JP2001204200A - Control method of permanent magnet type electric rotating machine - Google Patents
Control method of permanent magnet type electric rotating machineInfo
- Publication number
- JP2001204200A JP2001204200A JP2000007551A JP2000007551A JP2001204200A JP 2001204200 A JP2001204200 A JP 2001204200A JP 2000007551 A JP2000007551 A JP 2000007551A JP 2000007551 A JP2000007551 A JP 2000007551A JP 2001204200 A JP2001204200 A JP 2001204200A
- Authority
- JP
- Japan
- Prior art keywords
- command
- voltage
- permanent magnet
- current
- torque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は永久磁石を有する回
転電機の制御方法で、特に直軸分電流Idと横軸分電流
Iqの作成方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a rotating electric machine having a permanent magnet, and more particularly to a method for producing a direct-axis component current Id and a horizontal-axis component current Iq.
【0002】[0002]
【従来の技術】PWMインバータを用いてベクトル制御
される、回転子に永久磁石を有する回転電機(以下「P
Mモータ」と略す)において、d−q軸上で表した電圧
方程式は(1)式のようになる。 ここで、Vd、Vqは直軸電圧、横軸電圧、Raは電機
子巻線の抵抗、Ld、Lqは直軸インダクタンス、横軸
インダクタンス、id、iqは直軸電流、横軸電流、Ψ
aは電機子鎖交磁束、ωは角周波数(=2×π×f)で
ある。また、トルクT(Nm)は(2)式で示される。 ここで、Pnは極対数である。2. Description of the Related Art A rotary electric machine (hereinafter referred to as "P") having a permanent magnet in a rotor, which is vector-controlled by using a PWM inverter.
M motor), the voltage equation represented on the dq axes is as shown in equation (1). Here, Vd and Vq are the direct-axis voltage and the horizontal-axis voltage, Ra is the resistance of the armature winding, Ld and Lq are the direct-axis inductance, the horizontal-axis inductance, id and iq are the direct-axis current, the horizontal-axis current, and Ψ.
a is the armature interlinkage magnetic flux, and ω is the angular frequency (= 2 × π × f). Further, the torque T (Nm) is expressed by equation (2). Here, Pn is the number of pole pairs.
【0003】ベクトル制御インバータではトルク指令T
*から直軸電流指令id*および横軸電流指令iq*を
作成し、さらにこれらの指令から必要な電圧が得られる
ようなゲート信号が作られる。(1)、(2)式で示さ
れるVd、Vq、id、iqはベクトル制御器内部およ
び理論式上のものであり、実際に計測できる線間電圧お
よび電機子電流は(3)、(4)式の関係がある。 トルク指令が与えられると直軸電流idを零とすること
により横軸電流iqは(2)式から求めることができ
る。この時の直軸電圧Vdと横軸電圧Vqは(1)式か
ら得られ、線間電圧Vは(3)式から、電機子電流Iは
(4)式から得られることになる。In a vector control inverter, a torque command T
A direct-axis current command id * and a horizontal-axis current command iq * are created from *, and a gate signal for obtaining a required voltage from these commands is created. Vd, Vq, id, and iq shown in equations (1) and (2) are inside the vector controller and on theoretical equations, and the line voltage and armature current that can be actually measured are (3) and (4) ) Expression. When the torque command is given, the horizontal axis current iq can be obtained from equation (2) by setting the direct axis current id to zero. At this time, the direct-axis voltage Vd and the horizontal-axis voltage Vq are obtained from Expression (1), the line voltage V is obtained from Expression (3), and the armature current I is obtained from Expression (4).
