JP2001163622A - Lithium manganese oxide, method for producing the same, and secondary battery using the same - Google Patents
Lithium manganese oxide, method for producing the same, and secondary battery using the sameInfo
- Publication number
- JP2001163622A JP2001163622A JP2000300584A JP2000300584A JP2001163622A JP 2001163622 A JP2001163622 A JP 2001163622A JP 2000300584 A JP2000300584 A JP 2000300584A JP 2000300584 A JP2000300584 A JP 2000300584A JP 2001163622 A JP2001163622 A JP 2001163622A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- manganese oxide
- spinel
- lithium manganese
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
(57)【要約】
【課題】本願発明の目的は、Li二次電池用の正極材料
として、長期間のサイクル安定性に優れる高性能なスピ
ネル構造リチウムマンガン系酸化物およびその製造方法
並びにそれを用いた高性能なリチウム二次電池を提供す
るものである。
【解決手段】{Li}[LixMn2-x]O4(ここで、
{}は8aサイト、[]は16dサイトを示し、0.0
8<x≦0.15)で表され、Na含有量が0.001
wt%以上0.1wt%以下、SEM観察による平均一
次粒子径が0.5〜2.0μmであることを特徴とする
スピネル構造リチウムマンガン系酸化物、及び、スピネ
ル構造が立方晶スピネル構造であり、当該立方晶の格子
定数(a)が以下の式に従うことを特徴とするスピネル構
造リチウムマンガン系酸化物。
a≦8.2476−0.25×xAn object of the present invention is to provide, as a cathode material for a Li secondary battery, a high-performance spinel-structured lithium manganese-based oxide having excellent long-term cycle stability, a method for producing the same, and a method for producing the same. It is intended to provide a high-performance lithium secondary battery used. SOLUTION: {Li} [Li x Mn 2-x ] O 4 (where,
{} Indicates the 8a site, [] indicates the 16d site, and 0.0
8 <x ≦ 0.15) and the Na content is 0.001
a spinel-structured lithium manganese-based oxide characterized by having an average primary particle diameter of 0.5 to 2.0 μm by SEM observation, and a spinel structure having a cubic spinel structure. A spinel-structured lithium manganese-based oxide, wherein the cubic crystal has a lattice constant (a) according to the following equation: a ≦ 8.2476−0.25 × x
Description
【0001】[0001]
【発明の属する技術分野】本願発明は、スピネル構造リ
チウムマンガン系酸化物及びその製造方法並びにそれを
用いたリチウム二次電池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium manganese oxide having a spinel structure, a method for producing the same, and a lithium secondary battery using the same.
【0002】マンガン酸化物は、電池活物質として、古
くから使用されている材料であり、マンガンとリチウム
の複合物質であるリチウムマンガン複合酸化物は、リチ
ウム二次電池の正極活物質として、近年注目されている
材料である。[0002] Manganese oxide has long been used as a battery active material, and a lithium manganese composite oxide, which is a composite material of manganese and lithium, has recently attracted attention as a positive electrode active material of a lithium secondary battery. Is the material that is being used.
【0003】[0003]
【従来の技術】リチウム二次電池は、高エネルギー密
度、高出力であることより、近年の電子機器の小型・軽
量化に伴う新しい高性能電池として注目を浴びている。2. Description of the Related Art Due to high energy density and high output, lithium secondary batteries have attracted attention as new high-performance batteries in recent years as electronic devices have become smaller and lighter.
【0004】リチウム二次電池用の正極材料は、電圧作
動領域が高いこと、高放電容量であること及びサイクル
安定性が高いことが求められ、Liと各種金属、例え
ば、Co、Ni、Mn、V等の複合酸化物が検討されて
いる。LiとMnの複合酸化物の一種であるスピネル構
造のLiMn2O4は、正極活物質として有望であると考
えられているが、長期間にわたり可逆的にサイクルをさ
せることが困難であり、その電池の電気化学容量が減少
していくという問題がある。特に50℃〜60℃の高温
条件下で作動させた場合、電気化学容量の減少が頭著な
ものとなることがわかった。A positive electrode material for a lithium secondary battery is required to have a high voltage operating range, a high discharge capacity, and a high cycle stability, and Li and various metals such as Co, Ni, Mn, Complex oxides such as V are being studied. LiMn 2 O 4 having a spinel structure, which is a kind of a composite oxide of Li and Mn, is considered to be promising as a positive electrode active material, but it is difficult to cycle reversibly over a long period of time. There is a problem that the electrochemical capacity of the battery decreases. In particular, it was found that when operated under a high temperature condition of 50 ° C. to 60 ° C., the decrease in electrochemical capacity was remarkable.
【0005】また、LiとMnの複合酸化物であるため
に、スピネル構造リチウムマンガン系酸化物を製造する
場合に、組成のばらつき発生し、スピネル構造リチウム
マンガン系酸化物をリチウム二次電池の正極に使用する
場合の電池性能に与える影響が問題となる。[0005] Further, since a composite oxide of Li and Mn is used, when a lithium manganese-based oxide having a spinel structure is produced, a variation in composition occurs, and the lithium manganese-based oxide having a spinel structure is used as a positive electrode of a lithium secondary battery. The effect on battery performance when used in a battery is a problem.
【0006】液相合成等、均一性を上げるための製造方
法が種々提案されているが、原料が高価である、反応が
激しい、装置が高価であるなど実用化が難しい。Various production methods for improving uniformity such as liquid phase synthesis have been proposed, but practical use is difficult such as expensive raw materials, vigorous reaction, and expensive equipment.
【0007】[0007]
【発明が解決しようとする課題】本願発明の目的は、L
i二次電池用の正極材料として、長期間のサイクル安定
性に優れる高性能なスピネル構造リチウムマンガン系酸
化物およびその製造方法として、安価な原料を使用した
固相反応で均一性の高いスピネル構造リチウムマンガン
の製造方法、並びにそれを用いた高性能なリチウム二次
電池を提供するものである。The object of the present invention is to
High performance spinel structure lithium manganese oxide with excellent long-term cycle stability as a cathode material for secondary batteries and a spinel structure with high uniformity by solid-phase reaction using inexpensive raw materials An object of the present invention is to provide a method for producing lithium manganese and a high-performance lithium secondary battery using the same.
【0008】[0008]
【課題を解決するための手段】本発明者らは鋭意検討し
た結果、一般式{Li}[LixMn2-x]O4(ここ
で、{}は8aサイト、[]は16dサイトを示し、
0.08<x≦0.15)で表され、Na含有量が0.
1wt%以下、SEM観察による平均一次粒子径が0.
5〜2.0μmであることを特徴とするスピネル構造リ
チウムマンガン系酸化物が上記目的を達成できることを
見出した。Means for Solving the Problems As a result of intensive studies, the present inventors have found that the general formula {Li} [Li x Mn 2-x ] O 4 (where {} represents the 8a site and [] represents the 16d site) Show,
0.08 <x ≦ 0.15), and the Na content is 0.1.
1 wt% or less, the average primary particle diameter of 0.
It has been found that a lithium manganese-based oxide having a spinel structure characterized by a thickness of 5 to 2.0 μm can achieve the above object.
