JP2001207834A - Exhaust emission cleaning device for engine - Google Patents
Exhaust emission cleaning device for engineInfo
- Publication number
- JP2001207834A JP2001207834A JP2000011312A JP2000011312A JP2001207834A JP 2001207834 A JP2001207834 A JP 2001207834A JP 2000011312 A JP2000011312 A JP 2000011312A JP 2000011312 A JP2000011312 A JP 2000011312A JP 2001207834 A JP2001207834 A JP 2001207834A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- reducing agent
- injection
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004140 cleaning Methods 0.000 title abstract 3
- 239000003054 catalyst Substances 0.000 claims abstract description 220
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 65
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 63
- 238000002347 injection Methods 0.000 claims description 163
- 239000007924 injection Substances 0.000 claims description 163
- 239000000446 fuel Substances 0.000 claims description 86
- 238000002485 combustion reaction Methods 0.000 claims description 31
- 238000000746 purification Methods 0.000 claims description 29
- 230000006835 compression Effects 0.000 claims description 12
- 238000007906 compression Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 16
- 238000007254 oxidation reaction Methods 0.000 abstract description 9
- 230000003647 oxidation Effects 0.000 abstract description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 342
- 239000007789 gas Substances 0.000 description 86
- 230000003197 catalytic effect Effects 0.000 description 14
- 230000007423 decrease Effects 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000000979 retarding effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 101100325793 Arabidopsis thaliana BCA2 gene Proteins 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- 101100321669 Fagopyrum esculentum FA02 gene Proteins 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はエンジンの排気浄化
装置に関し、特にNOx(窒素酸化物)の排出を抑制す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an engine, and more particularly to an apparatus for suppressing the emission of NOx (nitrogen oxide).
【0002】[0002]
【従来の技術】エンジンの排気ガスを浄化するための触
媒としては、略理論空燃比付近で排気ガス中のHC(炭
化水素)、CO(一酸化炭素)及び前記NOxを同時に
かつ極めて有効に浄化できる三元触媒が知られている。
しかし、ディーゼルエンジンはかなりリーンな空燃比
(例えばA/F≧18,酸素濃度が4%以上)で運転さ
れるので、前記三元触媒では排気ガス中のNOxを還元
することができず、また、空燃比がリーンな状態では排
気ガス中の酸素濃度がかなり高くなるので、NOx浄化
用触媒(例えばゼオライトに触媒金属としてのPtを担
持させた触媒)であってもNOxを十分に還元浄化する
ことが難しい。この点は空燃比がリーンの運転領域を有
するガソリンエンジンにおいても同じである。2. Description of the Related Art As a catalyst for purifying an exhaust gas of an engine, HC (hydrocarbon), CO (carbon monoxide) and the NOx in the exhaust gas are simultaneously and very effectively purified in the vicinity of a stoichiometric air-fuel ratio. Possible three-way catalysts are known.
However, since the diesel engine is operated at a fairly lean air-fuel ratio (for example, A / F ≧ 18 and the oxygen concentration is 4% or more), the three-way catalyst cannot reduce NOx in the exhaust gas. When the air-fuel ratio is lean, the oxygen concentration in the exhaust gas becomes considerably high. Therefore, even with a NOx purification catalyst (for example, a catalyst in which Pt as a catalyst metal is supported on zeolite), NOx is sufficiently reduced and purified. It is difficult. This point is the same in a gasoline engine having an operating range where the air-fuel ratio is lean.
【0003】これに対し、特開平9−317524号公
報には、エンジンの排気通路の上流側に低温域でNOx
を還元浄化するに適した第1触媒装置を配置し、その下
流側に高温域でNOxを還元浄化するに適した第2触媒
装置を配置し、圧縮行程上死点付近で機関出力発生のた
めの主燃料噴射を行なうとともに、膨張行程又は排気行
程において触媒に対する炭化水素供給量を増大させるた
めの後燃料噴射を行なうようにし、その後燃料噴射量を
触媒温度に応じて制御することにより、NOx浄化を効
果的に行なうことが記載されている。On the other hand, Japanese Unexamined Patent Publication No. Hei 9-317524 discloses that NOx is provided in a low temperature region upstream of an exhaust passage of an engine.
A first catalyst device suitable for reducing and purifying NOx is disposed, and a second catalytic device suitable for reducing and purifying NOx in a high-temperature region is disposed downstream of the first catalytic device to generate engine output near the top dead center of the compression stroke. NOx purification by performing main fuel injection during the expansion stroke or exhaust stroke, and performing post-fuel injection to increase the amount of hydrocarbon supply to the catalyst during the expansion stroke or the exhaust stroke, and then controlling the fuel injection amount according to the catalyst temperature. Is described as being performed effectively.
【0004】すなわち、後燃料噴射によって排気ガス中
のHC量が増大すると触媒でのHC酸化反応熱によって
触媒温度が上昇することに鑑み、第1及び第2の各触媒
装置に対してNOx浄化活性がピークとなる温度より低
温時には後燃料噴射量を多くしてピーク温度付近でNO
x浄化が行なわれるようにし、ピーク温度より高温時に
は後燃料噴射量を少なくして触媒の温度上昇を抑え、で
きるだけピーク温度付近でNOxの浄化を行なおうとす
るものである。In other words, in view of the fact that when the amount of HC in the exhaust gas increases due to the post-fuel injection, the catalyst temperature rises due to the heat of the HC oxidation reaction in the catalyst, the NOx purifying activity of the first and second catalytic devices is considered. When the temperature is lower than the peak temperature, the post-fuel injection amount is increased and the NO
x purification is performed, and when the temperature is higher than the peak temperature, the amount of post-fuel injection is reduced to suppress a rise in the temperature of the catalyst, and to purify NOx as close to the peak temperature as possible.
【0005】[0005]
【発明が解決しようとする課題】上述の如く触媒温度に
基づいてNOx浄化に有効な還元剤の増量度合を制御す
ることは触媒を活性ピークの温度付近に維持する上で有
効である。しかし、排気通路に複数の触媒を直列的に配
置した場合、上流側の触媒が排気ガス中の還元剤を酸化
消費するものであれば、還元剤の増量度合を所定の基準
に基づいて制御しても、下流側の触媒には還元剤が期待
通りには供給されない。例えば、上流側に低温域でNO
x浄化活性がピークになるNOx触媒を配置し、下流側
に高温域で活性がピークになるNOx触媒を配置した場
合、上流側触媒が活性ピークの温度になるまでは還元剤
の増量によりその触媒の早期活性が図れ、また、ピーク
温度でのNOx浄化率も高くなる。しかし、上流側触媒
の温度がピーク温度より高くなってNOx浄化率が低下
しても、この上流側触媒による還元剤の消費率は下がら
ないため、下流側触媒には還元剤が思うように供給され
ず、還元剤増量の効果が下流側触媒のNOx浄化に反映
されない。As described above, controlling the degree of increase of the reducing agent effective for NOx purification based on the catalyst temperature is effective in maintaining the catalyst at a temperature near the activity peak. However, when a plurality of catalysts are arranged in series in the exhaust passage, if the upstream catalyst oxidizes and consumes the reducing agent in the exhaust gas, the increasing amount of the reducing agent is controlled based on a predetermined standard. However, the reducing agent is not supplied to the downstream catalyst as expected. For example, NO
When a NOx catalyst having a peak x purification activity is disposed and a NOx catalyst having a peak activity in a high-temperature region is disposed downstream, the amount of the reducing agent is increased by increasing the amount of the reducing agent until the temperature of the upstream catalyst reaches an activity peak. Can be activated early, and the NOx purification rate at the peak temperature can be increased. However, even if the temperature of the upstream catalyst becomes higher than the peak temperature and the NOx purification rate decreases, the consumption rate of the reducing agent by the upstream catalyst does not decrease, so that the reducing agent is supplied to the downstream catalyst as desired. However, the effect of the increase in the reducing agent is not reflected on the NOx purification of the downstream catalyst.
【0006】これに対して、上流側触媒における触媒金
属の担持量を少なくすれば、排気ガス中の還元剤が上流
側触媒で酸化消費される量が少なくなるため、下流側触
媒により多くの還元剤が供給されるが、上流側触媒が熱
劣化し易くなるという問題がある。すなわち、触媒金属
の担持量が多い場合は、高温に晒されたときにシンタリ
ングしてサポート材上での分散度が低下するものの、あ
る程度シンタリングが進行すれば、それ以上には進まな
くなるから、触媒活性が大きく低下することはないが、
担持量が少ない場合には当初はサポート材に高分散に担
持されていても、シンタリングしたときの分散度の低下
が大きくなり、あるいはサポート材に埋没し、触媒活性
が大きく低下する。On the other hand, if the amount of the catalyst metal carried on the upstream catalyst is reduced, the amount of the reducing agent in the exhaust gas that is oxidized and consumed by the upstream catalyst is reduced. Although the agent is supplied, there is a problem that the upstream side catalyst is easily deteriorated by heat. That is, when the amount of the supported catalyst metal is large, the sintering is reduced when exposed to a high temperature, and the degree of dispersion on the support material is reduced.However, if the sintering proceeds to some extent, the sintering does not proceed any further. , The catalytic activity does not decrease significantly,
When the supported amount is small, the degree of dispersion upon sintering is greatly reduced or buried in the support material even if the support material is initially highly dispersed, and the catalytic activity is greatly reduced.
【0007】そこで、本発明は、排気通路の上流側に還
元剤を酸化消費する触媒が配置され、その下流側に還元
剤と反応する(還元剤の存在下で触媒反応を起こす)触
媒が配置されている場合に、上流側触媒の触媒金属担持
量を減らさずとも、増量された還元剤が上流側触媒を通
過して下流側触媒にも比較的多く供給されるようにし
て、下流側触媒での還元剤との反応性を効果的なものに
することを目的とする。In view of the above, according to the present invention, a catalyst for oxidizing and consuming a reducing agent is disposed upstream of an exhaust passage, and a catalyst reacting with the reducing agent (causing a catalytic reaction in the presence of the reducing agent) is disposed downstream thereof. In this case, the increased amount of the reducing agent passes through the upstream catalyst and is supplied to the downstream catalyst in a relatively large amount without decreasing the amount of the catalyst metal carried on the upstream catalyst. The purpose of the present invention is to make the reactivity with the reducing agent effective.
【0008】[0008]
【課題を解決するための手段】本発明は、このような課
題に対して、上流側の触媒及び下流側触媒をハニカム状
のモノリス触媒とし、且つ上流側触媒を排気ガスが通過
し易い形態にしたものである。In order to solve the above-mentioned problems, the present invention provides a honeycomb-type monolith catalyst for an upstream catalyst and a downstream catalyst, and forms an exhaust gas through the upstream catalyst so that exhaust gas can easily pass therethrough. It was done.