【0004】図3は200V、1800r/minのP
Mモータを定格トルクの100%一定で運転し、回転数
を0から定格回転数まで上昇させた場合の線間電圧の変
化を示したものである。直軸電流idは定格電流の0
%、−50%、−100%の例を示しており、図中V
(0%)、V(−50%)、V(−100%)の記号で
示している。図3において、id=0%では定格速度の
約57.5%(1035r/min)で線間電圧が定格
電圧の200Vになってしまうことがわかる。電流の符
号は線間電圧を下げる意味から−(マイナス)の符号と
しているが、トルクの増大に伴い線間電圧が直線的に増
大していることが示されている。直流電動機や誘導電動
機を回転数に関係なく一定トルクで運転できる定トルク
運転領域では電圧/周波数(V/F)は原点を通り、定
格電圧で定格回転数の点を通る直線にほぼなる。周波数
零では電機子巻線の影響などにより電圧が零とはならな
いので原点より電圧の正側を通るのが現実的であるが、
定格回転数において定格電圧になるのが一般的である。
一方、図3で示されるPMモータではid=0制御とす
ると定格回転数のかなり手前で定格電圧になってしま
い、これまでの直流機や誘導機と様相を異にしている。
すなわち、これらと同じ特性とするためにはidを流し
て電圧が上昇しない工夫が必要となる。FIG. 3 shows a 200 V, 1800 r / min P
This graph shows a change in line voltage when the M motor is operated at a constant 100% of the rated torque and the number of revolutions is increased from 0 to the rated number of revolutions. The direct axis current id is 0 of the rated current.
%, -50%, and -100%, and V in FIG.
(0%), V (−50%), and V (−100%). In FIG. 3, it can be seen that at id = 0%, the line voltage becomes 200 V of the rated voltage at about 57.5% (1035 r / min) of the rated speed. Although the sign of the current is a minus (-) sign in order to reduce the line voltage, it is shown that the line voltage increases linearly with an increase in the torque. In a constant torque operation region in which a DC motor or an induction motor can be operated at a constant torque irrespective of the rotation speed, the voltage / frequency (V / F) is almost a straight line passing through the origin and passing the point of the rated rotation speed at the rated voltage. At zero frequency, the voltage does not become zero due to the effect of the armature winding, so it is realistic to pass from the origin to the positive side of the voltage,
Generally, the rated voltage is obtained at the rated rotation speed.
On the other hand, in the PM motor shown in FIG. 3, when id = 0 control is performed, the rated voltage becomes a point shortly before the rated rotational speed, which is different from the conventional DC motor and induction motor.
That is, in order to obtain the same characteristics as those described above, it is necessary to devise a method of preventing the voltage from increasing by flowing id.
【0005】ベクトル制御ではトルク指令から電流指令
を作り、最終結果として電圧が決定されるが、数式から
解析的にトルク指令、線間電圧指令、周波数指令からi
dとiqを求めることはできない。このため、id=0
としてトルク指令からiqを(2)式から算定し、
(1)式からVdとVqを求め、(3)式から線間電圧
を求めて制限値との大小比較し、制限値を超過したら、
idを負側に増大し、もう一度算定する。これを繰り返
し行い所定の線間電圧になるように算定する。In the vector control, a current command is generated from a torque command, and a voltage is determined as a final result.
d and iq cannot be determined. Therefore, id = 0
From the torque command, iq is calculated from equation (2),
Vd and Vq are obtained from the equation (1), the line voltage is obtained from the equation (3), and compared with the limit value.
Increase id to the negative side and calculate again. This is repeated to calculate a predetermined line voltage.
【0006】このため、任意のidに対して所定の線間
電圧Vになるiqを1回の算定では求めることはでき
ず、何回か繰り返しながら収束する算定を行うのでその
分、指令に対する出力に時間遅れが生じることになる。
したがって、制御中の数値に制限を設けるとその判別の
ための繰り返し計算が必要になるため、必ず制御遅れに
つながる。ベクトル制御では素早い制御性能を目標に掲
げているので、このような制御遅れは致命的な短所にな
る。これを避けるために、一般的にはモータ線間電圧を
電源電圧よりかなり低めに設計し、id=0としてトル
クを増大してもモータ線間電圧が電源電圧に到達しない
ようにしている。このため、1回のiqの計算だけで済
むので制御遅れのない制御が可能となる。For this reason, it is not possible to obtain iq which becomes a predetermined line voltage V for an arbitrary id by one calculation, and to calculate the convergence by repeating the calculation several times. Will have a time delay.
Therefore, if a limit is imposed on the numerical value under control, iterative calculation for the determination is necessary, which always leads to control delay. Since vector control aims at quick control performance, such a control delay is a fatal disadvantage. In order to avoid this, the motor line voltage is generally designed to be considerably lower than the power supply voltage, and id = 0 so that the motor line voltage does not reach the power supply voltage even if the torque is increased. For this reason, only one calculation of iq is required, and control without control delay is possible.
【0007】前掲の図3はモータ線間電圧が200Vの
場合を示した例であるが、id=0であることを示すV
(0%)のグラフから電源電圧が400Vであればiq
だけで定格回転数までトルクを100%出せることがわ
かる。このようにiqだけでトルク制御が可能であれば
トルク指令からiqは(2)式から直ちに算出され、制
御遅れは最小限に留めることができる。ところが、この
ように電源電圧に対してモータ線間電圧を大幅に下げた
設計を行うとモータ定格電流が増大し、インバータの出
力部は電流容量の大きな素子が必要となってくる。ここ
で図4に図3の場合の力率を示す。算定条件は図3と同
じで、定格トルクを出している状態でPf(0%)はi
dを0%、Pf(−50%)は−50%、Pf(−10
0%)は−100%とした場合である。図4において、
id=0の力率Pf(0%)は最も悪く、また効率も悪
くなるので大幅な電流増加を招くと言える。したがっ
て、小型モータで出力部の半導体素子の容量に余裕があ
る場合は力率や効率が悪くても制御遅れのない方がよい
が、数kWを超える容量になると電流の増大はインバー
タ価格の上昇につながり、好ましくない。FIG. 3 shows an example in which the motor line voltage is 200 V.
From the graph of (0%), if the power supply voltage is 400 V, iq
It can be understood that 100% of the torque can be output up to the rated rotation speed only with the above. As described above, if torque control is possible only with iq, iq is immediately calculated from the torque command from equation (2), and control delay can be minimized. However, when such a design is performed in which the motor line voltage is greatly reduced with respect to the power supply voltage, the motor rated current increases, and an output section of the inverter requires an element having a large current capacity. FIG. 4 shows the power factor in the case of FIG. The calculation conditions are the same as in FIG. 3, and Pf (0%) is i
d is 0%, Pf (−50%) is −50%, Pf (−10
0%) is the case where it is -100%. In FIG.
Since the power factor Pf (0%) at id = 0 is the worst, and the efficiency is also worse, it can be said that a large increase in current is caused. Therefore, if there is a margin in the capacity of the semiconductor element in the output section with a small motor, it is better not to delay the control even if the power factor and efficiency are poor, but if the capacity exceeds several kW, the increase in current will increase the inverter price. Leads to undesirable.
【0008】[0008]
【発明が解決しようとする課題】本発明は上述の点を鑑
み創案したもので、永久磁石回転電機のベクトル制御に
おいて、制御遅れなしにトルク指令、電圧制限値、回転
数指令からid指令とiq指令を出し、しかも効率、力
率ともに良好な運転ができる制御方法を提供することに
ある。SUMMARY OF THE INVENTION The present invention has been made in view of the above points. In vector control of a permanent magnet rotating electric machine, the id command and the iq are used without any control delay. It is an object of the present invention to provide a control method that issues a command and enables good operation in both efficiency and power factor.
【0009】[0009]
【課題を解決するための手段】トルク指令に対応する直
軸分電流Idと横軸分電流Iqの各電流指令値として、
回転電機の線間電圧または相電圧と回転速度のパラメー
タで示されるテーブルを参照して作成する制御系を構成
する。The direct current component Id and the horizontal current component Iq corresponding to the torque command are given by:
A control system is created by referring to a table indicated by parameters of a line voltage or a phase voltage and a rotation speed of the rotating electric machine.
【0010】図2は従来の制御ブロックを示したもので
ある。電流指令作成部ではトルク指令T*からid=0
として(2)式よりiq*を求める。算定されたid*
とiq*および速度指令ω*から電圧制限判別部では
(1)式と(3)式から線間電圧Vを算定し、制限値以
内か判別し、電流指令作成部にその結果を渡す。条件が
満足されるまで、この間を行き来し最終的にid*とi
q*が指令として出力される。電流制御および電圧制御
部ではこれらの電流指令や電圧情報よりPWMとして必
要なゲート信号が作成され、最終的にインバータの出力
になる。FIG. 2 shows a conventional control block. In the current command creation unit, id = 0 from the torque command T *.
And iq * is obtained from equation (2). Calculated id *
From eq * and speed command ω *, the voltage limit determining unit calculates the line voltage V from equations (1) and (3), determines whether it is within the limit value, and passes the result to the current command creating unit. Until the condition is satisfied, go back and forth between the two and finally id * and i
q * is output as a command. In the current control and voltage control unit, a gate signal necessary for PWM is created from these current commands and voltage information, and finally becomes an output of the inverter.
【0011】[0011]
【発明に実施の形態】図1は本発明を示した制御ブロッ
クである。電流指令作成部では従来と同様にトルク指令
T*からid=0として(2)式よりiq*を求める
が、同時にidiqテーブルでは電圧制限式により指定
の電圧になるidとiqの算定を行う。idiqテーブ
ルはトルク指令T*と速度指令ω*および線間電圧Vよ
りidとiqを求めるもので、予め(3)式で電圧を算
定している。FIG. 1 is a control block diagram showing the present invention. The current command creation unit obtains iq * from equation (2) with id = 0 from the torque command T * in the same manner as in the related art. At the same time, in the idiq table, id and iq that reach the specified voltages are calculated by the voltage limiting equation. The idiq table obtains id and iq from the torque command T *, the speed command ω *, and the line voltage V, and the voltage is calculated in advance by the equation (3).
【0012】実際の場合、トルク指令は無限にあるた
め、すべての状態を表にすることができない。そこで、
トルクは適宜分割し、数値のないところは直線補間によ
って算定する。電圧の制限式はモータが選定されたとき
には決まっているので、モータの定数がわかった時点で
オフラインによりidの表は作成できる。In the actual case, since the torque command is infinite, not all states can be tabulated. Therefore,
The torque is divided as appropriate, and where there is no numerical value, it is calculated by linear interpolation. Since the voltage limiting equation is determined when the motor is selected, the id table can be created offline when the motor constants are known.
【0013】表1にモータ定数を用いてトルク指令T*
に対するid*の例を示す。 Table 1 shows the torque command T * using the motor constant.
Here is an example of id * for.
【0014】トルク指令T*が43.2%までは速度指
令に関係なくid*は0%でよく、トルク指令が100
%ではid*は−117.5%になる。この間のトルク
指令では直線補間を行う。また、150%では−243
%であり、この間も直線補間する。このid*とT*よ
り(2)式を変形した式からiq*を算定する。Until the torque command T * is 43.2%, id * may be 0% irrespective of the speed command and the torque command is 100%.
%, Id * becomes -117.5%. In the torque command during this time, linear interpolation is performed. At 150%, it is -243.
%, And linear interpolation is also performed during this period. From the id * and T *, iq * is calculated from an expression obtained by modifying the expression (2).
【0015】すなわち、 T*≦43.2% id*=0 43.2%<T*≦100% id*=(−117.5/56.8)×T*+89.3
7 100%<T*≦150% id*=(−125.5/50)×T*+133.5 となる。That is, T * ≦ 43.2% id * = 0 43.2% <T * ≦ 100% id * = (− 117.5 / 56.8) × T * + 89.3
7 100% <T * ≦ 150% id * = (− 125.5 / 50) × T * + 133.5
【0016】これらの式から(3)式を用いて線間電圧
を算定すると回転数が定格より低い範囲で若干V/Fを
上回ることになるが、実用上差し支えない範囲である。When the line voltage is calculated from these formulas by using the formula (3), the rotational speed slightly exceeds V / F in a range lower than the rated value, but this range is practically acceptable.
【発明の効果】以上説明したように本発明によれば、ト
ルク指令と線間電圧および速度指令から予めid*のテ
ーブルを作成し、iq*を算定することにより、繰り返
し計算なしに指定の線間電圧になる電流指令を作成可能
な制御装置を提供でき実用上有用である。As described above, according to the present invention, a table of id * is created in advance from a torque command, a line voltage, and a speed command, and iq * is calculated. It is practically useful because it can provide a control device capable of creating a current command for generating an intermediate voltage.
【図1】図1は本発明の実施例を示す制御ブロック図で
ある。FIG. 1 is a control block diagram showing an embodiment of the present invention.
【図2】図2は従来の実施例を示す制御ブロック図であ
る。FIG. 2 is a control block diagram showing a conventional embodiment.
【図3】図3は定格トルク一定に回転数を定格回転数ま
で変化させた場合で、idをパラメータとした時の線間
電圧のグラフである。FIG. 3 is a graph of line voltage when id is used as a parameter when the rotational speed is changed to the rated rotational speed while the rated torque is constant.
【図4】図4は図3の条件における力率のグラフであ
る。FIG. 4 is a graph of a power factor under the conditions of FIG. 3;
T* トルク指令 ω* 回転数指令 ωm 実回転速度 id* 直軸電流指令 iq* 横軸電流指令 PMモータ 永久磁石電動機 PG パルス発信器 T * Torque command ω * Rotation speed command ωm Actual rotation speed id * Direct axis current command iq * Horizontal axis current command PM motor Permanent magnet motor PG Pulse transmitter
Claims (1)
またはフェライト永久磁石を有し、固定子鉄心には単相
または3相の多極スロットを有し、該スロットには単相
または3相の電機子巻線が巻回してある永久磁石形回転
電機を、半導体電力変換器を用いて、回転速度や電機子
電流のフィードバックによってトルクおよび回転速度を
制御する制御方法において、トルク指令に対応する直軸
分電流Idと横軸分電流Iqの各電流指令値として、回
転電機の線間電圧または相電圧と回転速度のパラメータ
で示されるテーブルを参照して作成する制御系を構成し
たことを特徴とする前記永久磁石形回転電機の制御方
法。A rotor core has a rare earth or ferrite permanent magnet inside or at an outer periphery thereof, a stator core has a single-phase or three-phase multipole slot, and the slot has a single-phase or three-phase slot. In the control method of controlling the torque and the rotation speed by the feedback of the rotation speed and the armature current by using the semiconductor power converter, the permanent magnet type rotating electric machine in which the armature winding is wound corresponds to the torque command. A control system is constructed in which each of the current command values of the direct-axis component current Id and the horizontal-axis component current Iq is referred to a table indicated by parameters of a line voltage or a phase voltage and a rotation speed of the rotating electric machine. The method for controlling the permanent magnet type rotating electric machine described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000007551A JP2001204200A (en) | 2000-01-17 | 2000-01-17 | Control method of permanent magnet type electric rotating machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000007551A JP2001204200A (en) | 2000-01-17 | 2000-01-17 | Control method of permanent magnet type electric rotating machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001204200A true JP2001204200A (en) | 2001-07-27 |
Family
ID=18535927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000007551A Pending JP2001204200A (en) | 2000-01-17 | 2000-01-17 | Control method of permanent magnet type electric rotating machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001204200A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002159192A (en) * | 2000-11-17 | 2002-05-31 | Shinko Electric Co Ltd | Motor control system |
JP2008141835A (en) * | 2006-11-30 | 2008-06-19 | Denso Corp | Motor control method and motor control device using the same |
JP2012055126A (en) * | 2010-09-03 | 2012-03-15 | Fuji Electric Co Ltd | Motor driving device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02206391A (en) * | 1989-01-31 | 1990-08-16 | Daikin Ind Ltd | Reluctance motor torque control method |
JPH06205508A (en) * | 1992-12-28 | 1994-07-22 | Kokusan Denki Co Ltd | Method and apparatu for regulating speed of motor operated vehicle |
JPH07107772A (en) * | 1993-08-10 | 1995-04-21 | Toyota Motor Corp | Drive control circuit of permanent magnet-type synchronous motor |
JPH0984208A (en) * | 1995-09-14 | 1997-03-28 | Denso Corp | Electric car controller |
JPH11150999A (en) * | 1997-11-17 | 1999-06-02 | Meidensha Corp | Pm motor controller |
JP2000032799A (en) * | 1998-07-07 | 2000-01-28 | Hitachi Ltd | Controller and control method for electric rotating machine |
-
2000
- 2000-01-17 JP JP2000007551A patent/JP2001204200A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02206391A (en) * | 1989-01-31 | 1990-08-16 | Daikin Ind Ltd | Reluctance motor torque control method |
JPH06205508A (en) * | 1992-12-28 | 1994-07-22 | Kokusan Denki Co Ltd | Method and apparatu for regulating speed of motor operated vehicle |
JPH07107772A (en) * | 1993-08-10 | 1995-04-21 | Toyota Motor Corp | Drive control circuit of permanent magnet-type synchronous motor |
JPH0984208A (en) * | 1995-09-14 | 1997-03-28 | Denso Corp | Electric car controller |
JPH11150999A (en) * | 1997-11-17 | 1999-06-02 | Meidensha Corp | Pm motor controller |
JP2000032799A (en) * | 1998-07-07 | 2000-01-28 | Hitachi Ltd | Controller and control method for electric rotating machine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002159192A (en) * | 2000-11-17 | 2002-05-31 | Shinko Electric Co Ltd | Motor control system |
JP4556322B2 (en) * | 2000-11-17 | 2010-10-06 | シンフォニアテクノロジー株式会社 | Motor control method |
JP2008141835A (en) * | 2006-11-30 | 2008-06-19 | Denso Corp | Motor control method and motor control device using the same |
JP2012055126A (en) * | 2010-09-03 | 2012-03-15 | Fuji Electric Co Ltd | Motor driving device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ren et al. | Direct torque control of permanent-magnet synchronous machine drives with a simple duty ratio regulator | |
CN100550594C (en) | Use the motor speed estimation system and method for hybrid model reference adaptive system | |
JP3331734B2 (en) | Control method of rotating electric machine | |
Morimoto et al. | Servo drive system and control characteristics of salient pole permanent magnet synchronous motor | |
US6362586B1 (en) | Method and device for optimal torque control of a permanent magnet synchronous motor over an extended speed range | |
Bianchi et al. | Parameters and volt-ampere ratings of a synchronous motor drive for flux-weakening applications | |
JP2002095300A (en) | Method of controlling permanent magnet synchronous motor | |
Vyncke et al. | Direct torque control of permanent magnet synchronous motors–an overview | |
GB2489434A (en) | Controlling an electrical machine with an observer | |
CN109194218B (en) | Control device, control method and system of direct-current bias type hybrid excitation motor | |
JP2006522578A (en) | Synchronous electric machine having one stator and at least one rotor and related control device | |
JP2008512078A (en) | Method for controlling a wound rotor synchronous motor | |
Mademlis | Compensation of magnetic saturation in maximum torque to current vector controlled synchronous reluctance motor drives | |
JPH08331900A (en) | Controller for electric rotating machine | |
TW202318778A (en) | A method of operating a synchronous motor in a flux weakening mode and a controller therefor | |
Winzer et al. | Dynamic control of generalized electrically excited synchronous machines using predictive flux control | |
CN110086398A (en) | A kind of Direct Torque Control based on duty ratio control | |
Kang et al. | ADRC-based speed control for permanent magnet synchronous machine drives using sliding-mode extended state observer | |
JP2001204200A (en) | Control method of permanent magnet type electric rotating machine | |
Brunner et al. | Sensorless control of a Planetary Motor | |
Kiran et al. | Sensorless speed estimation and control of brushless doubly-fed reluctance machine drive using model reference adaptive system | |
Nguyen et al. | Performance analysis of a new concentratedwinding interior permanent magnet synchronous machine under Field Oriented Control | |
Kurnosov et al. | Analysis of the phase control of synchronous electric motor with permanent magnets | |
Tang et al. | A direct torque controlled interior permanent magnet synchronous machine drive with a new stator resistance estimator | |
KR101998515B1 (en) | Starting CurrentReduction Method and device of Single-phase Induction Motor Based on dq-axis Transformation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100216 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100706 |