasonic sensor 1 and tube 3 is filled with the ultrasonic transmitting medium liquid 8. The ultrasonic transmitting medium liquid 8 is sealed in a balloon-shaped bag 2. The ultrasonic sensor 1 is housed together with pigs for centering 4 and 5 in the balloon-shaped bag 2 and supported at the center location of the axis of the tube 3 by the pigs for centering 4 and 5. As it is satisfactory that only the periphery of the ultrasonic sensor 1 is filled with the ultrasonic transmitting medium liquid 8, it is possible to reduce the capacity of the balloon-shaped bag 2 and to shorten the work and time required for ultrasonic measurement. Even if the balloon-shaped bag 2 is broken, as the amount of leakage of the ultrasonic transmitting medium liquid 8 is small, it is possible to reduce the extent of damage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ガスの導管な
どに対し、内面側から超音波測定を行う管内面側からの
超音波測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring ultrasonic waves from the inner surface side of a pipe for city gas conduits and the like from the inner surface side.

【0002】[0002]

【従来の技術】従来から、超音波を利用した管の肉厚測
定や探傷が行われている。超音波測定は非破壊で行うこ
とができるので、初期不良や使用中の減肉などを測定す
ることができる。内面側からの超音波測定では、超音波
の発信・受信機能を有するセンサから超音波信号を発信
して管の内周面から管の外周面までの間を伝播させ、管
の外周面や内周面、欠陥部で反射した信号を管内の超音
波センサで受信して超音波の伝播時間の差から肉厚測定
や探傷を行う。超音波測定は、管の外周面側から行うこ
とも可能であるけれども、都市ガスの導管などは地中に
埋設されることも多く、地中埋設管の腐食による減肉状
況を把握したい場合は、管外面側から肉厚測定を行おう
とすると土壌の掘削等が必要となる。このため管内に超
音波センサを挿入して、管内面側から超音波測定を行う
ことが望まれる。
2. Description of the Related Art Conventionally, tube thickness measurement and flaw detection using ultrasonic waves have been performed. Since the ultrasonic measurement can be performed nondestructively, it is possible to measure an initial failure, thinning during use, and the like. In ultrasonic measurement from the inner surface side, an ultrasonic signal is transmitted from a sensor having a function of transmitting and receiving ultrasonic waves and propagated from the inner peripheral surface of the tube to the outer peripheral surface of the tube, and the outer peripheral surface and the inner surface of the tube are measured. The signal reflected by the peripheral surface and the defect is received by an ultrasonic sensor in the tube, and the thickness measurement and the flaw detection are performed based on the difference in the propagation time of the ultrasonic wave. Ultrasonic measurement can be performed from the outer peripheral side of the pipe.However, city gas pipes are often buried underground, and if you want to understand the thinning situation due to corrosion of the underground pipe, In order to measure the wall thickness from the outer surface of the pipe, excavation of soil or the like is required. For this reason, it is desired to insert an ultrasonic sensor into the tube and perform ultrasonic measurement from the inner surface side of the tube.

【0003】一般に超音波測定を行う場合に、超音波セ
ンサと測定対象物との間で超音波の伝播を損失なく行う
ため、超音波センサの探触子と対象物表面との間に水や
油などの超音波伝播媒体液(カプラント)が用いられ
る。測定対象物である管内に超音波センサを挿入して管
内面側から超音波測定を行う場合には、管内を超音波伝
播媒体液で満たす水浸法が多く用いられる。
[0003] Generally, when performing ultrasonic measurement, in order to transmit ultrasonic waves without loss between the ultrasonic sensor and the object to be measured, water or water is interposed between the probe of the ultrasonic sensor and the surface of the object. An ultrasonic propagation medium liquid (couplant) such as oil is used. When an ultrasonic sensor is inserted into a tube to be measured and ultrasonic measurement is performed from the inner surface of the tube, a water immersion method that fills the inside of the tube with an ultrasonic propagation medium liquid is often used.