【0009】すなわち、本発明は、エンジン本体と、前
記エンジン本体の排気通路に配置され排気ガス中の還元
剤と反応する触媒、例えば排気ガス中のNOxを還元剤
との反応によって浄化させる触媒がハニカム状モノリス
担体にコーティングされてなる下流側触媒と、前記還元
剤量を増大させる還元剤増量手段と、前記排気通路の前
記下流側触媒よりも上流側の部位に、前記還元剤を酸化
させる触媒がハニカム状モノリス担体にコーティングさ
れてなる上流側触媒が配置されていて、前記上流側触媒
は前記下流側触媒よりも排気ガスとの接触時間が短くな
るように形成されていることを特徴とする。That is, the present invention provides an engine body and a catalyst disposed in an exhaust passage of the engine body and reacting with a reducing agent in exhaust gas, for example, a catalyst for purifying NOx in exhaust gas by reaction with the reducing agent. A downstream catalyst coated on a honeycomb-shaped monolithic carrier, a reducing agent increasing means for increasing the amount of the reducing agent, and a catalyst for oxidizing the reducing agent in a portion of the exhaust passage upstream of the downstream catalyst. An upstream catalyst formed by coating a honeycomb-shaped monolithic carrier is disposed, and the upstream catalyst is formed so as to have a shorter contact time with exhaust gas than the downstream catalyst. .
【0010】排気ガスとの接触時間が短いということ
は、排気ガス中の還元剤が上流側触媒で酸化されずに下
流側触媒へ流れる言わば吹き抜けを生じ易いということ
である。従って、還元剤増量手段によって排気ガス中の
還元剤量を増大させたときに、その還元剤が下流側触媒
により多く到達するようになり、この下流側触媒を有効
に利用することができる。しかも、上流側触媒による還
元剤の酸化消費を抑えるために触媒金属の担持量を減ら
す必要がないから、上流側触媒の熱劣化の問題も避ける
ことができる。The fact that the contact time with the exhaust gas is short means that the reducing agent in the exhaust gas flows to the downstream catalyst without being oxidized by the upstream catalyst. Therefore, when the amount of the reducing agent in the exhaust gas is increased by the reducing agent increasing means, the reducing agent reaches the downstream side catalyst more, and this downstream side catalyst can be effectively used. In addition, since it is not necessary to reduce the amount of the supported catalyst metal in order to suppress the oxidation consumption of the reducing agent by the upstream catalyst, the problem of thermal deterioration of the upstream catalyst can be avoided.
【0011】前記上流側触媒を前記下流側触媒よりも排
気ガスとの接触時間が短くなるように形成するには、例
えば前記上流側触媒の方が前記下流側触媒よりも通路断
面積(セル開口面積の総和)が大きく且つ排気ガスとの
接触面積が小さくなるようにすればよい。また、触媒の
通路断面積及びセル数を同じにして、例えば触媒の断面
形状を同じにして、上流側触媒の長さを下流側触媒の長
さよりも短くするようにしてもよい。In order to form the upstream catalyst such that the contact time with exhaust gas is shorter than that of the downstream catalyst, for example, the upstream catalyst has a passage cross-sectional area (cell opening area) which is smaller than that of the downstream catalyst. The sum of the areas may be large and the contact area with the exhaust gas may be small. Alternatively, the cross-sectional area of the catalyst and the number of cells may be the same, for example, the cross-sectional shape of the catalyst may be the same, and the length of the upstream catalyst may be shorter than the length of the downstream catalyst.
【0012】前記還元剤増量手段としては、例えば、燃
料をエンジン本体の気筒内燃焼室に直接噴射する燃料噴
射弁を設けているときは、要求出力を得るための燃料を
噴射する主噴射の後に膨張行程又は排気行程において燃
料を噴射する後噴射を行なうことにより、排気ガス中の
還元剤としてのHCを増量するというものを採用するこ
とができる。As the reducing agent increasing means, for example, when a fuel injection valve for directly injecting fuel into the in-cylinder combustion chamber of the engine body is provided, after the main injection for injecting fuel for obtaining the required output, By performing the post-injection of injecting the fuel in the expansion stroke or the exhaust stroke, it is possible to adopt a method of increasing the amount of HC as the reducing agent in the exhaust gas.
【0013】或いは、要求出力を得るための燃料を圧縮
行程上死点付近で噴射休止間隔(前の噴射終了から次の
噴射開始までの時間)を50〜1000μs程度として
複数回に分割して噴射する分割噴射をする場合には、そ
の分割回数が増えるように、あるいは噴射休止間隔が長
くなるように噴射形態を変更することによって排気ガス
中のHC量を増大させるという還元剤増量手段を採用す
ることもできる。[0013] Alternatively, the fuel for obtaining the required output is divided into a plurality of injections near the top dead center of the compression stroke with the injection pause interval (time from the end of the previous injection to the start of the next injection) of about 50 to 1000 μs. In the case of performing the divided injection, a reducing agent increasing means is employed in which the amount of HC in the exhaust gas is increased by changing the injection mode so as to increase the number of divisions or to increase the injection pause interval. You can also.
【0014】或いは、要求出力を得るための燃料を噴射
する時期を例えば10゜CA〜20゜CA程度リタード
させることにより、排気ガス中のHC量を増大させると
いう還元剤増量手段を採用することができる。その場
合、主噴射前のパイロット噴射を実行するようにしても
よい。このパイロット噴射は、要求出力を得るための燃
料噴射量の1/20〜1/10程度の燃料を主噴射の直
前に、具体的には圧縮行程上死点前に噴射するというも
のであり、これにより、ピストンの上昇による燃焼室内
の圧力上昇によって主噴射の前に燃焼室内に火種が形成
されるとともに燃焼室内の温度が相当に高くなる(予混
合燃焼)。このため、主噴射時期を例えば圧縮行程上死
点後になるように遅らせても、主噴射燃料の着火を損な
うことなく、良好な拡散燃焼を生起せしめることができ
る。また、ガソリンエンジンにおいては、点火時期をリ
タードさせることによって排気ガス中のHC量を増大さ
せる還元剤増量手段を採用することができる。Alternatively, it is possible to employ a reducing agent increasing means for increasing the amount of HC in the exhaust gas by retarding the timing of injecting the fuel for obtaining the required output, for example, by about 10 ° CA to 20 ° CA. it can. In that case, the pilot injection before the main injection may be executed. In this pilot injection, about 1/20 to 1/10 of the fuel injection amount for obtaining the required output is injected immediately before the main injection, specifically, before the top dead center of the compression stroke. As a result, the pressure rise in the combustion chamber due to the rise of the piston causes a fire to be formed in the combustion chamber before the main injection, and the temperature in the combustion chamber becomes considerably high (premixed combustion). Therefore, even if the main injection timing is delayed, for example, after the top dead center of the compression stroke, favorable diffusion combustion can be generated without impairing the ignition of the main injection fuel. In a gasoline engine, a reducing agent increasing means for increasing the amount of HC in exhaust gas by retarding the ignition timing can be employed.
【0015】また、本発明は、上述の如きエンジンの排
気浄化装置において、前記上流側触媒は、排気ガス中の
NOxを還元剤との反応によって浄化させる触媒がハニ
カム状モノリス担体にコーティングされたNOx触媒で
あることを特徴とする。Further, according to the present invention, in the exhaust gas purifying apparatus for an engine as described above, the catalyst for purifying NOx in the exhaust gas by a reaction with a reducing agent is coated on the honeycomb-shaped monolithic carrier. It is a catalyst.
【0016】上流側触媒としては、所謂三元触媒であっ
ても、酸化触媒であってもよいが、これをNOx触媒と
すると、NOxの浄化に有利になる。そうして、下流側
触媒としてNOx触媒を採用する一方、上流側NOx触
媒として、そのNOx浄化に関する触媒活性がピークに
なる温度が下流側NOx触媒のNOx浄化に関する触媒
活性がピークになる温度よりも低いものを採用すると、
つまり、上流側を低温型NOx触媒とし、下流側を高温
型NOx触媒とすると、この上流側及び下流側両触媒を
有効に利用してNOxの浄化を行なう上で有利になる。The upstream catalyst may be a so-called three-way catalyst or an oxidation catalyst. However, if this catalyst is a NOx catalyst, it is advantageous for NOx purification. Thus, while the NOx catalyst is employed as the downstream catalyst, the temperature at which the catalytic activity relating to NOx purification of the upstream NOx catalyst peaks is lower than the temperature at which the catalytic activity relating to NOx purification of the downstream NOx catalyst peaks. If you adopt a lower one,
That is, when the upstream side is a low-temperature NOx catalyst and the downstream side is a high-temperature NOx catalyst, it is advantageous in purifying NOx by effectively utilizing both the upstream and downstream catalysts.
【0017】すなわち、エンジンが低回転・低負荷の運
転状態にあるときは排気ガス温度が低くなるが、このと
きは排気ガス流量も少なく空間速度が小さく(低く)な
るため、排気ガスとの接触時間に関して上述の如き構成
を採用していても、上流側NOx触媒において排気ガス
中の還元剤によりNOxが比較的効率良く還元される。
そうして、エンジン負荷が高くなると、排気ガス温度が
高くなるが、このときは排気ガス流量が多くなって空間
速度が大きく(高く)なるため、上流側NOx触媒で上
述の吹き抜けを生じ易くなり、その結果、排気ガス中の
還元剤が酸化されずに下流側NOx触媒に流れる量が多
くなり、この下流側NOx触媒でNOxが効率良く還元
されるようになる。That is, when the engine is in a low-rotation, low-load operating state, the exhaust gas temperature is low. At this time, the exhaust gas flow rate is low, and the space velocity is low (low). Even when the above-described configuration is employed in terms of time, NOx is relatively efficiently reduced by the reducing agent in the exhaust gas in the upstream NOx catalyst.
As the engine load increases, the exhaust gas temperature increases. However, at this time, the exhaust gas flow rate increases and the space velocity increases (increases), so that the above-described blow-by easily occurs in the upstream NOx catalyst. As a result, the amount of the reducing agent in the exhaust gas flowing to the downstream NOx catalyst without being oxidized increases, and NOx is efficiently reduced by the downstream NOx catalyst.
【0018】また、本発明は、上述の如きエンジンの排
気浄化装置において、前記還元剤増量手段は、前記エン
ジン本体の燃焼室に噴口を臨ませた燃料噴射弁から後燃
えを生ずるように燃料を膨張行程又は排気行程において
噴射することによって排気ガス中の還元剤を増量するも
のであることを特徴とする。Further, according to the present invention, in the exhaust gas purifying apparatus for an engine as described above, the reducing agent increasing means supplies fuel so as to generate afterburn from a fuel injection valve having an injection port facing a combustion chamber of the engine body. It is characterized in that the amount of the reducing agent in the exhaust gas is increased by injection in an expansion stroke or an exhaust stroke.