【0009】さらに、本願発明のスピネル構造リチウム
マンガン系酸化物の製造方法として、リチウム原料とマ
ンガン原料を混合後、焼成するスピネル構造リチウムマ
ンガン系酸化物の製造方法において、リチウム原料とマ
ンガン原料の平均粒子径の比が1/5〜1/30である
原料を使用することを特徴とするスピネル構造リチウム
マンガン系酸化物の製造方法が上記目的を達成できるこ
とを見出した。Further, as a method for producing a spinel-structured lithium manganese-based oxide according to the present invention, a method for producing a spinel-structured lithium-manganese-based oxide in which a lithium raw material and a manganese raw material are mixed and fired is described. It has been found that a method for producing a lithium manganese-based oxide having a spinel structure characterized by using a raw material having a particle diameter ratio of 1/5 to 1/30 can achieve the above object.
【0010】別の製造方法として、リチウム原料とマン
ガン原料を混合後、焼成するスピネル構造リチウムマン
ガン系酸化物の製造方法において、リチウム原料とマン
ガン原料の混合を冷却しながら行うスピネル構造リチウ
ムマンガン系酸化物の製造方法が上記目的を達成できる
ことを見出した。As another production method, there is provided a method for producing a lithium manganese oxide having a spinel structure in which a lithium material and a manganese material are mixed and then calcined. It has been found that a method for producing a product can achieve the above object.
【0011】更に、別の製造方法にとして、リチウム原
料とマンガン原料を混合後、焼成するスピネル構造リチ
ウムマンガン系酸化物の製造方法において、900℃未
満の温度で保持する仮加熱処理、750℃〜950℃で
保持する本加熱処理さらに600℃〜900℃で保持す
る後加熱処理を行えば、上記目的を達成できることを見
出した。Further, as another production method, there is provided a method for producing a spinel-structured lithium manganese oxide in which a lithium raw material and a manganese raw material are mixed and then fired. It has been found that the above object can be achieved by performing a main heat treatment at 950 ° C. and a post heat treatment at 600 ° C. to 900 ° C.
【0012】また、本願発明のスピネル構造リチウムマ
ンガン系酸化物を正極活物質として用いた高性能なリチ
ウム二次電池を見出し、本願発明を完成した。Further, a high performance lithium secondary battery using the lithium manganese oxide having a spinel structure of the present invention as a positive electrode active material has been found, and the present invention has been completed.
【0013】[0013]
【作用】以下、本願発明を具体的に説明する。Hereinafter, the present invention will be described in detail.
【0014】本願発明のスピネル構造リチウムマンガン
系酸化物は、一般式{Li}[LixMn2-x]O4(こ
こで、{}は8aサイト、[]は16dサイトを示し、
0.08<x≦0.15)で表され、Liが8aサイト
および16dサイトにMnが16dサイトに存在する。The spinel-structured lithium manganese-based oxide of the present invention has a general formula {Li} [Li x Mn 2-x ] O 4 (where {} represents an 8a site, and [] represents a 16d site;
0.08 <x ≦ 0.15), wherein Li exists at the 8a site and 16d site, and Mn exists at the 16d site.
【0015】ここで、式中のxの値は0.08<x≦
0.15である。Here, the value of x in the equation is 0.08 <x ≦
0.15.
【0016】該x値が0.08以下では、生成スピネル
構造リチウムマンガン系酸化物のサイクル安定性が悪
く、0.15より大きいと、利用できる電気容量が少な
く、いずれも有利ではない。When the value x is 0.08 or less, the cycle stability of the formed lithium manganese oxide having a spinel structure is poor. When the value is more than 0.15, the available electric capacity is small, and neither is advantageous.
【0017】該x値は0.09≦x≦0.12であるこ
とが好ましい。Preferably, the value x is 0.09 ≦ x ≦ 0.12.
【0018】本願発明のスピネル構造リチウムマンガン
系酸化物は、X線回折パターンはJCPDS35−78
2に近いパターンを示す立方晶スピネルであり、その格
子定数(a)が以下の式に従うことを特徴とする。The spinel-structured lithium manganese oxide of the present invention has an X-ray diffraction pattern of JCPDS35-78.
This is a cubic spinel exhibiting a pattern close to 2, and has a lattice constant (a) according to the following equation.
【0019】a≦8.2476−0.25×x 該格子定数が上記値より大きいとサイクル安定性が悪く
なり、好ましくない。A ≦ 8.2476−0.25 × x If the lattice constant is larger than the above value, the cycle stability becomes poor, which is not preferable.
【0020】本願発明のスピネル構造リチウムマンガン
系酸化物は、Na含有量が0.001wt%以上0.1
wt%以下である。The spinel-structured lithium manganese oxide according to the present invention has a Na content of 0.001 wt% or more and 0.1 wt% or more.
wt% or less.
【0021】該Na含有量が0.1wt%より多いと、
正極活物質として使用した場合に、負極等の汚染などの
原因となり、好ましくない。When the Na content is more than 0.1% by weight,
When used as a positive electrode active material, it causes contamination of the negative electrode and the like, which is not preferable.
【0022】該Na含有量は0.05wt%以下である
ことが好ましい。The Na content is preferably 0.05% by weight or less.
【0023】本願発明のスピネル構造リチウムマンガン
系酸化物は、SEM観察による平均一次粒子径が0.5
〜2.0μmである。The spinel-structured lithium manganese oxide of the present invention has an average primary particle diameter of 0.5 as measured by SEM observation.
2.02.0 μm.
【0024】本願発明において、SEM観察による平均
一次粒子径は、粉末のSEM観察像写真の画像解析を行
い、円相当径を求めたものの平均値である。In the present invention, the average primary particle diameter by SEM observation is an average value obtained by analyzing an image of an SEM observation image of a powder and obtaining an equivalent circle diameter.
【0025】該平均一次粒子径が0.5μmより小さい
と電解液中での安定性が悪くなりやすく、2.0μmよ
り大きいと電気容量が少なくなりやすく、いずれも電池
活物質として高性能とならない。If the average primary particle size is smaller than 0.5 μm, the stability in the electrolyte tends to deteriorate, and if the average primary particle size is larger than 2.0 μm, the electric capacity tends to decrease, and none of them has high performance as a battery active material. .
【0026】該平均一次粒子径は0.8〜1.2μmで
あるのが好ましい。The average primary particle diameter is preferably 0.8 to 1.2 μm.
【0027】本願発明のスピネル構造リチウムマンガン
系酸化物はBET比表面積が0.1〜2.0m2/gで
あることが好ましい。The spinel-structured lithium manganese oxide of the present invention preferably has a BET specific surface area of 0.1 to 2.0 m 2 / g.
【0028】該BET比表面積が0.1m2/gより小
さいと使用できる電気容量が低下し好ましくない。ま
た、2.0m2/gより大きいと、活物質、導電材料等
をスラリー化し、電極シートを作製する時に溶媒が多量
に必要となり、作製スラリーの粘度上昇を招きやすく、
電池正極の作製時のトラブルの原因となる為に好ましく
ない。If the BET specific surface area is less than 0.1 m 2 / g, the usable electric capacity is undesirably reduced. On the other hand, when it is larger than 2.0 m 2 / g, the active material, the conductive material, and the like are slurried, and a large amount of solvent is required when producing an electrode sheet, which tends to increase the viscosity of the produced slurry,
It is not preferable because it causes trouble during the production of the battery positive electrode.