【0004】しかしながら、都市ガスの導管では、管の
内面を超音波伝播媒体液としての水で濡らす水浸法は、
都市ガスの供給不良事故につながる恐れがあるため、避
ける必要がある。超音波センサを用いて超音波測定を行
う場合に、管内を直接超音波伝播媒体液で濡らすことな
く、しかも超音波センサと管内面側との間を超音波伝播
媒体液で満たすことが可能な先行技術としては、特公平
4−38282号公報で開示されているものがある。こ
の先行技術では、ガス管内にチューブを貼付けて閉じた
空間を形成し、チューブ内に水などの超音波伝播媒体液
を満たして超音波測定を行う。測定が終了した後で、チ
ューブ内の超音波伝播媒体液を吸出して、チューブを管
内から除去するようにすれば、管の内面側を超音波伝播
媒体液で濡らすことなく超音波測定を行うことができ
る。
However, in a city gas conduit, a water immersion method in which the inner surface of the tube is wetted with water as an ultrasonic wave propagation medium liquid,
It must be avoided because it could lead to a city gas supply failure accident. When performing ultrasonic measurement using an ultrasonic sensor, it is possible to fill the space between the ultrasonic sensor and the inner surface of the tube with the ultrasonic wave propagation medium liquid without directly wetting the inside of the tube with the ultrasonic wave propagation medium liquid. As a prior art, there is one disclosed in Japanese Patent Publication No. 4-38282. In this prior art, a tube is attached to a gas tube to form a closed space, and the tube is filled with an ultrasonic wave propagation medium liquid such as water to perform ultrasonic measurement. After the measurement is completed, if the ultrasonic propagation medium liquid in the tube is sucked out and the tube is removed from the tube, the ultrasonic measurement can be performed without wetting the inner surface side of the tube with the ultrasonic transmission medium solution. Can be.

【0005】[0005]

【発明が解決しようとする課題】特公平4−38282
号公報で開示されている先行技術を用いれば、都市ガス
の導管など、内面を水で濡らしたくない管の内面側から
水浸法を利用して超音波測定を行うことが可能である。
しかしながら、この先行技術のように、管内にチューブ
を貼付けて水などの超音波伝播媒体液で満たし、その内
部で超音波センサを管の軸線方向に移動させる方法で
は、管の開口部から超音波測定を行う部分までの間の管
内を超音波伝播媒体液で満たす必要があり、超音波伝播
媒体液の使用量が非常に多くなってしまう。このため、
万一チューブが破れると、多量の超音波伝播媒体液が管
の内面側を広範囲に濡らしてしまうおそれがある。ま
た、超音波伝播媒体液の封入や抜取りに要する時間も長
くなるので、測定のために必要な作業時間も長くなって
しまう。
[Problems to be Solved by the Invention]
By using the prior art disclosed in the above publication, it is possible to perform ultrasonic measurement using a water immersion method from the inner surface side of a pipe, such as a city gas pipe, whose inner surface is not desired to be wet with water.
However, as in this prior art, in a method in which a tube is attached to a tube and filled with an ultrasonic propagation medium liquid such as water, and an ultrasonic sensor is moved in the axial direction of the tube inside the tube, ultrasonic waves are transmitted from an opening of the tube. It is necessary to fill the inside of the tube up to the portion where the measurement is performed with the ultrasonic wave propagation medium liquid, and the amount of the ultrasonic wave propagation medium liquid used becomes extremely large. For this reason,
If the tube breaks, a large amount of the ultrasonic wave propagation medium liquid may wet the inner surface of the tube widely. In addition, the time required for enclosing and extracting the ultrasonic wave propagation medium liquid becomes longer, so that the work time required for measurement also becomes longer.

【0006】本発明の目的は、管内を超音波伝播媒体液
で濡らすことなく超音波測定を行うことができ、超音波
伝播媒体液の使用量を少なくすることができる管内面側
からの超音波測定方法を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to measure an ultrasonic wave without wetting the inside of a tube with an ultrasonic wave propagating medium liquid, and to reduce an amount of the ultrasonic wave propagating medium liquid from an ultrasonic wave from the tube inner surface side. It is to provide a measuring method.

【0007】[0007]

【課題を解決するための手段】本発明は、管内面側から
超音波を発信し、反射波を受信して超音波測定を行う方
法であって、超音波測定を行うための超音波センサと管
内面との間に、弾力性および伸縮性を有する風船状の袋
を介在させ、該風船状の袋を、膨らませない状態で該超
音波センサとともに管の開口部から管内に挿入し、管内
に挿入された風船状の袋内に超音波伝播媒体液を封入し
て膨らませ、該袋の外周面を管の内周面に密着させた状
態で、該袋の内面側と該超音波センサとの間に該超音波
伝播媒体液を満たし、超音波測定を行うことを特徴とす
る管内面側からの超音波測定方法である。
SUMMARY OF THE INVENTION The present invention relates to a method for transmitting ultrasonic waves from the inner surface of a tube and receiving reflected waves to perform ultrasonic measurement, comprising: an ultrasonic sensor for performing ultrasonic measurement; A balloon-shaped bag having elasticity and elasticity is interposed between the inner surface of the tube and the balloon-shaped bag is inserted into the tube from the opening of the tube together with the ultrasonic sensor in a state where the balloon-shaped bag is not inflated. The ultrasonic wave propagating medium liquid is sealed and inflated in the inserted balloon-shaped bag, and the inner surface side of the bag and the ultrasonic sensor are connected with the outer surface of the bag being in close contact with the inner surface of the tube. A method for measuring ultrasonic waves from the inner side of a tube, characterized in that the ultrasonic wave propagating medium liquid is filled in between the tubes and ultrasonic measurement is performed.

