[go: up one dir, main page]

JP2001206775A - Method for producing porous silicon nitride - Google Patents

Method for producing porous silicon nitride

Info

Publication number
JP2001206775A
JP2001206775A JP2000009278A JP2000009278A JP2001206775A JP 2001206775 A JP2001206775 A JP 2001206775A JP 2000009278 A JP2000009278 A JP 2000009278A JP 2000009278 A JP2000009278 A JP 2000009278A JP 2001206775 A JP2001206775 A JP 2001206775A
Authority
JP
Japan
Prior art keywords
particles
silicon
silicon nitride
mass
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000009278A
Other languages
Japanese (ja)
Inventor
Naomichi Miyagawa
直通 宮川
Nobuhiro Shinohara
伸広 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000009278A priority Critical patent/JP2001206775A/en
Publication of JP2001206775A publication Critical patent/JP2001206775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a silicon nitride porous body suitable for separating gases. SOLUTION: The method of producing a silicon nitride porous body substantially comprising silicon nitride comprises heat treating a formed body containing silicon dioxide particles, carbon particles and metallic silicon particles having an average diameter of <=5 μm, wherein the total amount of the silicon dioxide particles, the carbon particles and the metallic silicon particles is >=90 mass %, in gaseous nitrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス分離用に適す
る窒化ケイ素多孔体の製造法に関する。
[0001] The present invention relates to a method for producing a porous silicon nitride material suitable for gas separation.

【0002】[0002]

【従来の技術】窒化ケイ素は、耐熱性、耐食性、強度等
に優れた特性を有しており、高温雰囲気下または腐食性
雰囲気下でのガス分離用フィルタやその基材として期待
されている。このような窒化ケイ素多孔体の製造法がい
くつか提案されている。
2. Description of the Related Art Silicon nitride has excellent properties such as heat resistance, corrosion resistance and strength, and is expected to be used as a gas separation filter and its base material in a high-temperature atmosphere or a corrosive atmosphere. Several methods for producing such a silicon nitride porous body have been proposed.

【0003】特開平6−256069には、窒化ケイ素
粒子、粘土、および酸化物からなる成形体を焼成する方
法が提案されている。また、特開平7−187845、
特開平8−59364、特開平6−24859には、そ
れぞれ、窒化ケイ素粒子と有機ケイ素化合物の混合物、
窒化ケイ素粒子とポリシラザンの混合物、窒化ケイ素粒
子と合成樹脂発泡体の混合物を出発原料とし、同様に成
形体を焼成する方法が提案されている。しかし、これら
の窒化ケイ素粒子を出発原料とする方法は、窒化ケイ素
粒子が比較的高価であるためコストが高くなる問題があ
る。
[0003] Japanese Patent Application Laid-Open No. Hei 6-256069 proposes a method of firing a molded body composed of silicon nitride particles, clay and oxide. Also, JP-A-7-187845,
JP-A-8-59364 and JP-A-6-24859 each disclose a mixture of silicon nitride particles and an organosilicon compound,
A method has been proposed in which a mixture of silicon nitride particles and polysilazane and a mixture of silicon nitride particles and a synthetic resin foam are used as starting materials, and a molded body is similarly fired. However, the method using these silicon nitride particles as a starting material has a problem that the cost is high because the silicon nitride particles are relatively expensive.

【0004】一方、金属ケイ素粒子を使用する方法とし
て、特開平1−188479には、金属ケイ素粒子と窒
化ケイ素粒子からなる混合粉体を出発原料とし、金属ケ
イ素粒子の窒化率が50%以下の多孔体を得る方法が提
案されている。しかし、この方法では、金属ケイ素粒子
の窒化率が50%以下であるため、窒化されずに窒化ケ
イ素焼結体に残留する金属ケイ素粒子が多く、窒化ケイ
素のもつ優れた耐熱性、耐食性を損なう問題がある。
On the other hand, as a method of using metal silicon particles, Japanese Patent Application Laid-Open No. 1-188479 discloses a method in which a mixed powder of metal silicon particles and silicon nitride particles is used as a starting material and the nitriding ratio of the metal silicon particles is 50% or less. A method for obtaining a porous body has been proposed. However, in this method, since the nitridation ratio of the metal silicon particles is 50% or less, many metal silicon particles remain in the silicon nitride sintered body without being nitrided, which impairs the excellent heat resistance and corrosion resistance of silicon nitride. There's a problem.

【0005】[0005]

【発明が解決しようとする課題】本発明は、金属ケイ素
粒子を出発原料とし、しかも窒化率の高い、ガス分離に
適した窒化ケイ素多孔体の製造法を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a porous silicon nitride material which uses metal silicon particles as a starting material and has a high nitriding rate and is suitable for gas separation.

【0006】[0006]

【課題を解決するための手段】本発明は、二酸化ケイ素
粒子、炭素粒子および平均粒子直径が5μm以下の金属
ケイ素粒子を含み、かつ前記二酸化ケイ素粒子、前記炭
素粒子および前記金属ケイ素粒子の合量が90質量%以
上である成形体を窒素雰囲気中で熱処理することにより
実質的に窒化ケイ素からなる多孔質体とする窒化ケイ素
多孔体の製造法である。
The present invention comprises a silicon dioxide particle, a carbon particle and a metal silicon particle having an average particle diameter of 5 μm or less, and a total amount of the silicon dioxide particle, the carbon particle and the metal silicon particle. Is a heat treatment in a nitrogen atmosphere of a molded body having a content of 90% by mass or more to produce a porous body substantially composed of silicon nitride.

