JP2001185139A - Positive electrode material for secondary battery using nonaqueous electrolyte and manufacturing method therefor and lithium secondary battery - Google Patents
Positive electrode material for secondary battery using nonaqueous electrolyte and manufacturing method therefor and lithium secondary batteryInfo
- Publication number
- JP2001185139A JP2001185139A JP36470399A JP36470399A JP2001185139A JP 2001185139 A JP2001185139 A JP 2001185139A JP 36470399 A JP36470399 A JP 36470399A JP 36470399 A JP36470399 A JP 36470399A JP 2001185139 A JP2001185139 A JP 2001185139A
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- positive electrode
- lithium
- electrode material
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 45
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 37
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 36
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000011572 manganese Substances 0.000 claims abstract description 26
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 18
- 239000010941 cobalt Substances 0.000 claims abstract description 18
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims abstract description 18
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims abstract description 14
- 229910052742 iron Inorganic materials 0.000 claims abstract description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000011135 tin Substances 0.000 claims abstract description 8
- 229910052718 tin Inorganic materials 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 7
- 239000010406 cathode material Substances 0.000 claims description 5
- 150000001242 acetic acid derivatives Chemical class 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 239000000654 additive Substances 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 5
- 230000014759 maintenance of location Effects 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 14
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical group O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 13
- 239000002994 raw material Substances 0.000 description 11
- 238000005469 granulation Methods 0.000 description 9
- 230000003179 granulation Effects 0.000 description 9
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 8
- ZBYYWKJVSFHYJL-UHFFFAOYSA-L cobalt(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Co+2].CC([O-])=O.CC([O-])=O ZBYYWKJVSFHYJL-UHFFFAOYSA-L 0.000 description 7
- 229940011182 cobalt acetate Drugs 0.000 description 6
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 6
- 238000005192 partition Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- -1 cobalt or nickel Chemical compound 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229910000428 cobalt oxide Inorganic materials 0.000 description 3
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 3
- 239000006258 conductive agent Substances 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 3
- 229910052808 lithium carbonate Inorganic materials 0.000 description 3
- 229940078494 nickel acetate Drugs 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910003174 MnOOH Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JJVGROTXXZVGGN-UHFFFAOYSA-H [Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[F-].[F-].[F-].[F-].[F-].[F-] Chemical compound [Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[F-].[F-].[F-].[F-].[F-].[F-] JJVGROTXXZVGGN-UHFFFAOYSA-H 0.000 description 1
- RTBHLGSMKCPLCQ-UHFFFAOYSA-N [Mn].OOO Chemical compound [Mn].OOO RTBHLGSMKCPLCQ-UHFFFAOYSA-N 0.000 description 1
- 159000000021 acetate salts Chemical class 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- ZWOYKDSPPQPUTC-UHFFFAOYSA-N dimethyl carbonate;1,3-dioxolan-2-one Chemical compound COC(=O)OC.O=C1OCCO1 ZWOYKDSPPQPUTC-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- GEYXPJBPASPPLI-UHFFFAOYSA-N manganese(iii) oxide Chemical compound O=[Mn]O[Mn]=O GEYXPJBPASPPLI-UHFFFAOYSA-N 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229940078487 nickel acetate tetrahydrate Drugs 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- OINIXPNQKAZCRL-UHFFFAOYSA-L nickel(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Ni+2].CC([O-])=O.CC([O-])=O OINIXPNQKAZCRL-UHFFFAOYSA-L 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- YJGJRYWNNHUESM-UHFFFAOYSA-J triacetyloxystannyl acetate Chemical compound [Sn+4].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O YJGJRYWNNHUESM-UHFFFAOYSA-J 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リチウム二次電池
等に使用できる非水電解質二次電池用正極材料とその製
造方法及び該非水電解質二次電池用正極材料を使用する
リチウム二次電池に関し、より詳細にはマンガンの溶出
を抑制し、高温保存性や高温サイクル特性等の電池の高
温特性を向上させた非水電解質二次電池用正極材料とそ
の製造方法及び該非水電解質二次電池用正極材料を使用
するリチウム二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode material for a non-aqueous electrolyte secondary battery which can be used for a lithium secondary battery and the like, a method for producing the same, and a lithium secondary battery using the positive electrode material for the non-aqueous electrolyte secondary battery. More specifically, a positive electrode material for a non-aqueous electrolyte secondary battery, in which the elution of manganese is suppressed and the high-temperature characteristics of the battery such as high-temperature storage characteristics and high-temperature cycle characteristics are improved, a method for producing the same, and a method for producing the non-aqueous electrolyte secondary battery The present invention relates to a lithium secondary battery using a positive electrode material.
【0002】[0002]
【従来の技術】近年のパソコンや電話等のポータブル化
やコードレス化の急速な進歩によりそれらの駆動用電源
としての二次電池(蓄電池)の需要が高まっている。中
でもリチウム二次電池は最も小型かつ高エネルギー密度
を有するため特に期待されている。前記駆動用電源とし
てのリチウム二次電池の正極材料として、コバルト酸リ
チウム(LiCoO2 )、ニッケル酸リチウム(LiN
iO2 )、マンガン酸リチウム(LiMn2 O4 )等が
使用される。これらの複合酸化物は、リチウムに対し4
V以上の電位を有していることから、高エネルギー密度
を有する電池となり得る。2. Description of the Related Art With the rapid progress of portable and cordless personal computers and telephones in recent years, the demand for secondary batteries (storage batteries) as power sources for driving them has been increasing. Among them, lithium secondary batteries are particularly expected because they have the smallest size and high energy density. Lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiN
iO 2 ), lithium manganate (LiMn 2 O 4 ) and the like are used. These composite oxides have 4
Since the battery has a potential of V or higher, the battery can have high energy density.