【0008】本発明に従えば、管内面側から超音波を発
信し、反射波を受信して超音波測定を行うための超音波
センサと管内面との間に、弾力性および伸縮性を有する
風船状の袋を介在させる。風船状の袋を膨らませない状
態で、超音波センサとともに管の開口部から管内に挿入
する。風船状の袋は膨らませない状態であるので、袋と
超音波センサとを、管内に自由に容易に挿入することが
できる。管内に挿入された風船状の袋内に超音波伝播媒
体液を封入して膨らませ、袋の外周面を管の内周面に密
着させた状態では、管の内面側と超音波センサとの間に
超音波伝播媒体液が満たされ、超音波センサから発信す
る超音波が超音波伝播媒体液を介して袋の膜を通過し、
管の内面側に損失が少ない状態で伝わり、管の肉厚内の
欠陥や管の外周面から反射した超音波が超音波伝播媒体
液を介して超音波センサに戻って、水浸法と同様な超音
波測定を行うことができる。風船状の袋は超音波センサ
の周囲を覆うように設ければよいので、超音波伝播媒体
液の使用量を少なくし、超音波測定に必要とする作業や
時間を短縮することができる。
According to the present invention, there is elasticity and elasticity between an ultrasonic sensor for transmitting ultrasonic waves from the inner surface of the tube and receiving reflected waves to perform ultrasonic measurement and the inner surface of the tube. A balloon-shaped bag is interposed. The balloon-like bag is inserted into the pipe through the opening of the pipe together with the ultrasonic sensor without being inflated. Since the balloon-shaped bag is not inflated, the bag and the ultrasonic sensor can be freely and easily inserted into the tube. When the ultrasonic wave propagation medium liquid is sealed in the balloon-shaped bag inserted into the tube and inflated, and the outer peripheral surface of the bag is in close contact with the inner peripheral surface of the tube, the space between the inner surface side of the tube and the ultrasonic sensor is removed. Is filled with the ultrasonic propagation medium liquid, and the ultrasonic wave transmitted from the ultrasonic sensor passes through the bag membrane through the ultrasonic propagation medium liquid,
Ultrasound transmitted to the inner surface side of the pipe with little loss, and ultrasonic waves reflected from defects in the wall thickness of the pipe and the outer peripheral surface of the pipe return to the ultrasonic sensor via the ultrasonic propagation medium liquid, similar to the water immersion method Ultrasonic measurement can be performed. Since the balloon-shaped bag may be provided so as to cover the periphery of the ultrasonic sensor, it is possible to reduce the amount of the ultrasonic wave propagating medium liquid to be used and to shorten the work and time required for ultrasonic measurement.

【0009】また本発明は、前記超音波測定として、前
記管の肉厚測定を行うことを特徴とする。
Further, the present invention is characterized in that the wall thickness of the tube is measured as the ultrasonic measurement.

【0010】本発明に従えば、袋の内面側と超音波セン
サとの間に超音波伝播媒体液を介在させて、管の肉厚測
定を行うことができる。
According to the present invention, the wall thickness of the tube can be measured by interposing the ultrasonic wave propagation medium liquid between the inner surface side of the bag and the ultrasonic sensor.

【0011】また本発明は、前記超音波測定として、前
記管の探傷を行うことを特徴とする。
Further, the present invention is characterized in that the flaw detection of the tube is performed as the ultrasonic measurement.

【0012】本発明に従えば、袋の内面側と超音波セン
サとの間に超音波伝播媒体液を介在させて、管の探傷を
行うことができる。
According to the present invention, it is possible to detect a flaw in a tube by interposing an ultrasonic wave propagation medium liquid between the inner surface side of the bag and the ultrasonic sensor.

【0013】[0013]

【発明の実施の形態】図1は、本発明の実施の一形態と
しての超音波測定方法の概要を示す。図1(a)は、超
音波センサ1や風船状の袋2を管3内に挿入している状
態を示す。また図1(b)は、風船状の袋2を膨らませ
て、超音波測定を行っている状態を示す。
FIG. 1 shows an outline of an ultrasonic measuring method according to an embodiment of the present invention. FIG. 1A shows a state in which an ultrasonic sensor 1 and a balloon-shaped bag 2 are inserted into a tube 3. FIG. 1B shows a state in which the balloon-shaped bag 2 is inflated to perform ultrasonic measurement.