【0029】該BET比表面積は0.3〜1.0m2/
gであることがより好ましい。The BET specific surface area is 0.3 to 1.0 m 2 /
g is more preferable.
【0030】本願発明のスピネル構造リチウムマンガン
系酸化物の製造方法としては、マンガン原料としては、
平均粒子径が30μm以下のマンガン原料を使用するこ
とが好ましい。In the method for producing a lithium manganese oxide having a spinel structure according to the present invention, the manganese raw material is as follows:
It is preferable to use a manganese raw material having an average particle diameter of 30 μm or less.
【0031】尚、平均粒子径は、マイクロトラック法で
測った体積換算50%径(d50)である。The average particle diameter is a 50% diameter in terms of volume (d 50 ) measured by the Microtrac method.
【0032】マンガン原料の内、電解二酸化マンガン
は、その一次粒子の均一性が高いために好ましく、30
μm以下のものは、反応性がよく好ましい。Of the manganese raw materials, electrolytic manganese dioxide is preferred because its primary particles have high uniformity.
Those having a size of less than μm are preferred because of their good reactivity.
【0033】さらに、マンガン原料として、平均粒子径
が30μm以下の電解二酸化マンガンを加熱処理して得
た実質的に単一結晶相であるマンガン酸化物を使用する
のは、結晶相も均一となり、リチウム原料との反応が均
一となるため好ましい。Na含有量が0.1wt%以下
である電解二酸化マンガンをMn原料として使用するこ
とが好ましい。Further, the use of manganese oxide, which is a substantially single crystal phase obtained by heat-treating electrolytic manganese dioxide having an average particle diameter of 30 μm or less as a manganese raw material, also makes the crystal phase uniform. This is preferable because the reaction with the lithium raw material becomes uniform. It is preferable to use electrolytic manganese dioxide having a Na content of 0.1 wt% or less as a Mn raw material.
【0034】電解二酸化マンガンは他のマンガン酸化物
および化合物に比べて、生成するスピネル構造リチウム
マンガン系酸化物が緻密となり、平均一次粒子径も大き
くなり、好ましいが、生成するスピネル構造リチウムマ
ンガン系酸化物の電池性能が低くなりやすかった。Electrolytic manganese dioxide is preferable because the spinel-structured lithium manganese-based oxide produced is denser and the average primary particle diameter is larger than other manganese oxides and compounds. The battery performance of the object was easily lowered.
【0035】本発明者らは、鋭意検討した結果、Na含
有量を0.1wt%以下である電解二酸化マンガンをM
n原料として使用することにより、平均一次粒子径も大
きく、電池性能の低下の少ないスピネル構造リチウムマ
ンガン系酸化物を得ることが可能になった。The present inventors have conducted intensive studies and as a result, have found that electrolytic manganese dioxide having a Na content of 0.1 wt% or less is M
By using n as a raw material, it was possible to obtain a spinel-structured lithium manganese-based oxide having a large average primary particle diameter and a small decrease in battery performance.
【0036】該Na含有量は0.05wt%以下である
ことが好ましく、0.02wt%以下であるのが特に好
ましい。[0036] The Na content is preferably at most 0.05 wt%, particularly preferably at most 0.02 wt%.
【0037】一般に電解二酸化マンガンは硫酸酸性浴中
で電解を行うため、電解後に苛性ソーダ水溶液で中和処
理をすることが多く、これがNa含有量を増大させる原
因である。In general, electrolytic manganese dioxide is electrolyzed in a sulfuric acid acid bath, and is often subjected to a neutralization treatment with an aqueous solution of caustic soda after electrolysis, which is a cause of an increase in the Na content.
【0038】該Na含有量が0.1wt%以下である電
解二酸化マンガンは、電解後に中和処理を行わず、水ま
たは温水で洗浄し、さらには、水酸化リチム水溶液、ア
ンモニア水溶液、アミン水溶液等で中和処理をすること
により得られる。The electrolytic manganese dioxide having a Na content of 0.1 wt% or less is not neutralized after the electrolysis, but is washed with water or hot water. To obtain a neutralization treatment.
【0039】特に、電解浴中からの付着した硫酸分、含
有した硫酸分を除去するためには、生成した電解二酸化
マンガンを洗浄、中和等を組み合わせて実施するのが好
ましい。In particular, in order to remove the sulfuric acid content and the sulfuric acid content contained in the electrolytic bath, it is preferable to carry out the electrolytic manganese dioxide produced in combination with washing, neutralization and the like.
【0040】さらに、本発明者らは、電解二酸化マンガ
ンを加熱処理して得た実質的に単一結晶相であるマンガ
ン酸化物をMn原料として使用することにより、Li原
料との反応が均一に進むことを見出した。Further, the present inventors use manganese oxide, which is a substantially single crystal phase obtained by heat-treating electrolytic manganese dioxide, as a Mn raw material, so that the reaction with the Li raw material is uniform. I've found it to go.
【0041】すなわち、該Na含有量が0.1wt%以
下である電解二酸化マンガン加熱処理して得た実質的に
単一結晶相であるマンガン酸化物をMn原料として使用
することが好ましい。That is, it is preferable to use a manganese oxide which is a substantially single crystal phase obtained by heat treatment of electrolytic manganese dioxide having a Na content of 0.1 wt% or less as a Mn raw material.
【0042】該Na含有量を0.1wt%以下である電
解二酸化マンガンを使用する代わりに電解二酸化マンガ
ンを加熱処理して得たマンガン酸化物を洗浄し、Na含
有量が0.1wt%以下とした実質的に単一結晶相であ
るマンガン酸化物をMn原料として使用することが好ま
しい。Instead of using electrolytic manganese dioxide having a Na content of 0.1 wt% or less, a manganese oxide obtained by heat-treating electrolytic manganese dioxide is washed to reduce the Na content to 0.1 wt% or less. It is preferable to use a manganese oxide which is substantially a single crystal phase as a Mn raw material.
【0043】電解二酸化マンガンの加熱処理は大気中、
600〜1100℃で行うのが好ましい。The heat treatment of electrolytic manganese dioxide is carried out in air.
It is preferably performed at 600 to 1100 ° C.
【0044】前記、電解二酸化マンガンを加熱処理して
得られるマンガン酸化物は実質的にMn2O3単相、また
は、Mn3O4単相であるものを使用するのが好ましい。
特にMn2O3は、Mnの価数がLiMn2O4中のMnの
価数に近く好ましい。It is preferable that the manganese oxide obtained by heat-treating the electrolytic manganese dioxide is substantially a single phase of Mn 2 O 3 or a single phase of Mn 3 O 4 .
In particular, Mn 2 O 3 is preferable because the valence of Mn is close to the valence of Mn in LiMn 2 O 4 .
【0045】前記マンガン化合物のBET比表面積は2
0m2/g以下であるのが反応性および取り扱い性より
好ましい。The manganese compound has a BET specific surface area of 2
It is preferably 0 m 2 / g or less from the viewpoint of reactivity and handleability.