【0019】すなわち、ここでいう後燃えは後噴射され
た燃料の一部が既燃の高温ガスと混合されて熱分解ない
しは酸化することを意味し、それによって排気ガスのボ
リュームが増大する。よって、上流側触媒に対する空間
速度が増大して下流側触媒へ吹き抜け易くなり、この下
流側触媒で上述の増量された還元剤を有効に利用して触
媒反応を生起せしめることができるようになる。That is, the afterburning here means that a part of the post-injected fuel is mixed with the burned high-temperature gas and thermally decomposed or oxidized, thereby increasing the volume of the exhaust gas. Therefore, the space velocity with respect to the upstream catalyst is increased, and it is easy to blow through to the downstream catalyst, and a catalytic reaction can be caused in the downstream catalyst by effectively utilizing the increased amount of the reducing agent.
【0020】従って、例えば上流側に低温型NOx触媒
を採用し、下流側に高温型NOx触媒を採用し、下流側
の高温型NOx触媒が上流側の低温型NOx触媒よりも
高い触媒活性を呈する所定温度以上になったときに上述
の後噴射を実行するようにすれば、若しくは後噴射量を
増大させるようにすることが好ましい。Therefore, for example, a low-temperature NOx catalyst is employed on the upstream side, a high-temperature NOx catalyst is employed on the downstream side, and the downstream high-temperature NOx catalyst exhibits a higher catalytic activity than the upstream low-temperature NOx catalyst. It is preferable to execute the above-described post-injection when the temperature becomes equal to or higher than the predetermined temperature, or to increase the post-injection amount.
【0021】すなわち、後噴射をしない又は後噴射量が
少ない低温時には、後燃えによる排気ガスボリュームの
増大がないか若しくは少ないから、上流側触媒に対する
空間速度は大きくならず、上流側の低温型NOx触媒に
おいて排気ガス中の還元剤を利用してNOxを効率良く
還元することができる。そうして、高温時には後噴射の
実行又は後噴射量の増大によって後燃えが顕著になり、
その結果、排気ガスのボリュームが増大し、還元剤が上
流側の低温型NOx触媒を吹き抜けて下流側の高温型N
Ox触媒に多く到達するようになり、この活性の高い下
流側のNOx触媒を有効に利用してNOxの還元を行な
うことができるようになる。That is, at low temperatures where post-injection is not performed or when the post-injection amount is small, the exhaust gas volume does not increase or is small due to after-burning. NOx can be efficiently reduced in the catalyst using the reducing agent in the exhaust gas. Thus, at high temperatures, afterburning becomes remarkable due to the execution of the postinjection or an increase in the postinjection amount,
As a result, the volume of the exhaust gas increases, and the reducing agent blows through the upstream low-temperature NOx catalyst and passes through the downstream high-temperature NOx catalyst.
A large amount of the NOx catalyst reaches the Ox catalyst, and the NOx catalyst on the downstream side having high activity can be effectively used to reduce NOx.
【0022】前記エンジン本体がディーゼルエンジンで
あるときは、前記燃料噴射弁から圧縮行程上死点付近で
要求出力に見合う量の燃料を噴射する主噴射後の膨張行
程前半において燃料を噴射する後噴射を行なうことによ
り、排気ガス中の還元剤を増量するようにすればよい。
これにより、燃焼室内において後燃えを生じ、排気ガス
ボリュームの増大を図ることができる。When the engine body is a diesel engine, post-injection for injecting fuel in the first half of the expansion stroke after main injection for injecting an amount of fuel corresponding to the required output near the top dead center of the compression stroke from the fuel injection valve. , The amount of the reducing agent in the exhaust gas may be increased.
As a result, afterburning occurs in the combustion chamber, and the exhaust gas volume can be increased.
【0023】[0023]
【発明の効果】以上のように本発明によれば、上流側触
媒及び下流側触媒をハニカム状のモノリス触媒とし且つ
上流側触媒は下流側触媒よりも排気ガスとの接触時間が
短くなるように形成し、かかる構成に還元剤増量手段を
組み合わせたから、排気ガス中の還元剤が上流側触媒で
酸化されずに下流側触媒へ流れる言わば吹き抜けを生じ
易くなり、還元剤増量手段によって排気ガス中の還元剤
量を増大させたときに、その還元剤を下流側触媒に吹き
抜けさせて排気ガス浄化を図ることができ、しかも、上
流側触媒による還元剤の酸化消費を抑えるために触媒金
属の担持量を減らす必要がないから、上流側触媒の熱劣
化の問題も避けることができる。As described above, according to the present invention, the upstream-side catalyst and the downstream-side catalyst are honeycomb monolith catalysts, and the upstream-side catalyst has a shorter contact time with the exhaust gas than the downstream-side catalyst. Since the reducing agent increasing means is combined with such a configuration, the reducing agent in the exhaust gas flows to the downstream catalyst without being oxidized by the upstream catalyst, so that it is easy to cause blow-through, and the reducing agent increasing means reduces the amount of the reducing agent in the exhaust gas. When the amount of the reducing agent is increased, the exhaust gas can be purified by blowing the reducing agent through the downstream catalyst, and the amount of the catalyst metal carried to suppress the oxidation consumption of the reducing agent by the upstream catalyst. Therefore, the problem of thermal degradation of the upstream catalyst can be avoided.
【0024】[0024]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0025】図1は本発明の実施形態に係るディーゼル
エンジンの排気浄化装置Aの全体構成を示し、1は車両
に搭載された多気筒ディーゼルエンジンのエンジン本体
である。このエンジン本体1は複数の気筒2(1つのみ
図示する)を有し、その各気筒2内にピストン3が往復
動可能に嵌挿されていて、この気筒2とピストン3によ
って各気筒2内に燃焼室4が形成されている。また、燃
焼室4の上面の略中央部には、インジェクタ(燃料噴射
弁)5が先端部の噴孔を燃焼室4に臨ませて配設され、
各気筒毎に所定の噴射タイミングで噴孔が開閉作動され
て、燃焼室4に燃料を直接噴射するようになっている。FIG. 1 shows an overall configuration of an exhaust gas purifying apparatus A for a diesel engine according to an embodiment of the present invention, and 1 is an engine body of a multi-cylinder diesel engine mounted on a vehicle. The engine body 1 has a plurality of cylinders 2 (only one is shown), and a piston 3 is reciprocally fitted into each of the cylinders 2. The combustion chamber 4 is formed. In addition, an injector (fuel injection valve) 5 is disposed substantially at the center of the upper surface of the combustion chamber 4 with the injection hole at the tip end facing the combustion chamber 4.
The injection holes are opened and closed at a predetermined injection timing for each cylinder so that fuel is directly injected into the combustion chamber 4.
【0026】前記各インジェクタ5は高圧の燃料を蓄え
る共通のコモンレール(蓄圧室)6に接続されていて、
そのコモンレール6にはクランク軸7により駆動される
高圧供給ポンプ8が接続されている。この高圧供給ポン
プ8は、圧力センサ6aによって検出されるコモンレー
ル6内の燃圧が所定値以上に保持されるように作動す
る。また、クランク軸7の回転角度を検出するクランク
角センサ9が設けられており、このクランク角センサ9
は、クランク軸7の端部に設けた被検出用プレート(図
示省略)と、その外周に相対向するように配置され電磁
ピックアップとからなり、その電磁ピックアップが被検
出用プレートの外周部全周に所定角度おきに形成された
突起部の通過に対応してパルス信号を出力するようにな
っている。Each of the injectors 5 is connected to a common common rail (accumulator) 6 for storing high-pressure fuel.
A high-pressure supply pump 8 driven by a crankshaft 7 is connected to the common rail 6. The high-pressure supply pump 8 operates so that the fuel pressure in the common rail 6 detected by the pressure sensor 6a is maintained at a predetermined value or more. A crank angle sensor 9 for detecting a rotation angle of the crank shaft 7 is provided.
Is composed of a plate to be detected (not shown) provided at the end of the crankshaft 7 and an electromagnetic pickup arranged to face the outer periphery of the plate, and the electromagnetic pickup is provided around the entire periphery of the plate to be detected. A pulse signal is output in response to the passage of the projections formed at predetermined angles.
【0027】10はエンジン本体1の燃焼室4に対しエ
アクリーナ(図示省略)で濾過した吸気(空気)を供給
する吸気通路であり、この吸気通路10の下流端部に
は、図示しないがサージタンクが設けられ、このサージ
タンクから分岐した各通路が吸気ポートにより各気筒2
の燃焼室4に接続されている。また、サージタンクには
各気筒2に供給される過給圧力を検出する吸気圧センサ
10aが設けられている。前記吸気通路10には上流側
から下流側に向かって順に、エンジン本体1に吸入され
る吸気流量を検出するホットフィルム式エアフローセン
サ11と、後述のタービン21により駆動されて吸気を
圧縮するブロワ12と、このブロワ12により圧縮した
吸気を冷却するインタークーラ13と、吸気通路10の
断面積を絞る吸気絞り弁(吸気量調節手段)14とがそ
れぞれ設けられている。この吸気絞り弁14は、全閉状
態でも吸気が流通可能なように切り欠きが設けられたバ
タフライバルブからなり、後述のEGR弁24と同様、
ダイヤフラム15に作用する負圧の大きさが負圧制御用
の電磁弁16により調節されることで、弁の開度が制御
されるようになっている。また、前記吸気絞り弁14に
はその開度を検出するセンサ(図示省略)が設けられて
いる。An intake passage 10 supplies intake air (air) filtered by an air cleaner (not shown) to the combustion chamber 4 of the engine body 1. A surge tank (not shown) is provided at a downstream end of the intake passage 10. Each passage branched from the surge tank is connected to each cylinder 2 by an intake port.
Are connected to the combustion chamber 4. The surge tank is provided with an intake pressure sensor 10a for detecting a supercharging pressure supplied to each cylinder 2. The intake passage 10 includes, in order from the upstream side to the downstream side, a hot film type air flow sensor 11 for detecting a flow rate of intake air taken into the engine body 1, and a blower 12 driven by a turbine 21 to compress intake air. And an intercooler 13 for cooling intake air compressed by the blower 12 and an intake throttle valve (intake air amount adjusting means) 14 for reducing the cross-sectional area of the intake passage 10. The intake throttle valve 14 is a butterfly valve provided with a notch so that intake air can flow even in a fully closed state, and is similar to an EGR valve 24 described later.
The magnitude of the negative pressure acting on the diaphragm 15 is adjusted by an electromagnetic valve 16 for negative pressure control, whereby the opening of the valve is controlled. Further, the intake throttle valve 14 is provided with a sensor (not shown) for detecting its opening.
【0028】20は各気筒2の燃焼室4から排気ガスを
排出する排気通路で、排気マニホールドを介して各気筒
2の燃焼室4に接続されている。この排気通路20に
は、上流側から下流側に向かって順に、排気ガス中の酸
素濃度を検出するO2センサ17と、排気流により回転
されるタービン21と、排気ガス中のHC、CO及びN
Oxを浄化可能な触媒コンバータ22とが配設されてい
る。また、触媒コンバータ22の入口及び出口には排気
ガス温度を検出するセンサ18,19が設けられてい
る。An exhaust passage 20 for exhausting exhaust gas from the combustion chamber 4 of each cylinder 2 is connected to the combustion chamber 4 of each cylinder 2 via an exhaust manifold. The exhaust passage 20 includes, in order from the upstream side to the downstream side, an O2 sensor 17 for detecting the oxygen concentration in the exhaust gas, a turbine 21 rotated by the exhaust gas, HC, CO, and N in the exhaust gas.