【0014】超音波センサ1は、管3の中心に位置して
超音波の発信および受信を行う表面から、管3の内面ま
での半径方向の距離が均一となるように、管3の軸線方
向の前後にセンタリング用ピグ4,5を有している。セ
ンタリング用ピグ4,5の外周面の一部もしくは全部は
管3の内面にほとんど接触する状態であり、超音波セン
サ1の軸線が管3の軸線に一致するよう、超音波センサ
1を中心の位置に支持している。風船状の袋2は、ゴム
や合成樹脂などの弾力性および伸縮性を有する材料から
成り、超音波センサ1およびセンタリング用ピグ4,5
の全体を覆っている。なお、センタリング用ピグ4,5
の外周の一部もしくは全部は、ばね構造などのクッショ
ン性を有し、管の曲がり部や段差の通過も可能な構造と
なっている。
The ultrasonic sensor 1 is arranged so that a radial distance from a surface located at the center of the tube 3 for transmitting and receiving ultrasonic waves to an inner surface of the tube 3 is uniform. Are provided with centering pigs 4 and 5 before and after. Part or all of the outer peripheral surfaces of the centering pigs 4 and 5 are almost in contact with the inner surface of the tube 3, and the center of the ultrasonic sensor 1 is adjusted so that the axis of the ultrasonic sensor 1 matches the axis of the tube 3. Supporting position. The balloon-shaped bag 2 is made of a material having elasticity and elasticity, such as rubber or synthetic resin, and includes the ultrasonic sensor 1 and the centering pigs 4,5.
It covers the whole. The centering pigs 4, 5
A part or the whole of the outer periphery has a cushioning property such as a spring structure, and has a structure capable of passing a bent portion or a step of a pipe.

【0015】図1に示すような超音波センサ1およびセ
ンタリング用ピグ4,5を収納する風船状の袋2は、管
3の軸線方向の一方側に設ける開口部から管3内に挿入
される。風船状の袋2から管3の開口部側に向けて、セ
ンサケーブル6および液封入用チューブ7が引出され
る。
A balloon-shaped bag 2 containing an ultrasonic sensor 1 and centering pigs 4 and 5 as shown in FIG. 1 is inserted into the tube 3 through an opening provided on one side of the tube 3 in the axial direction. . The sensor cable 6 and the liquid filling tube 7 are drawn out from the balloon-shaped bag 2 toward the opening of the tube 3.

【0016】図1(a)に示すように、風船状の袋2内
に超音波伝播媒体液8をほとんど封入しない状態では、
風船状の袋2内に含まれる超音波センサ1およびセンタ
リング用ピグ4,5を、管3の軸線方向に容易に移動さ
せることができる。特にセンサケーブル6および液封入
用チューブ7が或る程度の剛性を有していれば、引張り
方向ばかりではなく押出す方向にも、風船状の袋2とと
もに超音波センサ1およびセンタリング用ピグ4,5を
管3内で移動させることができる。
As shown in FIG. 1A, when the ultrasonic wave propagation medium liquid 8 is hardly sealed in the balloon-shaped bag 2,
The ultrasonic sensor 1 and the centering pigs 4, 5 contained in the balloon-shaped bag 2 can be easily moved in the axial direction of the tube 3. In particular, if the sensor cable 6 and the liquid filling tube 7 have a certain degree of rigidity, the ultrasonic sensor 1 and the centering pig 4 together with the balloon-shaped bag 2 can be used not only in the pulling direction but also in the pushing direction. 5 can be moved within the tube 3.

【0017】図1(b)に示すように、液封入用チュー
ブ7を介して風船状の袋2内に超音波伝播媒体液8を封
入し、風船状の袋2を膨らませると、超音波センサ1と
袋2の内面との間に超音波伝播媒体液8を満たすことが
できる。この状態で、水浸法と同等な超音波測定を行う
ことができる。袋2およびチューブ7を固定した状態で
ケーブル6を押し引きすることにより超音波センサ1を
前後に移動させれば、管3の軸方向の一定区間で超音波
測定を行うことができる。また、風船状の袋2は管3の
内面全体を覆っているわけではなく、超音波センサ1の
周囲の限られた部分を覆うのみであるので、風船状の袋
2を膨らませるのに必要な超音波伝播媒体液8の量を少
なくすることができる。このため、万一風船状の袋2が
破れて超音波伝播媒体液8が管3内に漏出した場合で
も、被害を最小限に抑えることができる。
As shown in FIG. 1 (b), when the ultrasonic wave propagation medium liquid 8 is sealed in the balloon-like bag 2 via the liquid filling tube 7 and the balloon-like bag 2 is inflated, the ultrasonic wave An ultrasonic wave propagation medium liquid 8 can be filled between the sensor 1 and the inner surface of the bag 2. In this state, ultrasonic measurement equivalent to the water immersion method can be performed. If the ultrasonic sensor 1 is moved back and forth by pushing and pulling the cable 6 with the bag 2 and the tube 7 fixed, ultrasonic measurement can be performed in a fixed section in the axial direction of the tube 3. Also, the balloon-shaped bag 2 does not cover the entire inner surface of the tube 3 but only covers a limited portion around the ultrasonic sensor 1, so that it is necessary to inflate the balloon-shaped bag 2. The amount of the ultrasonic propagation medium liquid 8 can be reduced. Therefore, even if the balloon-shaped bag 2 is torn and the ultrasonic wave propagation medium liquid 8 leaks into the pipe 3, damage can be minimized.

【0018】図2は、図1の実施形態で、超音波試験を
行っている部分での超音波伝播状態と対応する信号波形
の一例を示す。すなわち図2(a)に示すように、超音
波センサ1から発信される発信超音波10は、超音波伝
播媒体液8を通って、風船状の袋2の皮膜面を通り、管
3の内周面3a側に到達して一部は反射し、風船状の袋
2の皮膜を介して超音波伝播媒体液8から超音波センサ
1に戻る。また発信超音波10の一部は、管3の肉厚の
内周面3aからさらに外周面3bに進み、反射して反射
超音波11が管3の外周面3bから内周面3aに伝播
し、さらに風船状の袋2の皮膜を介して超音波伝播媒体
液8から超音波センサ1に戻る。図2(b)に示すよう
に、超音波センサ1がパルス状に超音波を発信してから
受信される反射超音波11の信号出力を監視すれば、管
3の内周面3aでの反射と外周面3bでの反射との時間
差から、超音波の伝播速度を考慮して、管3の肉厚を測
定することができる。また図2(c)に示すように、管
3内に欠陥12が存在する場合には、欠陥12に入射す
る発信超音波10に対して反射超音波11が生じる。図
2(d)に示すような信号出力で、欠陥12からの反射
超音波11の受信タイミングは、内周面3a側からの受
信タイミングと図2(b)に示すような外周面3b側か
らの受信タイミングとの中間となる。
FIG. 2 shows an example of a signal waveform corresponding to an ultrasonic wave propagation state in a portion where an ultrasonic test is performed in the embodiment of FIG. That is, as shown in FIG. 2A, the transmitted ultrasonic wave 10 transmitted from the ultrasonic sensor 1 passes through the ultrasonic wave propagating medium liquid 8, passes through the coating surface of the balloon-shaped bag 2, and flows through the inside of the tube 3. After reaching the peripheral surface 3a side, a part thereof is reflected and returns from the ultrasonic wave propagating medium liquid 8 to the ultrasonic sensor 1 through the film of the balloon-like bag 2. A part of the transmitted ultrasonic wave 10 further proceeds from the thick inner peripheral surface 3a of the tube 3 to the outer peripheral surface 3b, is reflected and the reflected ultrasonic waves 11 propagate from the outer peripheral surface 3b of the tube 3 to the inner peripheral surface 3a. Then, the liquid returns from the ultrasonic wave propagation medium liquid 8 to the ultrasonic sensor 1 through the film of the balloon-shaped bag 2. As shown in FIG. 2 (b), if the ultrasonic sensor 1 transmits the ultrasonic wave in a pulsed form and monitors the signal output of the reflected ultrasonic wave 11 received, the reflection on the inner peripheral surface 3a of the tube 3 is obtained. The wall thickness of the tube 3 can be measured from the time difference between the reflection on the outer peripheral surface 3b and the propagation speed of the ultrasonic wave. As shown in FIG. 2C, when a defect 12 exists in the tube 3, a reflected ultrasonic wave 11 is generated with respect to a transmitted ultrasonic wave 10 incident on the defect 12. With the signal output as shown in FIG. 2D, the reception timing of the reflected ultrasonic wave 11 from the defect 12 depends on the reception timing from the inner peripheral surface 3a side and the reception timing from the outer peripheral surface 3b side as shown in FIG. Of the reception timing.

【0019】図3は、図1に示す超音波センサについ
て、管3の軸線方向から見た断面構成を示す。超音波セ
ンサ1は、周方向に沿って間隔をあけ、複数の探触子1
3が配置される。本実施形態では、図1に示すように、
センタリング用ピグ4,5で超音波センサ1の位置が管
3の軸線からずれないように保持されるので、複数、た
とえば12の探触子13で軸線まわりの異なる位置で超
音波測定を行うことができる。
FIG. 3 shows a sectional structure of the ultrasonic sensor shown in FIG. 1 as viewed from the axial direction of the tube 3. The ultrasonic sensor 1 has a plurality of probes 1 spaced at intervals in the circumferential direction.
3 are arranged. In the present embodiment, as shown in FIG.
Since the position of the ultrasonic sensor 1 is held by the centering pigs 4 and 5 so as not to deviate from the axis of the tube 3, it is necessary to perform ultrasonic measurement at different positions around the axis with a plurality of, for example, 12 probes 13. Can be.

【0020】図1(a)に示すような風船状の袋2の中
にほとんど超音波伝播媒体液8が封入されていない状態
では、風船状の袋2の表面に潤滑剤などを施しておけ
ば、管3が曲っている部分などでも円滑に通過させるこ
とが可能になる。図1(b)に示すような風船状の袋2
を膨らませて超音波伝播媒体液8を封入したような状態
でも、管3の内周面3a側が滑らかな場合は、風船状の
袋2ごと超音波センサ1を管3の軸線方向に移動させる
ことができる。本実施形態では、風船状の袋2を用いて
超音波伝播媒体液8が直接管3の内面を濡らすことな
く、管3の内面と超音波センサ1の間を超音波伝播媒体
液8で満たし、水浸法による超音波測定を行うことがで
きる。超音波伝播媒体液8としては、たとえば水や油な
どを用いることができる。風船状の袋2は、センタリン
グ用ピグ4,5と超音波センサ1の周囲に超音波伝播媒
体液8を満たすだけでよいので、容量を小さくして封入
用の超音波伝播媒体液8の量を少なくすることができ
る。図1(b)に示すような測定時に封入されている超
音波伝播媒体液8の量が少ないので、風船状の袋2が万
一破れても、風船状の袋2から漏れる超音波伝播媒体液
8の量が少なく、漏れた場合の被害を最小限に止どめる
ことができる。
When the ultrasonic wave propagation medium liquid 8 is hardly sealed in the balloon-shaped bag 2 as shown in FIG. 1A, a lubricant or the like is applied to the surface of the balloon-shaped bag 2. In this case, it is possible to smoothly pass the pipe 3 even at a bent portion. A balloon-shaped bag 2 as shown in FIG.
If the inner peripheral surface 3a side of the tube 3 is smooth even when the ultrasonic wave propagation medium liquid 8 is sealed by inflating the ultrasonic sensor 1, the ultrasonic sensor 1 together with the balloon-shaped bag 2 is moved in the axial direction of the tube 3. Can be. In the present embodiment, the space between the inner surface of the tube 3 and the ultrasonic sensor 1 is filled with the ultrasonic wave propagating medium liquid 8 without the ultrasonic wave propagating medium liquid 8 directly wetting the inner surface of the tube 3 using the balloon 2. Ultrasonic measurement by a water immersion method can be performed. As the ultrasonic wave propagation medium liquid 8, for example, water or oil can be used. Since the balloon-shaped bag 2 only needs to fill the ultrasonic propagation medium liquid 8 around the centering pigs 4 and 5 and the ultrasonic sensor 1, the volume is reduced and the volume of the ultrasonic transmission medium liquid 8 for enclosing is reduced. Can be reduced. The amount of the ultrasonic wave propagating medium liquid 8 sealed during measurement as shown in FIG. 1B is small, so that even if the balloon-shaped bag 2 is torn, the ultrasonic wave propagating medium leaking from the balloon-shaped bag 2 The amount of the liquid 8 is small, and damage in case of leakage can be minimized.

【0021】図4は、本発明の実施の他の形態の概略的
な構成を示す。本実施形態で、図1に示す実施形態に対
応する部分には同一の参照符を付し、重複する説明を省
略する。本実施形態の風船状の袋22は、超音波センサ
1の周囲をリング状に覆うように設けられる。すなわち
超音波センサ1は風船状の袋22内に収納されるのでは
なく、超音波センサ1と管3の内面との間に風船状の袋
22の外周面と内周面とが収納され、この風船状の袋2
2内に超音波伝播媒体液8が満たされて、水浸法と同様
な超音波測定ができるようにしている。本実施形態で
は、風船状の袋22の容量をさらに小さくすることがで
きるので、万一破れる場合の被害をさらに小さくするこ
とができる。
FIG. 4 shows a schematic configuration of another embodiment of the present invention. In the present embodiment, portions corresponding to the embodiment shown in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted. The balloon-shaped bag 22 of the present embodiment is provided so as to cover the periphery of the ultrasonic sensor 1 in a ring shape. That is, the ultrasonic sensor 1 is not stored in the balloon-shaped bag 22, but the outer peripheral surface and the inner peripheral surface of the balloon-shaped bag 22 are stored between the ultrasonic sensor 1 and the inner surface of the tube 3. This balloon-shaped bag 2
2 is filled with the ultrasonic wave propagation medium liquid 8, so that ultrasonic measurement similar to the water immersion method can be performed. In the present embodiment, since the capacity of the balloon-shaped bag 22 can be further reduced, damage in the event of a breakage can be further reduced.

【0022】[0022]

【発明の効果】以上のように本発明によれば、管の内面
側から超音波測定を行う場合に、管の内面側と超音波セ
ンサとの間に超音波伝播媒体液を満たした状態で測定を
行うことができる。超音波伝播媒体液が袋を介して管の
内面側と接触するので、管の内面側を超音波伝播媒体液
で直接濡らすことはなく、しかも超音波伝播媒体液の使
用量を少なくして、迅速な測定を行うことができる。地
中に埋設された都市ガスの導管などのように、管外面か
ら測定が難しくかつ管内面を水で濡らしたくない管にお
いても、超音波センサを用いた水浸法による管の超音波
測定を行うことができる。
As described above, according to the present invention, when the ultrasonic measurement is performed from the inner surface side of the tube, the ultrasonic propagation medium liquid is filled between the inner surface side of the tube and the ultrasonic sensor. A measurement can be made. Since the ultrasonic wave propagation medium liquid comes into contact with the inner surface side of the tube via the bag, the inner surface side of the tube does not directly wet with the ultrasonic wave propagation medium liquid, and furthermore, the amount of the ultrasonic wave propagation medium liquid is reduced, Quick measurement can be performed. Even for pipes that are difficult to measure from the outside of the pipe and do not want the inside of the pipe to be wet with water, such as pipes of city gas buried underground, ultrasonic measurement of the pipe by the water immersion method using an ultrasonic sensor can be performed. It can be carried out.

【0023】また本発明によれば、管の肉厚測定を、管
の内面側から水浸法に近い状態で行うことができる。
Further, according to the present invention, the measurement of the wall thickness of the pipe can be performed from the inner surface side of the pipe in a state similar to the water immersion method.

【0024】また本発明によれば、管の探傷を、管の内
面側から水浸法に近い状態で行うことができる。
Further, according to the present invention, flaw detection of the pipe can be performed from the inner surface side of the pipe in a state similar to the water immersion method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態で超音波探傷を行う状態
を概略的に示す簡略化した断面図である。
FIG. 1 is a simplified cross-sectional view schematically showing a state where ultrasonic flaw detection is performed according to an embodiment of the present invention.

【図2】図1の実施形態で超音波測定を行う際の超音波
伝播状態を示す部分的な断面図と超音波の検出信号の受
信タイミングを示すグラフである。
FIG. 2 is a partial cross-sectional view showing an ultrasonic wave propagation state when performing ultrasonic measurement in the embodiment of FIG. 1 and a graph showing reception timing of an ultrasonic detection signal.

【図3】図1の超音波センサ1での探触子13の配置を
示す簡略化した断面図である。
FIG. 3 is a simplified sectional view showing an arrangement of a probe 13 in the ultrasonic sensor 1 of FIG.

【図4】本発明の実施の他の形態で超音波測定を行う方
法の概要を示す簡略化した断面図である。
FIG. 4 is a simplified cross-sectional view showing an outline of a method for performing ultrasonic measurement according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 超音波センサ 2,22 風船状の袋 3 管 4,5 センタリング用ピグ 6 センサケーブル 7 液封入用チューブ 8 超音波伝播媒体液 10 発信超音波 11 反射超音波 12 欠陥 13 探触子 DESCRIPTION OF SYMBOLS 1 Ultrasonic sensor 2, 22 Balloon-shaped bag 3 Tube 4, 5 Centering pig 6 Sensor cable 7 Liquid filling tube 8 Ultrasonic propagation medium liquid 10 Transmitted ultrasonic wave 11 Reflected ultrasonic wave 12 Defect 13 Probe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 管内面側から超音波を発信し、反射波を
受信して超音波測定を行う方法であって、 超音波測定を行うための超音波センサと管内面との間
に、弾力性および伸縮性を有する風船状の袋を介在さ
せ、 該風船状の袋を、膨らませない状態で該超音波センサと
ともに管の開口部から管内に挿入し、 管内に挿入された風船状の袋内に超音波伝播媒体液を封
入して膨らませ、該袋の外周面を管の内周面に密着させ
た状態で、該袋の内面側と該超音波センサとの間に該超
音波伝播媒体液を満たし、超音波測定を行うことを特徴
とする管内面側からの超音波測定方法。
1. A method for transmitting an ultrasonic wave from an inner surface of a tube and receiving a reflected wave to perform an ultrasonic measurement, wherein an elastic force is provided between an ultrasonic sensor for performing the ultrasonic measurement and the inner surface of the tube. A balloon-shaped bag having elasticity and elasticity is interposed, and the balloon-shaped bag is inserted into the tube from the opening of the tube together with the ultrasonic sensor without being inflated, and the balloon-shaped bag inserted into the tube is inserted. The ultrasonic wave propagating medium liquid is filled between the bag and the ultrasonic sensor while the outer peripheral surface of the bag is in close contact with the inner peripheral surface of the tube. A method for measuring ultrasonic waves from the inner surface side of a pipe, characterized by satisfying (1) and performing ultrasonic measurement.
【請求項2】 前記超音波測定として、前記管の肉厚測
定を行うことを特徴とする請求項1記載の管内面側から
の超音波測定方法。
2. The method for measuring ultrasonic waves from the inner surface of a pipe according to claim 1, wherein the thickness of the pipe is measured as the ultrasonic measurement.
【請求項3】 前記超音波測定として、前記管の探傷を
行うことを特徴とする請求項1記載の管内面側からの超
音波測定方法。
3. The method for measuring ultrasonic waves from the inner surface of a pipe according to claim 1, wherein the ultrasonic measurement is performed by flaw detection of the pipe.
JP2000020694A 2000-01-28 2000-01-28 Ultrasonic measuring method from inner surface side of tube Pending JP2001208732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000020694A JP2001208732A (en) 2000-01-28 2000-01-28 Ultrasonic measuring method from inner surface side of tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000020694A JP2001208732A (en) 2000-01-28 2000-01-28 Ultrasonic measuring method from inner surface side of tube

Publications (1)

Publication Number Publication Date
JP2001208732A true JP2001208732A (en) 2001-08-03

Family

ID=18547213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000020694A Pending JP2001208732A (en) 2000-01-28 2000-01-28 Ultrasonic measuring method from inner surface side of tube

Country Status (1)

Country Link
JP (1) JP2001208732A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254945A (en) * 2002-02-27 2003-09-10 Yuushin Kk Corrosively thinned thickness measuring and inspecting device for steel pipe, and its using method
CN101782554A (en) * 2010-02-26 2010-07-21 中国水电顾问集团华东勘测设计研究院 Full-split single pore sound wave test device and debugging method thereof
CN111207268A (en) * 2020-02-03 2020-05-29 成都普崔克机电有限公司 Pipeline detection device
CN113406205A (en) * 2021-06-25 2021-09-17 中国船舶重工集团公司第七一九研究所 Pipeline damage detection device and pipeline damage detection method
CN115420809A (en) * 2022-11-07 2022-12-02 山东汇科工程检测有限公司 Ultrasonic phased array detection device for detecting performance of metal material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254945A (en) * 2002-02-27 2003-09-10 Yuushin Kk Corrosively thinned thickness measuring and inspecting device for steel pipe, and its using method
CN101782554A (en) * 2010-02-26 2010-07-21 中国水电顾问集团华东勘测设计研究院 Full-split single pore sound wave test device and debugging method thereof
CN111207268A (en) * 2020-02-03 2020-05-29 成都普崔克机电有限公司 Pipeline detection device
CN113406205A (en) * 2021-06-25 2021-09-17 中国船舶重工集团公司第七一九研究所 Pipeline damage detection device and pipeline damage detection method
CN113406205B (en) * 2021-06-25 2022-08-02 中国船舶重工集团公司第七一九研究所 Pipeline damage detection device and pipeline damage detection method
CN115420809A (en) * 2022-11-07 2022-12-02 山东汇科工程检测有限公司 Ultrasonic phased array detection device for detecting performance of metal material

Similar Documents

Publication Publication Date Title
US5460046A (en) Method and apparatus for ultrasonic pipeline inspection
CN201408181Y (en) Pressure Pipe Elbow Ultrasonic Probe with Rounded Wedge
JPS6410778B2 (en)
EP2440889B1 (en) Ultrasonic fluid flow meter housing with acoustically matched base
CN107430096A (en) Apparatus and method for checking pipeline
JP2001208732A (en) Ultrasonic measuring method from inner surface side of tube
JP6221624B2 (en) Fluid type discrimination device and fluid type discrimination method
CN118330043A (en) Ultrasonic combined probe for water sac type detection pipeline
CN113406205A (en) Pipeline damage detection device and pipeline damage detection method
JP7216366B2 (en) Ultrasonic probe and test pipe thickness measurement method using the same
CN117214310A (en) Pipeline ultrasonic detection coupling device and detection method
JP2001027628A (en) Inspection method and apparatus for multiple piping
KR102717982B1 (en) Apparatus for detecting water leakage
JP3030132B2 (en) Valve seat leakage diagnosis
JPH11183235A (en) Method and device for detecting gas layer in pipe using ultrasonic wave
JPH0989851A (en) Ultrasonic probe
JP3714934B2 (en) Fluid conveying pipe inspection device
RU2115090C1 (en) Method of measuring of pipeline flow section
JP2971277B2 (en) Ultrasonic probe
CN210570629U (en) Probe and double-probe pipeline profile inclination detection device using same
CN110360987B (en) Detection apparatus for two probe pipeline section inclinations
JPH08271243A (en) Device for measuring wall thickness from inside of tube
JP3064183B2 (en) Ultrasonic probe
JP2000221023A (en) Wall inspection method for liquid storing structure
JPS6315770Y2 (en)