【0046】Li化合物としては炭酸塩、硝酸塩、塩化
物塩、水酸化物、酸化物等が例示され、特にBET比表
面積が1m2/g以上である炭酸リチウムは、反応性が
良好であり、吸湿性が低く好ましい。Examples of the Li compound include carbonates, nitrates, chlorides, hydroxides and oxides. In particular, lithium carbonate having a BET specific surface area of 1 m 2 / g or more has good reactivity. Low hygroscopicity is preferable.
【0047】炭酸リチウムを使用する場合、平均粒子径
が5μm以下であることが好ましい。特に2μm以下が
好ましい。When lithium carbonate is used, the average particle size is preferably 5 μm or less. In particular, it is preferably 2 μm or less.
【0048】この粒子径が5μmを超える場合には、炭
酸リチウムの反応性が悪く好ましくない。If the particle size exceeds 5 μm, the reactivity of lithium carbonate is poor, which is not preferable.
【0049】原料の混合は均一にすることができれば、
通常の方法のいかなる方法も採用でき、ローターキルン
等のように混合しながら加熱処理することも好適であ
る。本願発明では、前述のようにして準備したマンガン
酸化物とリチウム化合物とを混合した後、少なくとも一
度、900℃未満の温度で保持する仮加熱処理を行い、
再混合を行った後、750℃〜950℃で保持する本加
熱処理を行うことが均一性を向上できるために好まし
い。If the mixing of the raw materials can be made uniform,
Any method of a usual method can be adopted, and it is also preferable to perform heat treatment while mixing like a rotor kiln or the like. In the present invention, after mixing the manganese oxide and the lithium compound prepared as described above, at least once, a temporary heat treatment of maintaining the temperature below 900 ° C.,
After the remixing, it is preferable to perform the main heat treatment at 750 ° C. to 950 ° C. because uniformity can be improved.
【0050】さらに、生成物の酸素欠損、構造欠陥を低
減させるために、750℃〜950℃で保持する本加熱
処理後に、酸素含有雰囲気中、600℃〜900℃で保
持する後加熱処理を行うことが好ましい。Further, in order to reduce oxygen deficiency and structural defects in the product, after the main heat treatment at 750 to 950 ° C., a post heat treatment at 600 to 900 ° C. in an oxygen-containing atmosphere is performed. Is preferred.
【0051】前記、後加熱処理は750℃〜950℃で
保持する本加熱処理後に、連続的に酸素含有雰囲気中、
600℃〜900℃で保持する後加熱処理を行うこと
が、さらに好ましく、複数回行うことが特に好ましい。The post-heating treatment is performed after the main heating treatment at 750 ° C. to 950 ° C. and continuously in an oxygen-containing atmosphere.
It is more preferable to perform a heat treatment after holding at 600 ° C. to 900 ° C., and it is particularly preferable to perform the heat treatment a plurality of times.
【0052】加熱処理は全て酸素含有雰囲気中で行うこ
とが好ましい。It is preferable that all heat treatments be performed in an oxygen-containing atmosphere.
【0053】加熱処理条件が前記範囲外であると、生成
物の平均一次粒子径が所望の範囲外となる、酸素欠損、
構造欠陥が生成するなど好ましくない。When the heat treatment conditions are out of the above range, the average primary particle diameter of the product is out of the desired range, and oxygen deficiency,
It is not preferable that a structural defect is generated.
【0054】製造したスピネル構造リチウムマンガン系
酸化物は適時、粉砕、分級を行うことが好ましい。前述
の製造方法により本発明のスピネル構造リチウムマンガ
ン系酸化物を作製できる。It is preferable that the produced lithium manganese oxide having a spinel structure is appropriately pulverized and classified. The spinel-structured lithium manganese-based oxide of the present invention can be manufactured by the above-described manufacturing method.
【0055】本発明者らは鋭意検討した結果、リチウム
原料とマンガン原料を混合後、焼成するスピネル構造リ
チウムマンガン系酸化物の製造方法において、リチウム
原料とマンガン原料の平均粒子径の比が1/5〜1/3
0である原料を使用することを特徴とするスピネル構造
リチウムマンガン系酸化物の製造方法でも上記目的を達
成できることを見出した。As a result of intensive studies, the present inventors have found that in a method for producing a lithium manganese-based oxide having a spinel structure in which a lithium raw material and a manganese raw material are mixed and fired, the ratio of the average particle diameter of the lithium raw material to the manganese raw material is 1/1. 5/3
It has been found that the above object can also be achieved by a method for producing a lithium manganese-based oxide having a spinel structure characterized by using a raw material of 0.
【0056】本願発明の製造方法において、5μmより
大きい場合には、炭酸リチウムの反応性が悪く好ましく
ない。In the production method of the present invention, if it is larger than 5 μm, the reactivity of lithium carbonate is not good, which is not preferable.
【0057】リチウム原料は、平均粒子径が2μm以下
の炭酸リチウムであることが好ましい。The lithium raw material is preferably lithium carbonate having an average particle diameter of 2 μm or less.
【0058】本願発明のマンガン原料は、平均粒子径が
30μm以下のマンガン原料を使用することが好まし
い。As the manganese raw material of the present invention, it is preferable to use a manganese raw material having an average particle diameter of 30 μm or less.
【0059】マンガン原料の内、電解二酸化マンガン
は、その一次粒子の均一性が高いために好ましく、30
μm以下のものは、反応性がよく好ましい。Among the manganese raw materials, electrolytic manganese dioxide is preferred because of high uniformity of the primary particles.
Those having a size of less than μm are preferred because of their good reactivity.
【0060】さらに、マンガン原料として、平均粒子径
が30μm以下の電解二酸化マンガンを加熱処理して得
た実質的に単一結晶相であるマンガン酸化物を使用する
のは、結晶相も均一となり、リチウム原料との反応が均
一となるため好ましい。Further, the use of manganese oxide, which is a substantially single crystal phase obtained by heat-treating electrolytic manganese dioxide having an average particle diameter of 30 μm or less as a manganese raw material, makes the crystal phase uniform. This is preferable because the reaction with the lithium raw material becomes uniform.
【0061】更に、本願発明のスピネル構造リチウムマ
ンガン系酸化物の製造方法において、リチウム原料とマ
ンガン原料の混合を冷却するか、又は、混合後、造粒体
を冷却しながら行うことが好ましい。Further, in the method for producing a lithium manganese-based oxide having a spinel structure according to the present invention, it is preferable that the mixing of the lithium raw material and the manganese raw material is performed by cooling, or after the mixing, while cooling the granulated material.
【0062】本願発明のように冷却を行わずに混合を行
うと、混合時に発生する熱で原料が変性しやすく、リチ
ウム原料とマンガン原料を均一に混合することが難し
い。When the mixing is performed without cooling as in the present invention, the raw materials are easily denatured by the heat generated during the mixing, and it is difficult to uniformly mix the lithium raw material and the manganese raw material.
【0063】冷却は、通常のいかなる方法も使用でき、
混合時の温度は30℃以下の温度ですることが好まし
い。The cooling can be performed by any ordinary method,
The temperature at the time of mixing is preferably 30 ° C. or lower.