【0007】[0007]

【発明の実施の形態】本発明の窒化ケイ素多孔体の製造
法(以下、本製造法という)では、二酸化ケイ素粒子、
炭素粒子および平均粒子直径が5μm以下の金属ケイ素
粒子を含み、かつ前記二酸化ケイ素粒子、前記炭素粒子
および前記金属ケイ素粒子の合量が90質量%以上であ
る成形体を使用する。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a porous silicon nitride material of the present invention (hereinafter referred to as the present production method), silicon dioxide particles,
A molded article containing carbon particles and metal silicon particles having an average particle diameter of 5 μm or less and having a total content of the silicon dioxide particles, the carbon particles and the metal silicon particles of 90% by mass or more is used.

【0008】二酸化ケイ素粒子および炭素粒子の平均粒
子直径は、0.1μm未満であると凝集しやすく、ハン
ドリングが困難となり好ましくない。一方、平均粒子直
径が10μmを超えると形成される気孔の一部がガス分
離用基材としては大きくなりすぎるため好ましくない。
したがって、二酸化ケイ素粒子および炭素粒子の平均粒
子直径は、0.1〜10μmであると好ましい。また、
二酸化ケイ素粒子と炭素粒子の純度としては、特に制限
はなく用途に応じてそれぞれ適宜選択される。なお、二
酸化ケイ素粒子と炭素粒子は、窒化ケイ素多孔体の製造
時に気孔形成剤として作用しているものと思われる。
When the average particle diameter of the silicon dioxide particles and the carbon particles is less than 0.1 μm, the particles are liable to agglomerate and difficult to handle. On the other hand, if the average particle diameter exceeds 10 μm, some of the pores formed are undesirably too large for the gas separation substrate.
Therefore, the average particle diameter of the silicon dioxide particles and the carbon particles is preferably from 0.1 to 10 μm. Also,
The purity of the silicon dioxide particles and the purity of the carbon particles are not particularly limited, and are appropriately selected depending on the application. It is considered that the silicon dioxide particles and the carbon particles act as a pore-forming agent during the production of the porous silicon nitride.

【0009】前記二酸化ケイ素中のSi/前記炭素中の
Cのモル比は、0.4〜0.67であると好ましい。モ
ル比が0.4未満であると二酸化ケイ素が焼結体内に残
留し、得られる多孔体の耐食性が悪くなるので好ましく
ない。またモル比が0.67を超えると焼結体内に炭素
が残留し、該炭素と前記金属ケイ素粒子とが部分的に反
応し炭化ケイ素粒子を形成するため好ましくない。
Preferably, the molar ratio of Si in the silicon dioxide / C in the carbon is 0.4 to 0.67. If the molar ratio is less than 0.4, silicon dioxide remains in the sintered body, and the corrosion resistance of the obtained porous body is unfavorably deteriorated. If the molar ratio exceeds 0.67, carbon remains in the sintered body, and the carbon and the metal silicon particles partially react to form silicon carbide particles, which is not preferable.

【0010】前記二酸化ケイ素粒子と前記炭素粒子の含
有量としては、両者の合量が前記成形体100質量部
中、1〜20質量部であると好ましい。1質量部未満で
あると多孔体の気孔率が小さすぎるため好ましくなく、
一方、20質量部を超えると多孔体の気孔率が大きくな
りすぎ機械的強度が充分でないため好ましくない。
The content of the silicon dioxide particles and the carbon particles is preferably 1 to 20 parts by mass based on 100 parts by mass of the compact. Less than 1 part by mass is not preferred because the porosity of the porous body is too small,
On the other hand, if it exceeds 20 parts by mass, the porosity of the porous body becomes too large and the mechanical strength is not sufficient, which is not preferable.

【0011】本製造法に用いる金属ケイ素粒子は、平均
粒子直径が5μm以下である。金属ケイ素粒子の平均粒
子直径が5μmを超えると、後工程の熱処理で窒化され
ない金属ケイ素粒子が残留し、さらに多孔体の平均細孔
直径が大きくなりすぎる。なお、金属ケイ素粒子の純度
としては目的、用途に応じて適宜選択される。
The metal silicon particles used in the present production method have an average particle diameter of 5 μm or less. When the average particle diameter of the metal silicon particles exceeds 5 μm, metal silicon particles that are not nitrided by the heat treatment in the subsequent step remain, and the average pore diameter of the porous body becomes too large. The purity of the metal silicon particles is appropriately selected depending on the purpose and application.

【0012】本製造法において、二酸化ケイ素粒子、炭
素粒子および金属ケイ素粒子の合量は、成形体中90質
量%以上である。二酸化ケイ素粒子、炭素粒子および金
属ケイ素粒子の合量が、成形体中90質量%未満である
と所望の特性のフィルタを得ることができない。
In the present production method, the total amount of silicon dioxide particles, carbon particles and metal silicon particles is at least 90% by mass in the molded product. If the total amount of silicon dioxide particles, carbon particles and metal silicon particles is less than 90% by mass in the molded product, a filter having desired characteristics cannot be obtained.