A catalytic converter 22 capable of purifying Ox is provided. Further, sensors 18 and 19 for detecting exhaust gas temperature are provided at an inlet and an outlet of the catalytic converter 22, respectively.
【0029】前記触媒コンバータ22は、図2に示すよ
うに2個のNOx触媒22a,22bを排気ガス流れ方
向における上流側と下流側に直列的に並べたものであ
り、これらはいずれも、軸方向に平行に延びる多数のセ
ル(貫通孔)を有するハニカム構造のコージェライト製
モノリス担体の各セル壁面に触媒層を形成したものであ
る。As shown in FIG. 2, the catalytic converter 22 has two NOx catalysts 22a and 22b arranged in series on the upstream side and the downstream side in the exhaust gas flow direction. The catalyst layer is formed on the wall surface of each cell of a cordierite monolithic carrier having a honeycomb structure having a large number of cells (through holes) extending parallel to the direction.
【0030】前記NOx触媒22a,22bのモノリス
担体は、全体としてはその断面積、長さ及び各セルを構
成する壁厚が同じであるが、上流側NOx触媒22aの
セル33aを図3(a)に示し、下流側NOx触媒22
bのセル33bを図3(b)に示すように、前者のセル
33aの方が後者のセル33bよりも大径である。な
お、符号34aはNOx触媒22aの触媒層、34bは
NOx触媒22bの触媒層である。The monolithic carriers of the NOx catalysts 22a and 22b have the same cross-sectional area, length and wall thickness constituting each cell as a whole, but the cell 33a of the upstream NOx catalyst 22a is shown in FIG. ), The downstream NOx catalyst 22
As shown in FIG. 3B, the cell 33b of b has a larger diameter in the former cell 33a than in the latter cell 33b. Reference numeral 34a is a catalyst layer of the NOx catalyst 22a, and 34b is a catalyst layer of the NOx catalyst 22b.
【0031】すなわち、NOx触媒22a,22bは、
モノリス担体の断面積が同じあるのに、単位断面積当た
りのセル開口面積は、前者の方が後者のそれよりも大き
いから、通路断面積は前者の方が後者よりも大きいもの
になり、従って、排気ガスが流れるときの通路抵抗は前
者の方が後者よりも小さい。さらに、上述の如く両者の
モノリス担体の長さは同じであるから、前者の方が後者
よりも排気ガスとの接触面積は小さいということにな
る。従って、排気ガス流量が同じときの該排気ガスとの
接触時間は前者の方が後者よりも短くなる。That is, the NOx catalysts 22a and 22b
Although the cross-sectional area of the monolithic carrier is the same, the cell opening area per unit cross-sectional area is larger in the former than that in the latter, so that the passage cross-sectional area is larger in the former than in the latter. On the other hand, the passage resistance when the exhaust gas flows is smaller in the former than in the latter. Further, since the lengths of both monolith carriers are the same as described above, the former has a smaller contact area with the exhaust gas than the latter. Therefore, the contact time with the exhaust gas at the same exhaust gas flow rate is shorter in the former than in the latter.
【0032】上流側NOx触媒22aのモノリス担体と
しては、面積6.45cm2 当たりのセル数が200〜
300のものを用い、下流側NOx触媒22bのモノリ
ス担体としては、面積6.45cm2 当たりのセル数が
略400程度のものを用いればよい。As the monolith carrier of the upstream NOx catalyst 22a, the number of cells per area of 6.45 cm 2 is 200 to 200.
As the monolithic carrier of the downstream NOx catalyst 22b, one having approximately 400 cells per 6.45 cm 2 may be used.
【0033】また、前記NOx触媒22a,22bの触
媒層はいずれもゼオライトにPtをスプレードライ法に
よって乾固担持させてなる触媒粉をバインダによって前
記担体に担持させることによって形成されているが、担
体1L当たりのPt担持量は前者が4gで後者の0.3
5gよりも多い。このため、この両NOx触媒22a,
22bは、各々を単独で排気通路に配置した場合のNO
x浄化の温度特性を図4に符号22a,22bで示すよ
うに触媒活性がピークになる温度が相違し、NOx触媒
22aではそれが相対的に低温側に現れ、NOx触媒2
2bではそれが高温側に現れている。従って、前者のN
Ox触媒22aを低温型、後者のNOx触媒22bを高
温型ということができる。Each of the catalyst layers of the NOx catalysts 22a and 22b is formed by carrying a catalyst powder obtained by carrying Pt on zeolite to dryness by a spray-drying method on a carrier with a binder. The amount of Pt carried per liter was 4 g for the former and 0.3 g for the latter.
More than 5g. For this reason, both NOx catalysts 22a,
22b is the NO when each is disposed alone in the exhaust passage.
As shown in FIG. 4, the temperature characteristics at which the catalyst activity peaks are different from each other as indicated by reference numerals 22a and 22b in the x purification temperature.
In 2b, it appears on the high temperature side. Therefore, the former N
It can be said that the Ox catalyst 22a is of a low temperature type and the latter NOx catalyst 22b is of a high temperature type.
【0034】図4は酸素濃度10%の模擬排気ガスでN
Ox浄化特性を調べたものであり、同図から明らかなよ
うにこれらの触媒22a,22bは空燃比A/Fが理論
空燃比よりもリーンのとき(例えばA/F≧18)で燃
焼した排気ガスのNOxを還元浄化するNOx還元触媒
としての機能を有するとともに、理論空燃比付近では三
元触媒としても働く。FIG. 4 shows simulated exhaust gas having an oxygen concentration of 10% and N
The Ox purification characteristics were examined. As is clear from the figure, these catalysts 22a and 22b exhausted when the air-fuel ratio A / F was leaner than the stoichiometric air-fuel ratio (for example, A / F ≧ 18). It has a function as a NOx reduction catalyst for reducing and purifying gaseous NOx, and also functions as a three-way catalyst near the stoichiometric air-fuel ratio.
【0035】前記排気通路20のタービン21よりも上
流側の部位からは、排気ガスの一部を吸気側に還流させ
る排気還流通路(以下EGR通路という)23が分岐
し、このEGR通路23の下流端は吸気絞り弁14より
も下流側の吸気通路10に接続されている。EGR通路
23の途中の下流端寄りには、開度調節可能な排気還流
量調節弁(排気還流量調節手段:以下EGR弁という)
24が配置されていて、排気通路20の排気ガスの一部
をEGR弁24により流量調節しながら吸気通路10に
還流させるようになっている。An exhaust gas recirculation passage (hereinafter referred to as an EGR passage) 23 for recirculating a part of the exhaust gas to the intake side is branched from a portion of the exhaust passage 20 upstream of the turbine 21. The end is connected to the intake passage 10 downstream of the intake throttle valve 14. Near the downstream end of the EGR passage 23, an exhaust gas recirculation amount control valve (exhaust gas recirculation amount adjusting means: hereinafter referred to as an EGR valve) whose opening degree can be adjusted.
A part of the exhaust gas is recirculated to the intake passage 10 while adjusting the flow rate of the exhaust gas in the exhaust passage 20 by the EGR valve 24.
【0036】前記EGR弁24は、負圧応動式のもので
あって、その弁箱の負圧室に負圧通路27が接続されて
いる。この負圧通路27は、負圧制御用の電磁弁28を
介してバキュームポンプ(負圧源)29に接続されてお
り、電磁弁28が後述のECU35からの制御信号(電
流)によって負圧通路27を連通・遮断することによっ
て、負圧室のEGR弁駆動負圧が調節され、それによっ
て、EGR通路23の開度がリニアに調節されるように
なっている。The EGR valve 24 is of a negative pressure responsive type, and a negative pressure passage 27 is connected to a negative pressure chamber of the valve box. The negative pressure passage 27 is connected to a vacuum pump (negative pressure source) 29 via a negative pressure control electromagnetic valve 28. The negative pressure passage 27 is controlled by a control signal (current) from an ECU 35 described later. By opening and closing 27, the negative pressure for driving the EGR valve in the negative pressure chamber is adjusted, whereby the opening of the EGR passage 23 is linearly adjusted.
【0037】前記ターボ過給機25は、VGT(バリア
ブルジオメトリーターボ)であって、これにはダイヤフ
ラム30が取り付けられていて、負圧制御用の電磁弁3
1によりダイヤフラム30に作用する負圧が調節される
ことで、排気ガス流路の断面積が調節されるようになっ
ている。The turbocharger 25 is a VGT (Variable Geometry Turbo), to which a diaphragm 30 is attached, and a solenoid valve 3 for negative pressure control.
By adjusting the negative pressure acting on the diaphragm 30 by 1, the cross-sectional area of the exhaust gas passage is adjusted.
【0038】前記各インジェクタ5、高圧供給ポンプ
8、吸気絞り弁14、EGR弁24、ターボ過給機25
等はコントロールユニット(Engine Contorol Unit:以
下ECUという)35からの制御信号によって作動する
ように構成されている。一方、このECU35には、前
記圧力センサ6aからの出力信号と、クランク角センサ
9からの出力信号と、圧力センサ10aからの出力信号
と、エアフローセンサ11からの出力信号と、O2セン
サ17からの出力信号と、温度センサ18,19からの
出力信号と、EGR弁24のリフトセンサ26からの出
力信号と、車両の運転者による図示しないアクセルペダ
ルの操作量(アクセル開度)を検出するアクセル開度セ
ンサ32からの出力信号とが少なくとも入力されてい
る。Each of the injectors 5, high-pressure supply pump 8, intake throttle valve 14, EGR valve 24, turbocharger 25
And the like are configured to be operated by a control signal from a control unit (Engine Control Unit: hereinafter referred to as ECU) 35. On the other hand, the ECU 35 receives an output signal from the pressure sensor 6a, an output signal from the crank angle sensor 9, an output signal from the pressure sensor 10a, an output signal from the air flow sensor 11, and an output signal from the O2 sensor 17. An output signal, an output signal from the temperature sensors 18 and 19, an output signal from the lift sensor 26 of the EGR valve 24, and an accelerator opening for detecting an operation amount (accelerator opening) of an accelerator pedal (not shown) by a driver of the vehicle. At least an output signal from the degree sensor 32 is input.