【0064】本願発明では、混合を攪拌混合器で行うこ
とが均一性を向上させれために好ましいが、原料を均一
に混合することができれば、通常の方法のいかなる方法
も採用でき、ローターキルン等のように混合しながら加
熱処理することも好適である。In the present invention, it is preferable to carry out the mixing with a stirring mixer in order to improve the uniformity. However, as long as the raw materials can be uniformly mixed, any of the ordinary methods can be employed, such as a rotor kiln. It is also preferable to perform the heat treatment while mixing.
【0065】本願発明のスピネル構造リチウムマンガン
系酸化物造粒体の製造方法は、リチウム原料とマンガン
原料を混合後、冷却しながら造粒体を作製することが好
ましい。In the method for producing a spinel-structured lithium manganese oxide granule of the present invention, it is preferable to mix a lithium raw material and a manganese raw material and then produce the granulated body while cooling.
【0066】特に、一般に混合後、混合粉末を成形また
は造粒を行うと、粉末である場合と異なり、取り扱いが
安易になるという特徴がある。In particular, when the mixed powder is molded or granulated after mixing, it is easy to handle, unlike the powder.
【0067】本願発明のように冷却しながら造粒体を作
製することにより、均一な混合粉末を造粒することがで
き、さらに加熱処理を行った場合には、均一に反応が進
行し好ましい。By producing granules while cooling as in the present invention, a uniform mixed powder can be granulated, and when heat treatment is further performed, the reaction proceeds uniformly, which is preferable.
【0068】さらに、本願発明のスピネル構造リチウム
マンガン系酸化物を正極活物質として用いたLi二次電
池を作製した。Further, a Li secondary battery using the lithium manganese oxide having a spinel structure of the present invention as a positive electrode active material was manufactured.
【0069】本願発明のLi二次電池で用いる負極活物
質には、金属リチウム並びにリチウムまたはリチウムイ
オンを吸蔵放出可能な物質を用いることができる。例え
ば、金属リチウム、リチウム/アルミニウム合金、リチ
ウム/スズ合金、リチウム/鉛合金および電気化学的に
リチウムイオンを挿入・脱離することができる炭素材料
が例示され、電気化学的にリチウムイオンを挿入・脱離
することができる炭素材料が安全性および電池の特性の
面から特に好適である。As the negative electrode active material used in the Li secondary battery of the present invention, a material capable of inserting and extracting lithium metal and lithium or lithium ions can be used. For example, metallic lithium, lithium / aluminum alloy, lithium / tin alloy, lithium / lead alloy, and a carbon material capable of electrochemically inserting / desorbing lithium ions are exemplified. A carbon material that can be desorbed is particularly suitable in terms of safety and battery characteristics.
【0070】また、本願発明のLi二次電池で用いる電
解質としては、特に制限はないが、例えば、カーボネー
ト類、スルホラン類、ラクトン類、エーテル顆等の有機
溶媒中にリチウム塩を溶解したものや、リチウムイオン
導電性の固体電解質を用いることができる。The electrolyte used in the Li secondary battery of the present invention is not particularly limited. For example, an electrolyte obtained by dissolving a lithium salt in an organic solvent such as carbonates, sulfolanes, lactones, and ethers may be used. Alternatively, a lithium ion conductive solid electrolyte can be used.
【0071】また、本願発明のLi二次電池で用いるセ
パレーターとしては、特に制限はないが、例えば、ポリ
エチレンまたポリプロピレン製の微細多孔膜等を用いる
ことができる本願発明のスピネル構造リチウムマンガン
系酸化物を正極括物質として用いて、図1に示す電池を
構成した。The separator used in the Li secondary battery of the present invention is not particularly limited. For example, a lithium manganese-based oxide having a spinel structure of the present invention in which a microporous film made of polyethylene or polypropylene can be used. Was used as a positive electrode material to construct the battery shown in FIG.
【0072】図中において、:蓋、:テフロン(登
録商標)製絶縁体、:負極集電用メッシュ、:負
極、:セパレーター、:正極、:正極集電用メッ
シュ、:容器を示す。In the figure, there are shown: a lid, an insulator made of Teflon (registered trademark), a negative electrode current collecting mesh, a negative electrode, a separator, a positive electrode, a positive electrode current collecting mesh, and a container.
【0073】本願発明では、以上述べてきた正極活物
質、負極活物質およぴリチウム塩含有非水電解液を用い
て、安定な高性能なLi二次電池を得ることができた。In the present invention, a stable and high-performance Li secondary battery could be obtained using the above-described positive electrode active material, negative electrode active material and lithium salt-containing nonaqueous electrolyte.
【0074】[0074]
【実施例】本願発明の実施例および比較例における各測
定は、以下の条件で実施した。EXAMPLES Each measurement in Examples and Comparative Examples of the present invention was carried out under the following conditions.
【0075】・XRDパターンは以下の条件で測定し
た。The XRD pattern was measured under the following conditions.
【0076】測定機種:マックサイエンス社MXP−3 照射X線:CuKα線 測定モード:ステップスキャン スキャン条件:毎秒0.04度 計測時間:3秒 測定範囲:2θとして5度から80度 ・組成分析はICP分光法で行った。Measuring machine: MXP-3, McScience Inc. Irradiation X-ray: CuKα ray Measurement mode: Step scan Scan condition: 0.04 degrees per second Measurement time: 3 seconds Measurement range: 5 to 80 degrees as 2θ ・ Composition analysis Performed by ICP spectroscopy.
【0077】『スピネル構造リチウムマンガン系酸化物
の製造』実施例および比較例として、以下の方法で製造
した。"Production of lithium manganese-based oxide having spinel structure" As an example and a comparative example, it was produced by the following method.
【0078】実施例1 平均粒径15μm、Na含有量が0.01wt%の電解二
酸化マンガンを大気中800℃で12時間の加熱処理を
行い、JCPDSカード:41−1442と同等のパタ
ーンを示すMn2O3を合成した。このMn2O3と平均粒
径2μm、BET比表面積3m2/gの炭酸リチウムを
Li/Mn比が0.58になるように秤量し混合した。
混合は、攪拌混合造粒機(パウレック社製FM−VG−
50)を使用してジャケットに通水して25℃に冷却し
ながら行った。Example 1 An electrolytic manganese dioxide having an average particle size of 15 μm and a Na content of 0.01 wt% was subjected to a heat treatment at 800 ° C. for 12 hours in the air, and Mn having a pattern equivalent to that of a JCPDS card: 41-1442. 2 O 3 was synthesized. This Mn 2 O 3 and lithium carbonate having an average particle size of 2 μm and a BET specific surface area of 3 m 2 / g were weighed and mixed so that the Li / Mn ratio became 0.58.
Mixing is performed by a stirring and mixing granulator (FM-VG- manufactured by Powrex).
50), while passing water through the jacket and cooling to 25 ° C.
【0079】この様にして得た混合粉を、大気中600
℃で6時間の仮加熱処理を行い、室温まで冷却した後に
再度混合し、大気中800℃で24時間の本加熱処理、
更に、大気中700℃で24時間の後加熱処理を行っ
た。The mixed powder thus obtained was placed in the air at 600
Temporary heat treatment at 6 ° C. for 6 hours, and after cooling to room temperature, re-mixing was performed, and the main heat treatment was performed at 800 ° C. in the air for 24 hours.