【0013】本製造法において、二酸化ケイ素粒子、炭
素粒子および金属ケイ素粒子を含む成形体を作成する方
法としては、プレス成形、押出成形、鋳込成形などの通
常のセラミックス成形法が適宜採用される。なお、成形
に際して、有機バインダを加えてもよい。このような有
機バインダとしては、ポリビニルアルコールまたはその
変成物、でんぷんまたはその変成物、カルボキシルメチ
ルセルロース、ヒドロキシルメチルセルロース、ポリビ
ニルピロリドン、アクリル樹脂またはアクリル系共重合
体、酢酸ビニル樹脂または酢酸ビニル系共重合体、等の
有機物を使用できる。このような有機バインダの添加量
として成形体100質量部に対して外掛で0.1〜10
質量部とすると好ましい。なお、気孔形成剤が成形体の
バインダの働きを兼ねてもよい。
In the present production method, as a method for producing a molded body containing silicon dioxide particles, carbon particles and metal silicon particles, a usual ceramic molding method such as press molding, extrusion molding, or casting is appropriately employed. . At the time of molding, an organic binder may be added. Examples of such an organic binder include polyvinyl alcohol or a modified product thereof, starch or a modified product thereof, carboxymethylcellulose, hydroxylmethylcellulose, polyvinylpyrrolidone, an acrylic resin or an acrylic copolymer, a vinyl acetate resin or a vinyl acetate copolymer, And other organic substances can be used. The amount of such an organic binder to be added is 0.1 to 10 on the basis of 100 parts by mass of the molded body.
It is preferable to use parts by mass. Note that the pore-forming agent may also function as a binder for the molded body.

【0014】前記成形体を熱処理する条件としては、窒
素雰囲気下で温度1100〜1400℃で熱処理すると
窒化率が高くなるので好ましい。温度範囲が1100℃
未満であると金属ケイ素粒子の窒化が起こらないか、反
応が起こっても反応速度が非常に遅いため好ましくな
い。一方、温度範囲が1400℃を超えると金属ケイ素
の融点(1410℃)付近で金属ケイ素粒子が融解する
ため好ましくない。温度保持時間としては、5時間未満
であると金属ケイ素粒子の窒化が不充分となり好ましく
なく、また温度保持時間が24時間を超えると窒化率が
ほとんど変化しなくなり、運転費用がかさむため好まし
くない。したがって、温度保持時間としては5〜24時
間が好ましい。
The heat treatment of the molded body is preferably performed at a temperature of 1100 ° C. to 1400 ° C. in a nitrogen atmosphere because the nitriding ratio becomes high. Temperature range 1100 ° C
If it is less than 3, nitriding of the metal silicon particles does not occur, or even if a reaction occurs, the reaction rate is extremely slow, which is not preferable. On the other hand, if the temperature range exceeds 1400 ° C., the metal silicon particles melt around the melting point of metal silicon (1410 ° C.), which is not preferable. If the temperature holding time is less than 5 hours, the nitridation of the metal silicon particles is insufficient, which is not preferable. If the temperature holding time is more than 24 hours, the nitridation rate hardly changes and the operating cost increases, which is not preferable. Therefore, the temperature holding time is preferably 5 to 24 hours.

【0015】熱処理時の昇温速度は、成形体の大きさ、
形状等により適宜選択されるが、60〜600℃/hで
あると窒化、焼結の点で好ましい。昇温速度が60℃/
h未満であると多孔体の作成時間が長くなるので好まし
くない。また、昇温速度が600℃/hを超えると熱処
理過程で二酸化ケイ素粒子と炭素粒子との反応でガスが
急激に発生し、多孔体が破損するため好ましくない。昇
温過程であっても、温度1100〜1400℃の範囲に
ある場合は、その経過時間は保持時間に加えるものとす
る。
The rate of temperature rise during the heat treatment depends on the size of the compact,
It is appropriately selected depending on the shape and the like, but a temperature of 60 to 600 ° C./h is preferable in terms of nitriding and sintering. Heating rate is 60 ° C /
When the length is less than h, the time required for forming the porous body is undesirably long. On the other hand, if the heating rate exceeds 600 ° C./h, a gas is rapidly generated due to the reaction between the silicon dioxide particles and the carbon particles during the heat treatment, and the porous body is damaged, which is not preferable. If the temperature is in the range of 1100 to 1400 ° C. even during the heating process, the elapsed time is added to the holding time.

【0016】本製造法で得られる窒化ケイ素多孔体の気
孔率は、20〜40%であると好ましい。気孔率は、ア
ルキメデス法により測定する。気孔率が20%未満であ
ると圧力損失が大きくなるため多孔体として好ましくな
い。また気孔率が40%を超えるても強度が充分でない
ため好ましくない。
The porosity of the porous silicon nitride obtained by the present production method is preferably 20 to 40%. The porosity is measured by the Archimedes method. If the porosity is less than 20%, the pressure loss increases, which is not preferable as a porous body. Further, if the porosity exceeds 40%, the strength is not sufficient, which is not preferable.