【0003】上記各複合酸化物のうち、コバルト酸リチ
ウム及びニッケル酸リチウムは理論容量が280 mAh/
g程度であるのに対し、マンガン酸リチウムはその理論
容量は148 mAh/g程度と小さいが、原料となるマン
ガン酸化物が豊富で安価であること及びニッケル酸リチ
ウムの場合のように充電時に熱的安定性がなくなったり
することがないという利点を有している。しかしながら
このマンガン酸リチウムは、高温においてマンガンが溶
出しやすく、高温保存性や高温サイクル特性等の高温に
おける電池性能が劣っているという欠点があった。この
ような欠点を解消するために、添加物質として硼素(特
開平4−237970号公報及び特開平8−195200号公報等)
やアルミニウム、クロム、鉄、ニッケル、コバルト、カ
ルシウム及びマグネシウム等(特開平11−240721号公
報)を使用して正極材料を湿式法で製造し該正極材料の
高温特性を改善することが試みられている。後者の方法
では、金属の炭酸塩、硝酸塩あるいは有機金属錯体を使
用して正極材料が製造されている。しかしこのようにし
て得られる正極材料の高温特性も十分満足できるもので
はない。[0003] Of the above composite oxides, lithium cobaltate and lithium nickelate have a theoretical capacity of 280 mAh /
g of lithium manganate, whereas the theoretical capacity of lithium manganate is as small as 148 mAh / g, but the raw material manganese oxide is abundant and inexpensive. This has the advantage that the stability of the target is not lost. However, this lithium manganate has a drawback that manganese is easily eluted at high temperatures, and battery performance at high temperatures such as high-temperature storage properties and high-temperature cycle characteristics is inferior. In order to eliminate such disadvantages, boron (for example, JP-A-4-237970 and JP-A-8-195200) is used as an additive substance.
Attempts have been made to improve the high temperature characteristics of the positive electrode material by producing the positive electrode material by a wet method using aluminum, chromium, iron, nickel, cobalt, calcium, magnesium and the like (Japanese Patent Laid-Open No. 11-240721). I have. In the latter method, a positive electrode material is manufactured using a metal carbonate, nitrate or an organometallic complex. However, the high-temperature characteristics of the positive electrode material thus obtained are not sufficiently satisfactory.
【0004】[0004]
【発明が解決しようとする課題】本出願人は、このマン
ガン酸リチウムの高温特性を改良するために、亜鉛、
鉄、ニッケル及びスズから選択される少なくとも1種類
の金属を、酸化物や水酸化物の形で添加したリチウム二
次電池用正極材料の乾式製造方法を提案した。この先願
に係る方法で製造される正極材料は、従来のリチウム二
次電池用正極材料と比較して、高温特性の改良が見られ
るが、未だ不十分で特に高温保存容量維持率(マンガン
の溶出防止効率)において更なる改良が望まれている。
本発明者らは、添加金属の添加形態や熱処理温度を検討
した結果、本発明に到達したものである。SUMMARY OF THE INVENTION In order to improve the high temperature properties of this lithium manganate, the present applicant has developed zinc,
A dry manufacturing method of a positive electrode material for a lithium secondary battery in which at least one metal selected from iron, nickel and tin is added in the form of an oxide or a hydroxide has been proposed. The positive electrode material manufactured by the method according to the prior application shows improvement in high-temperature characteristics as compared with the conventional positive electrode material for lithium secondary batteries, but is still insufficient and has a particularly high high-temperature storage capacity retention ratio (manganese elution). Further improvement in prevention efficiency) is desired.
The present inventors have reached the present invention as a result of studying the addition form of the additional metal and the heat treatment temperature.
【0005】[0005]
【課題を解決するための手段】本発明は、マンガン酸リ
チウム、及び該マンガン酸リチウム中のマンガンに対し
て0.1 〜5モル%のニッケル、コバルト、鉄及びスズか
ら選択される少なくとも1種の金属の酢酸塩を混合し、
好ましくは400 〜700 ℃で熱処理を行い、前記ニッケル
及び/又はコバルトを固定化することを特徴とする非水
電解質二次電池用正極材料の製造方法であり、金属とし
てニッケル及び/又はコバルトの使用が望ましい。又こ
のようにして製造された非水電解質二次電池用正極材料
はリチウム二次電池で好適に使用される。The present invention relates to lithium manganate and at least one metal selected from the group consisting of nickel, cobalt, iron and tin in an amount of 0.1 to 5 mol% based on manganese in the lithium manganate. The acetate salt of
Preferably, a method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, comprising heat-treating at 400 to 700 ° C. to fix the nickel and / or cobalt, and using nickel and / or cobalt as a metal. Is desirable. The positive electrode material for a non-aqueous electrolyte secondary battery manufactured in this manner is suitably used in a lithium secondary battery.
【0006】以下本発明を詳細に説明する。本発明は、
マンガン酸リチウムの性能向上のための添加化合物の種
類(塩の種類)と量及び必要に応じて熱処理温度を特定
することにより、従来にない卓越した高温での電池特性
を有する非水電解質二次電池用正極材料や該材料を使用
するリチウム二次電池を提供できる。本発明の非水電解
質二次電池用正極材料の原料であるマンガン酸リチウム
は従来の化合物をそのまま用いれば良い。例えばリチウ
ム原料である炭酸リチウム(LiCO3 )、硝酸リチウ
ム(LiNO3 )及び水酸化リチウム(LiOH)等
を、マンガン原料である二酸化マンガン(MnO2 )、
三酸化マンガン(Mn2O3 )、オキシ水酸化マンガン
(MnOOH)等とともに加熱処理することによりマン
ガン酸リチウムが得られる。Hereinafter, the present invention will be described in detail. The present invention
By specifying the type (quantity of salt) and amount of the additive compound for improving the performance of lithium manganate and, if necessary, the heat treatment temperature, a non-aqueous electrolyte secondary battery with unprecedented high temperature battery characteristics A positive electrode material for a battery and a lithium secondary battery using the material can be provided. As the lithium manganate which is a raw material of the positive electrode material for a non-aqueous electrolyte secondary battery of the present invention, a conventional compound may be used as it is. For example, lithium carbonate (LiCO 3 ), lithium nitrate (LiNO 3 ), lithium hydroxide (LiOH), etc., which are lithium raw materials, are replaced with manganese dioxide (MnO 2 ), which is a manganese raw material.