【0039】そして、インジェクタ5による燃料噴射量
及び燃料噴射時期がエンジン本体1の運転状態及びNO
x触媒22a,22bの状態に応じて制御されるととも
に、高圧供給ポンプ8の作動によるコモンレール圧力、
即ち燃量噴射圧の制御が行なわれ、これに加えて、吸気
絞り弁14の作動による吸入空気量の制御と、EGR弁
24の作動による排気還流量の制御と、ターボ過給機2
5の作動制御(VGT制御)とが行なわれるようになっ
ている。The fuel injection amount and the fuel injection timing by the injector 5 depend on the operating state of the engine body 1 and the NO.
x is controlled according to the state of the catalysts 22a and 22b, and the common rail pressure by the operation of the high-pressure supply pump 8,
That is, the fuel injection pressure is controlled, and in addition, the intake air amount is controlled by operating the intake throttle valve 14, the exhaust gas recirculation amount is controlled by operating the EGR valve 24, and the turbocharger 2 is controlled.
5 (VGT control).
【0040】(燃料噴射制御)前記ECU35には、エ
ンジン本体1の目標トルク及び回転数の変化に応じて実
験的に決定した最適な燃料噴射量Qbを記録した燃料噴
射量マップが、メモリ上に電子的に格納して備えられて
いる。そして、アクセル開度センサ32からの出力信号
に基づいて求めた目標トルクとクランク角センサ9から
の出力信号に基づいて求めたエンジン回転数とに基づい
て、前記燃料噴射量マップから主噴射量Qbが読み込ま
れ、この主噴射量Qbと圧力センサ6aにより検出され
たコモンレール圧力とに基づいて、各インジェクタ5の
励磁時間(開弁時間)が決定されるようになっている。
この主燃料噴射制御によって、エンジン本体1の目標ト
ルクに対応する分量の燃料が供給され、エンジン本体1
は燃焼室4における平均的空燃比がかなりリーンな状態
(A/F≧18)で運転される。(Fuel Injection Control) The ECU 35 stores in the memory a fuel injection amount map in which the optimum fuel injection amount Qb experimentally determined according to changes in the target torque and the rotation speed of the engine body 1 is recorded. Electronically stored and provided. Then, based on the target torque obtained based on the output signal from the accelerator opening sensor 32 and the engine speed obtained based on the output signal from the crank angle sensor 9, the main injection amount Qb is obtained from the fuel injection amount map. Is read, and the excitation time (valve opening time) of each injector 5 is determined based on the main injection amount Qb and the common rail pressure detected by the pressure sensor 6a.
By this main fuel injection control, an amount of fuel corresponding to the target torque of the engine body 1 is supplied, and the engine body 1
Is operated in a state where the average air-fuel ratio in the combustion chamber 4 is considerably lean (A / F ≧ 18).
【0041】また、定常運転時(アクセル開度の変化が
小さい時)には、触媒コンバータ22のNOx触媒22
a,22bにNOxの還元浄化を促進するための還元剤
成分を供給すべく、主噴射時期のリタード、並びに主噴
射(主燃料噴射)後の膨張行程又は排気行程において燃
料を少量(例えば主燃料噴射量の数%以下)噴射する後
噴射がNOx触媒22a,22bの温度に応じて適宜行
なわれる。During normal operation (when the change in accelerator opening is small), the NOx catalyst 22
In order to supply a reducing agent component for promoting NOx reduction purification to the fuel tanks a and 22b, a small amount of fuel (for example, main fuel) is added during the retardation of the main injection timing and the expansion stroke or the exhaust stroke after the main injection (main fuel injection). The post-injection (injection amount of several% or less) is appropriately performed according to the temperature of the NOx catalysts 22a and 22b.
【0042】すなわち、図5に定常運転時の燃料噴射制
御を模式的に示すように、触媒温度(触媒コンバータ2
2内の温度)Tが温度T1(T1は上流側NOx触媒2
2aの活性がピークになる温度)になるまではパイロッ
ト噴射と主噴射時期のリタードとを行ない、温度T1〜
T3(T3は下流側NOx触媒22bのNOx浄化率が
ピークを越えて所定量低下する温度)では後噴射を行な
う。That is, as shown schematically in FIG. 5, the fuel injection control at the time of the steady operation is performed, the catalyst temperature (the catalytic converter 2
2) T is the temperature T1 (T1 is the upstream NOx catalyst 2).
2a), the pilot injection and the main injection timing are retarded until the temperature reaches the temperature T1 to T1.
At T3 (T3 is a temperature at which the NOx purification rate of the downstream NOx catalyst 22b exceeds a peak and decreases by a predetermined amount), post-injection is performed.
【0043】後噴射量は、温度T1〜T2(T2は下流
側NOx触媒22bに充分な還元剤が供給されたときに
この下流側NOx触媒22bの方が上流側NOx触媒2
2aよりもNOx浄化率が高くなる温度)間の後半では
触媒温度Tが高くなるに従って減少するように、温度T
2〜T3間の後半でも触媒温度Tが高くなるに従って減
少するように、温度T3では後噴射量が零になるように
なされる。温度T1の時よりも温度T2の方の後噴射量
が多いのは、上流側の低温型NOx触媒22aでHCが
酸化消費されるため、それを見越して下流側の高温型N
Ox触媒22bにできるだけ多くのHCを供給するため
である。The amount of post-injection is between the temperatures T1 and T2 (T2 is the value when the sufficient amount of reducing agent is supplied to the downstream NOx catalyst 22b.
2a), the temperature T is set to decrease as the catalyst temperature T increases in the latter half of the period (temperature at which the NOx purification rate becomes higher than 2a)
At the temperature T3, the post-injection amount is set to zero so that the latter decreases between 2 and T3 as the catalyst temperature T increases. The reason why the post-injection amount at the temperature T2 is larger than that at the temperature T1 is that HC is oxidized and consumed by the upstream low-temperature NOx catalyst 22a.
This is to supply as much HC as possible to the Ox catalyst 22b.
【0044】以下、図6に示す制御フローに基づいて制
御内容を具体的に説明する。尚、この制御は所定クラン
ク角毎に実行される。Hereinafter, the contents of the control will be specifically described based on the control flow shown in FIG. This control is executed at every predetermined crank angle.
【0045】まず、スタート後のステップS1におい
て、クランク角信号、エアフローセンサ出力、アクセル
開度、温度センサ出力等を読み込む。続くステップS2
において、アクセル開度から求めた目標トルクとクラン
ク角信号から求めたエンジン回転数とに基づいて燃料噴
射量マップから主噴射量Qbを読み込む。燃料噴射量マ
ップは、アクセル開度及びエンジン回転数の変化に応じ
て実験的に決定した最適な噴射量Qbを記録したもので
あり、主噴射量Qbは、アクセル開度が大きいほど、ま
たエンジン回転数が高いほど、多くなるように設定され
ている。First, in step S1 after the start, a crank angle signal, an air flow sensor output, an accelerator opening, a temperature sensor output, and the like are read. Subsequent step S2
, The main injection amount Qb is read from the fuel injection amount map based on the target torque obtained from the accelerator opening and the engine speed obtained from the crank angle signal. The fuel injection amount map records the optimum injection amount Qb experimentally determined according to changes in the accelerator opening and the engine speed. The main injection amount Qb is determined as the accelerator opening increases and the engine It is set to increase as the rotation speed increases.
【0046】主噴射時期Ibは圧縮行程上死点付近に設
定され、例えばBTDC5°CA(クランク角度)を基
準として、噴射量Qbが多いほど進角され、反対に噴射
量Qbが少ないほど遅角される。また、エンジン水温に
基づいて、該水温が低いときには主噴射時期Ibが所定
量リタードされて暖機運転される。The main injection timing Ib is set near the top dead center of the compression stroke. For example, with BTDC 5 ° CA (crank angle) as a reference, the more the injection amount Qb, the more the advance, and the smaller the injection amount Qb, the more the retard. Is done. Further, based on the engine water temperature, when the water temperature is low, the main injection timing Ib is retarded by a predetermined amount and the warm-up operation is performed.
【0047】続くステップS3では触媒温度Tをその入
口側と出口側の温度センサ18,19の出力に基づいて
推定する。すなわち、両温度センサ18,19によって
検出される排気ガス温度の平均値を触媒温度Tと推定す
る。なお、触媒温度Tは現在のエンジンの運転状態及び
運転履歴に基づいて推定するようにしてもよく、また、
この運転状態及び運転履歴と、入口側の排気ガス温度又
は出口側の排気ガス温度とに基づいて推定するようにし
てもよく、さらにはコンバータ22の内部に温度センサ
を設けて触媒温度Tを検出するようにしてもよい。In the following step S3, the catalyst temperature T is estimated based on the outputs of the temperature sensors 18 and 19 on the inlet and outlet sides. That is, the average value of the exhaust gas temperatures detected by the temperature sensors 18 and 19 is estimated as the catalyst temperature T. The catalyst temperature T may be estimated based on the current operating state and operating history of the engine.
The estimation may be made based on the operation state and the operation history and the exhaust gas temperature on the inlet side or the exhaust gas temperature on the outlet side. Further, a temperature sensor is provided inside the converter 22 to detect the catalyst temperature T. You may make it.
【0048】続くステップS4において触媒温度Tが前
記温度T1よりも低いか否かを判別し、低いときにはス
テップS5に進んでパイロット噴射量Qe及びその噴射
時期Ieを設定するとともに、主噴射時期Ibを所定量
dだけリタードする。ステップS4において触媒温度T
が温度T1以上であることが判別されると、ステップS
6に進み触媒温度Tに基づいて後噴射量Qp及びその噴
射時期Ipを設定する。後噴射量Qpは図5に示す特性
に対応したテーブルを予め作成しメモリ上に電子的に格
納しておいて、そのテーブルから読み込む。すなわち、
後噴射量Qpは温度T1〜T2間の後半では触媒温度T
が高くなるに従って減少するように、温度T2〜T3間
の後半でも触媒温度Tが高くなるに従って減少するよう
に、温度T3では零になるように設定する。後噴射時期
Ipは例えば圧縮行程上死点から90゜CAとする。In the following step S4, it is determined whether or not the catalyst temperature T is lower than the temperature T1. When the temperature is lower, the routine proceeds to step S5, where the pilot injection amount Qe and its injection timing Ie are set, and the main injection timing Ib is set. The retard is performed by a predetermined amount d. In step S4, the catalyst temperature T
Is determined to be equal to or higher than the temperature T1, step S
The program proceeds to 6, where the post-injection amount Qp and its injection timing Ip are set based on the catalyst temperature T. For the post-injection amount Qp, a table corresponding to the characteristic shown in FIG. 5 is created in advance, electronically stored in a memory, and read from the table. That is,
The post-injection amount Qp is the catalyst temperature T in the latter half between the temperatures T1 and T2.
Is set to be zero at the temperature T3 so that the catalyst temperature T decreases as the catalyst temperature T increases even in the latter half between the temperatures T2 and T3 so that the temperature decreases. The post-injection timing Ip is, for example, 90 ° CA from the top dead center of the compression stroke.
