[go: up one dir, main page]

JP2001181313A - Optical three-dimensional molding resin composition - Google Patents

Optical three-dimensional molding resin composition

Info

Publication number
JP2001181313A
JP2001181313A JP36725499A JP36725499A JP2001181313A JP 2001181313 A JP2001181313 A JP 2001181313A JP 36725499 A JP36725499 A JP 36725499A JP 36725499 A JP36725499 A JP 36725499A JP 2001181313 A JP2001181313 A JP 2001181313A
Authority
JP
Japan
Prior art keywords
light
resin composition
photocurable resin
dimensional
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36725499A
Other languages
Japanese (ja)
Inventor
Tsuneo Hagiwara
恒夫 萩原
Junichi Tamura
順一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Teijin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Seiki Co Ltd filed Critical Teijin Seiki Co Ltd
Priority to JP36725499A priority Critical patent/JP2001181313A/en
Publication of JP2001181313A publication Critical patent/JP2001181313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

(57)【要約】 【課題】 寸法精度及び形状安定性(特にZ軸方向)に
優れる立体造形物を高い造形速度で生産性よく製造でき
る光学的立体造形用の光硬化性樹脂組成物及び該光硬化
性樹脂組成物を用いる光学的立体造形方法の提供。 【解決手段】 下記の数式;A1/A0≦0.95(式
中、A0は光硬化性樹脂組成物における硬化用光の透過
度を示し、A1は光硬化性樹脂組成物の光硬化により生
成した光硬化物における硬化用光の透過度を示す。)、
または数式;B1/B0≦0.95(式中、B0は光硬化
性樹脂組成物における波長355nmの光の透過度を示
し、B1は光硬化性樹脂組成物の光硬化により生成した
光硬化物における波長355nmの光の透過度を示
す。)を満足する光学的立体造形用の光硬化性樹脂組成
物、並びに該光硬化性樹脂組成物を用いる光学的立体造
形方法。
(57) Abstract: A photocurable resin composition for optical three-dimensional molding capable of producing a three-dimensional molded article excellent in dimensional accuracy and shape stability (particularly in the Z-axis direction) at a high molding speed with high productivity. Provided is an optical three-dimensional molding method using a photocurable resin composition. SOLUTION: A 1 / A 0 ≦ 0.95 (where A 0 indicates the transmittance of curing light in the photo-curable resin composition, and A 1 indicates the transmittance of the photo-curable resin composition. It shows the transmittance of curing light in the photocured product generated by photocuring.),
Or formula; B 1 / B 0 ≦ 0.95 ( wherein, B 0 represents a transmittance of light having a wavelength of 355nm in the photocurable resin composition, B 1 is produced by photocuring of the photocurable resin composition The photocurable resin composition for optical three-dimensional modeling that satisfies the transmittance of light having a wavelength of 355 nm in the photocured product thus obtained, and an optical three-dimensional modeling method using the photocurable resin composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学的立体造形用
の光硬化性樹脂組成物およびそれを用いる光学的立体造
形方法に関する。より詳細には、本発明は、造形精度お
よび寸法安定性に優れる光学的立体造形物、特にZ軸方
向の造形精度に優れ且つ寸法安定性に優れる光学的立体
造形物を製造し得る光硬化性樹脂組成物、およびそれを
用いる光学的立体造形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocurable resin composition for optical three-dimensional modeling and an optical three-dimensional modeling method using the same. More specifically, the present invention relates to an optical three-dimensional molded article having excellent molding accuracy and dimensional stability, and in particular, a photocuring property capable of producing an optical three-dimensional molded article having excellent Z-axis molding accuracy and excellent dimensional stability. The present invention relates to a resin composition and an optical three-dimensional molding method using the same.

【0002】[0002]

【従来の技術】光硬化性樹脂組成物は被覆剤(特にハー
ドコート剤)、ホトレジスト、歯科用材料などとして広
く用いられているが、近年、三次元CADに入力された
データーに基づいて光硬化性樹脂組成物を立体的に光学
造形する方法が特に注目を集めている。光学的立体造形
技術に関しては、液状の光硬化性樹脂に必要量の制御さ
れた光エネルギーを供給して薄層状に硬化させ、その上
に更に液状光硬化性樹脂を供給した後に制御下に光照射
して薄層状に積層硬化させるという工程を繰り返すこと
によって立体造形物を製造する方法が、特開昭56−1
44478号公報によって開示され、そしてその基本的
な実用方法が更に特開昭60−247515号公報によ
って提案された。その後、光学的立体造形技術に関する
多数の提案がなされており、例えば、特開昭62−35
966号公報、特開平1−204915号公報、特開平
2−113925号公報、特開平2−145616号公
報、特開平2−153722号公報、特開平3−155
20号公報、特開平3−21432号公報、特開平3−
41126号公報などには光学的立体造形法に係る技術
が開示されている。
2. Description of the Related Art Photocurable resin compositions are widely used as coatings (particularly hard coat agents), photoresists, dental materials, and the like. Recently, photocurable resin compositions based on data input to three-dimensional CAD have been used. A method of three-dimensionally optically forming a conductive resin composition has attracted particular attention. Regarding the optical three-dimensional molding technology, a required amount of controlled light energy is supplied to a liquid photo-curable resin to cure it in a thin layer, and then a liquid photo-curable resin is further supplied thereon, and then the light is controlled under control. A method of producing a three-dimensional object by repeating a process of irradiating and laminating and curing in a thin layer is disclosed in JP-A-56-1.
No. 44478, and its basic practical method was further proposed by JP-A-60-247515. Since then, many proposals have been made regarding optical three-dimensional modeling technology.
966, JP-A-1-204915, JP-A-2-113925, JP-A-2-145616, JP-A-2-153722, JP-A-3-155
No. 20, JP-A-3-21432, JP-A-3-21432.
Japanese Patent No. 41126 discloses a technique relating to an optical three-dimensional printing method.

【0003】立体造形物を光学的に製造する際の代表的
な方法としては、容器に入れた液状の光硬化性樹脂組成
物の液面に所望のパターンが得られるようにコンピュー
ターで制御された紫外線レーザーを選択的に照射して所
定の厚みに硬化させ、次にその硬化層の上に1層分の液
状樹脂組成物を供給して同様に紫外線レーザーを照射し
て前記と同じように硬化させて連続した硬化層を形成さ
せるという積層操作を繰り返して最終的な形状を有する
立体造形物を製造する方法が挙げられる。この方法によ
る場合は、造形物の形状がかなり複雑であっても簡単に
且つ比較的短時間で目的とする立体造形物を製造するこ
とが出来るために、近年特に注目を集めている。
As a typical method for optically producing a three-dimensional molded article, a computer is controlled so that a desired pattern can be obtained on a liquid surface of a liquid photocurable resin composition placed in a container. Selectively irradiate with ultraviolet laser to cure to a predetermined thickness, then supply one layer of liquid resin composition on the cured layer and irradiate with ultraviolet laser similarly to cure as above There is a method of producing a three-dimensional structure having a final shape by repeating a lamination operation of forming a continuous cured layer. According to this method, a target three-dimensional structure can be easily manufactured in a relatively short time even if the shape of the structure is considerably complicated.

【0004】近年になって、光造形法によって得られる
立体造形物が単なるコンセプトモデルから、テストモデ
ル、試作品などへと用途が展開されるようになってお
り、それに伴って光学的立体造形物に対して高い造形精
度および寸法安定性が益々要求されるようになってい
る。また、光学的立体造形法において、目的とする立体
造形物を短い時間で生産性良く得るためには光造形時の
反応率を向上させることが必要であり、そのために高い
光重合エネルギーの照射が必要となる。しかしながら、
照射する光のエネルギーが高い場合は、光の照射方向
(Z軸方向)における光の進入深度が必要以上に高くな
り過ぎ、しかもZ軸方向への光の進入深度が不均一にな
り易い。その結果、Z軸方向における樹脂の余剰硬化が
生じたり、硬化状態が不均一になって、光照射により形
成される硬化樹脂薄層の厚さが均一にならず、厚くなり
過ぎたり、不均一になり、多数の薄層の積み重ねによっ
て形成される立体造形物の造形精度(寸法精度)および
寸法安定性が低下する、特にZ軸方向の造形精度が大幅
に低下するという問題がある。
[0004] In recent years, three-dimensional objects obtained by stereolithography have been used from simple concept models to test models, prototypes, and the like. , High modeling accuracy and dimensional stability are increasingly required. In addition, in the optical three-dimensional molding method, it is necessary to improve the reaction rate at the time of stereolithography in order to obtain a target three-dimensional object with high productivity in a short time, and therefore, irradiation of high photopolymerization energy is required. Required. However,
When the energy of the light to be irradiated is high, the penetration depth of the light in the light irradiation direction (Z-axis direction) becomes too high, and the penetration depth of the light in the Z-axis direction tends to be non-uniform. As a result, excessive curing of the resin in the Z-axis direction occurs, the curing state becomes uneven, and the thickness of the cured resin thin layer formed by light irradiation does not become uniform, becomes too thick, or becomes uneven. Therefore, there is a problem that the shaping accuracy (dimensional accuracy) and dimensional stability of a three-dimensional structure formed by stacking a large number of thin layers are reduced, and in particular, the shaping accuracy in the Z-axis direction is significantly reduced.

【0005】上記した点を図を参照して説明する。例え
ば、図1の(a)および図2の(a)に示すような中央
に貫通孔2を有する立体造形物1を、液状の光硬化性樹
脂組成物を順次薄層状で積層し光硬化させて硬化層を形
成し積層してゆく上記した汎用の光造形技術によって製
造する際に、光のエネルギーが高くてZ軸方向の光の進
入深度が必要以上に大きいと、光が本来硬化すべき表面
に位置する1層分の光硬化性樹脂組成物液部分に到達す
るだけでなく、その下に位置する既に光硬化された硬化
層および該硬化層の下に位置する本来光硬化してはなら
ない光硬化性樹脂組成物部分まで到達しってその部分で
光硬化を生じ(余剰硬化を生じ)、その結果、図1の
(b)および図2の(b)の例えば点線3で示す位置ま
で光硬化性樹脂組成物が硬化してしまい、貫通孔2の寸
法(特にZ軸方向の寸法)が設計よりも短くなり、設計
どおりの貫通孔の寸法を有する立体造形物が得られな
い。すなわち、光のエネルギーを高くして造形時の反応
率を向上させること(造形時間の短縮)と、立体造形物
の寸法精度および寸法安定性とは互いに相反する現象と
なっており、両立させるのが難しい。
The above points will be described with reference to the drawings. For example, a three-dimensional structure 1 having a through-hole 2 in the center as shown in FIG. 1A and FIG. 2A is formed by sequentially laminating a liquid photocurable resin composition in a thin layer and photocuring. When the light energy is high and the penetration depth of the light in the Z-axis direction is unnecessarily large when manufacturing by the above-described general-purpose stereolithography technique in which a hardened layer is formed and laminated, the light should be hardened originally. Not only does it reach the photocurable resin composition liquid portion for one layer located on the surface, but also the photocured cured layer located thereunder and the originally photocured under the cured layer The photo-curable resin composition reaches a portion where the photo-curable resin composition is not to be formed, and photo-curing occurs at that portion (excessive curing occurs). As a result, a position indicated by, for example, a dotted line 3 in FIG. 1B and FIG. The photocurable resin composition is cured until the size of the through hole 2 (particularly in the Z-axis direction) Dimension) becomes shorter than the designed, three-dimensional object having a size of the through-hole as designed can not be obtained. In other words, increasing the energy of light to improve the reaction rate during modeling (reducing the modeling time) and the dimensional accuracy and dimensional stability of the three-dimensional model are mutually opposite phenomena. Is difficult.

【0006】上記のような状況下に、高エネルギーの光
を照射して造形時の樹脂の反応率の向上および造形時間
の短縮化を図る一方で、光照射時の光硬化性樹脂組成物
中へのZ軸方向の光の進入深度の制御・均一化を達成す
るための検討および提案が立体造形物の製造装置、光照
射時の制御方法、光硬化性樹脂組成物の組成などの点か
ら色々なされている。光照射の際のZ軸方向の光の進入
進度の調整・均一化に関する光硬化性樹脂組成物の素材
面からの提案としては、Z軸方向に照射された光をX
軸、Y軸、その他の方向に偏向(散乱)させ得る偏向物
質を光硬化性樹脂組成物に添加する方法が挙げられる
(特開平3−15520号公報、特開平3−41126
号公報、特開平3−1147732号公報、特開平3−
114733号公報)。しかしながら、この方法による
場合は、Z軸方向に進入してきて光偏向物質(光散乱物
質)に衝突した光が、立体造形物において目的とされて
いる所定のXY面における境界を超えて偏向(散乱)さ
れる結果、光の照射方向と直角なX軸方向やY軸方向ま
たはその他の方向では樹脂の硬化の制御がむつかしくな
り余分な光硬化が生じ易い。その結果、XY面での光照
射部分と光照射を行うべきでない部分との間の境界が不
鮮明になって、XY面などにおいて良好な輪郭をもった
立体造形物が得られないという欠点がある。この方法に
よる場合に、XY面などに偏向(散乱)される光の量を
考慮して光の照射を制御しようとすると、その制御内容
が極めて複雑なものとならざるを得ない。
Under the circumstances described above, high-energy light is irradiated to improve the reaction rate of the resin during molding and shorten the molding time. Investigation and proposals for achieving control and uniformization of the depth of penetration of light in the Z-axis direction into the Z-axis are made from the viewpoints of manufacturing equipment for three-dimensional objects, control methods during light irradiation, composition of photo-curable resin composition, etc. Various things have been done. As a proposal from the material side of the photocurable resin composition regarding the adjustment and uniformity of the penetration of light in the Z-axis direction during light irradiation, the light irradiated in the Z-axis direction is X
A method of adding a deflecting substance capable of deflecting (scattering) in the axis, the Y axis, and other directions to the photocurable resin composition (JP-A-3-15520, JP-A-3-41126)
JP, JP-A-3-1147772, JP-A-3-117732.
No. 114733). However, according to this method, light that has entered the Z-axis direction and has collided with a light deflecting material (light scattering material) is deflected (scattered) beyond a predetermined boundary on a predetermined XY plane of a three-dimensional structure. As a result, it is difficult to control the curing of the resin in the X-axis direction, the Y-axis direction, or other directions perpendicular to the light irradiation direction, and excessive light curing is likely to occur. As a result, the boundary between the light-irradiated part on the XY plane and the part that should not be irradiated with light is blurred, and there is a disadvantage that a three-dimensional structure having a good contour on the XY plane or the like cannot be obtained. . In this method, if the light irradiation is controlled in consideration of the amount of light deflected (scattered) on the XY plane or the like, the control content must be extremely complicated.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、照射
光のZ軸方向での進入深度の調整を円滑に行うことがで
きてZ軸方向で余剰硬化が生じず、しかもXY面での光
硬化の制御をも円滑に行うことができて、全体として寸
法精度および寸法安定性に優れる高品質の光学的立体造
形物を、高い造形速度で生産性よく製造することのでき
る光学的立体造形用の光硬化性樹脂組成物を提供するこ
とである。さらに、本発明の目的は、寸法精度および寸
法安定性に優れる上記した高品質の光学的立体造形物
を、高い造形速度で生産性よく製造することのできる光
学的立体造形方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to make it possible to smoothly adjust the penetration depth of irradiation light in the Z-axis direction, to prevent excessive hardening in the Z-axis direction, and to further reduce the XY plane. Optical three-dimensional modeling that can smoothly control light curing and produce high-quality optical three-dimensional objects with excellent dimensional accuracy and dimensional stability as a whole at a high modeling speed and with high productivity. To provide a photocurable resin composition for use. Further, an object of the present invention is to provide an optical three-dimensional molding method capable of producing the above-described high-quality optical three-dimensional molded article having excellent dimensional accuracy and dimensional stability at a high molding speed with high productivity. is there.

【0008】[0008]

【課題を解決するための手段】本発明者らは、高エネル
ギーの光照射による反応率の向上(すなわち造形時間の
短縮)と、造形物の寸法精度および寸法安定性の向上と
いう本来互いに両立しにくい特性を同時に満足し得る方
策を求めて色々研究を重ねてきた。その結果、光硬化性
樹脂組成物の重量に対して0.001〜1.0重量%と
いう少量の光エネルギー吸収剤を添加した光硬化性樹脂
組成物を用いて光造形を行うと、樹脂の光反応率(光硬
化性の程度)を阻害することなくZ軸方向の光の進入深
度を良好に制御することができて、高い造形速度で、寸
法精度および形状安定性に極めて優れる立体造形物、特
にZ軸方向の寸法精度や形状安定性に極めて優れる高品
質の立体造形物が得られること、しかもそれによって得
られる立体造形物は硬度、引張強度、引張弾性率などの
力学的特性などにも優れていることを見出して先に出願
した(特開平8−224790号公報)。
Means for Solving the Problems The inventors of the present invention are originally compatible with each other in that the reaction rate is increased by irradiation with high energy light (that is, the molding time is shortened) and the dimensional accuracy and dimensional stability of the molded object are improved. We have been conducting various studies in search of measures that can satisfy difficult characteristics at the same time. As a result, when photolithography is performed using a photocurable resin composition to which a small amount of a light energy absorber of 0.001 to 1.0% by weight based on the weight of the photocurable resin composition is added, A three-dimensional model that can control the depth of penetration of light in the Z-axis direction without hindering the photoreaction rate (degree of photocurability), and has excellent dimensional accuracy and shape stability at a high modeling speed. In particular, it is possible to obtain high-quality three-dimensional objects with extremely excellent dimensional accuracy and shape stability, especially in the Z-axis direction. In addition, the three-dimensional objects obtained therefrom have excellent mechanical properties such as hardness, tensile strength, and tensile modulus. Was also found to be excellent (Japanese Patent Application Laid-Open No. 8-224790).

【0009】そして、本発明者らによる上記の発明を踏
まえて更に検討を重ねたところ、光硬化性樹脂組成物と
して、光硬化後(光硬化物)の光透過度が光硬化前また
は光硬化時の光硬化性樹脂組成物の光透過度よりも低く
なる光硬化性樹脂組成物を用いて光学的に立体造形を行
うと、高エネルギーの光を用いる場合にも、Z軸方向で
の光の進入深度の調整が円滑に行われてZ軸方向での余
剰硬化が防止され、しかもXY面での光硬化の制御も円
滑に行うことができて、全体として寸法精度および寸法
安定性に優れる高品質の光学的立体造形物を、高い造形
速度で生産性よく製造できることを見出した。
The inventors of the present invention conducted further studies based on the above invention, and found that the photocurable resin composition had a light transmittance after photocuring (photocured product) before or after photocuring. When three-dimensional modeling is performed optically using a photocurable resin composition that is lower than the light transmittance of the photocurable resin composition at the time, light in the Z-axis direction can be used even when high-energy light is used. The depth of penetration is smoothly adjusted to prevent excessive curing in the Z-axis direction, and light curing on the XY plane can be smoothly controlled, resulting in excellent overall dimensional accuracy and dimensional stability. It has been found that a high-quality optical three-dimensional object can be manufactured with high productivity at a high molding speed.

【0010】さらに、本発明者らは、そのような光学的
立体造形においては、光硬化前または光硬化時の光硬化
性樹脂組成物の光透過度よりも低い光透過度を有する光
硬化物を生成し得る光硬化性樹脂組成物であればいずれ
も使用でき、例えば、硬化用光の照射によって硬化用光
の吸収率が増大する物質へと変換される成分、硬化用光
の照射によって蛍光を発生する物質に変換される成分な
どを含有する光硬化性樹脂組成物などが好ましく用いら
れることを見出し、それらの知見に基づいて本発明を完
成した。
Further, the present inventors have found that in such optical three-dimensional modeling, a photocured product having a light transmittance lower than that of a photocurable resin composition before or at the time of photocuring. Any photo-curable resin composition capable of producing a can be used, for example, a component that is converted into a substance that increases the absorptivity of the curing light by irradiation with the curing light, a fluorescent substance that is irradiated with the curing light, It has been found that a photocurable resin composition or the like containing a component that is converted into a substance that generates phenomena is preferably used, and the present invention has been completed based on those findings.

【0011】すなわち、本発明は、(1) 下記の数式
を満足することを特徴とする光学的立体造形用の光硬
化性樹脂組成物;
That is, the present invention provides (1) a photocurable resin composition for optical three-dimensional modeling, characterized by satisfying the following mathematical formula:

【0012】[0012]

【数3】A1/A0≦0.95 (上記式中、A0は光硬化性樹脂組成物における硬化用
光の透過度を示し、A1は光硬化性樹脂組成物の光硬化
により生成した光硬化物における硬化用光の透過度を示
す。)である。
A 1 / A 0 ≦ 0.95 (where A 0 represents the transmittance of curing light in the photocurable resin composition, and A 1 represents the value obtained by photocuring the photocurable resin composition. It shows the transmittance of curing light in the resulting photocured product.)

【0013】さらに、本発明は、(2) 下記の数式
を満足することを特徴とする光学的立体造形用の光硬化
性樹脂組成物;
Further, the present invention provides (2) a photocurable resin composition for three-dimensional optical molding, characterized by satisfying the following mathematical formula:

【0014】[0014]

【数4】B1/B0≦0.95 (上記式中、B0は光硬化性樹脂組成物における波長3
55nmの光の透過度を示し、B1は光硬化性樹脂組成
物の光硬化により生成した光硬化物における波長355
nmの光の透過度を示す。)である。
B 1 / B 0 ≦ 0.95 (wherein B 0 is the wavelength 3 in the photocurable resin composition)
Shows the transmittance of 55nm light, B 1 wavelength in the light cured material produced by photocuring the photocurable resin composition 355
The light transmittance of nm is shown. ).

【0015】そして、本発明は、(3) 前記光硬化性
樹脂組成物が、(i)層状にした光硬化性樹脂組成物の
表面に制御下に光を照射して所定のパターンおよび厚み
を有する光硬化層を形成し、次に(ii)前記(i)で形
成した光硬化層の上に1層分の光硬化性樹脂組成物を施
して制御下に光を照射して該(i)で形成した光硬化層
上に所定のパターンおよび厚みを有する光硬化層を一体
に積層形成し、そして(iii)目的とする立体造形物が
形成されるまで前記(ii)の光硬化層の積層形成工程を
繰り返して立体造形物を製造する光学的立体造形技術に
用いるものである前記(1)または(2)に記載の光学
的立体造形用の光硬化性樹脂組成物である。
In the present invention, (3) the photocurable resin composition is formed by (i) irradiating the surface of the layered photocurable resin composition with light under control so that a predetermined pattern and a predetermined thickness are obtained. And (ii) applying one layer of the photocurable resin composition on the photocurable layer formed in (i) above, and irradiating light under the control to form the photocurable resin composition. ), A light-cured layer having a predetermined pattern and thickness is integrally laminated on the light-cured layer formed in the step (iii), and (iii) the light-cured layer of the above (ii) is formed until a target three-dimensional structure is formed. The photocurable resin composition for optical three-dimensional modeling according to the above (1) or (2), which is used for an optical three-dimensional modeling technique of manufacturing a three-dimensional molded article by repeating a lamination forming step.

【0016】また、本発明は、(4) 光硬化性樹脂組
成物が、(a)硬化用光の照射によって硬化用光の吸収
率が増大する物質へと変換される成分;および、(b)
硬化用光の照射によって蛍光を発生する物質に変換され
る成分;から選ばれる少なくとも1種の成分を含有する
光硬化性樹脂組成物である前記(1)〜(3)のいずれ
かの光学的立体造形用の光硬化性樹脂組成物である。
Further, the present invention provides (4) a component in which the photocurable resin composition is converted into (a) a substance capable of increasing the absorptivity of curing light upon irradiation with curing light; and (b) )
A photocurable resin composition containing at least one component selected from the group consisting of: a component that is converted into a substance that emits fluorescence upon irradiation with curing light; It is a photocurable resin composition for three-dimensional modeling.