Lithium manganate can be obtained by heat treatment with manganese trioxide (Mn 2 O 3 ), manganese oxyhydroxide (MnOOH), or the like.
【0007】マンガン原料としては二酸化マンガンが望
ましく、これは二酸化マンガンがリチウムの一次電池用
正極材料として使用され、リチウムを構造内に取り込み
やすく、更に電解二酸化マンガンではタップ密度を大き
くしやすいからである。なお二酸化マンガンをマンガン
原料とする場合にリチウム原料として水酸化リチウムを
使用するとロータリーキルンで焼成を行うと、炉芯管へ
の付着が大きくなり過ぎて操作性が低下し、しかもこの
ようにして得られるマンガン酸リチウムは一般に電池性
能が低いため好ましくない。最も望ましいマンガンとリ
チウムの組合せは、二酸化マンガンと炭酸リチウムであ
る。これらのマンガン及びリチウム原料は、より大きな
接触面積を得るために、両原料の混合前又は混合後に粉
砕することが望ましい。[0007] Manganese dioxide is desirable as a manganese raw material, because manganese dioxide is used as a positive electrode material for lithium primary batteries, and lithium is easily incorporated into the structure, and the tap density of electrolytic manganese dioxide is easily increased. . When manganese dioxide is used as the manganese raw material and lithium hydroxide is used as the lithium raw material, when calcination is performed in a rotary kiln, the adhesion to the furnace core tube becomes too large, and the operability is reduced. Lithium manganate is generally not preferred because of low battery performance. The most desirable combination of manganese and lithium is manganese dioxide and lithium carbonate. These manganese and lithium raw materials are desirably pulverized before or after mixing both raw materials in order to obtain a larger contact area.
【0008】秤量及び混合された両原料はそのまま又は
造粒後に使用する。造粒は、湿式法でも乾式法でも良
く、例えば押し出し造粒、転動造粒、流動造粒、混合造
粒、噴霧乾燥造粒、加圧成形造粒、あるいはロールを使
用するフレーク造粒で行うことができる。このようにし
て得られるマンガンとリチウムの混合原料は、焼成炉内
に投入され、例えば600 〜1000℃で焼成され、マンガン
酸リチウムが得られる。600 ℃程度の温度でも単一相の
マンガン酸リチウムが得られるが、焼成温度が低いと粒
の成長速度が遅いため、通常は750 ℃、好ましくは850
℃以上の温度での焼成が望ましい。The weighed and mixed raw materials are used as they are or after granulation. Granulation may be a wet method or a dry method, such as extrusion granulation, tumbling granulation, fluidized granulation, mixed granulation, spray drying granulation, pressure molding granulation, or flake granulation using a roll. It can be carried out. The mixed raw material of manganese and lithium thus obtained is put into a firing furnace and fired at, for example, 600 to 1000 ° C. to obtain lithium manganate. Although a single-phase lithium manganate can be obtained even at a temperature of about 600 ° C., since the growth rate of grains is low at a low firing temperature, it is usually 750 ° C., preferably 850 ° C.
Firing at a temperature of at least ℃ is desirable.
【0009】この焼成に使用される炉としては、ロータ
リーキルンや静置炉が挙げられ、このような炉の中で1
時間以上、好ましくは5〜20時間焼成することによりマ
ンガン酸リチウムが得られる。複数種のマンガン酸リチ
ウムのうち、スピネル型のマンガン酸リチウムが4V級
の電位を有することから、頻繁に使用される。本発明で
は、マンガン酸リチウムのマンガンに対して0.1 〜5モ
ル%のニッケル、コバルト、鉄及びスズから選択される
少なくとも1種の金属の酢酸塩を添加化合物として添加
する。一般に0.1 モル%未満では高温保存性が小さくな
り、5モル%を越えると、初期放電容量が低下する。添
加化合物としては酢酸ニッケル又は酢酸コバルトが望ま
しいが、鉄やスズの酢酸塩でも相当する効果が得られ
る。次いでマンガン酸リチウムと金属酢酸塩の混合物を
400 〜700 ℃の温度で熱処理を行う。この温度範囲外で
の熱処理では生成する正極材料の高温保存性が幾分か小
さくなる傾向があるが、致命的なものではなく、400 ℃
未満又は700 ℃を越える温度で熱処理を行っても良い。
熱処理時間は0.5 〜10時間が適当である。A furnace used for the firing includes a rotary kiln and a stationary furnace.
Lithium manganate is obtained by baking for at least an hour, preferably for 5 to 20 hours. Of the multiple types of lithium manganate, spinel-type lithium manganate is frequently used because it has a potential of 4V class. In the present invention, 0.1 to 5 mol% of an acetate of at least one metal selected from nickel, cobalt, iron and tin with respect to manganese of lithium manganate is added as an additive compound. In general, if it is less than 0.1 mol%, the high-temperature preservability becomes small, and if it exceeds 5 mol%, the initial discharge capacity decreases. As an additive compound, nickel acetate or cobalt acetate is desirable, but a corresponding effect can be obtained with iron or tin acetate. Then a mixture of lithium manganate and metal acetate
The heat treatment is performed at a temperature of 400 to 700 ° C. Heat treatment outside of this temperature range tends to somewhat reduce the high temperature storage stability of the resulting positive electrode material, but it is not fatal,
The heat treatment may be performed at a temperature lower than 700 ° C. or higher than 700 ° C.
The heat treatment time is suitably 0.5 to 10 hours.
【0010】このようにして製造される非水電解質二次
電池用正極材料は、導電剤と結着剤と混合及び成形して
正極物質とする。又負極側の材料としてはリチウム自身
やカーボン等のリチウムを吸蔵及び脱蔵できる材料が好
ましく使用される。非水電解質としては六フッ化リンリ
チウム(LiPF6 )等のリチウム化合物をエチレンカ
ーボネート−ジメチルカーボネート等の混合溶媒に溶解
したものが好ましく使用されるが、これに限定されず他
の金属をラクトンやスルホラン等の有機溶媒に溶解した
ものも使用できる。[0010] The positive electrode material for a non-aqueous electrolyte secondary battery thus produced is mixed with a conductive agent and a binder and molded to form a positive electrode material. As the material on the negative electrode side, a material capable of inserting and extracting lithium such as lithium itself and carbon is preferably used. As the non-aqueous electrolyte, one obtained by dissolving a lithium compound such as lithium hexafluoride (LiPF 6 ) in a mixed solvent such as ethylene carbonate-dimethyl carbonate is preferably used, but is not limited thereto. Those dissolved in an organic solvent such as sulfolane can also be used.
【0011】[0011]
【発明の実施の形態】図面に基づいて本発明の非水電解
質二次電池用正極材料を使用するリチウム二次電池の実
施形態を説明する。図1は、本発明の非水電解質二次電
池用正極材料を使用するコイン型のリチウム二次電池の
縦断面図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a lithium secondary battery using a positive electrode material for a non-aqueous electrolyte secondary battery of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a coin-type lithium secondary battery using the positive electrode material for a non-aqueous electrolyte secondary battery of the present invention.
【0012】皿状の形状を有する耐有機電解液性のステ
ンレス鋼製ケース1の内面上側には、コバルトやニッケ
ル等の酢酸塩を使用して調整される非水電解質二次電池
用正極材料を導電剤や結着剤と混合し成型した正極2が
集電体(図示略)を介して設置され、該正極2の上面に
は周縁部が下向きに折り曲げられ折り曲げられた先端が
前記ケース1の内面に接触する区画板3が当接してい
る。前記ケース1の周縁上部は更に内向きに折り曲げら
れてケース1周縁部に空間が形成され、該空間内に固定
用樹脂4が充填され、その内面側は前記区画板3の下向
き折り曲げ部の外面に接触している。この固定用樹脂4
内には周縁部に複数の段部が形成された蓋体5の周縁部
が挿入固定され、該蓋体5の下面と前記区画板3の間に
は粉末状炭素等を導電剤や結着剤で固めた負極6が集電
体(図示略)を介して設置されている。A positive electrode material for a non-aqueous electrolyte secondary battery, which is adjusted using an acetate such as cobalt or nickel, is provided on the upper inner surface of a stainless steel case 1 having a dish-like shape and having resistance to organic electrolyte. A positive electrode 2 mixed and formed with a conductive agent and a binder is installed via a current collector (not shown), and the peripheral edge is bent downward on the upper surface of the positive electrode 2, and the bent front end is formed of the case 1. The partition plate 3 that contacts the inner surface is in contact. The upper portion of the peripheral edge of the case 1 is further bent inward to form a space in the peripheral portion of the case 1, and the space is filled with a fixing resin 4, and the inner surface thereof is the outer surface of the downward bent portion of the partition plate 3. Is in contact with This fixing resin 4
A peripheral portion of a lid 5 having a plurality of steps formed in the peripheral portion is inserted and fixed therein, and powdered carbon or the like is electrically conductive or bound between the lower surface of the lid 5 and the partition plate 3. A negative electrode 6 solidified with an agent is provided via a current collector (not shown).
【0013】このような構成から成るリチウム二次電池
のケース1及び蓋体5をそれぞれ正極端子及び負極端子
として使用して通電すると充電され、充電後に両端子間
に抵抗を接続すると、バッテリとして機能する。このと
きに正極材料として高温特性を良好な材料を使用してい
るため、比較的高温下で使用される電子機器等の二次電
池の場合でも、電池特性の劣化が最小限に抑制される。Using the case 1 and the lid 5 of the lithium secondary battery having such a configuration as a positive electrode terminal and a negative electrode terminal, respectively, the battery is charged when energized, and a resistor is connected between both terminals after charging to function as a battery. I do. At this time, since a material having good high-temperature characteristics is used as the positive electrode material, even in the case of a secondary battery such as an electronic device used at a relatively high temperature, deterioration of the battery characteristics is suppressed to a minimum.
【0014】次に本発明の非水電解質二次電池用正極材
料及びその製造方法の実施例を記載するが、該実施例は
本発明を限定するものではない。Next, examples of the positive electrode material for a non-aqueous electrolyte secondary battery of the present invention and a method for producing the same will be described, but the examples do not limit the present invention.
【0015】実施例1 電解二酸化マンガン1kgに炭酸リチウム230 g加えて
混合し、その後800 ℃に維持した箱型炉に入れ、20時間
焼成してスピネル型マンガン酸リチウムを得た。添加化
合物である酢酸コバルト四水和物1.38g(マンガンに対
して0.1 モル%)を水100 mlに溶解して調製した酢酸コ
バルト水溶液を、前述のようにして得たスピネル型マン
ガン酸リチウム500 gに滴下した。滴下しながらハイス
ピードミキサを用いて前記酢酸コバルトをマンガン酸リ
チウム表面に付着させ、その後80℃で12時間乾燥して水
分を除去した。更に500 ℃で2時間熱処理して非水電解
質二次電池用正極材料を得た。 Example 1 To 1 kg of electrolytic manganese dioxide, 230 g of lithium carbonate was added and mixed, and then placed in a box furnace maintained at 800 ° C. and calcined for 20 hours to obtain a spinel-type lithium manganate. An aqueous cobalt acetate solution prepared by dissolving 1.38 g (0.1 mol% based on manganese) of cobalt acetate tetrahydrate as an additive compound in 100 ml of water was used to obtain 500 g of spinel-type lithium manganate obtained as described above. Was dropped. The cobalt acetate was adhered to the surface of lithium manganate using a high-speed mixer while dropping, and then dried at 80 ° C. for 12 hours to remove water. Further, heat treatment was performed at 500 ° C. for 2 hours to obtain a positive electrode material for a non-aqueous electrolyte secondary battery.
【0016】得られた正極材料90重量部、導電剤である
アセチレンブラック7重量部、及び結着剤であるポリテ
トラフルオロエチレン3重量部を室温下で十分混合して
正極合剤とした。この正極合剤を正極物質、金属リチウ
ムを負極物質とし、両者はステンレス鋼製の集電体を介
して、共にステンレス鋼製であるケース及び蓋体にそれ
ぞれ接続され、かつ電解液を含浸した微孔性のポリプロ
ピレン製区画板で互いに区画して、直径20mm、高さ1.6
mmの図1に示すリチウム二次電池を作製した。電解液と
しては、エチレンカーボネートと1,3−ジメトキシエ
タンを等体積混合した溶媒に、六フッ化リン酸リチウム
を1モル/リットル溶解させたものを使用した。90 parts by weight of the obtained positive electrode material, 7 parts by weight of acetylene black as a conductive agent, and 3 parts by weight of polytetrafluoroethylene as a binder were sufficiently mixed at room temperature to prepare a positive electrode mixture. The positive electrode mixture is used as a positive electrode material and metallic lithium is used as a negative electrode material. Both are connected via a stainless steel current collector to a case and a lid, both of which are made of stainless steel, and are impregnated with an electrolyte. Separate each other with a porous polypropylene partition plate, diameter 20 mm, height 1.6
The lithium secondary battery shown in FIG. As an electrolytic solution, the solvent was equal volume mixture of ethylene carbonate and 1,3-dimethoxyethane, it was used after lithium hexafluorophosphate dissolved 1 mol / liter.
【0017】このようにして調製したリチウム二次電池
の初期容量を測定した後、充放電試験を次のようにして
行った。電流密度を0.5 mA/dm2とし温度を20℃に固定し
て、電圧を4.3 Vから3Vの範囲で充放電させた。又こ
の電池を4.3 Vまで充電し、80℃の環境下で3日間保存
した後、これらの電池の放電容量を高温保存後容量維持
率として電池の保存特性を測定した。添加化合物及びそ
の添加量、金属固定用熱処理温度、初期容量及び高温保
存後容量維持率を表1に示した。After measuring the initial capacity of the thus-prepared lithium secondary battery, a charge / discharge test was performed as follows. The current density was 0.5 mA / dm 2 , the temperature was fixed at 20 ° C., and the voltage was charged / discharged in a range of 4.3 V to 3 V. The batteries were charged to 4.3 V and stored for 3 days in an environment of 80 ° C., and the storage characteristics of the batteries were measured using the discharge capacity of these batteries as the capacity retention rate after high-temperature storage. Table 1 shows the added compounds and the amounts thereof, the heat treatment temperature for fixing the metal, the initial capacity, and the capacity retention rate after high-temperature storage.
【0018】実施例2 酢酸コバルト四水和物の量を6.89g(マンガンに対して
0.5 モル%)としたこと以外は実施例1と同一条件でリ
チウム二次電池を作製し、同一条件で初期容量及び高温
保存後容量維持率を評価した。その結果を表1に示し
た。 Example 2 The amount of cobalt acetate tetrahydrate was 6.89 g (based on manganese).
A lithium secondary battery was manufactured under the same conditions as in Example 1 except that the amount was 0.5 mol%), and the initial capacity and the capacity retention after high-temperature storage were evaluated under the same conditions. The results are shown in Table 1.
【0019】実施例3 酢酸コバルト四水和物の量を27.6g(マンガンに対して
2モル%)としたこと以外は実施例1と同一条件でリチ
ウム二次電池を作製し、同一条件で初期容量及び高温保
存後容量維持率を評価した。その結果を表1に示した。 Example 3 A lithium secondary battery was manufactured under the same conditions as in Example 1 except that the amount of cobalt acetate tetrahydrate was changed to 27.6 g (2 mol% based on manganese). The capacity and the capacity retention rate after high-temperature storage were evaluated. The results are shown in Table 1.
【0020】実施例4 酢酸コバルト四水和物の量を6.89g(マンガンに対して
0.5 モル%)としたこと及び酢酸コバルト溶液のハイス
ピードミキサーでの処理及び乾燥を10回繰り返したこと
以外は実施例1と同一条件でリチウム二次電池を作製
し、同一条件で初期容量及び高温保存後容量維持率を評
価した。その結果を表1に示した。 Example 4 The amount of cobalt acetate tetrahydrate was 6.89 g (based on manganese).
0.5 mol%), and repeated 10 times of treatment and drying of the cobalt acetate solution with a high-speed mixer, to produce a lithium secondary battery under the same conditions as in Example 1. After storage, the capacity retention was evaluated. The results are shown in Table 1.
【0021】[0021]
【表1】 [Table 1]
【0022】実施例5 酢酸コバルト四水和物の代わりに酢酸ニッケル四水和物
6.88g(マンガンに対して0.5 モル%)を使用したこと
以外は実施例2と同一条件でリチウム二次電池を作製
し、同一条件で初期容量及び高温保存後容量維持率を評
価した。その結果を表1に示した。 Example 5 Nickel acetate tetrahydrate instead of cobalt acetate tetrahydrate
A lithium secondary battery was manufactured under the same conditions as in Example 2 except that 6.88 g (0.5 mol% based on manganese) was used, and the initial capacity and the capacity retention after high-temperature storage were evaluated under the same conditions. The results are shown in Table 1.
【0023】実施例6及び7 コバルト固定用の熱処理温度を400 ℃(実施例6)又は
700 ℃(実施例7)としたこと以外は実施例2と同一条
件でリチウム二次電池を作製し、同一条件で初期容量及
び高温保存後容量維持率を評価した。その結果を表1に
示した。 Examples 6 and 7 The heat treatment temperature for fixing cobalt was 400 ° C. (Example 6) or
A lithium secondary battery was manufactured under the same conditions as in Example 2 except that the temperature was changed to 700 ° C. (Example 7), and the initial capacity and the capacity retention after high-temperature storage were evaluated under the same conditions. The results are shown in Table 1.
【0024】実施例8及び9 コバルト固定用の熱処理温度を350 ℃(実施例8)又は
800 ℃(実施例9)としたこと以外は実施例2と同一条
件でリチウム二次電池を作製し、同一条件で初期容量及
び高温保存後容量維持率を評価した。その結果を表1に
示した。 Examples 8 and 9 The heat treatment temperature for fixing cobalt was 350 ° C. (Example 8)
A lithium secondary battery was manufactured under the same conditions as in Example 2 except that the temperature was changed to 800 ° C. (Example 9), and the initial capacity and the capacity retention after high-temperature storage were evaluated under the same conditions. The results are shown in Table 1.
【0025】比較例1 酢酸コバルト四水和物を溶解しなかったこと以外は実施
例1と同一条件でリチウム二次電池を作製し、同一条件
で初期容量及び高温保存後容量維持率を評価した。その
結果を表1に示した。 Comparative Example 1 A lithium secondary battery was manufactured under the same conditions as in Example 1 except that cobalt acetate tetrahydrate was not dissolved, and the initial capacity and the capacity retention after storage at high temperature were evaluated under the same conditions. . The results are shown in Table 1.
【0026】比較例2 ハイスピードミキサーでの処理及び乾燥を20回繰り返し
たこと以外は実施例4と同一条件でリチウム二次電池を
作製し、同一条件で初期容量及び高温保存後容量維持率
を評価した。その結果を表1に示した。 Comparative Example 2 A lithium secondary battery was prepared under the same conditions as in Example 4 except that the treatment and drying in a high-speed mixer were repeated 20 times, and the initial capacity and the capacity retention after high-temperature storage were measured under the same conditions. evaluated. The results are shown in Table 1.
【0027】比較例3 酢酸コバルト四水和物の代わりに酸化コバルト5.8 g
(マンガンに対して約1モル%)を使用したこと以外は
実施例1と同一条件でリチウム二次電池を作製し、同一
条件で初期容量及び高温保存後容量維持率を評価した。
その結果を表1に示した。 Comparative Example 3 5.8 g of cobalt oxide instead of cobalt acetate tetrahydrate
A lithium secondary battery was fabricated under the same conditions as in Example 1 except that (about 1 mol% based on manganese) was used, and the initial capacity and the capacity retention after high-temperature storage were evaluated under the same conditions.
The results are shown in Table 1.
【0028】比較例4 酸化コバルトの代わりに酸化ニッケル5.8 g(マンガン
に対して約1モル%)を使用したこと以外は比較例3と
同一条件でリチウム二次電池を作製し、同一条件で初期
容量及び高温保存後容量維持率を評価した。その結果を
表1に示した。 Comparative Example 4 A lithium secondary battery was produced under the same conditions as in Comparative Example 3 except that 5.8 g of nickel oxide (about 1 mol% based on manganese) was used instead of cobalt oxide, and the initial conditions were the same. The capacity and the capacity retention rate after high-temperature storage were evaluated. The results are shown in Table 1.
【0029】比較例5 酸化コバルトの代わりに硝酸コバルト14.2g(マンガン
に対して約1モル%)を使用したこと以外は比較例3と
同一条件でリチウム二次電池を作製し、同一条件で初期
容量及び高温保存後容量維持率を評価した。その結果を
表1に示した。 Comparative Example 5 A lithium secondary battery was manufactured under the same conditions as in Comparative Example 3 except that 14.2 g of cobalt nitrate (about 1 mol% based on manganese) was used instead of cobalt oxide. The capacity and the capacity retention rate after high-temperature storage were evaluated. The results are shown in Table 1.
【0030】実施例1〜9及び比較例1〜5の実験結果
から次のことが分かる。添加化合物のない比較例1と、
添加化合物が存在し熱処理温度が等しい実施例1〜5を
比較すると、初期容量に関しては大きな差異は生じてい
ないが、高温保存後容量維持率に関しては顕著な差異が
観察されているのが分かる。つまり比較例1の65%に対
して、実施例では最大92%(実施例3)から最小86%
(実施例1及び5)で20%以上の改善が見られた。The following can be understood from the experimental results of Examples 1 to 9 and Comparative Examples 1 to 5. Comparative Example 1 without the additive compound,
Comparing Examples 1 to 5 in which the additive compound is present and the heat treatment temperatures are the same, it can be seen that there is no significant difference in the initial capacity, but a remarkable difference is observed in the capacity retention after high-temperature storage. In other words, in comparison with the 65% of Comparative Example 1, the maximum is 92% (Example 3) and the minimum is 86% in the example.
(Examples 1 and 5) showed an improvement of 20% or more.
【0031】又添加量と熱処理温度が同じで、添加化合
物が酢酸コバルト(実施例2)から酢酸ニッケル(実施
例5)に代わった場合には、初期容量が112 mAh/g から
110mAh/g に低下し、高温保存後容量維持率が89%から8
6%に低下しているものの、ニッケル添加により高温保
存後容量維持率に大きな改善が見られた。又熱処理温度
が500 ℃から400 ℃(実施例6)又は700 ℃(実施例
7)に変化しても初期容量はほぼ同等で高温保存後容量
維持率もそれぞれ85%(実施例6)及び88%(実施例
7)と高いレベルに維持された。更に熱処理温度が350
℃及び800 ℃と更に大きく変化しても初期容量はほぼ同
等で高温保存後容量維持率もそれぞれ72%(実施例8)
及び78%(実施例9)と比較例1と比較して高いレベル
に維持された。When the addition amount and the heat treatment temperature are the same and the added compound is changed from cobalt acetate (Example 2) to nickel acetate (Example 5), the initial capacity is increased from 112 mAh / g.
Reduced to 110 mAh / g and the capacity retention rate after storage at high temperatures from 89% to 8
Although reduced to 6%, the addition of nickel showed a significant improvement in the capacity retention after storage at high temperatures. Even when the heat treatment temperature changes from 500 ° C. to 400 ° C. (Example 6) or 700 ° C. (Example 7), the initial capacity is almost the same, and the capacity retention rates after high-temperature storage are 85% (Example 6) and 88%, respectively. % (Example 7). Further heat treatment temperature 350
The initial capacity is almost the same even if the temperature changes further to 800 ° C and 800 ° C, and the capacity retention rate after storage at high temperature is 72% (Example 8).
And 78% (Example 9), which was higher than that of Comparative Example 1.
【0032】しかし添加量が10モル%と過度に高くなる
と(比較例2)高温保存後容量維持率は78%と比較的高
いレベルに維持されるが、初期容量が98%mAh/g と添加
化合物のない場合と比べても大きく減少した。添加化合
物を酢酸塩の代わりに酸化物に代えると(比較例3及び
4)、同等の酢酸塩の場合と比較して高温保存後容量維
持率が減少した。更に添加化合物を酢酸塩の代わりに硝
酸塩に代えた場合(比較例5)も、同等の酢酸塩の場合
と比較して高温保存後容量維持率が減少した。However, when the addition amount is excessively high as 10 mol% (Comparative Example 2), the capacity retention rate after storage at high temperature is maintained at a relatively high level of 78%, but the initial capacity is 98% mAh / g. It was greatly reduced compared to the case without the compound. When the added compound was replaced with an oxide instead of acetate (Comparative Examples 3 and 4), the capacity retention after storage at high temperature was reduced as compared with the case of equivalent acetate. Furthermore, when the added compound was replaced with nitrate instead of acetate (Comparative Example 5), the capacity retention after storage at high temperature was reduced as compared with the case of equivalent acetate.
【0033】[0033]
【発明の効果】本発明は、マンガン酸リチウム、及び該
マンガン酸リチウム中のマンガンに対して0.1 〜5モル
%のニッケル、コバルト、鉄及びスズから選択される少
なくとも1種の金属の酢酸塩を混合し、400 〜700 ℃で
熱処理を行い、前記ニッケル及び/又はコバルトを固定
化することを特徴とする非水電解質二次電池用正極材料
の製造方法(請求項1)、熱処理温度が特定されていな
いこと以外は該方法で製造される非水電解質二次電池用
正極材料(請求項3)及び該請求項3の非水電解質二次
電池用正極材料を正極物質として有するリチウム二次電
池(請求項4)である。The present invention relates to lithium manganate and 0.1 to 5 mol% of an acetate of at least one metal selected from nickel, cobalt, iron and tin based on manganese in the lithium manganate. A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, comprising mixing and heat-treating at 400 to 700 ° C. to fix the nickel and / or cobalt. The positive electrode material for a non-aqueous electrolyte secondary battery manufactured by the method (claim 3) and a lithium secondary battery having the positive electrode material for a non-aqueous electrolyte secondary battery according to claim 3 as a positive electrode material ( Claim 4).
【0034】金属酢酸塩を添加化合物として添加する
と、従来の硼素や金属の硝酸塩等を添加した正極材料と
比較して高温特性、特に高温保存後容量維持率が大きく
改善されて充放電時のマンガンの溶出が抑制される。従
ってこのような正極物質を電子機器等でリチウム二次電
池として使用すると高温で使用すると性能劣化が起こり
やすい前記電子機器が効率的に保護できる。本発明にお
けるこれらの効果は使用する金属酢酸塩が酢酸コバルト
及び酢酸ニッケルの際に(請求項2)顕著である。When a metal acetate is added as an additive compound, the high-temperature characteristics, particularly the capacity retention after high-temperature storage, are greatly improved as compared with conventional cathode materials to which boron or metal nitrate is added, and manganese during charge and discharge is improved. Elution is suppressed. Therefore, when such a positive electrode material is used as a lithium secondary battery in an electronic device or the like, when the device is used at a high temperature, the performance of the electronic device, which tends to deteriorate, can be efficiently protected. These effects in the present invention are remarkable when the metal acetate used is cobalt acetate or nickel acetate (claim 2).
【図1】本発明の非水電解質二次電池用正極材料を正極
物質として有するリチウム二次電池を例示する縦断面
図。FIG. 1 is a longitudinal sectional view illustrating a lithium secondary battery having a cathode material for a non-aqueous electrolyte secondary battery of the present invention as a cathode material.
1 ケース 2 正極 3 区画板 4 固定用樹脂 5 蓋体 6 負極 DESCRIPTION OF SYMBOLS 1 Case 2 Positive electrode 3 Partition board 4 Resin for fixing 5 Lid 6 Negative electrode
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA01 AA04 BA01 BA03 BB05 BC06 BD01 BD03 5H014 AA02 BB01 BB06 EE10 HH01 HH08 5H029 AJ02 AJ05 AK03 AL06 AL12 AM03 AM05 AM07 BJ03 CJ02 CJ08 HJ01 HJ14 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA01 AA04 BA01 BA03 BB05 BC06 BD01 BD03 5H014 AA02 BB01 BB06 EE10 HH01 HH08 5H029 AJ02 AJ05 AK03 AL06 AL12 AM03 AM05 AM07 BJ03 CJ02 CJ08 HJ01 HJ14
Claims (4)
リチウム中のマンガンに対して0.1 〜5モル%のニッケ
ル、コバルト、鉄及びスズから選択される少なくとも1
種の金属の酢酸塩を混合し、400 〜700 ℃で熱処理を行
い、前記ニッケル及び/又はコバルトを固定化すること
を特徴とする非水電解質二次電池用正極材料の製造方
法。1. Lithium manganate and at least one selected from nickel, cobalt, iron and tin in an amount of 0.1 to 5 mol% based on manganese in the lithium manganate.
A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, comprising mixing acetates of various kinds of metals and performing a heat treatment at 400 to 700 ° C. to fix the nickel and / or cobalt.
る請求項1に記載の製造方法。2. The method according to claim 1, wherein the metal is nickel and / or cobalt.
リチウム中のマンガンに対して0.1 〜5モル%のニッケ
ル、コバルト、鉄及びスズから選択される少なくとも1
種の金属の酢酸塩を混合し、熱処理を行い、前記ニッケ
ル及び/又はコバルトを固定化することを特徴とする非
水電解質二次電池用正極材料。3. Lithium manganate and at least one selected from nickel, cobalt, iron and tin in an amount of 0.1 to 5 mol% based on manganese in the lithium manganate.
A positive electrode material for a non-aqueous electrolyte secondary battery, comprising mixing an acetate of a kind of metal, performing heat treatment, and fixing the nickel and / or cobalt.
リチウム中のマンガンに対して0.1 〜5モル%のニッケ
ル、コバルト、鉄及びスズから選択される少なくとも1
種の金属の酢酸塩を混合し、熱処理を行い、前記ニッケ
ル及び/又はコバルトを固定化した非水電解質二次電池
用正極材料を正極物質として有することを特徴とするリ
チウム二次電池。4. Lithium manganate and at least one selected from nickel, cobalt, iron and tin in an amount of 0.1 to 5 mol% based on manganese in the lithium manganate.
A lithium secondary battery comprising, as a cathode material, a cathode material for a non-aqueous electrolyte secondary battery in which an acetate of a metal is mixed, heat-treated, and the nickel and / or cobalt is immobilized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36470399A JP2001185139A (en) | 1999-12-22 | 1999-12-22 | Positive electrode material for secondary battery using nonaqueous electrolyte and manufacturing method therefor and lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36470399A JP2001185139A (en) | 1999-12-22 | 1999-12-22 | Positive electrode material for secondary battery using nonaqueous electrolyte and manufacturing method therefor and lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001185139A true JP2001185139A (en) | 2001-07-06 |
Family
ID=18482464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36470399A Pending JP2001185139A (en) | 1999-12-22 | 1999-12-22 | Positive electrode material for secondary battery using nonaqueous electrolyte and manufacturing method therefor and lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001185139A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006253004A (en) * | 2005-03-11 | 2006-09-21 | Sanyo Electric Co Ltd | Electrode for nonaqueous electrolyte secondary battery and its manufacturing method |
-
1999
- 1999-12-22 JP JP36470399A patent/JP2001185139A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006253004A (en) * | 2005-03-11 | 2006-09-21 | Sanyo Electric Co Ltd | Electrode for nonaqueous electrolyte secondary battery and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7309546B2 (en) | Positive active material for rechargeable lithium battery | |
JP3141858B2 (en) | Lithium transition metal halide oxide, method for producing the same and use thereof | |
US6291103B1 (en) | Positive active material for rechargeable lithium battery | |
US20080182171A1 (en) | Composition for negative electrode of non-aqueous rechargeable battery and non-aqueous rechargeable battery prepared by using same | |
JP3430058B2 (en) | Cathode active material and non-aqueous electrolyte secondary battery | |
JP4159640B2 (en) | Anode active material for lithium ion battery and method for producing the same | |
JP2000048817A (en) | Method for producing spinel-type lithium manganate | |
JPH08171935A (en) | Lithium secondary battery | |
JP2002134110A (en) | Method for producing positive electrode active material and method for producing nonaqueous electrolyte battery | |
JP4274630B2 (en) | Method for producing spinel type lithium manganate | |
JPH09265984A (en) | Non-aqueous electrolyte secondary battery | |
JPH11283621A (en) | Nonaqueous electrolyte secondary battery and manufacture of positive electrode material used therefor | |
JP4069066B2 (en) | Method for producing lithium-manganese composite oxide | |
JP3441652B2 (en) | Method for producing positive electrode material for lithium secondary battery | |
JP2002308627A (en) | Method of manufacturing spinel type lithium manganate | |
JP3086297B2 (en) | Non-aqueous solvent secondary battery | |
KR100637998B1 (en) | Cathode active material for nonaqueous electrolyte secondary battery and manufacturing method | |
JP3835235B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP3487941B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte battery | |
JP3274993B2 (en) | Cathode materials for lithium secondary batteries | |
JP2001185139A (en) | Positive electrode material for secondary battery using nonaqueous electrolyte and manufacturing method therefor and lithium secondary battery | |
JP4703111B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2000294239A (en) | Method for producing spinel-type lithium manganate | |
JP4088850B2 (en) | Non-aqueous solvent secondary battery | |
JP3763537B2 (en) | Lithium-manganese composite oxide and lithium secondary battery |