【0049】以上の触媒温度Tに基づくパイロット噴射
又は後噴射の設定を行なった後、ステップS7に進み、
パイロット噴射量Qeが設定されていれば、パイロット
噴射時期Ieに至った時にパイロット噴射を行ない(ス
テップS8,S9)、主噴射時期Ibに至った時に主噴
射を行なう(ステップS10,S11)。そうして、後
噴射が設定されているときは、後噴射を実行すべき気筒
について、主噴射が行なわれた後、後噴射時期Ipに至
った時に後噴射を行なう(ステップS12〜S14)。After setting the pilot injection or the post-injection based on the catalyst temperature T, the process proceeds to step S7,
If the pilot injection amount Qe is set, pilot injection is performed when the pilot injection timing Ie has been reached (steps S8 and S9), and main injection is performed when the main injection timing Ib has been reached (steps S10 and S11). Then, when the post-injection is set, the post-injection is performed when the post-injection timing Ip is reached after the main injection has been performed for the cylinder in which the post-injection is to be performed (steps S12 to S14).
【0050】後噴射については、全ての気筒について主
噴射のたびに行なってもよいが、主噴射が各気筒に対し
て所定の順番で行なわれていくとき、例えば主噴射5回
に1回後噴射を行なうというように間引いて行なうよう
にしてもよい。例えばA,B,C,Dの4気筒があって
この順番で主噴射行なっていく場合、最初にA気筒につ
いて後噴射を行なうと、続くB,C,D,Aの各気筒に
対しては後噴射を行なわず(間引き)、その次のB気筒
に対して後噴射を行なうというものである。The post-injection may be performed every time the main injection is performed on all cylinders. However, when the main injection is performed on each cylinder in a predetermined order, for example, once every five main injections You may make it perform thinning out, such as performing injection. For example, when there are four cylinders A, B, C, and D and main injection is performed in this order, after performing post-injection on cylinder A first, the following cylinders B, C, D, and A The post-injection is not performed (thinning), and the post-injection is performed for the next B cylinder.
【0051】従って、上述の如き燃料噴射制御であれ
ば、温度T1に至るまで、すなわち、上流側の低温型N
Ox触媒22aのNOx浄化活性がピークになるまで
は、主噴射時期Ibのリタードにより排気ガス中の還元
剤としてのHC量が増える。この場合は、主噴射時期I
bのリタードによるHCの増量であるから、排気ガスボ
リュームの大きな増大はない。従って、上流側の低温型
NOx触媒22aでは空間速度がそれほど大きくないか
ら、この低温型NOx触媒22aを吹き抜けるHC量は
少ない。よって、この低温型NOx触媒22aにおいて
HCによるNOxの還元浄化が進み易く、そのことによ
って該NOx触媒22aの早期活性化が図れ、未浄化N
Oxが大気中に排出される量が少なくなる。Therefore, if the fuel injection control is performed as described above, the temperature is reduced to the temperature T1, that is, the low-temperature type N
Until the NOx purification activity of the Ox catalyst 22a reaches a peak, the amount of HC as a reducing agent in the exhaust gas increases due to the retard of the main injection timing Ib. In this case, the main injection timing I
Since the amount of HC is increased by the retard of b, there is no large increase in the exhaust gas volume. Therefore, since the space velocity is not so high in the upstream low-temperature NOx catalyst 22a, the amount of HC flowing through the low-temperature NOx catalyst 22a is small. Therefore, in the low-temperature NOx catalyst 22a, reduction and purification of NOx by HC easily proceed, whereby early activation of the NOx catalyst 22a is achieved, and unpurified N2 is reduced.
The amount of Ox emitted into the atmosphere is reduced.
【0052】温度T1からT2に至る間、すなわち、前
記ピーク温度T1を越えても上流側の低温型NOx触媒
22aのNOx浄化活性の方が下流側の高温型NOx触
媒22bよりも高いときは、後噴射により排気ガス中の
HC量が増える。この場合もHCの増量度合は低いか
ら、後燃えによる排気ガスボリュームの大きな増大はな
い。従って、低温型NOx触媒22aにおいて増量され
たHCによるNOxの還元浄化が効率良く進み、未浄化
NOxが大気中に排出される量が少なくなる。また、こ
の場合、触媒温度Tが高くなるに従って後噴射量が減少
するから、低温型NOx触媒22aの温度がHCの酸化
反応熱で高くなってその活性が急激に低下することが避
けられる。During the period from the temperature T1 to the temperature T2, that is, when the NOx purification activity of the upstream low-temperature NOx catalyst 22a is higher than that of the downstream high-temperature NOx catalyst 22b even when the peak temperature T1 is exceeded, The amount of HC in the exhaust gas increases by the post-injection. Also in this case, since the degree of increase in HC is low, there is no large increase in the exhaust gas volume due to afterburning. Therefore, the reduction and purification of NOx by the increased HC in the low-temperature NOx catalyst 22a proceeds efficiently, and the amount of unpurified NOx discharged into the atmosphere decreases. Further, in this case, since the post-injection amount decreases as the catalyst temperature T increases, it is avoided that the temperature of the low-temperature NOx catalyst 22a increases due to the heat of oxidation reaction of HC and the activity thereof sharply decreases.
【0053】温度T2を越えると、すなわち、上流側の
低温型NOx触媒22aよりも下流側の高温型NOx触
媒22bのNOx浄化活性が高くなると、後噴射量が増
えるから、後燃えによって排気ガスのボリューム増大量
が大きくなる。しかも、上流側の低温型NOx触媒22
aは排気ガスの流れるときの通路抵抗が小さい。従っ
て、排気ガス中のHCは上流側のNOx触媒22aで酸
化消費されずに吹き抜けて下流側の高温型NOx触媒2
2bに流れ易くなる。これにより、この高温型NOx触
媒22bでのNOx浄化が効率良く進み、未浄化NOx
が大気中に排出される量が少なくなる。また、触媒温度
が高温型NOx触媒22bの活性ピーク温度を越えてさ
らに高くなってくると後噴射量が減少していくから、高
温型NOx触媒22bの温度がHCの酸化反応熱で高く
なり過ぎてその活性が急激に低下することが避けられ
る。When the temperature exceeds T2, that is, when the NOx purification activity of the high-temperature NOx catalyst 22b downstream of the low-temperature NOx catalyst 22a on the upstream side becomes higher, the post-injection amount increases. The volume increase amount increases. In addition, the upstream low-temperature NOx catalyst 22
“a” has a small passage resistance when the exhaust gas flows. Therefore, the HC in the exhaust gas blows through without being oxidized and consumed by the upstream NOx catalyst 22a, and flows into the downstream high-temperature NOx catalyst 2a.
2b. As a result, NOx purification in the high-temperature NOx catalyst 22b proceeds efficiently, and unpurified NOx
Is reduced into the atmosphere. Further, when the catalyst temperature further rises beyond the activation peak temperature of the high-temperature NOx catalyst 22b, the post-injection amount decreases. Therefore, the temperature of the high-temperature NOx catalyst 22b becomes too high due to the heat of the oxidation reaction of HC. Thus, a rapid decrease in the activity can be avoided.
【0054】前記実施形態では還元剤を増量する手段と
して主噴射時期のリタード及び後噴射を採用したが、主
噴射として多段噴射(分割噴射)を採用して、その噴射
回数及びその噴射時期の少なくとも一方を変更するよう
にしてもよい。In the above embodiment, the main injection timing retard and the post-injection are employed as means for increasing the reducing agent. However, multi-stage injection (split injection) is employed as the main injection, and at least the number of injections and the injection timing are determined. One of them may be changed.
【0055】ここでいう多段噴射は、図7に例示するよ
うに主噴射燃料を圧縮行程上死点付近において燃焼室で
の燃料の燃焼が継続するように複数回に分割して噴射す
るというものである。各回の噴射の開弁時間は800μ
秒以下、噴射休止時間(インジェクタ5の噴孔が閉じて
から次に開くまでの時間)Δtは50〜1000μ秒と
することが好ましい。2回目の噴射は圧縮行程上死点以
降に行なうことが好ましい。この分割噴射の基本的作用
は次の通りである。In the multi-stage injection, the main injection fuel is divided into a plurality of injections so as to continue the combustion of the fuel in the combustion chamber near the top dead center of the compression stroke as illustrated in FIG. It is. The valve opening time of each injection is 800μ
It is preferable that the injection suspension time (the time from when the injection hole of the injector 5 is closed to when it is next opened) Δt be 50 to 1000 μs or less. The second injection is preferably performed after the top dead center of the compression stroke. The basic operation of this split injection is as follows.
【0056】インジェクタ5の噴孔から噴出した燃料は
全体として円錐形状の噴霧を形成しながら燃焼室4に広
がるとともに、空気との摩擦により分裂を繰り返して微
小な油滴になり、それらの油滴の表面から燃料が蒸発し
て燃料蒸気が生成される。その際、燃料が分割して噴射
されることで、最初に噴射された燃料による予混合燃焼
の割合は相対的に少なくなり、燃焼初期に燃焼圧や燃焼
温度が過度に上昇することがなくなるので、NOxの生
成が低減する。The fuel injected from the injection hole of the injector 5 spreads into the combustion chamber 4 while forming a spray having a conical shape as a whole, and repeatedly breaks up into small oil droplets by friction with air. The fuel evaporates from the surface of the fuel cell to generate fuel vapor. At that time, since the fuel is divided and injected, the ratio of the premixed combustion by the initially injected fuel is relatively reduced, so that the combustion pressure and the combustion temperature do not excessively increase in the early stage of the combustion. , NOx generation is reduced.
【0057】噴射休止時間Δtが50μ秒以上に設定さ
れているので、先に噴射された燃料油滴に後から噴射さ
れた燃料油滴が追いつくことは殆どない。特に、2回目
の噴射を圧縮行程上死点以降に行なえば、この2回目の
噴射燃料が直ちに燃焼し、燃焼室4の圧力が大きく上昇
して圧縮空気の粘性が高くなるので、3回目の噴射燃料
の油滴は直ちに減速され、先に噴射された燃料の油滴に
追いつくことはない。各回の開弁時間が略800μ秒以
下に設定されているので、各回の燃料噴射量が少なく、
その燃料噴霧中での油滴同士の再結合も最小限に抑制さ
れるので、例えば燃圧を高めて燃料の噴出速度を大きく
することにより、燃料の微粒化ひいては気化霧化を十分
に促進して、燃料蒸気と空気との混合状態を大幅に改善
することができる。噴射休止時間Δtが1000μ秒以
下に設定されているので、先に噴射された燃料の燃焼が
終了する前に次の噴射燃料が燃焼し始めるというよう
に、各噴射による燃料が途切れることなく良好に燃焼さ
れる。Since the injection suspension time Δt is set to 50 μsec or more, the fuel oil droplets injected later hardly catch up with the fuel oil droplets injected earlier. In particular, if the second injection is performed after the top dead center of the compression stroke, the fuel injected in the second injection immediately burns, the pressure in the combustion chamber 4 increases greatly, and the viscosity of the compressed air increases. The oil droplets of the injected fuel are immediately decelerated and do not catch up with the oil droplets of the previously injected fuel. Since the valve opening time of each time is set to approximately 800 μs or less, the fuel injection amount of each time is small,
Since the recombination of oil droplets during the fuel spray is also minimized, for example, by increasing the fuel pressure to increase the ejection speed of the fuel, the atomization of the fuel and, consequently, the vaporization and atomization are sufficiently promoted. Thus, the mixing state of the fuel vapor and the air can be greatly improved. Since the injection stop time Δt is set to 1000 μs or less, the fuel injected by each injection is not interrupted so that the next injected fuel starts burning before the combustion of the previously injected fuel ends. Burned.