Further, a post-heating treatment was performed at 700 ° C. for 24 hours in the atmosphere.
【0080】生成物は、粉末X繰回折によりJCPDS
35−782(LiMn204;格子定数8.2476
2オングストローム)と同等の回折パターンを示し格子
定数が若干異なる立方晶スピネル(格子定数8.220
オングストローム)と同定された。ICP分光分析法に
より、化学組成は{Li}[Li0.1Mn1.9]O4且
つ、Na含有量は0.01wt%であった。The product was analyzed by powder X-ray diffraction using JCPDS
35-782 (LiMn204; lattice constant 8.2476)
Cubic spinel (lattice constant 8.220) showing a diffraction pattern equivalent to 2 angstrom and slightly different lattice constants.
Angstrom). According to ICP spectroscopy, the chemical composition was {Li} [Li 0.1 Mn 1.9 ] O 4 and the Na content was 0.01 wt%.
【0081】また、SEM観察の結果、本生成物は0.
7μm程度の結晶粒子(一次粒子)が均一に揃った集合
体を形成しており、BET比表面積は0.7m2/gで
あった。As a result of SEM observation, the product was found to be 0.1%
An aggregate in which crystal particles (primary particles) of about 7 μm were uniformly formed was formed, and the BET specific surface area was 0.7 m 2 / g.
【0082】この様にして得られたリチウムマンガン系
酸化物を正極とする以下に示す電池を作成し、正極特性
試験を行った。正極試料と導電性のポリテトラフルオロ
エチレンとアセチレンブラックの混合物(商品名:TA
B−2)を重量比で2:1の割合で混合し、SUS31
6製メッシュ上に1ton/cm2の圧力でぺレット状
に成形した後、200℃で24時間減圧乾燥した。これ
を電池の正極に用い、負極には金属リチウム箔(厚さ
0.2mm)を、電解液にはプロピレンカーボネートと
ジエチルカーボネートの混合溶媒に六フッ化リン酸リチ
ウム(LiPF6)を1モル/dm3の濃度で溶解した溶
液をセパレーターに含浸させて電池を横成した。The following battery was prepared using the lithium manganese oxide thus obtained as a positive electrode, and a positive electrode characteristic test was performed. Mixture of positive electrode sample and conductive polytetrafluoroethylene and acetylene black (trade name: TA
B-2) was mixed at a weight ratio of 2: 1 to obtain SUS31.
After being formed into a pellet shape on a 6-mesh with a pressure of 1 ton / cm 2 , it was dried under reduced pressure at 200 ° C. for 24 hours. This was used as a positive electrode of a battery, a metal lithium foil (0.2 mm in thickness) was used as a negative electrode, and lithium hexafluorophosphate (LiPF 6 ) was used as an electrolyte in a mixed solvent of propylene carbonate and diethyl carbonate at 1 mol / L. The separator was impregnated with a solution dissolved at a concentration of dm 3 to form a battery.
【0083】この様にして作製した電池を用いて、試験
温度は50℃、電池電圧が4.5Vから3.5Vの間で
一定電流1.0mA/cm2の充放電を繰り返した。そ
の結果、容量維持率(10サイクル目に対する50サイ
クル日の放電容量の%)は95%を示した。Using the battery thus manufactured, charging and discharging at a constant current of 1.0 mA / cm 2 were repeated at a test temperature of 50 ° C. and a battery voltage of 4.5 V to 3.5 V. As a result, the capacity retention ratio (% of the discharge capacity on the 50th cycle day with respect to the 10th cycle) was 95%.
【0084】実施例2 合成時の加熱処理条件として、大気中600℃で6時間
の仮加熱処理を行い、室温冷却後再度混合を実施し、大
気中900℃で24時間の本加熱処理し、更に、大気中
800℃で24時間の後加熱処理を行った以外は、実施
例1と同一として、合成と電池評価を行った。Example 2 As heat treatment conditions at the time of synthesis, a temporary heat treatment was performed at 600 ° C. in the atmosphere for 6 hours, and after mixing at room temperature, mixing was performed again. Further, the synthesis and battery evaluation were performed in the same manner as in Example 1 except that post-heating treatment was performed at 800 ° C. for 24 hours in the atmosphere.
【0085】生成物は、粉末X繰回折により立方晶スピ
ネル(格子定数8.222オングストローム)と同定さ
れ、ICP分光分析法により、化学組成は{Li}[L
i0.1Mn1.9]O4且つ、Na含有量は0.01wt%
であった。また、SEM観察の結果、本生成物は0.8
μm程度の結晶粒子(一次粒子)が均一に揃った集合体
を形成しており、BET比表面積は0.4m2/gであ
った。The product was identified as cubic spinel (lattice constant: 8.222 Å) by X-ray powder diffraction, and the chemical composition was determined by ICP spectroscopy to be {Li} [L
i 0.1 Mn 1.9 ] O 4 and the Na content is 0.01 wt%
Met. As a result of SEM observation, the product was found to be 0.8
An aggregate in which crystal particles (primary particles) of about μm were uniformly arranged was formed, and the BET specific surface area was 0.4 m 2 / g.
【0086】また、電池試験の結果、容量維持率(10
サイクル目に対する50サイクル日の放電容量の%)は
92%を示した。As a result of the battery test, the capacity retention rate (10
(% Of the discharge capacity on the 50th cycle day with respect to the cycle) was 92%.
【0087】実施例3 合成時の混合条件として、2wt%のポリビニルアルコ
ール水溶液を添加して15分間攪拌して造粒を行った以
外は、実施例1と同一として、合成と電池評価を行っ
た。造粒終了時にはほとんどが1〜5mmφの造粒体と
なっており、該造粒体のランダムサンプリングによる組
成ずれは1%以内であった。Example 3 Synthesis and battery evaluation were carried out in the same manner as in Example 1 except that granulation was performed by adding a 2 wt% aqueous solution of polyvinyl alcohol and stirring for 15 minutes as mixing conditions during synthesis. . At the end of the granulation, most of the granules had a size of 1 to 5 mmφ, and the composition deviation due to random sampling of the granules was within 1%.
【0088】この様にして得られた生成物は、実施例1
と同等な物性と電池特性を示した。The product obtained in this way is described in Example 1.
It showed the same physical properties and battery characteristics as.
【0089】比較例1 Mn原料に使用した電解二酸化マンガンのNa含有量が
0.2wt%であること以外は、実施例1と同一の条件
で合成を行った。Comparative Example 1 Synthesis was performed under the same conditions as in Example 1 except that the Na content of the electrolytic manganese dioxide used as the Mn raw material was 0.2 wt%.
【0090】その結果、結晶相、組成は同様であった
が、格子定数が8.218オングストロームと若干小さ
く、平均一次粒子径1.0μm、BET比表面積0.9
m2/gと粉体物性が異なるものであった。電池試験の
結果、容量維持率は85%と実施例1と比較して著しく
劣るものであった。As a result, the crystal phase and the composition were the same, but the lattice constant was slightly smaller at 8.218 angstroms, the average primary particle diameter was 1.0 μm, and the BET specific surface area was 0.9.