【0017】本製造法で得られる窒化ケイ素多孔体の水
銀圧入法で測定された平均細孔直径は、30〜100n
mであると好ましい。平均細孔直径が30nm未満であ
ると表面にガス分離膜を形成するためのガス分離用基材
とはなり得るが、基材としては細孔の大きさが小さす
ぎ、気孔率を大きくしてもガスの透過量が非常に少な
い。一方、平均細孔直径が100nmを超えると、ガス
分離膜を無欠陥で均質に基材表面に形成することが困難
となり好ましくない。
The average pore diameter of the porous silicon nitride obtained by this production method measured by a mercury intrusion method is 30 to 100 n.
m is preferable. When the average pore diameter is less than 30 nm, it can be a gas separation substrate for forming a gas separation membrane on the surface, but as a substrate, the pore size is too small and the porosity is increased. Also has very low gas permeation. On the other hand, if the average pore diameter exceeds 100 nm, it is difficult to form a gas separation membrane uniformly on the substrate surface without any defect, which is not preferable.

【0018】本製造法で得られる窒化ケイ素多孔体の金
属ケイ素および二酸化ケイ素を合わせた全ケイ素に対す
る窒化ケイ素として含まれるケイ素の量(以下、窒化率
という)は、90%以上が好ましい。90%未満である
と残留する金属ケイ素粒子により窒化ケイ素多孔体の耐
熱性、耐食性などの特性が低下するため好ましくない。
The amount of silicon contained as silicon nitride (hereinafter referred to as a nitriding ratio) based on the total silicon including the metallic silicon and silicon dioxide of the porous silicon nitride obtained by the present production method is preferably 90% or more. If the content is less than 90%, the properties of the silicon nitride porous body, such as heat resistance and corrosion resistance, are undesirably reduced due to the remaining metal silicon particles.

【0019】なお、本明細書では窒化ケイ素の窒化率は
質量変化から算出している。すなわち、式1で示される
ように窒化ケイ素の生成反応は、3モルの金属ケイ素が
2モルの窒素と反応して1モルの窒化ケイ素となる。
In this specification, the nitridation rate of silicon nitride is calculated from a change in mass. That is, as shown in Formula 1, in the reaction for producing silicon nitride, 3 mol of metal silicon reacts with 2 mol of nitrogen to form 1 mol of silicon nitride.

【0020】式1から、金属ケイ素が全て窒化ケイ素と
なるとその質量は、1.67倍となる((3×Si+4
×N)/(3×Si)=(3×28+4×14)/(3
×28)=1.67)。すなわち、金属ケイ素が全て窒
化ケイ素になったとすると、質量の増加率は0.67と
なる。ここで質量の増加率は、質量1gの物質がxgに
なったとき(x−1)/1=(x−1)で示される値で
ある。
From equation 1, if all of the metallic silicon is silicon nitride, its mass will be 1.67 times ((3 × Si + 4
× N) / (3 × Si) = (3 × 28 + 4 × 14) / (3
× 28) = 1.67). That is, assuming that all of the metallic silicon is silicon nitride, the rate of increase in mass is 0.67. Here, the rate of increase in mass is a value represented by (x-1) / 1 = (x-1) when a substance having a mass of 1 g becomes xg.

【0021】二酸化ケイ素と炭素の混合物の窒化による
窒化ケイ素の生成反応は、式2で与えられる。式2から
二酸化ケイ素と炭素の混合物の質量変化は、(3×Si
+4×N)/(3×Si+6×O+6×C)=140/
252=0.56となる。すなわち、モル比が式2に従
う二酸化ケイ素と炭素の混合物(以下、式2の混合物と
いう)は、二酸化ケイ素が全て窒化ケイ素になったとす
ると、質量の増加率は−0.44となる。
The reaction for producing silicon nitride by nitriding a mixture of silicon dioxide and carbon is given by equation 2. From equation 2, the mass change of the mixture of silicon dioxide and carbon is (3 × Si
+ 4 × N) / (3 × Si + 6 × O + 6 × C) = 140 /
252 = 0.56. That is, the mixture of silicon dioxide and carbon having a molar ratio according to Formula 2 (hereinafter, referred to as a mixture of Formula 2) has a mass increase rate of −0.44 when silicon dioxide is entirely silicon nitride.

【0022】[0022]

【化1】 Embedded image

【0023】ここで金属ケイ素の質量をW1、式2の混
合物の質量をW2とすると金属ケイ素の質量分率mは、
式3で与えられる。仮に、式3の関係にある金属ケイ素
と、式2の混合物が完全に窒化されたとすると質量増加
率Δwidealは式4で与えられる。
Here, assuming that the mass of the metal silicon is W 1 and the mass of the mixture of the formula 2 is W 2 , the mass fraction m of the metal silicon is
It is given by Equation 3. Assuming that the mixture of the metallic silicon having the relationship of the formula 3 and the formula 2 is completely nitrided, the mass increase rate Δw ideal is given by the formula 4.