【0058】要するに、主噴射を分割して行うことによ
り、噴射された燃料の燃焼状態を極めて良好なものにし
て、燃費改善とスモーク生成の抑制とを実現できる。ま
た、噴射終了時期は相対的に遅くなるものの、その間に
断続的に噴射される燃料は上述の如く良好に気化霧化さ
れて拡散燃焼するので、燃料噴射時期を遅角補正した場
合のように燃焼状態が悪くなることはなく、むしろ、燃
焼室4の圧力が相対的に長い間、高い状態に維持され
て、燃焼ガスの膨張力が極めて有効にピストン3に伝達
されるようになり、機械効率の向上によっても燃費の改
善が図られる。In short, by performing the main injection in a divided manner, the combustion state of the injected fuel can be made extremely good, and the improvement of fuel consumption and suppression of smoke generation can be realized. Further, although the injection end timing is relatively late, the fuel intermittently injected during that period is well vaporized and atomized and diffusely burns as described above. The combustion state is not deteriorated, but rather, the pressure of the combustion chamber 4 is maintained at a high level for a relatively long time, so that the expansion force of the combustion gas is transmitted to the piston 3 very effectively. Fuel efficiency can also be improved by improving efficiency.
【0059】そうして、前記多段噴射の場合は、燃料を
一括噴射した場合に比べて分割回数が多くなるほど排気
ガス中のHC量が増大し、また、噴射休止時間Δtが長
くなるほど排気ガス中のHC量が増大する。Thus, in the case of the multi-stage injection, the HC amount in the exhaust gas increases as the number of divisions increases as compared with the case where the fuel is injected at a time, and the exhaust gas in the exhaust gas increases as the injection pause time Δt increases. Increases the amount of HC.
【0060】図8は主噴射の分割回数及び噴射休止時間
Δtが排気ガス中のHC量に及ぼす影響について調べた
結果を示している。これは、エンジン1の目標トルクに
対応する分量の燃料を略圧縮行程上死点から一括して噴
射した場合(以下、一括噴射という)、2回に等分割し
て噴射した場合(以下、2分割噴射という)、3回に等
分割して噴射した場合(以下、3分割噴射という)の各
々について、噴射休止時間Δtを変更し、これに伴い変
化する噴射終了時のクランク角度と、排気ガス中のHC
量との関係を調べたものである。2分割噴射では、Δt
=350,400,700,900μsecについて調
べ、3分割噴射では、Δt=400,550,700,
900μsecについて調べた。FIG. 8 shows the results of an investigation on the effects of the number of divisions of the main injection and the injection suspension time Δt on the amount of HC in the exhaust gas. This is the case in which a quantity of fuel corresponding to the target torque of the engine 1 is collectively injected from the top dead center of the approximately compression stroke (hereinafter, referred to as collective injection), and the fuel is injected in two equal parts (hereinafter, referred to as 2 For each of three equal injections (hereinafter referred to as split injection) (hereinafter referred to as three-split injection), the injection pause time Δt is changed, and the crank angle at the end of injection and the exhaust gas HC in
It is a study of the relationship with quantity. In two-split injection, Δt
= 350, 400, 700, 900 μsec, and in the three-split injection, Δt = 400, 550, 700,
It examined about 900 microseconds.
【0061】同図によれば、一括噴射の方が分割噴射よ
りも排気ガス中のHC量が多く、分割噴射では、2分割
噴射よりも3分割噴射の方が排気ガス中のHC量が多く
なり、また、2分割噴射及び3分割噴射では、噴射休止
時間Δtを長くした方が排気ガス中のHC量が多くなっ
ている。According to the figure, the batch injection has a larger amount of HC in the exhaust gas than the split injection, and the split injection has a larger HC amount in the exhaust gas in the three-split injection than in the two-split injection. In addition, in the two-split injection and the three-split injection, the longer the injection stop time Δt, the larger the amount of HC in the exhaust gas.
【0062】従って、触媒温度TがT1未満のときには
例えばΔtを400μsecとした2分割噴射を行ない、
触媒温度TがT1〜T2になったときに、分割回数の増
大及びΔtの増大の少なくとも一方によってHC量が増
大する分割噴射を行ない、触媒温度TがT2以上に上昇
したときに最終段の分割噴射量を増大させるようにして
もよい。これにより、後燃えを顕著にして排気ガスボリ
ュームの増大を図って下流側のNOx触媒22bに多量
のHCを流すことができ、その触媒をNOx浄化に有効
に利用することができる。Therefore, when the catalyst temperature T is lower than T1, two-split injection is performed with Δt set to 400 μsec, for example.
When the catalyst temperature T becomes T1 to T2, a split injection in which the HC amount is increased by at least one of the increase in the number of divisions and the increase in Δt is performed, and when the catalyst temperature T rises to T2 or more, the final stage of the division is performed. The injection amount may be increased. As a result, a large amount of HC can be made to flow to the downstream NOx catalyst 22b by increasing the exhaust gas volume by making the afterburn remarkable, and the catalyst can be effectively used for NOx purification.
【0063】なお、前記実施形態では前記触媒温度Tを
上流側のNOx触媒22aの温度及び下流側のNOx触
媒22bの温度として与えて燃料噴射制御を行なうよう
にしたが、上流側のNOx触媒22a及び下流側のNO
x触媒22bの各々の温度を別個に検出ないしは推定し
制御を行なうようにしてもよい。In the above embodiment, the fuel injection control is performed by giving the catalyst temperature T as the temperature of the upstream NOx catalyst 22a and the temperature of the downstream NOx catalyst 22b. However, the upstream NOx catalyst 22a And NO on the downstream side
Control may be performed by separately detecting or estimating the temperature of each of the x catalysts 22b.
【0064】また、触媒温度Tが上昇しているときは前
記T1、T2よりも少し高めの温度を閾値として制御状
態の切換を行ない、触媒温度Tが下降しているときは前
記T1、T2よりも少し低めの温度を閾値として制御状
態の切換を行なうようにすることが制御のハンチングを
防止する上で好ましい。When the catalyst temperature T is rising, the control state is switched by using a temperature slightly higher than T1 and T2 as a threshold value, and when the catalyst temperature T is falling, the control state is switched from T1 and T2. It is preferable to switch the control state using a slightly lower temperature as a threshold value in order to prevent hunting of control.
【0065】なお、前記実施形態では下流側触媒とし
て、酸素過剰雰囲気でNOxを浄化するNOx還元触媒
を採用したが、酸素過剰雰囲気でNOxを吸収し、すな
わち、エンジンが空燃比リーンで運転されたときに排気
ガス中のNOxを吸収し、雰囲気の酸素濃度が低下する
と、例えば理論空燃比付近で運転されるとNOxを放出
し、上流側触媒を通過する還元剤によって当該NOxを
還元浄化するNOx吸収触媒を下流側触媒としてもよ
い。In the above embodiment, a NOx reduction catalyst for purifying NOx in an oxygen-excess atmosphere was employed as the downstream catalyst. However, NOx was absorbed in an oxygen-excess atmosphere, that is, the engine was operated at a lean air-fuel ratio. When NOx in the exhaust gas is absorbed and the oxygen concentration in the atmosphere decreases, for example, the NOx is released when operated near the stoichiometric air-fuel ratio, and the NOx is reduced and purified by the reducing agent passing through the upstream catalyst. The absorption catalyst may be a downstream catalyst.
【0066】また、下流側触媒の下流側に温度センサを
配置し、この下流側触媒に還元剤が供給されたときに酸
化反応(触媒反応)が起きて当該触媒温度が予定通りに
上昇するか否かを監視することによって、この下流側触
媒の酸化触媒としての機能が劣化しているか否かを診断
するようにしたものにおいて、その診断時に上述の実施
形態のようにして、還元剤を、上流側触媒を通過させて
下流側触媒に供給するようにしてもよい。A temperature sensor is arranged downstream of the downstream catalyst. When a reducing agent is supplied to the downstream catalyst, an oxidation reaction (catalytic reaction) occurs and the temperature of the catalyst rises as expected. By monitoring whether or not the function of the downstream catalyst as an oxidation catalyst has been deteriorated, it is possible to diagnose whether or not the reducing agent is used at the time of the diagnosis, as in the above-described embodiment. You may make it pass through an upstream catalyst and supply it to a downstream catalyst.
【図1】本発明の実施形態に係るディーゼルエンジンの
排気浄化装置の全体構成を示す図。FIG. 1 is a diagram showing an overall configuration of an exhaust gas purification device for a diesel engine according to an embodiment of the present invention.
【図2】触媒コンバータの構成を示す図。FIG. 2 is a diagram showing a configuration of a catalytic converter.
【図3】上流側NOx触媒及び下流側NOx触媒のセル
構造を示す断面図。FIG. 3 is a sectional view showing a cell structure of an upstream NOx catalyst and a downstream NOx catalyst.
【図4】低温型NOx触媒及び高温型NOx触媒の排気
ガス温度とNOx浄化率との関係を示すグラフ図。FIG. 4 is a graph showing the relationship between the exhaust gas temperature and the NOx purification rate of a low-temperature NOx catalyst and a high-temperature NOx catalyst.
【図5】触媒温度と還元剤増量制御との関係を示すグラ
フ図。FIG. 5 is a graph showing the relationship between catalyst temperature and reducing agent increase control.
【図6】燃料噴射制御の処理手順を示すフローチャート
図。FIG. 6 is a flowchart showing a processing procedure of fuel injection control.
【図7】燃料の一括噴射及び多段噴射の噴射時期を示す
タイムチャート図。FIG. 7 is a time chart showing injection timings of fuel batch injection and multi-stage injection.
【図8】主噴射の分割回数及び噴射休止時間Δtが排気
ガス中のHC量に及ぼす影響を示すグラフ図。FIG. 8 is a graph showing the effect of the number of divisions of main injection and the injection suspension time Δt on the amount of HC in exhaust gas.