The powder properties were different from m 2 / g. As a result of the battery test, the capacity retention was 85%, which was significantly inferior to Example 1.
【0091】比較例2 Mn原料に使用した電解二酸化マンガンのNa含有量が
0.2wt%であること以外は、実施例2と同一の条件
で合成を行った。Comparative Example 2 Synthesis was performed under the same conditions as in Example 2 except that the Na content of the electrolytic manganese dioxide used as the Mn raw material was 0.2 wt%.
【0092】その結果、結晶相、組成は同様であった
が、格子定数が8.220オングストロームと若干小さ
く、平均一次粒子径1.2μm、BET比表面積1.2
m2/gと粉体物性が異なるものであった。電池試験の
結果、容量維持率は80%と実施例2と比較して著しく
劣るものであった。As a result, the crystal phase and the composition were the same, but the lattice constant was slightly smaller at 8.220 angstroms, the average primary particle diameter was 1.2 μm, and the BET specific surface area was 1.2.
The powder properties were different from m 2 / g. As a result of the battery test, the capacity retention ratio was 80%, which was significantly inferior to Example 2.
【0093】比較例3 合成過程で、本加熱処理後、後加熱処理を行わなかった
以外は、実施例1及び2と同一の条件で合成を行った。Comparative Example 3 In the synthesis process, synthesis was performed under the same conditions as in Examples 1 and 2, except that post-heating was not performed after the main heating.
【0094】その結果、結晶相は同様であったが、格子
定数はそれぞれ実施例1及び2よりも大きなものであっ
た。また、化学分析の結果、Mn平均酸化数は理論計算
値よりも小さく、酸素欠陥があるものと考えられた。こ
れらの生成物の電池性能は、実施例1及び2と比較して
著しく劣るものであった。As a result, the crystal phases were the same, but the lattice constants were larger than those of Examples 1 and 2, respectively. As a result of chemical analysis, the average oxidation number of Mn was smaller than the theoretically calculated value, and it was considered that there was an oxygen defect. The battery performance of these products was significantly inferior to Examples 1 and 2.
【0095】比較例4 Li原料に、平均粒径10μmの炭酸リチウムを用いた
以外は、実施例1と同一の条件で合成を行った。Comparative Example 4 Synthesis was carried out under the same conditions as in Example 1 except that lithium carbonate having an average particle size of 10 μm was used as a Li raw material.
【0096】その結果、平均粒径2μmの炭酸リチウム
を用いた実施例1では大気中600℃6時間の仮加熱処
理で立方晶スピネルの単相となっていたのに対して、平
均粒径10μmの炭酸リチウムを用いた場合には700
℃の加熱処理でも単一相が得られなかった。また、80
0℃の本加熱処理により、立方晶スピネル単相とはなっ
たが、SEM観察により結晶一次粒子の大きさが揃って
おらず、反応が不均一に起きた為と考えられた。このよ
うな生成物の電池性能は、実施例1と比較して著しく劣
るものであった。As a result, in Example 1 in which lithium carbonate having an average particle size of 2 μm was used, a single phase of cubic spinel was formed by provisional heating at 600 ° C. for 6 hours in the air, whereas the average particle size was 10 μm. 700 when lithium carbonate is used
A single phase could not be obtained even at a heat treatment of ° C. Also, 80
Although the cubic spinel single phase was formed by the main heat treatment at 0 ° C., the size of the primary crystal grains was not uniform by SEM observation, and it was considered that the reaction occurred unevenly. The battery performance of such a product was remarkably inferior to that of Example 1.
【0097】比較例5 Li原料とMn原料の混合時に、ジャケットに通水せず
冷却を行わなかった以外は、実施例1及び3と同一の条
件で合成を行った。Comparative Example 5 Synthesis was carried out under the same conditions as in Examples 1 and 3, except that water was not passed through the jacket and cooling was not performed when mixing the Li raw material and the Mn raw material.
【0098】その結果、混合終了時の温度は45℃まで
上昇しており、混合器内壁には炭酸リチウムの白い粉が
付着していることが確認できた。ランダムサンプリング
による組成分析を行った結果、仕込み組成からのずれは
3%にも達した。また、2wt%のポリビニルアルコー
ル水溶液を添加して攪拌造粒を行った場合には、混合器
内壁に強固な付着物となり均一な造粒体が得られなかっ
た。As a result, the temperature at the end of the mixing increased to 45 ° C., and it was confirmed that white powder of lithium carbonate had adhered to the inner wall of the mixer. As a result of performing composition analysis by random sampling, the deviation from the charged composition reached 3%. In addition, when agitation granulation was performed by adding a 2 wt% polyvinyl alcohol aqueous solution, a strong adhered substance was formed on the inner wall of the mixer, and uniform granules could not be obtained.
【0099】[0099]
【発明の効果】本願発明では、以上述べてきた正極活物
質、負極活物質およぴリチウム塩含有非水電解液を用い
て、安定な高性能なLi二次電池を得ることができた。According to the present invention, a stable and high performance Li secondary battery can be obtained using the above-described positive electrode active material, negative electrode active material and lithium salt-containing non-aqueous electrolyte.
【図1】本願発明のスピネル構造リチウムマンガン系酸
化物を正極括物質として用いた電池の構成図を示す。FIG. 1 shows a configuration diagram of a battery using a spinel-structured lithium manganese-based oxide of the present invention as a positive electrode sealing material.
【符号の説明】 :蓋 :テフロン製絶縁体 :負極集電用メッシュ :負極 :セパレーター :正極 :正極集電用メッシュ :容器[Explanation of symbols]: Lid: Teflon insulator: Negative electrode current collector mesh: Negative electrode: Separator: Positive electrode: Positive electrode current collector mesh: Container
───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平11−281625 (32)優先日 平成11年10月1日(1999.10.1) (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平11−281626 (32)優先日 平成11年10月1日(1999.10.1) (33)優先権主張国 日本(JP) ──────────────────────────────────────────────────続 き Continued on the front page (31) Priority claim number Japanese Patent Application No. 11-281625 (32) Priority date October 1, 1999 (Oct. 1st, 1999) (33) Priority claim country Japan (JP) (31) Priority claim number Japanese Patent Application No. 11-281626 (32) Priority date October 1, 1999 (Oct. 10.1, 1999) (33) Priority claim country Japan (JP)
Claims (24)
{Li}[LixMn2-x]O4(ここで、{}は8aサ
イト、[]は16dサイトを示し、0.08<x≦0.
15)で表され、当該立方晶の格子定数(a、単位:オ
ングストローム)が以下の式であることを特徴とするリ
チウムマンガン酸化物。 a≦8.2476−0.25×xA cubic spinel structure having a composition of {Li} [Li x Mn 2-x ] O 4 (where {} represents an 8a site, [] represents a 16d site, and 0.08 <X ≦ 0.