【0024】[0024]

【数1】 (Equation 1)

【0025】窒化率は、実際の質量増加率ΔwをΔw
idealで除して求める。例えば、W1が900g、W2
100gとするとm=0.9となる。この場合式4で計
算される完全に窒化されたときの質量増加率Δwideal
は0.56となる。仮に実際の質量増加率Δwが0.4
であった場合は、窒化率=0.4/0.56となり72
%と計算される。
The nitriding rate is obtained by calculating the actual mass increase rate Δw by Δw
Divide by ideal . For example, W 1 is 900 g, W 2 is m = 0.9 When 100 g. In this case, the mass increase rate Δw ideal when completely nitrided is calculated by Equation 4.
Is 0.56. If the actual mass increase rate Δw is 0.4
In this case, the nitriding ratio is 0.4 / 0.56,
Calculated as%.

【0026】[0026]

【実施例】以下に本発明の実施例(例1〜例3、例5〜
例9)と比較例(例4、例10)を示す。 [例1]二酸化ケイ素中のSi/炭素中のCのモル比が
0.56である二酸化ケイ素粒子と炭素粒子の混合粉
を、平均粒子直径(レーザー回折式粒度分布測定機(日
機装社製、商品名:マイクロトラックHRA)による、
以下同じ)が3μmの金属ケイ素粒子100質量部に対
し5質量部添加し出発原料とした。なお、二酸化ケイ素
粒子の平均粒子直径は0.5μmであり、炭素粒子の平
均粒子直径は1μmであった。
Examples of the present invention (Examples 1 to 3, Examples 5 to 5)
Example 9) and Comparative Examples (Examples 4 and 10) are shown. [Example 1] A mixed powder of silicon dioxide particles and carbon particles having a molar ratio of Si / carbon in silicon dioxide of 0.56 to an average particle diameter (laser diffraction type particle size distribution analyzer (manufactured by Nikkiso Co., Ltd. Product name: Microtrac HRA)
The same applies hereinafter) in an amount of 5 parts by mass with respect to 100 parts by mass of metal silicon particles having a particle size of 3 μm. The average particle diameter of the silicon dioxide particles was 0.5 μm, and the average particle diameter of the carbon particles was 1 μm.

【0027】前記出発原料を、エチルアルコールを分散
媒とするボールミルによって20時間混合粉砕した。乾
燥後、粉砕した混合粉の均粒子直径を測定したところ
2.0μmであった。
The starting materials were mixed and pulverized for 20 hours by a ball mill using ethyl alcohol as a dispersion medium. After drying, the average particle diameter of the crushed mixed powder was measured to be 2.0 μm.

【0028】この混合粉を50mm×50mmのプレス
金型に充填し、成形圧19.6MPaで一軸加圧後、さ
らに成形圧98MPaで冷間静水圧(CIP)成形を行
って、50mm×50mm×5mmの成形体サンプルを
得た。前記成形体サンプルを窒素雰囲気炉中、昇温速度
6.7℃/分で1300℃まで昇温し、1300℃で1
2時間窒素雰囲気下で窒化と焼結のための熱処理を行っ
た。
This mixed powder was filled in a 50 mm × 50 mm press die, uniaxially pressed at a molding pressure of 19.6 MPa, and further subjected to cold isostatic pressure (CIP) molding at a molding pressure of 98 MPa to obtain a 50 mm × 50 mm × A 5 mm compact sample was obtained. The molded body sample was heated to 1300 ° C. at a rate of 6.7 ° C./min in a nitrogen atmosphere furnace.
Heat treatment for nitriding and sintering was performed in a nitrogen atmosphere for 2 hours.

【0029】得られた多孔体の気孔率(アルキメデス法
による、以下同じ)は35%であった。細孔特性は、平
均細孔直径が70nmであり、細孔容積の90%が細孔
直径100nm以下であった。なお、各例において細孔
特性は水銀ポロシメータ(ユアサアイオニクス社製、商
品名:AutoSCAN−33)によって測定した。ま
た質量変化から算出した窒化率は92%であった。
The porosity of the obtained porous body (by the Archimedes method, the same applies hereinafter) was 35%. As for the pore characteristics, the average pore diameter was 70 nm, and 90% of the pore volume was 100 nm or less. In each example, the pore characteristics were measured with a mercury porosimeter (trade name: AutoSCAN-33, manufactured by Yuasa Ionics). The nitriding ratio calculated from the change in mass was 92%.

【0030】[例2]二酸化ケイ素中のSi/炭素中の
Cのモル比が0.63である二酸化ケイ素粒子と炭素粒
子の混合粉を平均粒子直径が3μmの金属ケイ素粒子1
00質量部に対し10質量部添加して出発原料とした。
なお、二酸化ケイ素粒子の平均粒子直径は1μmであ
り、炭素粒子の平均粒子直径は1μmであった。
[Example 2] A mixed powder of silicon dioxide particles and carbon particles having a molar ratio of Si in silicon dioxide / C in carbon of 0.63 was prepared by mixing metal silicon particles 1 having an average particle diameter of 3 μm.
10 parts by mass was added to 00 parts by mass to obtain a starting material.
The average particle diameter of the silicon dioxide particles was 1 μm, and the average particle diameter of the carbon particles was 1 μm.

【0031】前記出発原料100質量部に対しメチルセ
ルロースを10質量部、イオン交換水を30質量部添加
して加圧型ニーダーで30分間混練して成形用坏土を調
製した。得られた成形用坏土を押出機によって押出成形
し、幅120mm、厚さ6mm、長さ30cmの平板サ
ンプルを得た。平板サンプルを乾燥機で充分乾燥させた
後、窒素雰囲気炉中、昇温速度5℃/分で1380℃×
12時間の窒化処理を行った。
10 parts by mass of methylcellulose and 30 parts by mass of ion-exchanged water were added to 100 parts by mass of the starting material, and the mixture was kneaded for 30 minutes in a pressure kneader to prepare a forming clay. The obtained forming clay was extruded by an extruder to obtain a flat plate sample having a width of 120 mm, a thickness of 6 mm, and a length of 30 cm. After the plate sample was sufficiently dried with a dryer, the sample was heated at 1380 ° C. × 5 ° C./min in a nitrogen atmosphere furnace.
A nitriding treatment was performed for 12 hours.

【0032】得られた多孔体の特性は、気孔率が39
%、平均細孔直径が100nmで、細孔容積の90%が
細孔直径150nm以下であり、質量変化から算出した
窒化率は90%であった。
The characteristics of the obtained porous body are as follows:
%, The average pore diameter was 100 nm, 90% of the pore volume was 150 nm or less, and the nitriding ratio calculated from the mass change was 90%.

【0033】[例3]二酸化ケイ素中のSi/炭素中の
Cのモル比が0.5である二酸化ケイ素粒子と炭素粒子
の混合粉を平均粒子直径が1.5μmの金属ケイ素粒子
100質量部に対し5質量部添加し出発原料とした。な
お、二酸化ケイ素粒子の平均粒子直径は0.5μmであ
り、炭素粒子の平均粒子直径は0.5μmであった。
EXAMPLE 3 100 parts by mass of metal silicon particles having an average particle diameter of 1.5 μm were mixed with a mixture of silicon dioxide particles and carbon particles having a molar ratio of Si in silicon dioxide / C in carbon of 0.5. 5 parts by mass with respect to the starting material. The average particle diameter of the silicon dioxide particles was 0.5 μm, and the average particle diameter of the carbon particles was 0.5 μm.

【0034】前記出発原料を、エチルアルコールを分散
媒とするボールミルによって20時間混合粉砕した。乾
燥後、粉砕した混合粉の平均粒子直径を測定したところ
1.4μmであった。
The starting materials were mixed and pulverized for 20 hours by a ball mill using ethyl alcohol as a dispersion medium. After drying, the average particle diameter of the pulverized mixed powder was measured to be 1.4 μm.

【0035】この混合粉を50mm×50mmのプレス
金型に充填し、成形圧19.6MPaで一軸加圧した
後、さらに成形圧98MPaで冷間静水圧(CIP)成
形を行って、50mm×50mm×5mmの成形体サン
プルを得た。前記成形体サンプルを、窒素雰囲気炉中、
昇温速度5℃/分で1350℃、8時間窒素雰囲気で窒
化処理を行った。
This mixed powder was filled in a 50 mm × 50 mm press die, uniaxially pressed at a molding pressure of 19.6 MPa, and further subjected to cold isostatic pressure (CIP) molding at a molding pressure of 98 MPa to obtain a 50 mm × 50 mm. A molded product sample of × 5 mm was obtained. The molded body sample in a nitrogen atmosphere furnace,
The nitriding treatment was performed at a temperature rising rate of 5 ° C./min at 1350 ° C. for 8 hours in a nitrogen atmosphere.

【0036】得られた多孔体の特性は、気孔率が32
%、平均細孔直径が50nmで、細孔容積の90%が細
孔直径100nm以下であり、質量変化から算出した窒
化率は95%であった。
The characteristics of the obtained porous body are as follows:
%, The average pore diameter was 50 nm, 90% of the pore volume was 100 nm or less, and the nitriding ratio calculated from the mass change was 95%.

【0037】[例4]例1において、金属ケイ素粒子の
平均粒子直径を3μmのものから20μmのものに変更
した。二酸化ケイ素粒子と炭素粒子の混合粉の粉砕後の
平均粒子直径は5μmとなった。それ以外は例1と同様
にして多孔体を得た。得られた多孔体の特性は、気孔率
が36%、平均細孔直径が100nmで、細孔容積の9
0%が細孔直径150nm以下であり、質量変化から算
出した窒化率は90%であった。
Example 4 In Example 1, the average particle diameter of the metal silicon particles was changed from 3 μm to 20 μm. The average particle diameter of the mixed powder of the silicon dioxide particles and the carbon particles after pulverization was 5 μm. Otherwise in the same manner as in Example 1, a porous body was obtained. The properties of the obtained porous body were as follows: porosity was 36%, average pore diameter was 100 nm, and pore volume was 9%.
0% had a pore diameter of 150 nm or less, and the nitriding ratio calculated from the change in mass was 90%.