A 排気浄化装置 1 ディーゼルエンジン 2 気筒 4 燃焼室 5 インジェクタ(燃料噴射弁) 20 排気通路 22 触媒コンバータ 22a 上流側NOx触媒 22b 下流側NOx触媒 34a 上流側NOx触媒の触媒層 34b 下流側NOx触媒の触媒層 35 ECU(コントロールユニット) A Exhaust gas purification device 1 Diesel engine 2 Cylinder 4 Combustion chamber 5 Injector (fuel injection valve) 20 Exhaust passage 22 Catalytic converter 22a Upstream NOx catalyst 22b Downstream NOx catalyst 34a Catalyst layer of upstream NOx catalyst 34b Catalyst of downstream NOx catalyst Layer 35 ECU (control unit)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/38 B01D 53/36 B (72)発明者 黒川 貴弘 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 (72)発明者 渡辺 友巳 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 Fターム(参考) 3G091 AA02 AA10 AA11 AA18 AA28 AB02 AB03 AB05 AB06 AB09 BA01 BA03 BA04 BA10 BA14 BA15 BA19 BA32 BA33 CA13 CA18 CB02 CB03 CB06 CB07 CB08 DA01 DA02 DA03 DA05 DB10 DB13 EA00 EA01 EA05 EA06 EA07 EA16 EA17 EA18 EA21 EA23 EA30 EA31 EA34 FA02 FA04 FA12 FA13 FA14 FB02 FB03 FB07 FB10 FB11 FC04 FC05 FC07 FC08 GA06 GA19 GB06W GB09X HA08 HA10 HA18 HA36 HA37 HA38 HA39 HA42 HA47 HB03 HB05 HB06 3G301 HA01 HA02 JA25 MA11 MA18 MA23 MA26 NE01 PA04Z PA07Z PA11Z PB08Z PE01Z PE03Z 4D048 AA06 AB02 AB03 AC02 BB02 CA01 CC32 CC38 CC45 CC48 DA01 DA02 DA08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) F02D 41/38 B01D 53/36 B (72) Inventor Takahiro Kurokawa 3-1, Fuchu-cho, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Co., Ltd. (72) Inventor Tomomi Watanabe 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima F-term (reference) 3G091 AA02 AA10 AA11 AA18 AA28 AB02 AB03 AB05 AB06 AB09 BA01 BA03 BA04 BA10 BA14 BA15 BA19 BA32 BA33 CA13 CA18 CB02 CB03 CB06 CB07 CB08 DA01 DA02 DA03 DA05 DB10 DB13 EA00 EA01 EA05 EA06 EA07 EA16 EA17 EA18 EA21 EA23 EA30 EA31 EA34 FA02 FA04 FA12 FA13 HA14 FA11 FB02 FB03 FC07 FC10 HA37 HA38 HA39 HA42 HA47 HB03 HB05 HB06 3G301 HA01 HA02 JA25 MA11 MA18 MA23 MA26 NE01 PA04Z PA07Z PA11Z PB08Z PE01Z PE03Z 4D048 AA06 AB0 2 AB03 AC02 BB02 CA01 CC32 CC38 CC45 CC48 DA01 DA02 DA08
Claims (5)
元剤と反応する触媒がハニカム状モノリス担体にコーテ
ィングされてなる下流側触媒と、 前記還元剤量を増大させる還元剤増量手段と、 前記排気通路の前記下流側触媒よりも上流側の部位に、
前記還元剤を酸化させる触媒がハニカム状モノリス担体
にコーティングされてなる上流側触媒が配置されてい
て、 前記上流側触媒は前記下流側触媒よりも排気ガスとの接
触時間が短くなるように形成されていることを特徴とす
るエンジンの排気浄化装置。1. An engine body, a downstream catalyst in which a catalyst arranged in an exhaust passage of the engine body and reacting with a reducing agent in exhaust gas is coated on a honeycomb monolithic carrier, and an amount of the reducing agent is increased. Reducing agent increasing means, at a portion of the exhaust passage upstream of the downstream catalyst,
An upstream catalyst formed by coating a catalyst for oxidizing the reducing agent on a honeycomb-shaped monolithic carrier is disposed, and the upstream catalyst is formed so as to have a shorter contact time with exhaust gas than the downstream catalyst. An exhaust gas purification device for an engine, comprising:
置において、 前記上流側触媒の方が前記下流側触媒よりも通路断面積
が大きく且つ排気ガスとの接触面積が小さいことを特徴
とするエンジンの排気浄化装置。2. The exhaust gas purifying apparatus for an engine according to claim 1, wherein the upstream catalyst has a larger passage sectional area and a smaller contact area with exhaust gas than the downstream catalyst. Engine exhaust purification device.
置において、 前記上流側触媒は、排気ガス中のNOxを還元剤との反
応によって浄化させる触媒がハニカム状モノリス担体に
コーティングされたものであることを特徴とするエンジ
ンの排気浄化装置。3. The exhaust gas purifying apparatus for an engine according to claim 1, wherein the upstream side catalyst has a catalyst for purifying NOx in exhaust gas by a reaction with a reducing agent coated on a honeycomb monolithic carrier. An exhaust gas purification device for an engine.
載のエンジンの排気浄化装置において、 前記還元剤増量手段は、前記エンジン本体の燃焼室に噴
口を臨ませた燃料噴射弁から後燃えを生ずるように燃料
を膨張行程又は排気行程において噴射することによって
排気ガス中の還元剤を増量するものであることを特徴と
するエンジンの排気浄化装置。4. The exhaust gas purifying apparatus for an engine according to claim 1, wherein the reducing agent increasing means is provided after a fuel injection valve having an injection port facing a combustion chamber of the engine body. An exhaust gas purifying apparatus for an engine, wherein a reducing agent in exhaust gas is increased by injecting fuel in an expansion stroke or an exhaust stroke so as to cause burning.
置において、 前記エンジン本体はディーゼルエンジンであり、 前記還元剤増量手段は、前記燃料噴射弁から圧縮行程上
死点付近で要求出力に見合う量の燃料が噴射された後の
膨張行程前半において燃料を噴射することによって排気
ガス中の還元剤を増量するものであることを特徴とする
エンジンの排気浄化装置。5. The exhaust gas purifying apparatus for an engine according to claim 4, wherein the engine body is a diesel engine, and the reducing agent increasing means meets a required output near a top dead center of a compression stroke from the fuel injection valve. An exhaust gas purifying apparatus for an engine, wherein the amount of reducing agent in exhaust gas is increased by injecting fuel in the first half of an expansion stroke after an amount of fuel has been injected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000011312A JP4543473B2 (en) | 2000-01-20 | 2000-01-20 | Engine exhaust purification system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000011312A JP4543473B2 (en) | 2000-01-20 | 2000-01-20 | Engine exhaust purification system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001207834A true JP2001207834A (en) | 2001-08-03 |
JP4543473B2 JP4543473B2 (en) | 2010-09-15 |
Family
ID=18539196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000011312A Expired - Fee Related JP4543473B2 (en) | 2000-01-20 | 2000-01-20 | Engine exhaust purification system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4543473B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007023807A (en) * | 2005-07-12 | 2007-02-01 | Toyota Motor Corp | Engine exhaust purification system |
WO2007091721A1 (en) * | 2006-02-07 | 2007-08-16 | Toyota Jidosha Kabushiki Kaisha | Fuel-air ratio control device for internal combustion engine |
JP2012207582A (en) * | 2011-03-29 | 2012-10-25 | Osaka Gas Co Ltd | Engine system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS647935A (en) * | 1987-06-30 | 1989-01-11 | Nissan Motor | Catalytic converter device |
JPH06336A (en) * | 1992-06-24 | 1994-01-11 | Mazda Motor Corp | Exhaust gas purifier |
JPH0623274A (en) * | 1992-04-23 | 1994-02-01 | Mazda Motor Corp | Structure of catalyst for cleaning waste gas |
JPH06134258A (en) * | 1992-10-23 | 1994-05-17 | Hitachi Ltd | Denitration method and its catalyst |
JPH1181992A (en) * | 1997-09-16 | 1999-03-26 | Denso Corp | Exhaust gas purifying device in internal combustion engine |
JPH11153021A (en) * | 1997-09-16 | 1999-06-08 | Denso Corp | Exhaust emission control device for internal combustion engine |
-
2000
- 2000-01-20 JP JP2000011312A patent/JP4543473B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS647935A (en) * | 1987-06-30 | 1989-01-11 | Nissan Motor | Catalytic converter device |
JPH0623274A (en) * | 1992-04-23 | 1994-02-01 | Mazda Motor Corp | Structure of catalyst for cleaning waste gas |
JPH06336A (en) * | 1992-06-24 | 1994-01-11 | Mazda Motor Corp | Exhaust gas purifier |
JPH06134258A (en) * | 1992-10-23 | 1994-05-17 | Hitachi Ltd | Denitration method and its catalyst |
JPH1181992A (en) * | 1997-09-16 | 1999-03-26 | Denso Corp | Exhaust gas purifying device in internal combustion engine |
JPH11153021A (en) * | 1997-09-16 | 1999-06-08 | Denso Corp | Exhaust emission control device for internal combustion engine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007023807A (en) * | 2005-07-12 | 2007-02-01 | Toyota Motor Corp | Engine exhaust purification system |
WO2007091721A1 (en) * | 2006-02-07 | 2007-08-16 | Toyota Jidosha Kabushiki Kaisha | Fuel-air ratio control device for internal combustion engine |
US7729847B2 (en) | 2006-02-07 | 2010-06-01 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio control device of internal combustion engine |
JP2012207582A (en) * | 2011-03-29 | 2012-10-25 | Osaka Gas Co Ltd | Engine system |
Also Published As
Publication number | Publication date |
---|---|
JP4543473B2 (en) | 2010-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4423731B2 (en) | Engine exhaust purification system | |
JP4631123B2 (en) | Engine exhaust purification system | |
JP3755494B2 (en) | Engine exhaust purification system | |
JP4441973B2 (en) | Engine exhaust purification system | |
JP2001090594A (en) | Control device for engine | |
JP2002195074A (en) | Exhaust emission control device of engine, and fuel injection timing setting method | |
JP2002227702A (en) | How to improve the response characteristics of a turbocharger | |
JP4253984B2 (en) | Diesel engine control device | |
JP4543473B2 (en) | Engine exhaust purification system | |
JP2003065117A (en) | Diesel engine and computer program thereof | |
JP2001159311A (en) | Exhaust emission control device for engine | |
JP4362916B2 (en) | Engine exhaust purification system | |
JP4337183B2 (en) | Engine control device and engine control device abnormality diagnosis device | |
JP4306034B2 (en) | Engine exhaust purification system | |
JP4453143B2 (en) | Engine control device | |
JP2002295242A (en) | Exhaust emission purifier of diesel engine and exhaust purifying method | |
JP2001164928A (en) | Exhaust emission control device and method for engine | |
JP2001159362A (en) | Exhaust emission control device for engine | |
JP2002357145A (en) | Fuel injection device for diesel engine | |
JP2002364413A (en) | Exhaust emission control device for cylinder injection type engine with turbo supercharger | |
JP2002129948A (en) | Exhaust emission purifying device for engine | |
JP2001159310A (en) | Exhaust emission control device for engine | |
JP2002303188A (en) | Fuel injection method for diesel engine | |
JP4560979B2 (en) | Fuel injection system for diesel engine | |
JP2001214731A (en) | Control device for engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090721 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100608 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100621 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |