[go: up one dir, main page]

JP2001208120A - Shock energy absorbing member made of fiber reinforced plastic - Google Patents

Shock energy absorbing member made of fiber reinforced plastic

Info

Publication number
JP2001208120A
JP2001208120A JP2000334479A JP2000334479A JP2001208120A JP 2001208120 A JP2001208120 A JP 2001208120A JP 2000334479 A JP2000334479 A JP 2000334479A JP 2000334479 A JP2000334479 A JP 2000334479A JP 2001208120 A JP2001208120 A JP 2001208120A
Authority
JP
Japan
Prior art keywords
energy absorbing
absorbing member
fiber
reinforced plastic
impact energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000334479A
Other languages
Japanese (ja)
Other versions
JP4491955B2 (en
JP2001208120A5 (en
Inventor
Tomoyuki Shinoda
知行 篠田
Takuya Karaki
琢也 唐木
Hitoshi Nishiyama
等 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000334479A priority Critical patent/JP4491955B2/en
Publication of JP2001208120A publication Critical patent/JP2001208120A/en
Publication of JP2001208120A5 publication Critical patent/JP2001208120A5/ja
Application granted granted Critical
Publication of JP4491955B2 publication Critical patent/JP4491955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shock energy absorbing member capable of effectively absorbing shock energy of the multi-directional shock, and reducing damage of a transport member, a building and the like to the utmost to protect an occupant in the transport member even if a moving body such as an automobile collides while spinning. SOLUTION: In this column-like energy absorbing member formed of fiber reinforced fiber made of reinforced fiber and matrix resin, a fiber content varies with a region of the member. According to one embodiment, the shock energy absorbing member is provided with an energy absorbing part 4 on the surface thereof having a grid-shaped plane 7 formed by at least three grid points 6 different in a fiber content.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば自動車や
電車等の輸送体の技術分野に用いられる衝撃エネルギー
吸収部材に関し、詳しくはこれらの輸送体の衝突、追突
時において、乗員や輸送体の損傷を低減・保護するため
の繊維強化プラスチック製衝撃エネルギー吸収部材の改
良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impact energy absorbing member used in the technical field of vehicles such as automobiles and electric trains, and more particularly, to damage to occupants and vehicles during collision or rear-end collision of these vehicles. The present invention relates to improvement of a fiber reinforced plastic impact energy absorbing member for reducing and protecting the impact energy.

【0002】[0002]

【従来の技術】従来の繊維強化プラスチック製衝撃エネ
ルギー吸収部材としては、構成材料が繊維強化樹脂から
なるエネルギー吸収部材を、例えば図1に示すように自
動車1のバンパー2部分に円筒状の衝撃エネルギー吸収
部材3を取り付けたものが知られている(例えば特開平
6-300068号公報)。
2. Description of the Related Art As a conventional impact energy absorbing member made of a fiber reinforced plastic, an energy absorbing member made of a fiber reinforced resin is used, for example, as shown in FIG. A device to which an absorbing member 3 is attached is known (for example,
No. 6-300068).

【0003】この吸収部材3は、衝撃エネルギーを良好
に吸収することの他、自動車に取り付けるために軽量、
高剛性であることが要求され、その構成材質として繊維
強化樹脂製のものが適しているとしている。また、この
吸収部材3は、衝突時に効率よくエネルギーを吸収でき
るようにするため、荷重の作用端側に破壊の開始(トリ
ガー)となるテーパ部を形成することにより、逐次破壊
が生じるように工夫されているものもある(例えば特開
平8-219215号公報)。
The absorbing member 3 not only absorbs impact energy well, but also has a light weight for mounting on an automobile.
High rigidity is required, and a material made of fiber-reinforced resin is suitable as a constituent material. Further, in order to absorb energy efficiently at the time of collision, the absorbing member 3 is formed with a tapered portion serving as a start (trigger) of destruction on the side where a load is applied, so that destruction occurs successively. Some of them are described (for example, JP-A-8-219215).

【0004】しかし、これらFRP製の衝撃吸収部材
は、輸送体に働く衝撃力が多方向に亘る場合には、多方
向に複数の衝撃吸収体を配置させる必要がある。また、
輸送体が自動車の場合、スピンして衝突するケースも多
く、予期せぬ方向に衝撃力が加わった場合には逐次破壊
が起こらず、吸収部材のエネルギー吸収量が十分に発現
しないという問題があった。
[0004] However, in the case of these FRP shock absorbing members, it is necessary to dispose a plurality of shock absorbers in multiple directions when the impact force acting on the transport body extends in multiple directions. Also,
If the vehicle is an automobile, the vehicle often spins and collides.If an impact force is applied in an unexpected direction, the vehicle will not be sequentially destroyed, and the energy absorption of the absorbing member will not be sufficient. Was.

【0005】このように従来のFRP製エネルギー吸収
体は、エネルギー吸収部材が逐次破壊して所定のエネル
ギー吸収特性が発現するものではあったが、一方向から
の衝撃に対処するもので、多方向からの衝撃に対しては
考慮がなされていないものであった。
[0005] As described above, the conventional FRP energy absorber has a structure in which the energy absorbing member is sequentially broken and a predetermined energy absorbing characteristic is exhibited. No consideration was given to the impact from the vehicle.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記従来技術
の問題点を解消し、多方向からの衝撃に対しても衝撃エ
ネルギーを効果的に吸収することができるとともに、破
壊の開始条件となる上記テーパー部分が不要で、例えば
自動車のような移動体がスピンしながら衝突しても、輸
送体や建造物等の損傷を極力低減し、輸送体中の乗員を
保護できる衝撃エネルギー吸収部材を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and can effectively absorb impact energy even from impacts from multiple directions and is a condition for starting destruction. Provided is an impact energy absorbing member that does not require the tapered portion and that can minimize damage to a transport body or a building and protect an occupant in the transport body even if a mobile body such as an automobile collides while spinning. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】上記課題を達成するため
に、本発明は次の第1、第2発明からなる。
In order to achieve the above object, the present invention comprises the following first and second inventions.

【0008】第1の発明は、強化繊維とマトリクス樹脂
とからなる繊維強化樹脂製の柱状をしたエネルギー吸収
部材であって、繊維含有率が吸収部材の部位によって異
なることを特徴とする繊維強化プラスチック製衝撃エネ
ルギー吸収部材である。
A first aspect of the present invention is a columnar energy absorbing member made of a fiber reinforced resin comprising a reinforced fiber and a matrix resin, wherein the fiber content varies depending on the location of the absorbing member. It is an impact energy absorbing member.

【0009】また、第2の発明は、吸収部材の表面に、
少なくとも3つの格子点から形成される格子形状平面を
有するエネルギー吸収部を備えてなることを特徴とする
繊維強化プラスチック製衝撃エネルギー吸収部材であ
る。
[0009] In a second aspect, the surface of the absorbing member is provided with
An impact energy absorbing member made of fiber reinforced plastic, comprising an energy absorbing portion having a lattice-shaped plane formed from at least three lattice points.

【0010】上記繊維含有率が異なる部位としては、部
材の形状にもよるが柱状体の断面において、厚みが変化
する部分、例えば、格子状の場合交差部と非交差部(図
2参照)とが該当し、この部分で1.2倍から3.0倍
の範囲内で異ならせるのが好ましい。吸収部材内に繊維
を交差させる部位を設けることで、破壊が安定的に進行
してエネルギー吸収量も大きくなる。より好ましい具体
的部材形状としては、表面に少なくとも3つの格子点か
ら形成される格子形状平面のエネルギー吸収部を設ける
ことである。ここで、少なくとも3つの格子点を必要と
する理由は、3つの格子点により一つの格子形状平面の
エネルギー吸収部を備えたエネルギー吸収部材が形成さ
れるからである。このような構成にすると、格子点の一
つ一つが従来技術の柱状、円筒状などの衝撃吸収体と同
様の衝撃エネルギー低減の作用効果を果たし、しかもそ
れぞれの格子における格子点は、マトリクス樹脂中の補
強繊維が交差して積層構成をしているために、繊維含有
率が他の部位より高くなり、その結果剛性が高くエネル
ギー吸収効率が高い作用効果を有する。また、それぞれ
のエネルギー吸収部における格子点は、立体的形状をし
ており、かつ複数存在するので、幅広い方向からの衝撃
に対して衝撃エネルギーを効果的に吸収することができ
る。また、独立したもう一つの有効手段として、部材中
に逐次破壊のトリガーとなるボイドを有することで、斜
め方向からの衝撃に対しても良好にエネルギー吸収させ
ることが可能となる。
The portions having different fiber contents are, depending on the shape of the member, cross-sections of the columnar body, where the thickness changes, for example, intersections and non-intersections (see FIG. 2) in the case of a lattice. And it is preferable to make the difference in this part within the range of 1.2 times to 3.0 times. By providing a portion where the fibers intersect in the absorbing member, the destruction proceeds stably and the amount of energy absorption increases. A more preferable specific member shape is to provide an energy absorbing portion in a lattice-shaped plane formed from at least three lattice points on the surface. Here, the reason why at least three lattice points are required is that the three lattice points form an energy absorbing member having an energy absorbing portion of one lattice shape plane. With such a configuration, each of the grid points has the same effect of reducing the impact energy as the conventional columnar and cylindrical shock absorbers, and the grid points in each grid are located in the matrix resin. Since the reinforcing fibers of (1) and (2) intersect to form a laminated structure, the fiber content is higher than that of other parts, and as a result, the rigidity is high and the energy absorption efficiency is high. In addition, since the lattice points in each energy absorbing portion have a three-dimensional shape and a plurality of lattice points, it is possible to effectively absorb impact energy with respect to impacts from a wide range of directions. In addition, as another independent effective means, by having a void in the member as a trigger for sequential destruction, energy can be favorably absorbed even in the event of an oblique impact.

【0011】[0011]

【発明の実施の形態】以下、本発明の好ましい実施態様
をその一実施例を示した図面に基づいて詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0012】図2〜図5は、いずれも本発明に係る衝撃
エネルギー吸収部材の一実施例の斜視図であり、図2は
外形が井桁状の格子点を有するエネルギー吸収部4を示
しており、格子点6が4個の例である。これら格子点で
は補強繊維の量が他の部位より多く強度が不均一となっ
ている。このため、斜め方向からの衝撃力に対して部材
は全体破壊せず、逐次破壊して高いエネルギー吸収特性
を呈する。すなわち、補強繊維の少ない箇所が破壊のト
リガーとなり、補強繊維の多い箇所が逐次破壊してエネ
ルギー吸収するというメカニズムを有する。勿論、補強
繊維量は、格子点以外でも高くすることが可能である
が、よりエネルギー吸収の高い後述の連続繊維を使用し
て部材を製造したいという観点から、格子点で補強繊維
を交差させて格子点の繊維含有率を大きくすることが経
済性上好ましい。
2 to 5 are perspective views of one embodiment of the impact energy absorbing member according to the present invention, and FIG. 2 shows an energy absorbing portion 4 having grid points having a grid-like outer shape. This is an example in which the number of lattice points 6 is four. At these lattice points, the amount of reinforcing fibers is greater than at other sites, and the strength is non-uniform. For this reason, the member is not entirely destroyed by the impact force from the oblique direction, but is sequentially destroyed, and exhibits high energy absorption characteristics. That is, there is a mechanism in which a portion having a small number of reinforcing fibers serves as a trigger for destruction, and a portion having a large number of reinforcing fibers is sequentially broken to absorb energy. Of course, the amount of the reinforcing fiber can be increased other than at the lattice point, but from the viewpoint of manufacturing a member using a continuous fiber having a higher energy absorption described later, the reinforcing fiber is crossed at the lattice point. It is economically preferable to increase the fiber content at lattice points.

【0013】尚、格子点以外で繊維含有率を高くする方
法としては、例えば、別成形あるいは別途プリフォーム
化した基材を挿入するというものであってもよい。
As a method for increasing the fiber content other than at lattice points, for example, a method of inserting a separately molded or separately preformed base material may be used.

【0014】図3は田の字状の格子点を有する吸収部
8、図4は格子形状が矩形状でなく曲線形状のものが多
数ランダムに集合してなる吸収部9、図5は1個が矩形
状の筒状体を複数個集合させて一体化させて格子点を形
成させた吸収部10である。
FIG. 3 shows an absorbing portion 8 having a cross-shaped lattice point, FIG. 4 shows an absorbing portion 9 in which a large number of curvilinear, rather than rectangular, lattices are gathered at random, and FIG. Is an absorber 10 in which a plurality of rectangular cylindrical bodies are assembled and integrated to form lattice points.

【0015】各図に示したように格子点としては、井桁
状、田の字状、曲線状、集合体状と種々のものがあるが
これらは一例であり、図2の態様でいうと衝撃エネルギ
ー吸収部4としては、要は移動体の進行方向(図中の矢
印方向)に突起部5が突出し、集合して格子点6(突起
部5の交差点)を複数個形成し、格子形状平面を形成し
ていればよい。なお、吸収部4は、図示は省略したが前
述の図1のバンパー2や専用のベース体等に固定されて
本発明の衝撃エネルギー吸収部材を構成している。
As shown in each figure, there are various lattice points such as a cross-girder, a cross, a curve, and an aggregate, but these are merely examples. In the embodiment of FIG. As the energy absorbing section 4, the projections 5 project in the traveling direction of the moving body (the direction of the arrow in the figure), and collectively form a plurality of lattice points 6 (intersections of the projections 5). Should be formed. Although not shown, the absorbing section 4 is fixed to the above-described bumper 2 of FIG. 1, a dedicated base body, or the like to constitute an impact energy absorbing member of the present invention.

【0016】ここで、一つの格子7の平面積、すなわち
4個の格子点6で包囲される部分の平面積としては、1
〜1000cm2の範囲内であるのが好ましい。衝撃エ
ネルギーを効果的に吸収し、製造コストを考慮するとよ
り好ましくは5〜500cm2である。格子面積が1c
m2未満では製造コストが高く、また格子点間距離が小
さいために逐次破壊したFRPが格子内に入り込むため
逐次破壊がし難くなり、効率良く衝撃エネルギーを吸収
できないなどの問題があり、1000cm2を越えると
一定の補強繊維使用量において該部材が剛性不足となっ
て、エネルギー吸収効果を十分に発揮できないことがあ
る。
Here, the plane area of one lattice 7, that is, the plane area of a portion surrounded by four lattice points 6 is 1
It is preferably in the range of 〜1000 cm 2. The thickness is more preferably 5 to 500 cm 2 in consideration of effective absorption of impact energy and production cost. Lattice area is 1c
If it is less than m2, the production cost is high, and since the distance between the lattice points is small, the sequentially destroyed FRP enters the lattice, which makes it difficult to successively destroy, and there is a problem that the impact energy cannot be efficiently absorbed. With a certain amount of reinforcing fiber used, the member may be insufficient in rigidity, and may not sufficiently exhibit the energy absorbing effect.

【0017】また、突起部5の厚さ(t)は0.1〜5
0mmの範囲内が好ましい。その理由は、0.1mm未
満では剛性不足となり、かつ格子点6も小さくなり十分
な衝撃エネルギー吸収ができない。一方50mmを越え
ると繊維量が多いため製造コストが高く、重量も大きく
なるため輸送体などへの設置が困難となるからである。
製造コストと単位重量あたりの衝撃吸収エネルギーの点
を考慮すると、より好ましくは3〜30mmの範囲内で
ある。一つの格子7の平面積は、前述したとおりである
が、一辺の長さの具体的寸法としては10〜300mm
の範囲が好ましい。より好ましくは30〜200mmで
ある。図2のような吸収部はドアや側壁などの広い面積
のものに取り付けるのに適している。
The thickness (t) of the projection 5 is 0.1 to 5
It is preferably within the range of 0 mm. The reason is that if it is less than 0.1 mm, the rigidity becomes insufficient, and the lattice points 6 become small, so that sufficient impact energy cannot be absorbed. On the other hand, if it exceeds 50 mm, the production cost is high due to the large amount of fiber, and the weight is also large, so that it is difficult to install it on a transportation body or the like.
In consideration of the production cost and the impact absorption energy per unit weight, it is more preferably in the range of 3 to 30 mm. The plane area of one grid 7 is as described above, but the specific size of one side is 10 to 300 mm.
Is preferable. More preferably, it is 30 to 200 mm. The absorbing section as shown in FIG. 2 is suitable for attaching to a large area such as a door or a side wall.

【0018】図3の田の字状の柱状吸収部8の場合も一
辺の長さは10〜300mmの範囲が好ましい。より好
ましくは30mm〜200mmである。
In the case of the column-shaped absorbing portion 8 in the shape of a cross as shown in FIG. 3, the length of one side is preferably in the range of 10 to 300 mm. More preferably, it is 30 mm to 200 mm.

【0019】柱状の吸収部8は輸送体前後に位置するバ
ンパーなどの比較的方向性が高く、大きな衝撃エネルギ
ー吸収が求められる箇所への取付けに適している。
The columnar absorbing portion 8 has a relatively high directionality, such as a bumper located before and after the transporting body, and is suitable for mounting to a place where large impact energy absorption is required.

【0020】図4のような曲線状の突起部10を有する
吸収部9の場合は、格子の平面積は1〜1000cm2
の範囲内が好ましい。より好ましくは5〜500cm2
である。この態様のものは、輸送体の外壁や前後に位置
するバンパーなどのように意匠性が求められ、図2、図
3のような吸収部4、8の設置が困難な場所への取付け
に適している。
In the case of the absorber 9 having the curved projections 10 as shown in FIG. 4, the plane area of the lattice is 1 to 1000 cm 2.
Is preferably within the range. More preferably 5 to 500 cm2
It is. This embodiment requires a design, such as an outer wall of a transport body or bumpers located in front and rear, and is suitable for installation in a place where it is difficult to install the absorbers 4 and 8 as shown in FIGS. ing.

【0021】これら格子の平面積7および突起部の厚さ
t、すなわち格子の大きさは、吸収すべき衝撃エネルギ
ーの大きさと、取付面積によって決まる。各エネルギー
吸収部は、格子点における高さ(t)と格子点の隣接辺
の幅(L)との比(H/L)が、1/2以上のボード状
のものであるのが好ましい。また、当然に吸収部4は、
格子を成す格子点6がその内部に存在する強化繊維(詳
細後述)の積層構成により剛性が高くなるので、エネル
ギー吸収率が高い。よって、格子点6が多い方が吸収エ
ネルギーは大きくなる。すなわち、発明者の知見によれ
ば、格子面積Aを小さくして、格子点6の数を多くする
ことにより単位面積あたりの吸収エネルギーを大きくす
ることができるのである。一方、格子を小さくすると基
材のレイアップが複雑になるから製造コストが高くな
る。格子の大きさは求める吸収エネルギーと設置面積、
製造コストなどによって調節する。このようにエネルギ
ー吸収部材は、格子形状を有しない場合に比べ、単位面
積あたりの吸収エネルギー量を大きくすることができ、
また、格子点の数を適宜調節することによりエネルギー
吸収量を調節することができる。具体的には、発明者の
知見によれば単位面積あたりの吸収エネルギーでは90
J/cm2以上、重量あたりの吸収エネルギーでは40
J/g以上であるものが好ましい。単位面積あたりの吸
収エネルギーが90J/cm2以下、重量あたりの吸収エ
ネルギーが40J/g以下であると所定の衝撃エネルギ
ーを吸収するのに、体積が大きくなり、また重量も重く
なることになる。
The plane area 7 of these gratings and the thickness t of the projections, that is, the size of the grating, is determined by the magnitude of the impact energy to be absorbed and the mounting area. Each energy absorbing portion is preferably a board-shaped one having a ratio (H / L) of a height (t) at a lattice point to a width (L) of a side adjacent to the lattice point (1/2) or more. Also, of course, the absorbing section 4
Since the rigidity is increased by the lamination structure of the reinforcing fibers (described later in detail) in which the lattice points 6 forming the lattice are present, the energy absorption rate is high. Therefore, the absorption energy increases as the number of lattice points 6 increases. That is, according to the knowledge of the inventor, the absorption energy per unit area can be increased by reducing the lattice area A and increasing the number of lattice points 6. On the other hand, when the grid is small, the lay-up of the base material becomes complicated, so that the manufacturing cost increases. The size of the grid depends on the required absorbed energy and installation area,
Adjust according to manufacturing cost. As described above, the energy absorbing member can increase the amount of absorbed energy per unit area as compared to the case where the energy absorbing member does not have a lattice shape,
Also, the energy absorption amount can be adjusted by appropriately adjusting the number of lattice points. Specifically, according to the knowledge of the inventor, the absorbed energy per unit area is 90%.
J / cm2 or more, absorption energy per weight is 40
Those having J / g or more are preferred. If the absorbed energy per unit area is 90 J / cm2 or less and the absorbed energy per weight is 40 J / g or less, a predetermined impact energy is absorbed, but the volume becomes large and the weight becomes heavy.

【0022】図5の吸収部10は、柱状の衝撃エネルギ
ー吸収部を寄せ集めて一体化することにより格子状とし
たものである。全体の大きさがそれぞれ異なる図2〜図
4の吸収エネルギー部4、8、9を多種類作製するに
は、金型の準備や基材のプリフォームなどの製造が面倒
であり、一体成形が困難である場合が多いが、図5に示
した集合タイプの吸収部10の場合は製造が格段に容易
化される。なお、以上のどのタイプのものでも吸収部を
構成する格子の形状や大きさ、厚さ、高さ等は一定であ
る必要はなく、部分的に異なったり、取り付ける箇所の
形状に合わせて異なっていても構わない。
The absorbing portion 10 shown in FIG. 5 is formed by gathering and integrating columnar impact energy absorbing portions into a lattice shape. In order to produce many kinds of energy absorbing parts 4, 8, and 9 of FIGS. 2 to 4 having different overall sizes, preparation of a mold and production of a preform of a base material are troublesome, and the integral molding is difficult. Although it is often difficult, in the case of the collecting part 10 of the collective type shown in FIG. 5, the manufacture is remarkably facilitated. In any of the above types, the shape, size, thickness, height, and the like of the grating that constitutes the absorbing portion need not be constant, and may differ partially depending on the shape of the mounting portion. It does not matter.

【0023】図6は、以上に述べた各種衝撃エネルギー
吸収部4、8、9、10の取付例であり、図では自動車
1のバンパー2に図5の態様の吸収部10を、ドアー11
に図4の態様の吸収部4を取り付けたものである。 す
なわち、ボード状にして固定することにより、鉄道車両
や飛行機の側壁、自動車のドアなどの側壁やバンパーな
ど大面積である構造物の表面を容易に覆うことができ
る。また、構造物が多角形や曲面を含むような通常取付
が困難と思われるものの場合でも大面積の格子状吸収部
材から所定の小片に複数個切り出し、これらを適宜集合
させることにより、所望形状の吸収部材を容易に得るこ
とができる。また、小片化することで、衝撃により部材
が損傷した場合の取り替え面積を最小限に押さえること
ができるというメリットもある。さらに、構造物が凹凸
を有する場合でも、簡単な機械加工により、格子の長さ
を調節して構造物に添わすことができる。また、吸収部
材の格子内に発泡フォーム材など高分子材料からなる緩
衝材や発泡モルタル、セメントなどのセラミックからな
る緩衝材、発泡アルミやアルミハニカム等の金属からな
る緩衝材を格子内の一部または全体に充填しても差し支
えない。また、格子の一部、片面、あるいは両面を上記
の高分子材料やセラミック材料のボードなどで覆うこと
により、様々な方向からの衝撃を均一に、もしくは広範
囲に伝搬することができる。すなわち、これらエネルギ
ー吸収部の軸方向(衝突方向)の上部、下部、または上
下部に、上記有機または無機材料のボードを貼り付けた
ものを被設置体に接着剤などで簡単に取り付けることが
できる。
FIG. 6 shows an example of mounting the various impact energy absorbing parts 4, 8, 9 and 10 described above. In the figure, the absorbing part 10 of the embodiment shown in FIG.
Is provided with the absorbing portion 4 of the embodiment of FIG. That is, by fixing in a board shape, it is possible to easily cover the surface of a large-area structure such as a side wall of a railway vehicle or an airplane, a side wall of a door of an automobile, or a bumper. Further, even in the case where the structure is considered to be difficult to mount normally, including polygons and curved surfaces, a plurality of predetermined small pieces are cut out from the large-area lattice-shaped absorbing member, and these are appropriately assembled to obtain a desired shape. An absorbing member can be easily obtained. In addition, there is also an advantage that the replacement area in the case where the member is damaged by an impact can be minimized by making the pieces smaller. Furthermore, even when the structure has irregularities, the length of the lattice can be adjusted and attached to the structure by simple machining. In addition, a cushioning material made of a polymer material such as a foamed foam material, a cushioning material made of a ceramic such as foam mortar and cement, and a cushioning material made of a metal such as aluminum foam or aluminum honeycomb are partially provided in the lattice of the absorbing member. Or, it may be filled entirely. Further, by covering a part, one side, or both sides of the grid with a board made of the above-mentioned polymer material or ceramic material, impacts from various directions can be transmitted uniformly or over a wide range. That is, the above-mentioned organic or inorganic material board is attached to the upper, lower, or upper and lower portions in the axial direction (collision direction) of these energy absorbing portions, and can be easily attached to the installation target with an adhesive or the like. .