【0017】そして、本発明は、(5) 前記(1)〜
(4)のいずれかの光学的立体造形用の光硬化性樹脂組
成物を使用し、光照射による光硬化性樹脂組成物の硬化
および造形を行うことを特徴とする立体造形物の製造方
法である。
Further, the present invention provides (5) the above (1) to (1).
(4) A method for producing a three-dimensional molded object, comprising using any one of the photocurable resin compositions for optical three-dimensional molding and curing and molding the photocurable resin composition by light irradiation. is there.

【0018】さらに、本発明は、(6)(i)前記
(1)〜(4)のいずれかの光硬化性樹脂組成物を層状
にしてその表面に制御下に光を照射して所定のパターン
および厚みを有する光硬化層を形成し、次に(ii)前記
(i)で形成した光硬化層の上に1層分の前記光硬化性
樹脂組成物を施して制御下に光を照射して該(i)で形
成した光硬化層上に所定のパターンおよび厚みを有する
光硬化層を一体に積層形成し、そして(iii)目的とす
る立体造形物が形成されるまで前記(ii)の光硬化層の
積層形成工程を繰り返すことからなる前記(5)の立体
造形物の製造方法;および、(7) 照射する光が紫外
線または紫外線を含む光である前記(5)または(6)
の立体造形物の製造方法;を包含する。
Further, according to the present invention, (6) (i) the photocurable resin composition according to any one of the above (1) to (4) is formed into a layer and the surface is irradiated with light under control to obtain a predetermined layer. Forming a photocurable layer having a pattern and thickness, and then (ii) applying one layer of the photocurable resin composition on the photocurable layer formed in (i) and irradiating light under control. Then, a photo-cured layer having a predetermined pattern and thickness is integrally laminated on the photo-cured layer formed in (i), and (iii) the above-mentioned (ii) until a desired three-dimensional structure is formed. (5) The method for producing a three-dimensional structure according to the above (5), which comprises repeating the step of forming a photo-cured layer laminate; and (7) The method according to (5) or (6), wherein the irradiation light is ultraviolet light or light containing ultraviolet light.
And a method for producing a three-dimensional molded article.

【0019】[0019]

【発明の実施の形態】以下に本発明について詳細に説明
する。まず、本発明は上記した数式を満足する光学的
立体造形用の光硬化性樹脂組成物である。すなわち、光
硬化性樹脂組成物を光透過性基材(例えばガラス板、光
透過性のプラスチックシート、フィルム、板など)上に
所定の厚さで施してその垂直上方から硬化用の光を照射
したときの光硬化性樹脂組成物の光照射当初の光透過度
(光硬化性樹脂組成物に最初に照射した硬化用光の透過
度)をA0とし、基材上に施した前記所定の厚みの光硬
化性樹脂組成物を前記硬化用の光で光硬化して生成した
光硬化物に対して前記光を再度垂直上方から照射したと
きの光透過度をA1としたときに、光硬化物の光透過度
1と光硬化性樹脂組成物の光透過度A0との比A1/A0
が0.95以下(光硬化物の光透過度A1が光硬化性樹
脂組成物の光透過度A0の95%以下)である光学的立
体造形に用いられる光硬化性樹脂組成物である。光透過
度A0および光透過度A1の測定に当たっては、実際の光
造形時に硬化用光のZ軸方向の進入深度を円滑に調節し
得るようにするために、測定に用いる光として、光造形
に用いるのと同じ種類で且つ同じエネルギー強度を有す
る光を用い、しかも光透過性基材上での光硬化性樹脂組
成物の厚さおよび光硬化時間を光造形で採用するのと同
じにすることが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. First, the present invention is a photocurable resin composition for optical three-dimensional modeling that satisfies the above-described formula. That is, the photocurable resin composition is applied to a light-transmitting substrate (for example, a glass plate, a light-transmitting plastic sheet, a film, a plate, or the like) to a predetermined thickness and irradiated with curing light from above vertically. light irradiation initial light transmittance of the photocurable resin composition when the (first transmission of the light for curing was irradiated to the light curable resin composition) and a 0, said predetermined subjected on the substrate the light transmittance when irradiated from the vertically upward the light again for a photocurable resin composition having a thickness of the photocured product produced by photocuring light for curing when the a 1, light Ratio A 1 / A 0 between light transmittance A 1 of the cured product and light transmittance A 0 of the photocurable resin composition.
Is but 0.95 or less (photocured product of the light transmittance A 1 95% or less of the light transmittance A 0 of the photocurable resin composition) optical three-dimensional photo-curable resin composition used for molding a . In the measurement of the light transmittance A 0 and the light transmittance A 1 , in order to smoothly adjust the penetration depth of the curing light in the Z-axis direction at the time of actual optical shaping, light is used as the measurement light. The same type of light used for molding and having the same energy intensity is used, and the thickness and the photocuring time of the photocurable resin composition on the light-transmitting substrate are the same as those used for stereolithography. It is desirable to do.

【0020】しかしながら、光造形時に使用する光の種
類、エネルギー強度、照射時間、1層分の光硬化性樹脂
組成物の厚さなどは、造形時に使用する光造形装置の種
類や規模、製造しようとする立体造形物の形状、構造、
サイズ、光硬化性樹脂組成物の種類などに応じて種々異
なることがあるため、上記した光透過度A0および光透
過度A1を求めるための測定条件が一律に決まりにくい
きらいがある。そのため、光学的立体造形に当たって
は、主として紫外線または紫外線を含む光が汎用されて
いることを踏まえて、本発明の光学的立体造形用の光硬
化性樹脂組成物を、上記の数式を満足する光硬化性樹
脂組成物とし、該数式を満足する光硬化性樹脂組成物
を用いて光造形を行ってもよく、その場合にも、エネル
ギー強度の高い光を用いて光のZ軸方向の進入深度の調
節を円滑に行いながら、寸法精度および寸法安定性に優
れる立体造形物を短い造形時間で生産性良く製造するこ
とができる。したがって、本発明は上記の数式を満足
する光硬化性樹脂組成物およびそれを用いる光学的立体
造形方法を包含する。
However, the type of light, the energy intensity, the irradiation time, the thickness of one layer of the photocurable resin composition, etc. used in the optical molding are determined by the type and scale of the optical molding apparatus used in the molding, and the manufacturing method. Shape, structure,
Size, since different it may, depending on the type of the photocurable resin composition, the measurement conditions for determining the light transmittance A 0 and light transmission A 1 described above there is Kirai difficult determined uniformly. Therefore, in the optical three-dimensional modeling, the photocurable resin composition for optical three-dimensional modeling of the present invention, mainly based on the fact that ultraviolet light or light containing ultraviolet light is widely used, is a light that satisfies the above formula. As a curable resin composition, stereolithography may be performed using a photocurable resin composition that satisfies the formula, and in that case, the penetration depth of light in the Z-axis direction using light having high energy intensity. It is possible to produce a three-dimensional object excellent in dimensional accuracy and dimensional stability in a short molding time and with high productivity while smoothly performing the adjustment of. Therefore, the present invention includes a photocurable resin composition satisfying the above-mentioned formula and an optical three-dimensional molding method using the same.

【0021】上記の数式において、光硬化性樹脂組成
物の光透過度B0および光硬化物の光透過度B1の測定に
当たっては、光硬化性樹脂組成物を光透過性基材(例え
ばガラス板、光透過性のプラスチックシート、フィル
ム、板など)上に所定の厚さ(通常0.1mm)に施し
てその垂直上方から波長355nmの光を光硬化性樹脂
組成物に照射してその照射当初の光透過度(光硬化性樹
脂組成物に最初に照射した硬化用光の透過度)をB0
し、基材上に施した前記所定の厚みの光硬化性樹脂組成
物を前記波長355nmの光で光硬化して生成した光硬
化物に対して波長355nmの光を再度垂直上方から照
射したときの光透過度をB1として求める。光透過度B0
および光透過度B1の測定に当たっては、波長355n
mの光を用いて、エネルギー強度が0.7mW/cm2
で、造形時間1分(造形寸法:縦×横×厚さ=20mm
×20mm×0.1mm)で行う。
In the above equation, the light transmittance of B 1 of the light transmittance of B 0 and light cured product of the photocurable resin composition when the measurement, a photocurable resin composition light-transmitting substrate (e.g. glass Plate, light-transmitting plastic sheet, film, plate, etc.) to a predetermined thickness (usually 0.1 mm), and irradiate the photocurable resin composition with light having a wavelength of 355 nm from above vertically. The initial light transmittance (transmittance of curing light that was first irradiated on the photocurable resin composition) was B 0, and the photocurable resin composition having the predetermined thickness applied on a substrate was treated with the wavelength of 355 nm. determination of the light transmittance when irradiated again from vertically above the light having a wavelength of 355nm to light cured product produced by photocuring by light as B 1. Light transmittance B 0
And the light transmittance B 1 was measured at a wavelength of 355 n
m, the energy intensity is 0.7 mW / cm 2
And the molding time is 1 minute (molding dimension: length x width x thickness = 20mm
× 20 mm × 0.1 mm).

【0022】上記の数式またはを満足する本発明の
光硬化性樹脂組成物を用いる場合は、光硬化物の光透過
度が光硬化する前の光硬化性樹脂組成物の光透過度より
も小さくてその95%以下であるため、一旦形成された
光硬化物(光硬化層)は光の透過抑制作用を有し、光硬
化物(光硬化層)の部分においてZ軸方向への光の過度
の進入が抑制されて、光硬化層の更に下に位置する本来
光硬化されてはならない光硬化性樹脂組成物への光の到
達が防止できて、Z軸方向での過剰硬化が生じず、寸法
精度および寸法安定性に優れる立体造形物を得ることが
できる。この点を前記した図1および図2に示した立体
造形物の場合について説明すると、上記の数式または
を満足する本発明の光硬化性樹脂組成物を用いて光造
形を行うと、図1の(b)および図2の(b)における
ような貫通孔2のZ軸方向の寸法の短縮が生じず、図1
の(a)および図2の(a)に示すような設計どおりの
寸法の貫通孔2を有する立体造形物1(特に貫通孔2の
Z軸方向の長さが設計どおりである立体造形物1)を円
滑に製造することができる。
When the photocurable resin composition of the present invention that satisfies the above formula or the above formula is used, the light transmittance of the photocured product is smaller than the light transmittance of the photocurable resin composition before the photocuring. The light-cured material (light-cured layer) once formed has an effect of suppressing light transmission, and excessive light in the Z-axis direction at the portion of the light-cured material (light-cured layer). Is suppressed, light can be prevented from reaching the photocurable resin composition that should not be originally photocured and located further below the photocurable layer, and excessive curing in the Z-axis direction does not occur, A three-dimensional structure excellent in dimensional accuracy and dimensional stability can be obtained. This point will be described with reference to the case of the three-dimensional molded article shown in FIGS. 1 and 2 described above. When the optical molding is performed using the photocurable resin composition of the present invention that satisfies the above-described formula or As shown in FIG. 1B and FIG. 2B, the dimension of the through hole 2 in the Z-axis direction is not reduced, and FIG.
(A) and a three-dimensional structure 1 having a through hole 2 having dimensions as designed as shown in (a) of FIG. 2 (particularly, a three-dimensional structure 1 in which the length of the through hole 2 in the Z-axis direction is as designed) ) Can be manufactured smoothly.

【0023】本発明の光硬化性樹脂組成物では、光硬化
性樹脂組成物の光透過度と光硬化物の光透過度との上記
した比A1/A0またはB1/B0の値は0.95以下であ
ればよく、その下限値は特に制限されず、A1/A0また
はB1/B0の値が小さいほど光硬化物(光硬化層)によ
るZ軸方向における光の過剰進入の発生が一層良好に防
止されて、得られる立体造形物の寸法精度および寸法安
定性、特にZ軸方向の寸法精度が向上する。但し、光硬
化層間の層間接着強度を大きくして立体造形物の力学的
特性を向上させるためには、既に形成された光硬化層と
その上に層状に施された光硬化性樹脂組成物との境界部
分での光硬化が多少生じた方が望ましい場合もあるの
で、A1/A0またはB1/B0の値は0.30〜0.95
であることが好ましく、0.50〜0.90であること
がより好ましい。光硬化性樹脂組成物の光透過度と光硬
化物の光透過度との上記した比A1/A0またはB1/B0
の値が0.95以上であって上記の数式またはを満
足しない場合は、光硬化物(光硬化層)が光のZ軸方向
の過剰進入の抑制または防止作用を示さず、寸法精度本
発明の目的を達成することができない。
In the photocurable resin composition of the present invention, the value of the above ratio A 1 / A 0 or B 1 / B 0 between the light transmittance of the photocurable resin composition and the light transmittance of the photocured product. may if 0.95 or less, the lower limit value is not particularly limited, a 1 / a 0 or B 1 / B 0 of smaller value photocured product of the light in the Z-axis direction by the (photocured layer) The occurrence of excessive intrusion is better prevented, and the dimensional accuracy and dimensional stability of the obtained three-dimensional structure, particularly the dimensional accuracy in the Z-axis direction, are improved. However, in order to increase the interlayer adhesive strength between the photocurable layers and improve the mechanical properties of the three-dimensional structure, the photocurable layer that has already been formed and the photocurable resin composition that has been layered thereon have to be used. because if Write photocuring is slightly generated in the boundary portion is desired also, the value of a 1 / a 0 or B 1 / B 0 is 0.30 to 0.95
Is preferably, and more preferably 0.50 to 0.90. The photocurable resin composition of the light transmittance and the ratio described above and the light transmittance of the photocured composition A 1 / A 0 or B 1 / B 0
Is 0.95 or more and does not satisfy the above formula or the above, the photocured product (photocured layer) does not exhibit the action of suppressing or preventing excessive penetration of light in the Z-axis direction, and the dimensional accuracy of the present invention. Can not achieve the purpose.

【0024】本発明の光硬化性樹脂組成物は、上記した
数式またはを満足し且つ光学的立体造形に用い得る
光硬化性樹脂組成物であれば、光硬化性樹脂組成物を構
成する樹脂の種類、光硬化性樹脂組成物の組成、光硬化
性樹脂組成物中に含有させる成分(添加剤)の種類など
は特に制限されない。限定されるものではないが、上記
の数式またはを満足する本発明の光硬化性樹脂組成
物としては、(a)硬化用光の照射によって硬化用光の
吸収率が増大する物質へと変換される成分;および
(b)硬化用光の照射によって蛍光を発生する物質に変
換される成分;から選ばれる少なくとも1種の成分を含
有する光硬化性樹脂組成物を挙げることができる。前記
した成分(a)および成分(b)は、有機物質、有機金
属化合物、無機物質、それらの複合物のいずれであって
もよく、また低分子物質、オリゴマー、高分子物質また
は両者の複合物であってもよい。
The photo-curable resin composition of the present invention is a photo-curable resin composition which satisfies the above-mentioned formula or the above-mentioned formula and which can be used for optical three-dimensional molding. The type, the composition of the photocurable resin composition, and the type of the component (additive) contained in the photocurable resin composition are not particularly limited. Although not limited, the photocurable resin composition of the present invention that satisfies the above formulas or (a) is converted into a substance whose absorption rate of curing light is increased by irradiation of curing light. A photocurable resin composition containing at least one component selected from the group consisting of: (b) a component that is converted into a substance that generates fluorescence upon irradiation with curing light; The component (a) and the component (b) may be any of an organic substance, an organometallic compound, an inorganic substance, and a composite thereof, and may be a low molecular substance, an oligomer, a high molecular substance, or a composite of both. It may be.

【0025】硬化用光の照射によって硬化用光の吸収率
が増大する物質へと変換される上記の成分(a)を含有
する本発明の光硬化性樹脂組成物では、該光硬化性樹脂
組成物に硬化用光を照射した場合に、成分(a)よりな
る光の吸収率が増大した物質を含有する光硬化物が形成
され、光硬化物中の前記物質によって光硬化物の光の吸
収が増し(光硬化物における光の透過が低減され)、そ
れによって光硬化物の光透過度を光硬化前の光硬化性樹
脂組成物の光透過度の95%以下にする(すなわちA1
/A0またはB1/B0を0.95以下にする)。
The photocurable resin composition of the present invention containing the above component (a) which is converted into a substance having an increased absorptivity of the curing light upon irradiation with the curing light, When the object is irradiated with light for curing, a photocured product containing a substance having an increased light absorption rate of the component (a) is formed, and light absorption of the photocured product is caused by the substance in the photocured product. (Light transmission in the photocured product is reduced), whereby the light transmittance of the photocured product is set to 95% or less of the light transmittance of the photocurable resin composition before photocuring (that is, A 1).
/ A 0 or B 1 / B 0 is 0.95 or less).

【0026】成分(a)の例としては、 (A)紫外線などの光を照射することによって、下記の
一般式(I);
Examples of the component (a) include: (A) the following general formula (I) by irradiating light such as ultraviolet rays;

【0027】[0027]

【化1】 (式中、R1およびR2はそれぞれ独立して水素原子、置
換基を有していてもよい炭素数1〜20の鎖状または分
岐状アルキル基或いは置換基を有していてもよいフェニ
ル基、Xは水素原子またはハロゲン原子を示す。)で表
されるベンゾトリアゾール系化合物に変換され得る化合
物(以下「ベンゾトリアゾール前駆体」という); (B)紫外線などの光の照射によって、下記の一般式
(II);
Embedded image (Wherein, R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent or a phenyl which may have a substituent. A group that can be converted into a benzotriazole-based compound represented by the following formula: X represents a hydrogen atom or a halogen atom (hereinafter referred to as a “benzotriazole precursor”); General formula (II);

【0028】[0028]

【化2】 (式中、R3およびR4はそれぞれ独立して水素原子、置
換基を有していてもよい炭素数1〜20の鎖状または分
岐状アルキル基或いは置換基を有していてもよいフェニ
ル基、aおよびbはそれぞれ独立して0または1を示
す。)で表されるベンゾフェノン系化合物に変換され得
る化合物(以下「ベンゾフェノン前駆体」という); (C)紫外線などの光の照射によって、下記の一般式
(III);
Embedded image (Wherein, R 3 and R 4 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent, or phenyl which may have a substituent. A group, a and b each independently represent 0 or 1) (hereinafter referred to as “benzophenone precursor”) which can be converted to a benzophenone-based compound; (C) irradiation with light such as ultraviolet light; The following general formula (III):

【0029】[0029]

【化3】 (式中、R5は水素原子、置換基を有していてもよい炭
素数1〜20の鎖状または分岐状アルキル基或いは置換
基を有していてもよいフェニル基を示す。)で表される
サリチル酸フェニル系化合物に変換され得る化合物(以
下「サリチル酸フェニル前駆体」という); (D)紫外線などの光の照射によって、下記の一般式
(IV);
Embedded image (In the formula, R 5 represents a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent or a phenyl group which may have a substituent.) (Hereinafter, referred to as “phenyl salicylate precursor”); (D) irradiation with light such as ultraviolet light, the following general formula (IV):

【0030】[0030]

【化4】 (式中、R6およびR7はそれぞれ独立して水素原子、置
換基を有していてもよい炭素数1〜20の鎖状または分
岐状アルキル基或いは置換基を有していてもよいフェニ
ル基、R8は置換基を有していてもよい炭素数1〜20
の鎖状または分岐状アルキル基を示す。)で表されるシ
アノアクリレート系化合物に変換され得る化合物(以下
「シアノアクリレート前駆体」という);などを挙げる
ことができる。
Embedded image (Wherein, R 6 and R 7 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent or a phenyl which may have a substituent. Group, R 8 has 1 to 20 carbon atoms which may have a substituent.
Is a chain or branched alkyl group. And the like (hereinafter, referred to as “cyanoacrylate precursor”) which can be converted into the cyanoacrylate-based compound represented by the formula (1);

【0031】また、成分(a)としては、上記した化合
物以外にも、例えば各種染料や、そのロイコ体などを挙
げることができる。
As the component (a), in addition to the above-mentioned compounds, for example, various dyes and their leuco bodies can be exemplified.

【0032】硬化用光の照射によって蛍光を発する物質
へと変換される上記の成分(b)を含有する本発明の光
硬化性樹脂組成物では、該光硬化性樹脂組成物に硬化用
光を照射した場合に、成分(b)より生成した光の照射
によって蛍光を発する物質を含有する光硬化物が形成さ
れ、光硬化物に光を照射した特に前記物質が蛍光を発生
し、光のエネルギーが蛍光を発生させるのに消費される
結果、光のエネルギーが低減されて光硬化物の光透過度
を光硬化前の光硬化性樹脂組成物の光透過度の95%以
下にする(すなわちA1/A0またはB1/B0を0.95
以下にする)。成分(b)としては、例えば、紫外線な
どの光を照射したときに蛍光を発生するような複素環化
合物や蛍光を発生するその他の化合物に変換される物質
などを挙げることができる。成分(b)の具体例として
は、オキサジン、クマリン、芳香族イミド化合物(例え
ばナフタレンの2,3−カルボン酸無水物から誘導され
たイミド酸エチルエステル)、ベンゾトリアゾール誘導
体などの複素環化合物、アントラセン、テトラセン、ペ
リレン、これらの誘導体(例えば9,10−ジフェニル
アントラセン、ルブレン)などを挙げることができる。
In the photocurable resin composition of the present invention containing the above component (b) which is converted into a substance which emits fluorescence by irradiation with curing light, the curing light is applied to the photocurable resin composition. Upon irradiation, a light-cured product containing a substance that emits fluorescence by irradiation with light generated from the component (b) is formed, and particularly when the light-cured product is irradiated with light, the substance generates fluorescence, and the energy of light is increased. Is consumed to generate fluorescence, and as a result, the light energy is reduced, and the light transmittance of the photocured product is reduced to 95% or less of the light transmittance of the photocurable resin composition before photocuring (that is, A 1 / A 0 or B 1 / B 0 is 0.95
Below). As the component (b), for example, a heterocyclic compound that emits fluorescence when irradiated with light such as ultraviolet light, a substance that is converted into another compound that emits fluorescence, and the like can be given. Specific examples of component (b) include heterocyclic compounds such as oxazine, coumarin, aromatic imide compounds (for example, ethyl imidate derived from 2,3-carboxylic anhydride of naphthalene), benzotriazole derivatives and the like, anthracene , Tetracene, perylene, derivatives thereof (for example, 9,10-diphenylanthracene, rubrene) and the like.

【0033】光硬化性樹脂組成物における上記した成分
(a)および/または成分(b)の含有量[成分(a)
および成分(b)のうちの2種以上を含有する場合はそ
の合計含有量]は、成分(a)および成分(b)の種
類、光硬化性樹脂組成物の種類や組成、光造形に用いる
硬化用光の種類やエネルギー強度などに応じて決めるこ
とができるが、一般的には、光硬化性樹脂組成物の全重
量に基づいて、0.001〜5.0重量%程度であるこ
とが好ましく、0.005〜2.0重量%程度であるこ
とがより好ましく、0.01〜1.0重量%程度である
ことがさらに好ましい。成分(a)および/または成分
(b)の含有量が少なすぎると、光硬化物の光透過度を
低下させることが困難になって、上記の数式または
を満足する光硬化性樹脂組成物が得られにくくなる。一
方、成分(a)および/または成分(b)の含有量が多
すぎると、光造形速度が低下し、しかも得られる立体造
形物の力学的特性の低下などを生じ易くなる。
The content of the component (a) and / or component (b) in the photocurable resin composition [component (a)
And when two or more of the components (b) are contained, the total content is used for the types of the components (a) and (b), the type and composition of the photocurable resin composition, and stereolithography. It can be determined according to the type and energy intensity of the curing light, but generally it is about 0.001 to 5.0% by weight based on the total weight of the photocurable resin composition. Preferably, it is about 0.005 to 2.0% by weight, more preferably about 0.01 to 1.0% by weight. If the content of the component (a) and / or the component (b) is too small, it becomes difficult to lower the light transmittance of the photocured product, and the photocurable resin composition satisfying the above formula or It is difficult to obtain. On the other hand, when the content of the component (a) and / or the component (b) is too large, the optical molding speed is reduced, and the mechanical properties of the obtained three-dimensional molded object are easily reduced.

【0034】本発明では、光学的立体造形技術に使用し
得ることが知られている従来既知の光学的立体造形用の
液状光硬化性樹脂組成物のいずれが使用でき、その種類
などは特に制限されず、例えば、アクリレート系光硬化
性樹脂組成物、ウレタンアクリレート系光硬化性樹脂組
成物、エポキシ系光硬化性樹脂組成物、エポキシアクリ
レート系光硬化性樹脂組成物、ビニルエーテル系光硬化
性樹脂組成物などを挙げることができる。これらは単独
で使用しても、または混合して用いてもよい。本発明の
光硬化性樹脂組成物は、組成物中に含まれる光重合性化
合物の種類に応じて、例えば、光ラジカル重合開始剤、
光カチオン重合開始剤、或いは光ラジカル重合開始剤と
光カチオン重合開始剤の両者などを含有する。
In the present invention, any of the conventionally known liquid photocurable resin compositions for optical three-dimensional molding that can be used for the optical three-dimensional molding technique can be used, and the kind thereof is not particularly limited. However, for example, an acrylate-based photocurable resin composition, a urethane acrylate-based photocurable resin composition, an epoxy-based photocurable resin composition, an epoxy acrylate-based photocurable resin composition, a vinyl ether-based photocurable resin composition Things and the like. These may be used alone or as a mixture. The photocurable resin composition of the present invention, depending on the type of photopolymerizable compound contained in the composition, for example, a photo-radical polymerization initiator,
It contains a photocationic polymerization initiator, or both a photoradical polymerization initiator and a photocationic polymerization initiator.

【0035】アクリレート系光硬化性樹脂組成物として
は、単官能、多官能のポリエステル(メタ)アクリレー
ト、ポリエーテル(メタ)アクリレートなどを主体とし
てこれに必要に応じて単官能(メタ)アクリレートモノ
マー、多官能(メタ)アクリレートモノマーを混合し、
これに光ラジカル重合開始剤を含有させたラジカル重合
型の液状光硬化性樹脂組成物が挙げられる。ウレタンア
クリレート系光硬化性樹脂組成物の例としては、単官
能、多官能のウレタン(メタ)アクリレートを主体とし
てこれに必要に応じて単官能(メタ)アクリレートモノ
マー、多官能(メタ)アクリレートモノマーを混合し、
これに光ラジカル重合開始剤を含有させたラジカル重合
型の液状光硬化性樹脂組成物が挙げられる。
As the acrylate-based photocurable resin composition, a monofunctional or polyfunctional polyester (meth) acrylate, polyether (meth) acrylate or the like is mainly used, and if necessary, a monofunctional (meth) acrylate monomer, Mix multifunctional (meth) acrylate monomer,
This includes a radical polymerization type liquid photocurable resin composition containing a photoradical polymerization initiator. Examples of the urethane acrylate-based photocurable resin composition include a monofunctional and polyfunctional urethane (meth) acrylate as a main component, and a monofunctional (meth) acrylate monomer and a polyfunctional (meth) acrylate monomer as necessary. Mix,
This includes a radical polymerization type liquid photocurable resin composition containing a photoradical polymerization initiator.

【0036】エポキシ系光硬化性樹脂組成物の例として
は、脂肪族ジエポキシ化合物、脂環族ジエポキシ化合
物、芳香族ジエポキシ化合物の1種または2種以上を主
体とし、これに必要に応じて単官能(メタ)アクリレート
モノマー、多官能(メタ)アクリレートモノマーを混合
し、これに光カチオン重合開始剤および必要に応じて光
ラジカル重合開始剤を含有させた液状光硬化性樹脂組成
物が挙げられる。エポキシアクリレート系光硬化性樹脂
組成物の例としては、単官能、多官能のエポキシ(メ
タ)アクリレートを主体としてこれに必要に応じて単官
能(メタ)アクリレートモノマー、多官能(メタ)アク
リレートモノマーを混合し、これに光ラジカル重合開始
剤および必要に応じて光カチオン重合開始剤を含有させ
た液状光硬化性樹脂組成物が挙げられる。
Examples of the epoxy-based photocurable resin composition include one or more of an aliphatic diepoxy compound, an alicyclic diepoxy compound, and an aromatic diepoxy compound. A liquid photocurable resin composition in which a (meth) acrylate monomer and a polyfunctional (meth) acrylate monomer are mixed, and a photocationic polymerization initiator and, if necessary, a photoradical polymerization initiator are contained therein. Examples of the epoxy acrylate-based photocurable resin composition include a monofunctional and polyfunctional epoxy (meth) acrylate as a main component, and a monofunctional (meth) acrylate monomer and a polyfunctional (meth) acrylate monomer as necessary. A liquid photocurable resin composition which is mixed and contains a photoradical polymerization initiator and, if necessary, a photocationic polymerization initiator is exemplified.

【0037】ビニルエーテル系光硬化性樹脂組成物の例
としては、脂肪族ジビニルエーテル化合物、脂環族ジビ
ニルエーテル化合物、芳香族ジビルエーテル化合物など
を主体とし、これ光ラジカル重合開始剤を含有させた液
状光硬化性樹脂組成物が挙げられる。また、混在型の光
硬化性樹脂組成物の例として、アクリレート系化合物、
ウレタンアクリレート系化合物およびエポキシアクリレ
ート系化合物のうちの2者以上を含み、これに光ラジカ
ル重合開始剤および必要に応じて光カチオン重合開始剤
を含有させた混在型の液状光硬化性樹脂組成物を挙げる
ことができる。
Examples of the vinyl ether-based photocurable resin composition mainly include an aliphatic divinyl ether compound, an alicyclic divinyl ether compound, an aromatic divir ether compound and the like, and contain a photoradical polymerization initiator. A liquid photocurable resin composition is exemplified. Further, as examples of the mixed type photocurable resin composition, an acrylate compound,
A mixed liquid photocurable resin composition containing at least two members of a urethane acrylate compound and an epoxy acrylate compound, and further containing a photoradical polymerization initiator and, if necessary, a photocationic polymerization initiator. Can be mentioned.

【0038】特に、本発明では、ウレタンアクリレート
系光硬化性樹脂組成物および/またはエポキシ系光硬化
性樹脂組成物に対して上記した成分(a)〜成分(d)
の少なくとも1種を含有させたときに、寸法精度および
寸法安定性に優れ、しかも力学的特性などの性質に特に
優れる立体造形物を、速い造形速度で生産良く製造する
ことができる。
In particular, in the present invention, the components (a) to (d) described above are used for the urethane acrylate-based photocurable resin composition and / or the epoxy-based photocurable resin composition.
When at least one of these is contained, a three-dimensional molded article having excellent dimensional accuracy and dimensional stability and particularly excellent properties such as mechanical properties can be produced at a high molding speed with good productivity.

【0039】本発明の光学的立体造形用樹脂組成物は、
必要に応じてレベリング剤、界面活性剤、有機可塑剤、
有機充填剤、無機充填剤などを含有していてもよい。本
発明の光学的立体造形用樹脂組成物の調製法や混合法は
特に制限されず、従来既知の方法にしたがって行うこと
ができる。
The optical three-dimensional modeling resin composition of the present invention comprises:
Leveling agent, surfactant, organic plasticizer,
It may contain an organic filler, an inorganic filler and the like. The preparation method and mixing method of the resin composition for stereolithography of the present invention are not particularly limited, and can be performed according to a conventionally known method.

【0040】本発明の光学的立体造形用樹脂組成物を用
いて光学的立体造形を行うに当たっては、硬化用光(活
性エネルギー光線)として、例えば、Arレーザー、H
e−Cdレーザー、半導体励起固体レーザ、キセノンラ
ンプ、メタルハライドランプ、水銀灯、蛍光灯などから
発生される活性エネルギー光線などを用いることができ
る。特に好ましい活性エネルギー線はレーザー光線であ
り、レーザー光線を使用する場合は、エネルギーレベル
を高めて造形時間を短縮しながら、その良好な集光性を
利用して、造形精度を向上させることが可能である。
When performing optical three-dimensional modeling using the resin composition for optical three-dimensional modeling of the present invention, for example, an Ar laser or H laser is used as curing light (active energy ray).
An active energy ray generated from an e-Cd laser, a semiconductor-excited solid-state laser, a xenon lamp, a metal halide lamp, a mercury lamp, a fluorescent lamp, or the like can be used. A particularly preferred active energy ray is a laser beam, and when a laser beam is used, it is possible to improve the modeling accuracy by using its good light-collecting property while increasing the energy level and shortening the modeling time. .

【0041】本発明の光硬化性樹脂組成物を用いて光学
的立体造形を行うに当たっては、従来既知の方法や従来
既知の光造形システム装置のいずれもが採用でき特に制
限されない。そのうちでも、本発明で好ましく用いられ
る光学的立体造形法の代表例としては、(i)本発明の
光硬化性樹脂組成物を層状にしてその表面に制御下に光
を照射して所定のパターンおよび厚みを有する光硬化層
を形成し、次に(ii)前記(i)で形成した光硬化層の
上に1層分の前記光硬化性樹脂組成物を施して制御下に
光を照射して該(i)で形成した光硬化層上に所定のパ
ターンおよび厚みを有する光硬化層を一体に積層形成
し、そして(iii)目的とする立体造形物が形成される
まで前記(ii)の光硬化層の積層形成工程を繰り返す方
法が好ましく採用される。これによって得られる立体造
形物はそのまま用いても、また場合によっては更に光照
射によるポストキュアや熱によるポストキュアなどを行
って、その力学的特性や形状安定性などを一層高いもの
としてから使用するようにしてもよい。
In carrying out the optical three-dimensional molding using the photocurable resin composition of the present invention, any of a conventionally known method and a conventionally known stereolithography system apparatus can be adopted, and there is no particular limitation. Among them, typical examples of the optical three-dimensional molding method preferably used in the present invention include: (i) a layer of the photocurable resin composition of the present invention which is irradiated with light under a controlled pattern to form a predetermined pattern. And forming a photocurable layer having a thickness and then (ii) applying one layer of the photocurable resin composition on the photocurable layer formed in (i) above and irradiating light under control. Then, a photo-cured layer having a predetermined pattern and thickness is integrally laminated on the photo-cured layer formed in (i), and (iii) the above-mentioned (ii) until a desired three-dimensional structure is formed. A method of repeating the photocured layer lamination forming step is preferably employed. The three-dimensional object obtained by this method can be used as it is, or in some cases, post-cured by light irradiation or post-cured by heat, etc., and used after further improving its mechanical properties and shape stability etc. You may do so.

【0042】本発明により製造する立体造形物の種類、
構造、形状、サイズなどは特に制限されず、各々の用途
に応じて決めることができる。本発明の光硬化性樹脂組
成物の応用分野としては、例えば、設計の途中で外観デ
ザインを検証するためのモデル、部品の機能性をチェッ
クするためのモデル、鋳型を制作するための樹脂型、金
型を制作するためのベースモデル、試作金型用の直接型
などを挙げることができる。より具体的には、精密部
品、電気・電子部品、家具、建築構造物、自動車用部
品、各種容器類、鋳物、金型、母型などのためのモデル
や加工用モデルなどの製作を挙げることができ、高い寸
法精度および良好な寸法安定性が強く求められる精密部
品用のモデルの作製などに特に大きな威力を発揮する。
The types of three-dimensional objects manufactured according to the present invention,
The structure, shape, size and the like are not particularly limited, and can be determined according to each use. As the application field of the photocurable resin composition of the present invention, for example, a model for verifying the appearance design during the design, a model for checking the functionality of parts, a resin mold for producing a mold, Examples include a base model for producing a mold, and a direct mold for a prototype mold. More specifically, production of precision parts, electric / electronic parts, furniture, building structures, automobile parts, various containers, castings, molds, models for molds, and models for processing. It is particularly effective in producing models for precision parts that require high dimensional accuracy and good dimensional stability.

【0043】[0043]

【実施例】以下に実施例によって本発明について具体的
に説明するが、本発明は以下の例によって何ら限定され
ない。以下の例中で「部」は重量部を意味する。
The present invention will be described in detail with reference to the following examples, but the present invention is not limited to the following examples. In the following examples, "parts" means parts by weight.

【0044】《参考例1》[ウレタンアクリレート系光
硬化性樹脂組成物の調製] (1) 攪拌機、温度調節器、温度計及び凝縮器を備え
た内容積20リットルの四つ口フラスコに、ビスフェノ
ールAのプロピレングリコール4モル付加物4600部
とイソホロンジイソシアネート4420部を入れ、これ
に40〜50℃でジラウリン酸ジ−n−ブチルスズ2.
6部を加えて同じ温度で30分間反応させた。次いで、
反応温度を80〜90℃に上げて2時間反応させた後、
2−ヒドロキシエチルアクリレート2320部、ハイド
ロキノンモノメチルエーテル5.5部を加えて同温度で
更に2時間反応させ、ビスフェノールAジオール骨格を
有するウレタンアクリレートオリゴマーを製造した。 (2) 上記(1)で得たウレタンアクリレートオリゴ
マー1320部、ポリエチレングリコール200ジアク
リレート(新中村化学社製「NKエステルA−20
0」)1080部及びエチレンオキサイド変性トリメチ
ロールプロパントリアクリレート(新中村化学社製「A
−TMPT−3EO」)480部を5リットルの容器に
仕込み、減圧脱気窒素置換した後、内容物を50℃の温
度で約1時間攪拌混合し、これに紫外線を遮断した環境
下に、2,2−ジメトキシ−2−フェニルアセトフェノ
ン(チバガイギー社製「イルガキュアー651」;光ラ
ジカル重合開始剤)120部を添加し、完全に溶解する
まで温度25℃で混合攪拌して(混合撹拌時間約6時
間)、ウレタンアクリレート系液状光硬化性樹脂組成物
を調製して、紫外線の遮断下に25℃で保存した。
Reference Example 1 [Preparation of urethane acrylate photocurable resin composition] (1) Bisphenol was placed in a 20-liter four-necked flask equipped with a stirrer, a temperature controller, a thermometer, and a condenser. 4600 parts of a 4-mol adduct of propylene glycol of A and 4420 parts of isophorone diisocyanate were added thereto, and di-n-butyltin dilaurate was added thereto at 40 to 50 ° C.
6 parts were added and reacted at the same temperature for 30 minutes. Then
After raising the reaction temperature to 80-90 ° C and reacting for 2 hours,
2320 parts of 2-hydroxyethyl acrylate and 5.5 parts of hydroquinone monomethyl ether were added and reacted at the same temperature for another 2 hours to produce a urethane acrylate oligomer having a bisphenol A diol skeleton. (2) 1320 parts of the urethane acrylate oligomer obtained in the above (1), polyethylene glycol 200 diacrylate (“NK ester A-20 manufactured by Shin-Nakamura Chemical Co., Ltd.)
0 ") 1080 parts and ethylene oxide-modified trimethylolpropane triacrylate (" A "manufactured by Shin-Nakamura Chemical Co., Ltd.)
-TMPT-3EO ") was placed in a 5 liter container, and the contents were stirred under reduced pressure and degassed nitrogen for 1 hour at a temperature of 50 ° C for 2 hours. , 2-Dimethoxy-2-phenylacetophenone (“Irgacure 651” manufactured by Ciba Geigy; photoradical polymerization initiator) was added and mixed and stirred at a temperature of 25 ° C. until completely dissolved (mixing time was about 6 hours). Time), a urethane acrylate-based liquid photocurable resin composition was prepared and stored at 25 ° C. while blocking ultraviolet rays.

【0045】《参考例2》[エポキシ系光硬化性樹脂組
成物の調製] (1) 攪拌機、温度調節器、温度計及び凝縮器を備え
た内容積20リットルの四つ口フラスコに、3,4−エ
ポキシシクロヘキシルメチル−3,4−エポキシシクロ
ヘキサンカルボキシレート4,000部、1,4−ブタ
ンジオールジグリシジルエーテル1,000部、2,2
−ビス[4−(アクリロキシジエトキシ)フェニルプロ
パン(新中村化学社製「NKエステルA−BPE−
4」)2,500部、エチレンオキサイド変性トリメチ
ロールプロパントリアクリレート(新中村化学社製「A
−TMPT−3EO」)2,500部を加えて20〜2
5℃の温度で約1時間攪拌混合した。 (2) 上記(1)で得られた混合物(10000部)
に、紫外線を遮断した環境下に、2,2−ジメトキシ−
2−フエニルアセトフエノン(チバガイギー社製「イル
ガキュアー651」;光ラジカル重合開始剤)150部
およびビス[4−(ジフェニルスルホニオ)フェニル]
スルフィドビスヘキサフルオロアンチモネート(光カチ
オン重合開始剤)200部を添加し、完全に溶解するま
で温度25℃で混合攪拌して(混合撹拌時間約6時
間)、エポキシ系液状光硬化性樹脂組成物を調製し、紫
外線の遮断下に25℃で保存した。
Reference Example 2 [Preparation of Epoxy-Based Photocurable Resin Composition] (1) A 20-liter four-necked flask equipped with a stirrer, a temperature controller, a thermometer and a condenser was charged with 3, 4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate 4,000 parts, 1,4-butanediol diglycidyl ether 1,000 parts, 2,2
-Bis [4- (acryloxydiethoxy) phenylpropane ("NK ester A-BPE-" manufactured by Shin-Nakamura Chemical Co., Ltd.)
4 ") 2,500 parts, ethylene oxide-modified trimethylolpropane triacrylate (" A "manufactured by Shin-Nakamura Chemical Co., Ltd.)
-TMPT-3EO ") and add 2,500 parts to add 20 to 2
The mixture was stirred and mixed at a temperature of 5 ° C. for about 1 hour. (2) The mixture obtained in the above (1) (10000 parts)
In an environment where ultraviolet light is blocked, 2,2-dimethoxy-
150 parts of 2-phenylacetophenone (“Irgacure 651” manufactured by Ciba Geigy; photoradical polymerization initiator) and bis [4- (diphenylsulfonio) phenyl]
200 parts of sulfide bishexafluoroantimonate (photocationic polymerization initiator) was added, and the mixture was stirred at a temperature of 25 ° C. until completely dissolved (mixing stirring time: about 6 hours), to thereby obtain an epoxy liquid photocurable resin composition. Was prepared and stored at 25 ° C. under the exclusion of ultraviolet light.

【0046】《実施例1》 (1) 参考例1で得られたウレタンアクリレート系液
状光硬化性樹脂組成物100部に、ルブレン0.01部
を添加して、25℃の温度で均一な液状物が得られるま
で充分に撹拌して、光学的立体造形用の液状の光硬化性
樹脂組成物を製造した。 (2) 上記(1)で得られた光硬化性樹脂組成物の一
部を採取し、これを石英ガラス板(厚さ1mm)からな
る基材上に厚さ0.1mmに塗布し、その垂直上方から
波長355nmの光(エネルギー強度0.7mW/cm
2)を照射してその照射当初の光透過度(基材の裏面に
最初に到達した光の透過度)B0を測定したところ、透
過度B0は20%であった。また、前記の光照射によっ
て形成された光硬化層に対して波長355nmの光(エ
ネルギー強度0.7mW/cm2)を再度垂直上方から
照射して、その光透過度をB1を測定したところ、16
%であった。なお、前記の光照射時の造形時間は1分
(造形寸法:縦×横×厚さ=20mm×20mm×0.
1mm)とした。前記の結果から、上記(1)で得られ
た光硬化性樹脂組成物における光硬化前の光透過度B0
と光硬化物の光透過度B1との比B1/B0は0.80で
あった。
Example 1 (1) To 100 parts of the urethane acrylate liquid photocurable resin composition obtained in Reference Example 1, 0.01 part of rubrene was added, and a uniform liquid was formed at a temperature of 25 ° C. The mixture was sufficiently stirred until a product was obtained, thereby producing a liquid photocurable resin composition for optical three-dimensional modeling. (2) A part of the photocurable resin composition obtained in the above (1) is sampled and applied to a substrate made of a quartz glass plate (1 mm thick) to a thickness of 0.1 mm. Light with a wavelength of 355 nm from above vertically (energy intensity 0.7 mW / cm
2 ) was irradiated and the light transmittance B 0 at the beginning of the irradiation (transmittance of the light that first reached the back surface of the base material) B 0 was measured. The light transmittance B 0 was 20%. Further, light having a wavelength of 355 nm (energy intensity: 0.7 mW / cm 2 ) was again irradiated from above vertically onto the photocured layer formed by the light irradiation, and the light transmittance was measured as B 1. , 16
%Met. In addition, the molding time at the time of the light irradiation is 1 minute (molding dimension: length × width × thickness = 20 mm × 20 mm × 0.2 mm).
1 mm). From the above results, the light transmittance B 0 of the photocurable resin composition obtained in the above (1) before photocuring was obtained.
The ratio B 1 / B 0 between the ratio and the light transmittance B 1 of the photocured product was 0.80.

【0047】(3) 上記(1)得られた光硬化性樹脂
組成物を用い、超高速光造形システム(帝人製機株式会
社製「 SOLIFORM−500」)を使用して、水
冷Arレーザー光(出力400mW;波長333,35
1,364nm)を照射して、照射エネルギー300m
W/cm2の条件下にスライスピッチ(積層厚み)0.
1mm、1層当たりの平均造形時間2分で光造形を行っ
て、X軸×Y軸×Z軸の寸法が50mm×4mm×20
mmであって、設定直径10.000mmの円形貫通孔
A、設定直径5.000mmの円形貫通孔B、設定直径
4.000mmの円形貫通孔Cおよび設定直径3.00
0mmの円形貫通孔Dを有する図1に示す立体造形物
(直方体)を製造した。なお、露光量の制御はSOLI
FORMシステムの通常条件を用いた。 (4) 上記(3)で得られた立体造形物における各貫
通孔A〜DのX軸方向の寸法(内径)xとZ軸方向の寸
法(内径)zをそれぞれ測定して、両者の比:z/xを
求めて、各貫通孔の真円度を調べたところ下記の表1に
示すとおりであった。
(3) Using the photocurable resin composition obtained in the above (1), a water-cooled Ar laser beam (“SOLIFORM-500” manufactured by Teijin Seiki Co., Ltd.) using an ultra-high-speed optical molding system (“SOLIFORM-500”). Output 400mW; wavelength 333, 35
1,364 nm) and an irradiation energy of 300 m
Under the condition of W / cm 2 , the slice pitch (lamination thickness) is 0.
Stereolithography was performed with an average molding time of 2 mm per layer and 1 mm, and the dimensions of the X-axis x Y-axis x Z-axis were 50 mm x 4 mm x 20
mm, a circular through-hole A with a set diameter of 10.000 mm, a circular through-hole B with a set diameter of 5.000 mm, a circular through-hole C with a set diameter of 4.000 mm, and a set diameter of 3.00.
A three-dimensional structure (a rectangular parallelepiped) shown in FIG. 1 having a circular through-hole D of 0 mm was manufactured. The exposure amount is controlled by SOLI
The normal conditions of the FORM system were used. (4) The dimension (inner diameter) x in the X-axis direction and the dimension (inner diameter) z in the Z-axis direction of each of the through holes A to D in the three-dimensional structure obtained in (3) above are measured, and the ratio between the two is measured. : Z / x was determined, and the roundness of each through-hole was examined. The result was as shown in Table 1 below.

【0048】《実施例2》 (1) 参考例2で得られたエポキシ系液状光硬化性樹
脂組成物100部に、ナフタレンの2,3−カルボン酸
無水物から誘導されたイミド酸エチルエステル0.1部
を添加して、25℃の温度で均一な液状物が得られるま
で充分に撹拌して、光学的立体造形用の液状の光硬化性
樹脂組成物を製造した。 (2) 上記(1)で得られた光硬化性樹脂組成物の一
部を採取し、これを石英ガラス板(厚さ1mm)からな
る基材上に厚さ0.1mmに塗布し、その垂直上方から
波長355nmの光(エネルギー強度0.7mW/cm
2)を照射してその照射当初の光透過度(基材の裏面に
最初に到達した光の透過度)B0を測定したところ、透
過度B0は40%であった。また、前記の光照射によっ
て形成された光硬化層に対して波長355nmの光(エ
ネルギー強度0.7mW/cm2)を再度垂直上方から
照射して、その光透過度をB1を測定したところ、30
%であった。なお、前記の光照射時の造形時間は1分
(造形寸法:縦×横×厚さ=20mm×20mm×0.
1mm)とした。前記の結果から、上記(1)で得られ
た光硬化性樹脂組成物における光硬化前の光透過度B0
と光硬化物の光透過度B1との比B1/B0は0.75で
あった。
Example 2 (1) 100 parts of the epoxy liquid photocurable resin composition obtained in Reference Example 2 was mixed with ethyl imido acid ester derived from 2,3-carboxylic anhydride of naphthalene. .1 part was added, and the mixture was sufficiently stirred at a temperature of 25 ° C. until a uniform liquid was obtained, to produce a liquid photocurable resin composition for optical three-dimensional modeling. (2) A part of the photocurable resin composition obtained in the above (1) is sampled and applied to a substrate made of a quartz glass plate (1 mm thick) to a thickness of 0.1 mm. Light with a wavelength of 355 nm from above vertically (energy intensity 0.7 mW / cm
2 ) was irradiated, and the light transmittance B 0 at the beginning of the irradiation (transmittance of light that first reached the back surface of the base material) B 0 was measured. The light transmittance B 0 was 40%. Further, light having a wavelength of 355 nm (energy intensity: 0.7 mW / cm 2 ) was again irradiated from above vertically onto the photocured layer formed by the light irradiation, and the light transmittance was measured as B 1. , 30
%Met. In addition, the molding time at the time of the light irradiation is 1 minute (molding dimension: length × width × thickness = 20 mm × 20 mm × 0.2 mm).
1 mm). From the above results, the light transmittance B 0 of the photocurable resin composition obtained in the above (1) before photocuring was obtained.
The ratio B 1 / B 0 of the light cured product to the light transmittance B 1 was 0.75.

【0049】(3) 上記(1)得られた光硬化性樹脂
組成物を用いて、実施例1と同様にして、図1に示す立
体造形物(直方体)を製造した。なお、露光量の制御は
SOLIFORMシステムの通常条件を用いた。 (4) 上記(3)で得られた立体造形物における各貫
通孔A〜DのX軸方向の寸法(内径)xとZ軸方向の寸
法(内径)zをそれぞれ測定して、両者の比:z/xを
求めて、各貫通孔の真円度を調べたところ下記の表1に
示すとおりであった。
(3) Using the photocurable resin composition obtained in (1) above, a three-dimensional structure (rectangular solid) shown in FIG. 1 was produced in the same manner as in Example 1. The exposure amount was controlled under the normal conditions of the SOLIFORM system. (4) The dimension (inner diameter) x in the X-axis direction and the dimension (inner diameter) z in the Z-axis direction of each of the through holes A to D in the three-dimensional structure obtained in (3) above are measured, and the ratio between the two is measured. : Z / x was determined, and the roundness of each through-hole was examined. The result was as shown in Table 1 below.

【0050】《比較例1》 (1) 参考例1で得られた光硬化性樹脂組成物の一部
を採取し、これを石英ガラス板(厚さ1mm)からなる
基材上に厚さ0.1mmに塗布し、その垂直上方から波
長355nmの光(エネルギー強度0.7mW/c
2)を照射してその照射当初の光透過度(基材の裏面
に最初に到達した光の透過度)B0を測定したところ、
透過度B0は15%であった。また、前記の光照射によ
って形成された光硬化層に対して波長355nmの光
(エネルギー強度0.7mW/cm2)を再度垂直上方
から照射して、その光透過度をB1を測定したところ、
14.5%であった。なお、前記の光照射時の造形時間
は1分(造形寸法:縦×横×厚=20mm×20mm×
0.1mm)とした。前記の結果から、上記(1)で得
られた光硬化性樹脂組成物における光硬化前の光透過度
0と光硬化物の光透過度B1との比B1/B0は0.97
であった。 (2) 参考例1で得られたウレタンアクリレート系液
状光硬化性樹脂組成物を用いて、実施例1と同様にし
て、図1に示す立体造形物(直方体)を製造した。な
お、露光量の制御はSOLIFORMシステムの通常条
件を用いた。 (3) 上記(2)で得られた立体造形物における各貫
通孔A〜DのX軸方向の寸法(内径)xとZ軸方向の寸
法(内径)zをそれぞれ測定して、両者の比:z/xを
求めて、各貫通孔の真円度を調べたところ下記の表1に
示すとおりであった。
Comparative Example 1 (1) A part of the photocurable resin composition obtained in Reference Example 1 was sampled and placed on a substrate made of a quartz glass plate (thickness: 1 mm). .1 mm, and light having a wavelength of 355 nm (energy intensity 0.7 mW / c)
m 2 ) and the light transmittance at the beginning of the irradiation (the light transmittance of light that first reached the back surface of the substrate) B 0 was measured.
The transmittance B 0 was 15%. Further, light having a wavelength of 355 nm (energy intensity: 0.7 mW / cm 2 ) was again irradiated from above vertically onto the photocured layer formed by the light irradiation, and the light transmittance was measured as B 1. ,
It was 14.5%. In addition, the molding time at the time of the light irradiation is 1 minute (molding dimension: length × width × thickness = 20 mm × 20 mm ×
0.1 mm). From the above results, the ratio B 1 / B 0 of the light transmittance B 0 of the photo-curable resin composition obtained in the above (1) before light curing to the light transmittance B 1 of the photo-cured product was 0.1. 97
Met. (2) Using the urethane acrylate-based liquid photocurable resin composition obtained in Reference Example 1, a three-dimensional structure (rectangular parallelepiped) shown in FIG. 1 was produced in the same manner as in Example 1. The exposure amount was controlled under the normal conditions of the SOLIFORM system. (3) The dimension (inner diameter) x in the X-axis direction and the dimension (inner diameter) z in the Z-axis direction of each of the through holes A to D in the three-dimensional structure obtained in (2) above are measured, and the ratio between the two is measured. : Z / x was determined, and the roundness of each through-hole was examined. The result was as shown in Table 1 below.

【0051】[0051]

【表1】 [Table 1]

【0052】上記の表1の結果から、光硬化性樹脂組成
物の波長355nmの光の透過度B0とその光硬化物の
波長355nmの光の透過度B1との比B1/B0が0.
95以下である光硬化性樹脂組成物を用いて光学的立体
造形を行った実施例1および実施例2では、光エネルギ
ーのZ軸方向の進入深度が過度にならずに良好に調節で
きて、立体造形物における貫通孔A〜Dの変形(特にZ
軸方向の寸法縮小)の殆どない、寸法精度の高い立体造
形物が得られていることがわかる。それに対して、光硬
化性樹脂組成物の波長355nmの光の透過度B0とそ
の光硬化物の波長355nmの光の透過度B1との比B1
/B0が0.97であって、0.95よりも大きい光硬
化性樹脂組成物を用いて光学的立体造形を行った比較例
1では、光エネルギーのZ軸方向の進入が過度になって
立体造形物における貫通孔A〜Dの変形(特にZ軸方向
の寸法縮小)が大きく、得られる立体造形物の寸法精度
が実施例1および実施例2で得られた立体造形物に比べ
て劣ることがわかる。
From the results in Table 1 above, the ratio B 1 / B 0 of the transmittance B 0 of light having a wavelength of 355 nm of the photocurable resin composition to the transmittance B 1 of light having a wavelength of 355 nm of the photocured product is obtained. Is 0.
In Examples 1 and 2 in which optical three-dimensional modeling was performed using a photocurable resin composition of 95 or less, the penetration depth of light energy in the Z-axis direction could be adjusted well without becoming excessive, Deformation of through-holes A to D in three-dimensional object (particularly Z
It can be seen that a three-dimensional structure having high dimensional accuracy with little (dimension reduction in the axial direction) is obtained. On the other hand, the ratio B 1 of the transmittance B 0 of light having a wavelength of 355 nm of the photocurable resin composition to the transmittance B 1 of light having a wavelength of 355 nm of the photocured product is obtained.
In Comparative Example 1 in which / B 0 was 0.97 and optical three-dimensional modeling was performed using a photocurable resin composition larger than 0.95, the penetration of light energy in the Z-axis direction was excessive. Therefore, the deformation of the through-holes A to D in the three-dimensional object (particularly, reduction in dimension in the Z-axis direction) is large, and the dimensional accuracy of the obtained three-dimensional object is smaller than that of the three-dimensional object obtained in Example 1 and Example 2. It turns out that it is inferior.

【0053】[0053]

【発明の効果】本発明による場合は、寸法精度および形
状安定性、特にZ軸方向の寸法精度および形状安定性に
優れる光学的立体造形物を得ることができる。しかも、
本発明による場合は、寸法精度および寸法安定性に優
れ、しかも硬度、引張強度、引張弾性率などで代表され
る物理的特性や力学的特性にも優れる立体造形物を、高
い光エネルギーを用いて、短縮された造形時間で生産性
良く製造することができる。
According to the present invention, it is possible to obtain an optical three-dimensional structure excellent in dimensional accuracy and shape stability, particularly in dimensional accuracy and shape stability in the Z-axis direction. Moreover,
In the case of the present invention, a three-dimensional structure having excellent dimensional accuracy and dimensional stability, and also excellent in physical properties and mechanical properties represented by hardness, tensile strength, tensile elasticity, etc., using high light energy, It can be manufactured with high productivity in a shortened molding time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】光硬化性樹脂組成物を用いて光学的立体造形を
行って得られる立体造形物の一例を示す図である。
FIG. 1 is a diagram illustrating an example of a three-dimensional structure obtained by performing an optical three-dimensional structure using a photocurable resin composition.

【図2】光硬化性樹脂組成物を用いて光学的立体造形を
行って得られる立体造形物の一例を示す図である。
FIG. 2 is a diagram illustrating an example of a three-dimensional structure obtained by performing an optical three-dimensional structure using a photocurable resin composition.

【図3】本明細書中の実施例および比較例で製造した立
体造形物の構造を示す概略図である。
FIG. 3 is a schematic view showing a structure of a three-dimensional structure manufactured in Examples and Comparative Examples in this specification.

【符号の説明】[Explanation of symbols]

1 立体造形物 2 貫通孔 A 貫通孔 B 貫通孔 C 貫通孔 D 貫通孔 DESCRIPTION OF SYMBOLS 1 Three-dimensional molded item 2 Through hole A Through hole B Through hole C Through hole D Through hole

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F213 AA21E AA36 AA39E AA42E AB04 AP11 AP12 AR12 AR13 WA25 WA32 WA36 WA40 WB01 WL04 WL13 WL23 WL35 WL43 WL92 WW39 4J011 QA05 QA07 QA35 QB14 QB16 QB20 QB24 SA21 SA75 SA77 SA78 TA03 UA01 UA02 VA01 WA01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F213 AA21E AA36 AA39E AA42E AB04 AP11 AP12 AR12 AR13 WA25 WA32 WA36 WA40 WB01 WL04 WL13 WL23 WL35 WL43 WL92 WW39 4J011 QA05 QA07 QA35 QB14 QB16 QB20 QB24 SA78 SA01 SA01 WA01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 下記の数式を満足することを特徴とす
る光学的立体造形用の光硬化性樹脂組成物; 【数1】A1/A0≦0.95 (上記式中、A0は光硬化性樹脂組成物における硬化用
光の透過度を示し、A1は光硬化性樹脂組成物の光硬化
により生成した光硬化物における硬化用光の透過度を示
す。)
1. A photocurable resin composition for three-dimensional optical molding, characterized by satisfying the following formula: A 1 / A 0 ≦ 0.95 (where A 0 is shows the transmittance of the curing light in the photo-curable resin composition, a 1 represents a transmittance of the curing light in the optical cured product produced by photocuring the photocurable resin composition.)
【請求項2】 下記の数式を満足することを特徴とす
る光学的立体造形用の光硬化性樹脂組成物; 【数2】B1/B0≦0.95 (上記式中、B0は光硬化性樹脂組成物における波長3
55nmの光の透過度を示し、B1は光硬化性樹脂組成
物の光硬化により生成した光硬化物における波長355
nmの光の透過度を示す。)
2. A photocurable resin composition for optical three-dimensional modeling, characterized by satisfying the following formula: B 1 / B 0 ≦ 0.95 (where B 0 is Wavelength 3 in photocurable resin composition
Shows the transmittance of 55nm light, B 1 wavelength in the light cured material produced by photocuring the photocurable resin composition 355
The light transmittance of nm is shown. )
【請求項3】 前記光硬化性樹脂組成物が、(i)層状
にした光硬化性樹脂組成物の表面に制御下に光を照射し
て所定のパターンおよび厚みを有する光硬化層を形成
し、次に(ii)前記(i)で形成した光硬化層の上に1
層分の光硬化性樹脂組成物を施して制御下に光を照射し
て該(i)で形成した光硬化層上に所定のパターンおよ
び厚みを有する光硬化層を一体に積層形成し、そして
(iii)目的とする立体造形物が形成されるまで前記(i
i)の光硬化層の積層形成工程を繰り返して立体造形物
を製造する光学的立体造形技術に用いるものである請求
項1または2に記載の光学的立体造形用の光硬化性樹脂
組成物。
3. The photocurable resin composition, wherein (i) a surface of the layered photocurable resin composition is irradiated with light under control to form a photocurable layer having a predetermined pattern and thickness. And (ii) one layer on the photocured layer formed in (i).
Applying a layer of the photocurable resin composition and irradiating light under control to integrally form a photocurable layer having a predetermined pattern and thickness on the photocurable layer formed in (i), and (Iii) The above (i) until a target three-dimensional structure is formed.
The photocurable resin composition for optical three-dimensional modeling according to claim 1 or 2, which is used for an optical three-dimensional modeling technique of manufacturing a three-dimensional molded article by repeating the step of i) forming a layer of a photocurable layer.
【請求項4】 光硬化性樹脂組成物が、(a)硬化用光
の照射によって硬化用光の吸収率が増大する物質へと変
換される成分;および、(b)硬化用光の照射によって
蛍光を発生する物質に変換される成分;から選ばれる少
なくとも1種の成分を含有する光硬化性樹脂組成物であ
る請求項1〜3のいずれか1項に記載の光学的立体造形
用の光硬化性樹脂組成物。
4. A component in which the photocurable resin composition is converted into (a) a substance whose absorption rate of curing light is increased by irradiation with curing light; and (b) a component which is irradiated with curing light. The light for optical three-dimensional modeling according to any one of claims 1 to 3, which is a photocurable resin composition containing at least one component selected from a component that is converted into a substance that generates fluorescence. Curable resin composition.
【請求項5】 請求項1〜4のいずれか1項に記載の光
学的立体造形用の光硬化性樹脂組成物を使用し、光照射
による光硬化性樹脂組成物の硬化および造形を行うこと
を特徴とする立体造形物の製造方法。
5. The photocurable resin composition for optical three-dimensional modeling according to claim 1, wherein the photocurable resin composition is cured by light irradiation and molded. A method for producing a three-dimensional structure, characterized by the following.
【請求項6】 (i)請求項1〜4のいずれか1項に記
載の光硬化性樹脂組成物を層状にしてその表面に制御下
に光を照射して所定のパターンおよび厚みを有する光硬
化層を形成し、次に(ii)前記(i)で形成した光硬化
層の上に1層分の前記光硬化性樹脂組成物を施して制御
下に光を照射して該(i)で形成した光硬化層上に所定
のパターンおよび厚みを有する光硬化層を一体に積層形
成し、そして(iii)目的とする立体造形物が形成され
るまで前記(ii)の光硬化層の積層形成工程を繰り返す
ことからなる請求項5に記載の立体造形物の製造方法。
6. A light having a predetermined pattern and thickness by irradiating the surface of the photocurable resin composition according to any one of claims 1 to 4 in a controlled manner and irradiating the surface with light. Forming a cured layer, and then (ii) applying one layer of the photocurable resin composition on the photocured layer formed in (i) and irradiating light under control to obtain (i) A light curing layer having a predetermined pattern and a thickness is integrally laminated on the light curing layer formed in the above step, and (iii) the light curing layer of the above (ii) is laminated until a target three-dimensional structure is formed. The method for producing a three-dimensional structure according to claim 5, wherein the forming step is repeated.
【請求項7】 照射する光が紫外線または紫外線を含む
光である請求項5または6に記載の立体造形物の製造方
法。
7. The method for producing a three-dimensional structure according to claim 5, wherein the irradiation light is ultraviolet light or light containing ultraviolet light.
JP36725499A 1999-12-24 1999-12-24 Optical three-dimensional molding resin composition Pending JP2001181313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36725499A JP2001181313A (en) 1999-12-24 1999-12-24 Optical three-dimensional molding resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36725499A JP2001181313A (en) 1999-12-24 1999-12-24 Optical three-dimensional molding resin composition

Publications (1)

Publication Number Publication Date
JP2001181313A true JP2001181313A (en) 2001-07-03

Family

ID=18488863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36725499A Pending JP2001181313A (en) 1999-12-24 1999-12-24 Optical three-dimensional molding resin composition

Country Status (1)

Country Link
JP (1) JP2001181313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313208A (en) * 2002-04-19 2003-11-06 Meiko:Kk Photocurable resin composition
JP2007501318A (en) * 2003-02-27 2007-01-25 スリーディー システムズ インコーポレーテッド Colored stereolithography resin

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114732A (en) * 1989-04-21 1991-05-15 E I Du Pont De Nemours & Co Stereoscopic model formation method using radiation curing multiphase composition
JPH0586149A (en) * 1991-09-30 1993-04-06 I C I Japan Kk Resin composition for optical three-dimensional molding and formation of three-dimensional molded product
JPH07134409A (en) * 1993-11-09 1995-05-23 Nippon Kayaku Co Ltd Resin composition for photo-molding
JPH07268010A (en) * 1994-03-29 1995-10-17 Olympus Optical Co Ltd Photo-setting resin containing fluorescent coloring matter, method for curing the same, and equipment for producing cured object thereof
JPH0820728A (en) * 1994-07-05 1996-01-23 Asahi Denka Kogyo Kk Resin composition for optical three-dimensional shaping and optical three-dimensional shaping method using the same
JPH0841147A (en) * 1994-07-27 1996-02-13 Japan Synthetic Rubber Co Ltd Resin composition for optical three-dimensional shaping
JPH08224790A (en) * 1994-11-29 1996-09-03 Teijin Seiki Co Ltd Resin composition for optically stereoscopic molding
JPH1095807A (en) * 1996-09-25 1998-04-14 Teijin Seiki Co Ltd Optical three-dimensional molding resin composition
EP0965618A1 (en) * 1998-06-18 1999-12-22 JSR Corporation Photo-curable composition and photo-cured product

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114732A (en) * 1989-04-21 1991-05-15 E I Du Pont De Nemours & Co Stereoscopic model formation method using radiation curing multiphase composition
JPH0586149A (en) * 1991-09-30 1993-04-06 I C I Japan Kk Resin composition for optical three-dimensional molding and formation of three-dimensional molded product
JPH07134409A (en) * 1993-11-09 1995-05-23 Nippon Kayaku Co Ltd Resin composition for photo-molding
JPH07268010A (en) * 1994-03-29 1995-10-17 Olympus Optical Co Ltd Photo-setting resin containing fluorescent coloring matter, method for curing the same, and equipment for producing cured object thereof
JPH0820728A (en) * 1994-07-05 1996-01-23 Asahi Denka Kogyo Kk Resin composition for optical three-dimensional shaping and optical three-dimensional shaping method using the same
JPH0841147A (en) * 1994-07-27 1996-02-13 Japan Synthetic Rubber Co Ltd Resin composition for optical three-dimensional shaping
JPH08224790A (en) * 1994-11-29 1996-09-03 Teijin Seiki Co Ltd Resin composition for optically stereoscopic molding
JPH1095807A (en) * 1996-09-25 1998-04-14 Teijin Seiki Co Ltd Optical three-dimensional molding resin composition
EP0965618A1 (en) * 1998-06-18 1999-12-22 JSR Corporation Photo-curable composition and photo-cured product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313208A (en) * 2002-04-19 2003-11-06 Meiko:Kk Photocurable resin composition
JP2007501318A (en) * 2003-02-27 2007-01-25 スリーディー システムズ インコーポレーテッド Colored stereolithography resin

Similar Documents

Publication Publication Date Title
JP3117394B2 (en) Optical three-dimensional molding resin composition
US6200732B1 (en) Photocurable resin composition
EP2135136B1 (en) Stereolithography resin compositions and three-dimensional objects made therefrom
JP3724893B2 (en) Optical three-dimensional molding resin composition
EP0807853A2 (en) Photocurable resin composition, method of producing photo-cured shaped object, vacuum casting mold, vacuum casting method and urethane acrylate
JPH06228413A (en) Photosensitive composition
US20120251841A1 (en) Liquid radiation curable resins for additive fabrication comprising a triaryl sulfonium borate cationic photoinitiator
TW200305581A (en) Photocurable compositions containing reactive particles
EP2502728B1 (en) Lightweight and high strength three-dimensional articles producible by additive fabrication processes
KR20180016505A (en) Liquid Hybrid Ultraviolet / Visible Ray Radiation for Additional Manufacturing - Curable Resin Composition
JP2008260812A (en) Resin composition for optically three-dimensional forming
US11866526B2 (en) Liquid, hybrid UV/vis radiation curable resin compositions for additive fabrication
TW201719283A (en) Patterning material, patterning method, and patterning apparatus
Gibson et al. Vat photopolymerization
JP3820289B2 (en) Photocurable resin composition for producing resin mold and method for producing resin mold
JP3974336B2 (en) Active energy ray-curable resin composition for optical three-dimensional modeling
Bongiovanni et al. Vat Photopolymerization
JPH07329191A (en) Photoforming
JPH1121307A (en) Reaction resin mixture and its use
JP2001181313A (en) Optical three-dimensional molding resin composition
JPH0970897A (en) Stereolithography
US6203966B1 (en) Stereolithographic resin composition
WO2000027895A1 (en) Photocurable resin composition and method of optically forming three-dimensional shape
JPH10168107A (en) Photocurable resin composition
JP2007238828A (en) Resin composition for optically formed three-dimensional article

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619