【0038】[例5]例1において、二酸化ケイ素粒子
と炭素粒子の混合粉の添加量を5質量部から20質量部
に変更すること以外は例1と同様にした。得られた多孔
体の特性は、気孔率が40%、平均細孔直径が100n
mで、細孔容積の90%が細孔直径200nm以下であ
り、質量変化から算出した窒化率は92%であった。
Example 5 The procedure of Example 1 was repeated except that the amount of the mixed powder of silicon dioxide particles and carbon particles was changed from 5 parts by mass to 20 parts by mass. The properties of the obtained porous body were such that the porosity was 40% and the average pore diameter was 100 n.
In m, 90% of the pore volume was 200 nm or less in pore diameter, and the nitriding ratio calculated from the change in mass was 92%.

【0039】[例6]例1において、熱処理温度を13
00℃から900℃に変更すること以外は例1と同様に
した。得られた多孔体の特性は、気孔率が43%、平均
細孔直径が500nmで、細孔容積の90%が細孔直径
1μm以下であり、質量変化から算出した窒化率は50
%であった。
[Example 6] In Example 1, the heat treatment temperature was set to 13
Same as Example 1 except that the temperature was changed from 00 ° C to 900 ° C. The properties of the obtained porous body were such that the porosity was 43%, the average pore diameter was 500 nm, 90% of the pore volume was 1 μm or less, and the nitriding rate calculated from the mass change was 50%.
%Met.

【0040】[例7]例1において、熱処理温度を13
00℃から1500℃に変更すること以外は例1と同様
にした。得られた多孔体の特性は、気孔率が32%、平
均細孔直径が500nmで、細孔容積の90%が細孔直
径1μm以下であり、質量変化から算出した窒化率は9
8%であった。
[Example 7] In Example 1, the heat treatment temperature was set to 13
Same as Example 1 except that the temperature was changed from 00 ° C to 1500 ° C. The properties of the obtained porous body were such that the porosity was 32%, the average pore diameter was 500 nm, 90% of the pore volume was 1 μm or less, and the nitriding rate calculated from the mass change was 9%.
8%.

【0041】[例8]例1において、熱処理時間を12
時間から1時間に変更すること以外は例1と同様にし
た。得られた多孔体の特性は、気孔率が38%、平均細
孔直径が200nmで、細孔容積の90%が細孔直径5
00nm以下であり、質量変化から算出した窒化率は7
0%であった。
Example 8 In Example 1, the heat treatment time was set to 12
Same as Example 1 except that the time was changed from 1 hour to 1 hour. The properties of the obtained porous body were such that the porosity was 38%, the average pore diameter was 200 nm, and 90% of the pore volume was 5%.
00 nm or less, and the nitridation rate calculated from the mass change is 7
It was 0%.

【0042】[例9]例1において、二酸化ケイ素中の
Si/炭素中のCのモル比を0.56から0.3に変更
すること以外は例1と同様にした。得られた多孔体の特
性は、気孔率が40%、平均細孔直径が100nmで、
細孔容積の90%が細孔直径200nm以下であり、質
量変化から算出した窒化率は88%であった。
Example 9 The procedure of Example 1 was repeated except that the molar ratio of Si in silicon dioxide / C in carbon was changed from 0.56 to 0.3. The properties of the obtained porous body were such that the porosity was 40%, the average pore diameter was 100 nm,
90% of the pore volume had a pore diameter of 200 nm or less, and the nitriding ratio calculated from the change in mass was 88%.

【0043】[例10]例1において、二酸化ケイ素粒
子と炭素粒子を省略すること以外は例1と同様にした。
得られた多孔体の特性は、気孔率が19%、平均細孔直
径が30nmで、細孔容積の90%が細孔直径50nm
以下であり、質量変化から算出した窒化率は95%であ
った。
Example 10 The procedure of Example 1 was repeated except that the silicon dioxide particles and the carbon particles were omitted.
The properties of the obtained porous body are such that the porosity is 19%, the average pore diameter is 30 nm, and 90% of the pore volume is 50 nm in pore diameter.
It was as follows, and the nitriding ratio calculated from the mass change was 95%.

【0044】[0044]

【発明の効果】本製造法により、安価でしかも窒化率の
高い、ガス分離に好適な窒化ケイ素多孔体を容易に製造
できる。本発明で得られる窒化ケイ素多孔体は、気孔径
や気孔率がガス分離用フィルタ基材として特に好適なも
のである。
According to the present production method, a silicon nitride porous body which is inexpensive and has a high nitriding rate and is suitable for gas separation can be easily produced. The porous silicon nitride obtained by the present invention is particularly suitable for a gas separation filter substrate having a pore diameter and a porosity.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA41 MA22 MA24 MB12 MB15 MB16 MC03 NA39 4G001 BA04 BA60 BA62 BB32 BC48 BC52 BD01 BD13 BD36 BD37 BE33 4G019 FA13 GA02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA41 MA22 MA24 MB12 MB15 MB16 MC03 NA39 4G001 BA04 BA60 BA62 BB32 BC48 BC52 BD01 BD13 BD36 BD37 BE33 4G019 FA13 GA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】二酸化ケイ素粒子、炭素粒子および平均粒
子直径が5μm以下の金属ケイ素粒子を含み、かつ前記
二酸化ケイ素粒子、前記炭素粒子および前記金属ケイ素
粒子の合量が90質量%以上である成形体を窒素雰囲気
中で熱処理することにより実質的に窒化ケイ素からなる
多孔質体とする窒化ケイ素多孔体の製造法。
1. A molding comprising silicon dioxide particles, carbon particles and metal silicon particles having an average particle diameter of 5 μm or less, and wherein the total amount of said silicon dioxide particles, said carbon particles and said metal silicon particles is 90% by mass or more. A method for producing a silicon nitride porous body, wherein the body is heat-treated in a nitrogen atmosphere to obtain a porous body substantially composed of silicon nitride.
【請求項2】前記二酸化ケイ素中のSi/前記炭素中の
Cのモル比が0.4〜0.67である請求項1記載の窒
化ケイ素多孔体の製造法。
2. The method according to claim 1, wherein the molar ratio of Si in the silicon dioxide / C in the carbon is 0.4 to 0.67.
【請求項3】前記二酸化ケイ素粒子と前記炭素粒子の合
量が前記成形体中1〜20質量%である請求項1または
2記載の窒化ケイ素多孔体の製造法。
3. The method for producing a silicon nitride porous body according to claim 1, wherein a total amount of the silicon dioxide particles and the carbon particles is 1 to 20% by mass in the molded body.
【請求項4】前記熱処理条件が、成形体を温度1100
〜1400℃の窒素雰囲気中で熱処理を行うものである
請求項1、2または3記載の窒化ケイ素多孔体の製造
法。
4. The heat treatment conditions are as follows:
4. The method for producing a silicon nitride porous body according to claim 1, wherein the heat treatment is performed in a nitrogen atmosphere at a temperature of from 1 to 1400 [deg.] C.
【請求項5】前記窒化ケイ素多孔体の気孔率が20〜4
0%、平均細孔直径が30〜100nmである請求項
1、2、3または4記載の窒化ケイ素多孔体の製造法。
5. The porosity of the silicon nitride porous body is 20-4.
5. The method for producing a silicon nitride porous body according to claim 1, wherein the average pore diameter is 0% and the average pore diameter is 30 to 100 nm.
JP2000009278A 2000-01-18 2000-01-18 Method for producing porous silicon nitride Pending JP2001206775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000009278A JP2001206775A (en) 2000-01-18 2000-01-18 Method for producing porous silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000009278A JP2001206775A (en) 2000-01-18 2000-01-18 Method for producing porous silicon nitride

Publications (1)

Publication Number Publication Date
JP2001206775A true JP2001206775A (en) 2001-07-31

Family

ID=18537449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000009278A Pending JP2001206775A (en) 2000-01-18 2000-01-18 Method for producing porous silicon nitride

Country Status (1)

Country Link
JP (1) JP2001206775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111960838A (en) * 2020-08-31 2020-11-20 武汉科技大学 Silicon nitride framework reinforced quartz-based ceramics for photovoltaic grade silicon smelting and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111960838A (en) * 2020-08-31 2020-11-20 武汉科技大学 Silicon nitride framework reinforced quartz-based ceramics for photovoltaic grade silicon smelting and preparation method thereof
CN111960838B (en) * 2020-08-31 2022-01-14 武汉科技大学 Silicon nitride framework reinforced quartz-based ceramic for photovoltaic silicon smelting and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3581879B2 (en) Alumina porous body and method for producing the same
WO1994027929A1 (en) Porous ceramic and process for producing the same
KR101233744B1 (en) Manufacturing method of pre-sintered porous Si-mixture granules for porous sintered reaction-bonded silicon nitride, pre-sintered porous granules therefrom, and method manufacturing the porous sintered reaction-bonded silicon nitride
EP1197253B1 (en) Method for producing a silicon nitride filter
US7368076B2 (en) Method for producing a silicon nitride filter
JPH0613435B2 (en) Method for manufacturing porous silicon nitride mold for die casting
JP4348429B2 (en) Porous silicon nitride and method for producing the same
JP2001206775A (en) Method for producing porous silicon nitride
US20050023736A1 (en) Method for producing a silicon nitride honeycomb filter
JP4041879B2 (en) Ceramic porous body and method for producing the same
JP4743387B2 (en) Method for producing aluminum nitride powder
KR101140352B1 (en) Manufacturing method of pre-sintered porous Si granules for porous reaction-bonded silicon nitride, pre-sintered porous granules therefrom
JP3570676B2 (en) Porous ceramic body and method for producing the same
JP2007131528A (en) Method for producing non-oxide porous ceramic material
JP2566737B2 (en) Method for producing translucent aluminum magnesium oxynitride sintered body
JP2000128646A (en) Porous SiC sintered body
JP2696735B2 (en) Manufacturing method of silicon nitride sintered body
JP2001206785A (en) Method for producing silicon carbide porous body
JPH05148034A (en) Production of sintered silicon nitride
JP2002121073A (en) Manufacturing method of silicon nitride filter
JP2003002759A (en) Ceramic porous body and method for producing the same
JP4247957B2 (en) Method for producing non-oxide porous ceramic material mainly composed of silicon
JP2004083354A (en) Method for producing silicon-based non-oxide porous ceramic material
JP2001139379A (en) Method for producing high thermal conductive aluminum nitride sintered body
KR101140353B1 (en) Porous sintered reaction-bonded silicon nitride body and manufacturing methods for the same