【0024】上述した本発明に係る吸収体は、いずれも
強化繊維とマトリクス樹脂とから構成されている。
Each of the above-mentioned absorbers according to the present invention comprises a reinforcing fiber and a matrix resin.

【0025】強化繊維としては、特に限定しないが炭素
繊維、ガラス繊維、アルミナ繊維、窒化珪素繊維などの
無機繊維や、アラミド繊維などの有機繊維が使用でき
る。
The reinforcing fibers are not particularly limited, but inorganic fibers such as carbon fibers, glass fibers, alumina fibers and silicon nitride fibers, and organic fibers such as aramid fibers can be used.

【0026】無機繊維としては、炭素繊維はPAN(ポ
リアクリルニトリル)系、ピッチ系のいずれでもかまわ
ないが、中でもPAN系の炭素繊維は圧縮特性にもすぐ
れるので好ましい。ガラス繊維としては、好ましいのは
汎用品で価格が安く、成形性、衝撃エネルギー吸収量な
どの理由により目付が20〜400g/m2の範囲内も
のである。
As the inorganic fiber, the carbon fiber may be any of PAN (polyacrylonitrile) type and pitch type. Among them, PAN type carbon fiber is preferable because it has excellent compression characteristics. The glass fiber is preferably a general-purpose product which is inexpensive and has a basis weight of 20 to 400 g / m 2 for reasons such as moldability and impact energy absorption.

【0027】有機繊維としては、具体的にはポリアミド
系合成繊維、ポリオレフィン系合成繊維、ポリエステル
系合成繊維、ポリフェニルスルフォン繊維、ポリベンゾ
オキサジン繊維、アセテート、アクリロニトリル系合成
繊維、モダクリル繊維、ポリ塩化ビニル系合合成繊維、
ポリ塩化ビニリデン系合成繊維、ポリビニルアルコール
系合成繊維、ポリウレタン繊維、ポリクラール繊維、タ
ンパク−アクリロニトリル共重合系繊維、フッ素系繊
維、ポリグリコール酸繊維、フェノール繊維、パラ系ア
ラミド繊維などである。これらの中でも本発明の吸収部
材用としては、繊維引張強度が1.0GPa以上、引張
弾性率が70Gpa以上の特性を有するものが好まし
い。更に該吸収部材を輸送体に取り付けることを考慮す
れば、重量に対する比強度、比弾性が大きい方がよく、
具体的には比強度が1.1以上、比弾性が30以上の炭
素繊維、ガラス繊維、アラミド繊維が好ましい。
Specific examples of the organic fibers include polyamide synthetic fibers, polyolefin synthetic fibers, polyester synthetic fibers, polyphenylsulfone fibers, polybenzoxazine fibers, acetate, acrylonitrile synthetic fibers, modacrylic fibers, and polyvinyl chloride. Synthetic fiber,
Examples include polyvinylidene chloride-based synthetic fibers, polyvinyl alcohol-based synthetic fibers, polyurethane fibers, polyclar fibers, protein-acrylonitrile copolymer fibers, fluorine-based fibers, polyglycolic acid fibers, phenol fibers, and para-aramid fibers. Among these, for the absorbent member of the present invention, those having characteristics of a fiber tensile strength of 1.0 GPa or more and a tensile modulus of 70 Gpa or more are preferable. Considering that the absorbing member is attached to a transporter, the specific strength to weight, the specific elasticity is better,
Specifically, carbon fibers, glass fibers, and aramid fibers having a specific strength of 1.1 or more and a specific elasticity of 30 or more are preferable.

【0028】これら強化繊維の形態としては、長繊維、
短繊維、織物状、マット状、不織布状にしたものやこれ
ら形態の混合物などをマトリクス樹脂中に規則的または
不規則的に配置させて繊維強化樹脂を形成したものが好
ましい。最も好ましいのは高エネルギー吸収であるこ
と、成形が容易であることの理由から、長繊維形態のも
のであり、その配列方向はあらゆる方向にランダムに配
列されているものが好ましい。また、樹脂との相性を向
上させるために強化繊維表面には、油剤、カップリング
剤、サイジング剤、平滑剤などの表面仕上げ剤が塗布さ
れていてもかまわない。
As the form of these reinforcing fibers, long fibers,
It is preferable that the fiber reinforced resin is formed by arranging short fibers, woven, mat, non-woven, or a mixture of these forms in a matrix resin regularly or irregularly. Most preferred is a long fiber form because of high energy absorption and ease of molding, and the arrangement direction is preferably randomly arranged in all directions. Further, a surface finish such as an oil agent, a coupling agent, a sizing agent, and a leveling agent may be applied to the surface of the reinforcing fiber in order to improve compatibility with the resin.

【0029】マトリクス樹脂としては、不飽和ポリエス
テル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノ
ール樹脂、ベンゾオキサジン樹脂などの熱硬化性樹脂、
あるいは、ポリエチレン、ポリプロピレン樹脂、ポリア
ミド樹脂、ABS樹脂、ポチブチレンテレフタレート樹
脂、ポリアセタール樹脂、ポリフェニレンサルファイド
樹脂、ポリカーボネート等の樹脂などの熱可塑性樹脂、
及びこれら樹脂をアロイ化した変性樹脂が挙げられる。
なかでも耐薬品性、耐候性などに優れるエポキシ樹脂、
ポリエステル樹脂、ビニルエステル樹脂およびこれら樹
脂の変性樹脂が好ましい。上記樹脂には、例えば、リン
酸エステル、ハロゲン化炭化水素、酸化アンチモンやホ
ウ酸亜鉛、含リンポリオール、含臭素ポリオール、四塩
化無水フタル酸、四臭化無水フタル酸のような公知の難
燃剤を配合して難燃性を付与してもよい。吸収部全体に
対する補強繊維の混合割合としては、樹脂に対して重量
比で10〜70%の範囲内であることが好ましい。10
%を下回ると衝撃吸収性能が十分ではなくなる場合があ
り、70%を越えると樹脂の含浸が難しくなり、やはり
衝撃エネルギー吸収が十分でなくなる可能性があるから
である。ボイド量(体積含有率)は、1〜102〜6%
が好ましい。ボイドは通常1%未満が機械物性上好まし
いとされているが、本発明においては、ボイドがある程
度存在することで、斜め方向からの衝撃に対してもボイ
ドがトリガーの役割を果たして逐次破壊がスムースに進
行する。最も好ましいのは2〜6%である。ボイドの測
定法は、JIS K7053又はK7075に準ずる
が、顕微鏡で任意の50断面(面積は10×10cm2)
の断面写真を撮り、その平均面積から求めてもよい。
尚、ボイドとは、格子の開口部ではなく、Engineered M
aterial Handbook. Vol.1,"Composites", ASM Internat
ional, 1987等に記載さている通り、樹脂内部に包含さ
れている空孔のことであり、球形をしたものが多い。ボ
イドの大きさとしては、体積が0.4mm3〜5mm3
範囲内のものが逐次破壊のトリガーとして作用する上で
好ましい。体積がこれ以上であると部材の強度が低下し
て逐次破壊しにくくなる場合があり、本範囲以下である
と、斜めからの低エネルギーの衝撃に対し、逐次破壊の
トリガーとして作用しにくくなる可能性があるからであ
る。全ボイドに締める上記体積が0.4mm3〜5mm3
の範囲内のボイド量は70%以上であるとさらに好まし
い。
As the matrix resin, a thermosetting resin such as an unsaturated polyester resin, a vinyl ester resin, an epoxy resin, a phenol resin, and a benzoxazine resin;
Alternatively, thermoplastic resins such as polyethylene, polypropylene resin, polyamide resin, ABS resin, potybutylene terephthalate resin, polyacetal resin, polyphenylene sulfide resin, and resin such as polycarbonate;
And modified resins obtained by alloying these resins.
Among them, epoxy resin with excellent chemical resistance, weather resistance, etc.
Polyester resins, vinyl ester resins and modified resins of these resins are preferred. The above resins include, for example, known flame retardants such as phosphate esters, halogenated hydrocarbons, antimony oxide and zinc borate, phosphorus-containing polyols, bromine-containing polyols, phthalic anhydride tetrachloride, and phthalic anhydride tetrabromide. May be added to impart flame retardancy. The mixing ratio of the reinforcing fibers to the entire absorbent portion is preferably in the range of 10 to 70% by weight with respect to the resin. 10
%, The impact absorption performance may not be sufficient, and if it exceeds 70%, impregnation of the resin becomes difficult, and the impact energy absorption may also be insufficient. Void amount (volume content) is 1 to 102 to 6%
Is preferred. In general, the void content is preferably less than 1% in terms of mechanical properties. However, in the present invention, due to the existence of the void to some extent, the void functions as a trigger even in the case of an impact from an oblique direction, so that the sequential breakage is smooth. Proceed to Most preferred is 2-6%. The method for measuring voids conforms to JIS K7053 or K7075, but any 50 cross sections (area is 10 × 10 cm 2) with a microscope
May be obtained from the average area.
Note that the void is not an opening in the lattice, but an engineered M
aterial Handbook. Vol.1, "Composites", ASM Internat
As described in ional, 1987, etc., it is a pore contained in the resin, and often has a spherical shape. The size of the voids is preferable in a volume acts as the progressive failure of the trigger within the scope of 0.4 mm 3 to 5 mm 3. If the volume is larger than this, the strength of the member may decrease and it may be difficult to break sequentially, and if it is less than this range, it may be difficult to act as a trigger for sequential damage to oblique low energy impact. Because there is a nature. The volume to the total void 0.4 mm 3 to 5 mm 3
Is more preferably 70% or more.

【0030】尚、ボイドを本範囲内とする製造方法とし
て、マトリックスとして使用する樹脂を空気や窒素雰囲
気中で高速で混錬、あるいは攪拌して気体を溶解させる
方法、発泡剤を使用する方法などがある。また、樹脂の
硬化条件は、従来のオートクレーブなどのように高圧力
下で行うと気泡が樹脂に溶解するので、ボイドのサイズ
を上記範囲としたい場合には常圧付近の圧力下で成形す
ることが好ましい。また、ボイドの量は、界面活性剤や
消泡剤を添加することでも調整することができる。具体
的には、消泡剤を添加するとボイドの量が少なくなり、
添加量を上げていくとボイドの量が少なくなる。これら
消泡剤や界面活性剤、上記の発泡剤は、樹脂に直接混入
するだけでなく、繊維にあらかじめ付着させておいても
差し支えない。さらに、ボイドの量は、繊維の形態にも
影響される。具体的には、繊維の径とともに、ボイドの
サイズは大きくなるので、補強繊維の径は、5〜20ミ
クロンの範囲が好ましい。また、繊維に撚りを入れるこ
とでボイド量を多くすることができる。クロス(織物)
や組み紐材は、縦糸と横糸の交点などの繊維が屈曲する
部分でボイドを形成しやすく、好ましい形態である。
The method for producing voids within this range includes a method in which a resin used as a matrix is kneaded at a high speed in an air or nitrogen atmosphere, or a method in which a gas is dissolved by stirring, a method in which a foaming agent is used, and the like. There is. When the resin is cured under high pressure as in a conventional autoclave, the bubbles are dissolved in the resin, so if the void size is to be within the above range, molding should be performed under a pressure near normal pressure. Is preferred. Further, the amount of voids can also be adjusted by adding a surfactant or an antifoaming agent. Specifically, adding an antifoaming agent reduces the amount of voids,
As the amount of addition increases, the amount of voids decreases. These defoaming agents, surfactants, and the above-mentioned foaming agents may be mixed directly with the resin or may be previously attached to the fiber. Furthermore, the amount of voids is also affected by the morphology of the fiber. Specifically, since the size of the void increases with the diameter of the fiber, the diameter of the reinforcing fiber is preferably in the range of 5 to 20 microns. In addition, the amount of voids can be increased by twisting the fiber. Cloth (woven)
The braid or braid is a preferred form because it easily forms voids at the portion where the fiber is bent, such as the intersection of the warp and the weft.

【0031】最後に、ボイドによるトリガーに加え、従
来同様、格子状部材の先端にテーパー部を設けても一向
に差し支えない。
Finally, in addition to the trigger by the void, a tapered portion may be provided at the tip of the lattice-like member as in the related art.

【0032】なお、本発明のFRP製衝撃吸収部材の成
形法としては、ハンドレイアップ法、プルトルージョン
法(引き抜き成形法)、レジントランスファーモールデ
ィング(RTM)法、SCRIMP法、プルワインド
法、フィラメントワインド法、プリプレグレイアップ法
等、公知のあらゆる成形技術を用いることができる。中
でも、繊維束を樹脂を含浸させながら一体成形する、引
き抜き(プルトルージョン)成形法を用いることが性能
発現上好ましい。少量の生産や複雑/特殊な構造に対し
ては、ハンドレイアップ法が適している。特に、格子状
の衝撃吸収部に於いては、前記のハンドレイアップ法で
繊維を格子状の型溝内に配列して、型溝内に樹脂を流し
込むと作業効率よく所望の格子形状を有する繊維強化吸
収部材が得られて好ましい。また、常圧で成型する方
が、前記したボイドを形成する上でも、コスト的にも好
ましい。
The method of forming the FRP shock absorbing member of the present invention includes a hand lay-up method, a pultrusion method (pull-out molding method), a resin transfer molding (RTM) method, a SCRIMP method, a pull wind method, and a filament wind method. Any known molding technique such as a pre-pre-gray-up method can be used. Above all, it is preferable in terms of performance to use a pull-out (pultruding) molding method in which the fiber bundle is integrally molded while being impregnated with a resin. The hand lay-up method is suitable for small-volume production and complex / special structures. In particular, in the lattice-shaped shock absorbing portion, the fibers are arranged in the lattice-shaped mold groove by the above-described hand lay-up method, and the resin is poured into the mold groove to have a desired lattice shape with high work efficiency. It is preferable to obtain a fiber-reinforced absorbent member. Molding under normal pressure is more preferable in terms of cost in forming the voids.

【0033】[0033]

【実施例および比較例】実施例1 以下、本発明に係る衝撃エネルギー吸収部材の実施例に
ついて説明する。
Examples and Comparative Examples Example 1 Hereinafter, examples of the impact energy absorbing member according to the present invention will be described.

【0034】図2に示したエネルギー吸収部4として、
マトリクス樹脂に不飽和ポリエステル樹脂を使用し、強
化繊維にガラス繊維を用いて井桁状の吸収部材(平均繊
維含有率は30%、格子点の繊維含有率は56%)を作
成した。
As the energy absorbing section 4 shown in FIG.
Using an unsaturated polyester resin as a matrix resin and a glass fiber as a reinforcing fiber, a cross-girder absorbent member (average fiber content is 30%, fiber content at lattice points is 56%) was prepared.

【0035】具体的寸法は、一片40mm、高さ40m
m、厚さ3mmの4つの格子点2をもつ柱状吸収部であ
る。上記吸収部材をインストロン-1128を用い、ロード
セルは30トン、クロスヘッドスピード2mm/minで圧
縮試験を行った。
The specific dimensions are 40 mm per piece and 40 m in height.
m, a columnar absorber having four lattice points 2 having a thickness of 3 mm. A compression test was carried out at a load cell of 30 tons and a crosshead speed of 2 mm / min using Instron-1128 as the absorbing member.

【0036】その結果を吸収部材の加重−変位曲線を示
す図9に示す。この曲線とx軸と囲む面積が吸収エネル
ギーである。面積から本吸収部材のエネルギー吸収量を
求めると1800J、重量は35g、断面積は16cm
2であるため、単位重量あたりの吸収エネルギー、単位
面積あたりの吸収エネルギーはそれぞれ51.4J/
g、410J/cm2である。なお、本部材のボイド量
をJISK7053により測定したところ、3%であっ
た。
The results are shown in FIG. 9 showing a load-displacement curve of the absorbing member. The area surrounding this curve and the x-axis is the absorbed energy. When the energy absorption amount of the present absorbing member is obtained from the area, it is 1800 J, the weight is 35 g, and the cross-sectional area is 16 cm.
2 , the absorbed energy per unit weight and the absorbed energy per unit area are 51.4 J /
g, 410 J / cm 2 . In addition, when the void amount of this member was measured by JISK7053, it was 3%.

【0037】比較例1 比較のために繊維含有率が50%均一の円筒状吸収部材
(図10)を同様に試験した結果、図11の曲線とな
り、単位重量あたりの吸収エネルギー、単位面積あたり
の吸収エネルギーはそれぞれ42J/g、160J/c
2であり、上記実施例1のものよりも吸収エネルギー
は低かった。すなわち、図2の実施例1の格子状吸収部
材の方が単位重量、面積あたりの吸収エネルギーは高い
ことになる。
COMPARATIVE EXAMPLE 1 For comparison, a cylindrical absorbent member (FIG. 10) having a uniform fiber content of 50% was similarly tested. As a result, a curve shown in FIG. 11 was obtained, and the energy absorbed per unit weight and the energy per unit area were obtained. The absorbed energy is 42 J / g and 160 J / c, respectively.
m 2 , and the absorbed energy was lower than that of Example 1 above. That is, the lattice-shaped absorbing member of Example 1 in FIG. 2 has higher absorption energy per unit weight and area.

【0038】実施例2 実施例1と同一構造の柱状部材をインストロン-1128を
用い、ロードセルは30トン、クロスヘッドスピード2
mm/minで部材の高さ方向に対し、斜め10°の方向か
ら圧縮負荷試験を行った。
Example 2 A columnar member having the same structure as that of Example 1 was made of Instron-1128, a load cell was 30 tons, and a crosshead speed was 2
A compression load test was performed at an angle of 10 ° with respect to the height direction of the member at a rate of mm / min.

【0039】その結果、部材は逐次破壊し、単位重量あ
たりの吸収エネルギー、単位面積あたりの吸収エネルギ
ーはそれぞれ49.7J/g、396J/cm2であっ
た。
As a result, the member was sequentially broken, and the absorbed energy per unit weight and the absorbed energy per unit area were 49.7 J / g and 396 J / cm 2 , respectively.

【0040】比較例2 比較例1と同一の円筒を、実施例2と同様、斜め10度
の方向から圧縮試験した。その結果、円筒は剪断破壊し
て2つ割れし、単位重量あたりの吸収エネルギー、単位
面積あたりの吸収エネルギーはそれぞれ8J/g、30
J/cm2であった。
COMPARATIVE EXAMPLE 2 The same cylinder as in Comparative Example 1 was subjected to a compression test from a diagonal direction of 10 degrees, as in Example 2. As a result, the cylinder was sheared and broken into two pieces, and the absorbed energy per unit weight and the absorbed energy per unit area were 8 J / g and 30 respectively.
J / cm 2 .

【0041】実施例3〜5 図2に示したエネルギー吸収部4として、マトリックス
樹脂に不飽和ポリエステル樹脂を使用し、強化繊維に1
m当たり2ターンの撚りの入ったガラス繊維と炭素繊維
(弾性率235GPa、伸度2%)を繊維比率1:1で
用いて井桁状の部材(サイズは、一辺40mm、高さ5
0mm、厚さは5mm、平均繊維含有率は25%、格子
点の繊維含有率は44%)をハンドレイアップ法(常
圧)で製造した。本製造工程においては、不飽和ポリエ
ステル樹脂を空気中で泡立つように混錬し、硬化温度を
室温(25℃)、40℃、60℃、80℃と変えること
でボイドの量を調整(温度が高いと樹脂の粘度が低下し
てボイド量が減る)して、表1に示すボイド量の異なる
井桁状部材を3種類得た。尚、断面の顕微鏡観察の結果
は、ボイドは球形で、サイズは0.5mm3〜2mm3
ものが殆ど(7割以上)であった。これら井桁部材を実
施例2と同様の装置で、斜め30℃の方向から圧縮試験
した。結果は、表1の通りで、ボイド量が1.8%と
6.1%のものが斜め衝突に対し最もエネルギー吸収量
が高かった。以上の結果を纏めたのが次の表1である。
Examples 3 to 5 As the energy absorbing portion 4 shown in FIG. 2, an unsaturated polyester resin was used for the matrix resin and 1
Two-turn twisted glass fiber and carbon fiber (modulus of elasticity: 235 GPa, elongation: 2%) are used at a fiber ratio of 1: 1 to form a cross-girder member (size is 40 mm on a side and 5 mm in height).
(0 mm, thickness: 5 mm, average fiber content: 25%, fiber content at lattice points: 44%) were manufactured by the hand lay-up method (normal pressure). In this production process, the amount of voids is adjusted by kneading the unsaturated polyester resin in the air so as to foam it and changing the curing temperature to room temperature (25 ° C.), 40 ° C., 60 ° C., and 80 ° C. If it is too high, the viscosity of the resin decreases and the amount of voids decreases), and three types of cross-girder members having different void amounts shown in Table 1 were obtained. Note that the result of the cross section of the microscopic observation, voids spherical, size those 0.5 mm 3 to 2 mm 3 was almost (more than 70%). These well members were subjected to a compression test in the same apparatus as in Example 2 from an oblique direction of 30 ° C. The results are as shown in Table 1. Those having a void amount of 1.8% and 6.1% had the highest energy absorption amount against oblique collision. Table 1 below summarizes the above results.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】本発明に係る衝撃エネルギー吸収部材
は、次のような顕著な作用効果を奏することができる。
The impact energy absorbing member according to the present invention has the following remarkable functions and effects.

【0044】1)強化繊維とマトリクス樹脂とからなる
FRP製の柱状エネルギー吸収部材において、繊維含有
率を部材の部位毎に異ならせたので、多方向からの衝撃
に対しても安定した破壊による高いエネルギー吸収が可
能となるうえ、破壊の開始となる面取り等のトリガーが
不要という効果を奏することができる。
1) In a columnar energy absorbing member made of FRP made of a reinforcing fiber and a matrix resin, the fiber content is varied for each part of the member. In addition to the energy absorption, there is no need for a trigger such as chamfering to start destruction.

【0045】2)衝撃エネルギー吸収部を格子状形状と
したことにより、格子点は強化繊維が交差した状態で立
体的形状をなすので、多方向からの衝撃に対する剛性が
高くエネルギー吸収効率が高い。よって、従来の吸収部
材に比べ単位あたりの吸収エネルギーを大きくすること
ができる。
2) Since the impact energy absorbing portion has a lattice shape, the lattice points have a three-dimensional shape with the reinforcing fibers crossing each other, so that the rigidity against impacts from multiple directions is high and the energy absorption efficiency is high. Therefore, the absorbed energy per unit can be increased as compared with the conventional absorbing member.

【0046】3)上記したように格子点は強化繊維が交
差しているので、剛性が高く、エネルギー吸収効率が高
い。よって、この格子点の数およびその配置を調節する
ことにより、吸収エネルギー量を使用目的に応じて調節
することが可能となる。
3) Since the reinforcing fibers intersect at the lattice points as described above, the rigidity is high and the energy absorption efficiency is high. Therefore, by adjusting the number and arrangement of the lattice points, the amount of absorbed energy can be adjusted according to the purpose of use.

【0047】4)格子形状を平面状に配列させ、全体を
ボード状あるいは曲面状の衝撃吸収部材に固定すること
により、幅広い方向からの衝撃に対して衝撃エネルギー
を吸収することができる。
4) By arranging the grids in a plane and fixing the entire structure to a board-shaped or curved-shaped shock absorbing member, shock energy can be absorbed with respect to shocks from a wide range of directions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の衝撃エネルギー吸収部材の使用例を示す
斜視図である。
FIG. 1 is a perspective view showing a usage example of a conventional impact energy absorbing member.

【図2】本発明に係る衝撃エネルギー吸収部材の一実施
例を示す斜視図である。
FIG. 2 is a perspective view showing one embodiment of an impact energy absorbing member according to the present invention.

【図3】図2の吸収部材とは異なる実施態様の本発明に
係る衝撃エネルギー吸収部材の斜視図である。
FIG. 3 is a perspective view of an impact energy absorbing member according to an embodiment of the present invention, which is different from the absorbing member of FIG. 2;

【図4】図2、3の吸収部材とは異なる実施態様の本発
明に係る衝撃エネルギー吸収部材の斜視図である。
FIG. 4 is a perspective view of an impact energy absorbing member according to the present invention in an embodiment different from the absorbing members of FIGS.

【図5】図2〜4の吸収部材とは異なる実施態様の本発
明に係る衝撃エネルギー吸収部材の斜視図である。
FIG. 5 is a perspective view of an impact energy absorbing member according to the present invention in an embodiment different from the absorbing members of FIGS.

【図6】本発明に係る衝撃エネルギー吸収部材の適用例
を示す斜視図である。
FIG. 6 is a perspective view showing an application example of the impact energy absorbing member according to the present invention.

【図7】本発明のエネルギー吸収部の取付例の正面図で
ある。
FIG. 7 is a front view of a mounting example of the energy absorbing unit of the present invention.

【図8】図2の吸収部の寸法を示した斜視図である。FIG. 8 is a perspective view showing dimensions of an absorbing section in FIG. 2;

【図9】本発明のエネルギー吸収部の加重−変位曲線図
である。
FIG. 9 is a diagram showing a load-displacement curve of the energy absorbing unit according to the present invention.

【図10】比較例における吸収部の斜視図である。FIG. 10 is a perspective view of an absorbing section in a comparative example.

【図11】図10の吸収部材のエネルギー吸収部の加重
−変位曲線図である。
11 is a load-displacement curve diagram of an energy absorbing portion of the absorbing member of FIG.

【符号の説明】[Explanation of symbols]

1:自動車 2:バンパー 3:エネルギー吸収部 4:エネルギー吸収部 5:突起部 6:格子点 7:格子(格子形状平面) 8:吸収部 1: Car 2: Bumper 3: Energy absorption part 4: Energy absorption part 5: Projection part 6: Lattice point 7: Lattice (lattice shape plane) 8: Absorption part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08J 5/04 CER C08J 5/04 CEZ CEZ B29K 101:00 // B29K 101:00 105:06 105:06 B29L 31:30 B29L 31:30 C08L 101:00 C08L 101:00 B29C 67/14 P ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08J 5/04 CER C08J 5/04 CEZ CEZ B29K 101: 00 // B29K 101: 00 105: 06 105: 06 B29L 31:30 B29L 31:30 C08L 101: 00 C08L 101: 00 B29C 67/14 P

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】強化繊維とマトリクス樹脂とからなる繊維
強化樹脂製の柱状をしたエネルギー吸収部材であって、
繊維含有率が吸収部材の部位によって異なることを特徴
とする繊維強化プラスチック製衝撃エネルギー吸収部
材。
1. A columnar energy absorbing member made of a fiber reinforced resin comprising a reinforcing fiber and a matrix resin,
An impact energy absorbing member made of fiber reinforced plastic, wherein the fiber content varies depending on the location of the absorbing member.
【請求項2】繊維含有率は、厚みが変化する部位におい
て、1.2〜3.0倍の範囲内で異なることを特徴とす
る請求項1に記載の繊維強化プラスチック製衝撃エネル
ギー吸収部材。
2. The impact energy absorbing member made of fiber reinforced plastic according to claim 1, wherein the fiber content varies within a range of 1.2 to 3.0 times at a portion where the thickness changes.
【請求項3】吸収部材の表面に、少なくとも3つの格子
点から形成される格子形状平面を有するエネルギー吸収
部を備えてなることを特徴とする繊維強化プラスチック
製衝撃エネルギー吸収部材。
3. An impact energy absorbing member made of fiber-reinforced plastic, comprising an energy absorbing portion having a lattice-shaped plane formed by at least three lattice points on a surface of the absorbing member.
【請求項4】格子点の繊維含有率は、格子点以外の部位
よりも1.2〜3.0倍の範囲内で高いことを特徴とす
る請求項3に記載の繊維強化プラスチック製衝撃エネル
ギー吸収部材。
4. The fiber-reinforced plastic impact energy according to claim 3, wherein the fiber content of the lattice points is higher than that of the parts other than the lattice points within a range of 1.2 to 3.0 times. Absorbing member.
【請求項5】3つの格子点で形成される格子形状平面の
面積は、1〜1000cm2の範囲内にあることを特徴
とする請求項3または4に記載の繊維強化プラスチック
製衝撃エネルギー吸収部材。
5. The impact energy absorbing member made of fiber reinforced plastic according to claim 3, wherein the area of the lattice-shaped plane formed by the three lattice points is in the range of 1 to 1000 cm 2. .
【請求項6】エネルギー吸収部の衝突方向の厚さは、
0.1〜50mmの範囲内であることを特徴とする請求
項3〜5のいずれかに記載の繊維強化プラスチック製衝
撃エネルギー吸収部材。
6. The thickness of the energy absorbing portion in the collision direction is:
The impact energy absorbing member made of fiber reinforced plastic according to any one of claims 3 to 5, wherein the impact energy absorbing member is within a range of 0.1 to 50 mm.
【請求項7】エネルギー吸収部は、格子点における高さ
(t)と格子点の隣接辺の幅(L)との比(H/L)
が、1/2以上のボード状のものであることを特徴とす
る請求項3〜6のいずれかに記載の繊維強化プラスチッ
ク製衝撃エネルギー吸収部材。
7. The energy absorbing portion has a ratio (H / L) between a height (t) at a grid point and a width (L) of an adjacent side of the grid point.
The impact energy absorbing member made of fiber reinforced plastic according to any one of claims 3 to 6, wherein the member is a board having a shape of 1/2 or more.
【請求項8】格子内の一部またはすべてに、発泡フォー
ムまたは発泡モルタルが充填されていることを特徴とす
る請求項3〜7のいずれかに記載の繊維強化プラスチッ
ク製衝撃エネルギー吸収部材。
8. The fiber-reinforced plastic impact energy absorbing member according to claim 3, wherein a part or all of the lattice is filled with a foamed foam or a foamed mortar.
【請求項9】エネルギー吸収部の軸方向の上部、下部、
または上下部に、有機または無機材料のボードを貼り合
わせてなることを特徴とする請求項3〜8のいずれかに
記載の繊維強化プラスチック製衝撃エネルギー吸収部
材。
9. An upper part, a lower part in an axial direction of the energy absorbing part,
9. The impact energy absorbing member made of fiber reinforced plastic according to claim 3, wherein an organic or inorganic material board is attached to the upper and lower portions.
【請求項10】強化繊維は、炭素繊維であって、その含
有率が10〜70wt%の範囲内であることを特徴とす
る請求項1〜9のいずれかに記載の繊維強化プラスチッ
ク製衝撃エネルギー撃吸収部材。
10. The fiber-reinforced plastic impact energy according to claim 1, wherein the reinforcing fiber is a carbon fiber and its content is in a range of 10 to 70 wt%. A shock absorbing member.
【請求項11】エネルギー吸収部のボイド量は、2〜6
vol%の範囲内であることを特徴とする請求項3〜1
0のいずれかに記載の繊維強化プラスチック製衝撃エネ
ルギー吸収部材。
11. The amount of voids in the energy absorbing portion is 2-6.
3. The composition according to claim 1, wherein the content is within the range of vol.
0. The impact energy absorbing member made of a fiber reinforced plastic according to any one of the above items.
【請求項12】エネルギー吸収量は、40J/g以上で
あることを特徴とする請求項1〜11のいずれかに記載
の繊維強化プラスチック製衝撃エネルギー吸収部材。
12. The fiber-reinforced plastic impact energy absorbing member according to claim 1, wherein an energy absorption amount is 40 J / g or more.
JP2000334479A 1999-11-02 2000-11-01 Impact energy absorbing member made of fiber reinforced plastic Expired - Lifetime JP4491955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000334479A JP4491955B2 (en) 1999-11-02 2000-11-01 Impact energy absorbing member made of fiber reinforced plastic

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-312190 1999-11-02
JP31219099 1999-11-02
JP2000334479A JP4491955B2 (en) 1999-11-02 2000-11-01 Impact energy absorbing member made of fiber reinforced plastic

Publications (3)

Publication Number Publication Date
JP2001208120A true JP2001208120A (en) 2001-08-03
JP2001208120A5 JP2001208120A5 (en) 2007-09-06
JP4491955B2 JP4491955B2 (en) 2010-06-30

Family

ID=26567061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000334479A Expired - Lifetime JP4491955B2 (en) 1999-11-02 2000-11-01 Impact energy absorbing member made of fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP4491955B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553323A3 (en) * 2004-01-06 2005-10-12 Kabushiki Kaisha Toyota Jidoshokki Energy absorber and method for manufacturing the same
JP2008513714A (en) * 2004-09-22 2008-05-01 フアウレシア・インネンラウム・ジステーメ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Shock absorber made of fiber material
JP2008201041A (en) * 2007-02-21 2008-09-04 Toyota Motor Corp Manufacturing method of fiber reinforced composite material
JP2010006245A (en) * 2008-06-27 2010-01-14 Toray Ind Inc Impact energy absorbing body
CN103009640A (en) * 2012-12-28 2013-04-03 东南大学 Mould for preparing space lattices made of fiber reinforced composite materials and application method of mould
US8607944B2 (en) 2009-02-10 2013-12-17 Toyota Jidosha Kabushiki Kaisha Shock-absorbing structure
KR20130140086A (en) * 2010-11-22 2013-12-23 포리시 블로 아반 Energy absorption device with fibres embedded in a plastic material, and associated front face
WO2014200015A1 (en) * 2013-06-12 2014-12-18 本田技研工業株式会社 Fiber-reinforced resin member
WO2016084044A1 (en) * 2014-11-28 2016-06-02 Hitachi Rail Italy S.P.A. Rail vehicle, particularly a tram comprising a bumper
KR20170018917A (en) * 2014-06-16 2017-02-20 사빅 글로벌 테크놀러지스 비.브이. Method of making a laminate, an energy absorbing device, an energy absorbing device composition, and a forming tool
US11008050B2 (en) 2016-12-30 2021-05-18 Sabic Global Technologies B.V. Hybrid structures and methods of making the same
JP2021104277A (en) * 2019-12-27 2021-07-26 株式会社アシックス Shock absorber, shoe sole, and shoe
JP2021104278A (en) * 2019-12-27 2021-07-26 株式会社アシックス Shock absorber, shoe sole, and shoe
US11832683B2 (en) 2019-12-27 2023-12-05 Asics Corporation Shock absorber, shoe sole and shoe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655893U (en) * 1993-01-09 1994-08-02 サカエ理研工業株式会社 Energy absorbing plastic bumper
JPH11173356A (en) * 1997-12-11 1999-06-29 Toray Ind Inc Shock absorbing member made of aluminum/fiber reinforced resin
JPH11269755A (en) * 1998-03-17 1999-10-05 Toyota Autom Loom Works Ltd Three-dimensional fiber structure
JPH11351306A (en) * 1998-06-12 1999-12-24 Toyobo Co Ltd Resinous shock absorber and shock absorbing method using the same
JP2000085495A (en) * 1998-09-10 2000-03-28 Nishikawa Kasei Co Ltd Vehicle bumper and molding die thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655893U (en) * 1993-01-09 1994-08-02 サカエ理研工業株式会社 Energy absorbing plastic bumper
JPH11173356A (en) * 1997-12-11 1999-06-29 Toray Ind Inc Shock absorbing member made of aluminum/fiber reinforced resin
JPH11269755A (en) * 1998-03-17 1999-10-05 Toyota Autom Loom Works Ltd Three-dimensional fiber structure
JPH11351306A (en) * 1998-06-12 1999-12-24 Toyobo Co Ltd Resinous shock absorber and shock absorbing method using the same
JP2000085495A (en) * 1998-09-10 2000-03-28 Nishikawa Kasei Co Ltd Vehicle bumper and molding die thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553323A3 (en) * 2004-01-06 2005-10-12 Kabushiki Kaisha Toyota Jidoshokki Energy absorber and method for manufacturing the same
US7842378B2 (en) 2004-01-06 2010-11-30 Kabushiki Kaisha Toyota Jidoshokki Energy absorber and method for manufacturing the same
JP2008513714A (en) * 2004-09-22 2008-05-01 フアウレシア・インネンラウム・ジステーメ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Shock absorber made of fiber material
US8047602B2 (en) 2004-09-22 2011-11-01 Faurecia Innenraum Systeme Gmbh Shock absorber made of fiber material
JP2008201041A (en) * 2007-02-21 2008-09-04 Toyota Motor Corp Manufacturing method of fiber reinforced composite material
JP2010006245A (en) * 2008-06-27 2010-01-14 Toray Ind Inc Impact energy absorbing body
US8607944B2 (en) 2009-02-10 2013-12-17 Toyota Jidosha Kabushiki Kaisha Shock-absorbing structure
KR20130140086A (en) * 2010-11-22 2013-12-23 포리시 블로 아반 Energy absorption device with fibres embedded in a plastic material, and associated front face
JP2014505838A (en) * 2010-11-22 2014-03-06 フォーレシア・ブロック・アヴァン Energy absorbing device having fibers embedded in plastic material and associated front face
CN103009640A (en) * 2012-12-28 2013-04-03 东南大学 Mould for preparing space lattices made of fiber reinforced composite materials and application method of mould
JP5988181B2 (en) * 2013-06-12 2016-09-07 本田技研工業株式会社 Fiber reinforced resin material
WO2014200015A1 (en) * 2013-06-12 2014-12-18 本田技研工業株式会社 Fiber-reinforced resin member
US9884466B2 (en) 2013-06-12 2018-02-06 Honda Motor Co., Ltd. Fiber-reinforced resin member
KR102191809B1 (en) 2014-06-16 2020-12-17 사빅 글로벌 테크놀러지스 비.브이. Method of making a laminate, an energy absorbing device, an energy absorbing device composition, and a forming tool
KR20170018917A (en) * 2014-06-16 2017-02-20 사빅 글로벌 테크놀러지스 비.브이. Method of making a laminate, an energy absorbing device, an energy absorbing device composition, and a forming tool
US11603142B2 (en) 2014-06-16 2023-03-14 Sabic Global Technologies B.V. Structural body of a vehicle having an energy absorbing device and a method of forming the energy absorbing device
US20170274914A1 (en) * 2014-11-28 2017-09-28 Hitachi Rail Italy S.P.A. Rail vehicle, particularly a tram comprising a bumper
US10668935B2 (en) 2014-11-28 2020-06-02 Hitachi Rail Italy S.P.A. Rail vehicle, particularly a tram comprising a bumper
WO2016084044A1 (en) * 2014-11-28 2016-06-02 Hitachi Rail Italy S.P.A. Rail vehicle, particularly a tram comprising a bumper
US11008050B2 (en) 2016-12-30 2021-05-18 Sabic Global Technologies B.V. Hybrid structures and methods of making the same
JP2021104277A (en) * 2019-12-27 2021-07-26 株式会社アシックス Shock absorber, shoe sole, and shoe
JP2021104278A (en) * 2019-12-27 2021-07-26 株式会社アシックス Shock absorber, shoe sole, and shoe
US11832683B2 (en) 2019-12-27 2023-12-05 Asics Corporation Shock absorber, shoe sole and shoe
JP7396892B2 (en) 2019-12-27 2023-12-12 株式会社アシックス soles and shoes
US11849799B2 (en) 2019-12-27 2023-12-26 Asics Corporation Shock absorber, shoe sole and shoe
JP7411410B2 (en) 2019-12-27 2024-01-11 株式会社アシックス Cushioning materials, soles and shoes

Also Published As

Publication number Publication date
JP4491955B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP4491955B2 (en) Impact energy absorbing member made of fiber reinforced plastic
WO2013080974A1 (en) Shock absorption member
KR102104802B1 (en) Structure
JP2011530054A (en) Energy absorption structure
KR20140043318A (en) Vehicle skeleton member
JP6808744B2 (en) How to make energy absorbing member and energy absorbing member
KR101470144B1 (en) Rod stiffener for bumper of car
US20140339036A1 (en) Shock Absorption Member
EP3636517B1 (en) Safety cabin for a residential or camper van with deformation elements
JPWO2018117180A1 (en) Structure and manufacturing method thereof
WO2021185632A1 (en) Protecting member for a battery structure of an electric vehicle
WO2023089163A1 (en) Ground impact plate for a battery electric vehicle
US12280722B2 (en) Interior trim for a motor vehicle, comprising a headliner and a stiffening frame and method for their manufacture
CN217074258U (en) An energy-absorbing box with a nickel-titanium shape memory alloy braided structure interlayer
DE202020105789U1 (en) Safety cabin for a mobile home or motorhome with highly stable walls, which preferably comprise natural fibers
CN1307034C (en) Energy-absorbing L-component
US20200340544A1 (en) Component for absorbing impact force
US20210270337A1 (en) Multilayer damping material
JPS642845Y2 (en)
KR0158988B1 (en) Fiber-reinforced plastic composite plate and plastic hood and roof of automobile
Obaid et al. Lightweight thermoset foams in automotive applications
JPH06344837A (en) Bumper beam made of stampable sheet
WO2023063057A1 (en) Impact-absorbing member
WO2023063058A1 (en) Impact-absorbing member
JP2007168122A (en) Fiber reinforced plastic structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R151 Written notification of patent or utility model registration

Ref document number: 4491955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

EXPY Cancellation because of completion of term