15) A lithium manganese oxide, wherein the cubic crystal has a lattice constant (a, unit: angstrom) represented by the following formula: a ≦ 8.2476−0.25 × x
ンガン酸化物において、xの値が0.09≦x≦0.1
2であることを特徴とするリチウムマンガン酸化物。2. The spinel-structured lithium manganese oxide according to claim 1, wherein x is 0.09 ≦ x ≦ 0.1.
2. A lithium manganese oxide, which is 2.
ムマンガン酸化物において、不純物として含有されるN
aの含有量が0.001wt%以上0.1wt%以下で
あることを特徴とするスピネル構造リチウムマンガン酸
化物。3. The spinel-structured lithium manganese oxide according to claim 1, wherein N is contained as an impurity.
A spinel-structured lithium manganese oxide having an a content of 0.001 wt% or more and 0.1 wt% or less.
ンガン酸化物において、不純物として含有されるNaの
含有量が0.001wt%以上0.05wt%以下であ
ることを特徴とするスピネル構造リチウムマンガン酸化
物。4. The lithium manganese oxide having a spinel structure according to claim 3, wherein the content of Na contained as an impurity is 0.001% by weight or more and 0.05% by weight or less. Oxides.
ンガン酸化物において、不純物として含有されるNaの
含有量が0.001wt%以上0.02wt%以下であ
ることを特徴とするスピネル構造リチウムマンガン酸化
物。5. The spinel-structured lithium manganese oxide according to claim 3, wherein the content of Na contained as an impurity is not less than 0.001% by weight and not more than 0.02% by weight. Oxides.
ムマンガン酸化物において、BET比表面積が0.1m
2/g以上2.0m2/g以下であることを特徴とするス
ピネル構造リチウムマンガン酸化物。6. The spinel-structured lithium manganese oxide according to claim 1, having a BET specific surface area of 0.1 m
Spinel type lithium manganese oxide, characterized in that at most 2 / g or more 2.0 m 2 / g.
ンガン酸化物において、BET比表面積が0.3m2/
g以上1.0m2/g以下であることを特徴とするスピ
ネル構造リチウムマンガン酸化物。7. The lithium manganese oxide having a spinel structure according to claim 6, wherein the BET specific surface area is 0.3 m 2 /
g of lithium manganese oxide having a spinel structure of at least 1.0 m 2 / g.
ムマンガン酸化物において、SEM観察による平均一次
粒子径が0.5μm以上2.0μm以下であることを特
徴とするスピネル構造リチウムマンガン酸化物。8. The lithium manganese oxide having a spinel structure according to claim 1, wherein the average primary particle diameter as observed by SEM is 0.5 μm or more and 2.0 μm or less. .
ンガン酸化物において、SEM観察による平均一次粒子
径が0.8μm以上1.2μm以下であることを特徴と
するスピネル構造リチウムマンガン酸化物。9. The spinel-structured lithium manganese oxide according to claim 8, wherein the average primary particle diameter as observed by SEM is 0.8 μm or more and 1.2 μm or less.
成してなるスピネル構造リチウムマンガン酸化物の製造
方法において、マンガン酸化物とリチウム化合物とを混
合した後、少なくとも一度900℃未満の温度で仮加熱
処理を行い、再混合を行った後、少なくとも一度750
℃〜950℃で保持する本加熱処理を行うことを特徴と
する請求項1〜9のいずれかの請求項に記載のスピネル
構造リチウムマンガン酸化物を製造する方法。10. A method for producing a lithium manganese oxide having a spinel structure, comprising mixing a lithium raw material and a manganese raw material and calcining the mixture, and after mixing the manganese oxide and the lithium compound, temporarily heating the mixture at least once to a temperature of less than 900 ° C. After processing and remixing, at least once 750
The method for producing a spinel-structured lithium manganese oxide according to any one of claims 1 to 9, wherein the main heat treatment is performed at a temperature of from 0 ° C to 950 ° C.
理後に、酸素含有雰囲気中600℃〜900℃で保持す
る後加熱処理を行うことを特徴とする請求項10記載の
スピネル構造リチウムマンガン系酸化物の製造方法。11. The lithium manganese spinel structure according to claim 10, wherein after the main heat treatment at 750 ° C. to 950 ° C., a post heat treatment at 600 ° C. to 900 ° C. in an oxygen-containing atmosphere is performed. A method for producing an oxide.
理後に、連続的に酸素含有雰囲気中600℃〜900℃
で保持する後加熱処理を行うことを特徴とする請求項1
0記載のスピネル構造リチウムマンガン系酸化物の製造
方法。12. After the main heat treatment at 750 ° C. to 950 ° C., continuously in an oxygen-containing atmosphere at 600 ° C. to 900 ° C.
2. A heat treatment is carried out after holding at a temperature.
0. The method for producing a lithium manganese oxide having a spinel structure according to item 0.
理後に、酸素含有雰囲気中600℃〜900℃で保持す
る後加熱処理を複数回行うことを特徴とする請求項10
記載のスピネル構造リチウムマンガン系酸化物の製造方
法。13. The method according to claim 10, wherein after the main heat treatment at 750 to 950 ° C., a plurality of post heat treatments at 600 to 900 ° C. in an oxygen-containing atmosphere are performed.
A method for producing the spinel-structured lithium manganese-based oxide according to the above.
ことを特徴とする請求項10記載のスピネル構造リチウ
ムマンガン系酸化物の製造方法。14. The method for producing a spinel-structured lithium manganese-based oxide according to claim 10, wherein all the heat treatments are performed in an oxygen-containing atmosphere.
解二酸化マンガンを大気中600〜1100℃で加熱処
理して得られる実質的にMn2O3単一結晶相、または、
Mn3O4単相一結晶であるマンガン酸化物を使用するこ
とを特徴とする請求項10に記載のスピネル構造リチウ
ムマンガン酸化物の製造方法。15. A substantially Mn 2 O 3 single crystal phase obtained by heat-treating electrolytic manganese dioxide having a Na content of 0.1% by weight or less at 600 to 1100 ° C. in the air, or
Method for producing a spinel-type lithium-manganese oxide as claimed in claim 10, wherein the use of Mn 3 O 4, manganese oxides are single-phase one crystal.
100℃で加熱処理して得られる実質的にMn2O3単一
結晶相、または、Mn3O4単一結晶相であるマンガン酸
化物を洗浄し、Na含有量が0.1wt%以下として使
用することを特徴とする請求項10に記載のスピネル構
造リチウムマンガン酸化物の製造方法。16. An electrolytic manganese dioxide in the atmosphere of 600-1.
The manganese oxide which is substantially a Mn 2 O 3 single crystal phase or a Mn 3 O 4 single crystal phase obtained by heat treatment at 100 ° C. is washed to reduce the Na content to 0.1 wt% or less. The method for producing a spinel-structured lithium manganese oxide according to claim 10, wherein the method is used.
ムマンガン酸化物の製造方法において、リチウム原料と
マンガン原料の平均粒子径の比が1/5以上1/30以
下、より望ましくは1/10以上1/20以下であるこ
とを特徴とするスピネル構造リチウムマンガン酸化物の
製造方法。17. The method for producing a lithium manganese oxide having a spinel structure according to claim 10, wherein the ratio of the average particle diameter of the lithium material to the manganese material is 1/5 or more and 1/30 or less, more preferably 1/10 or more. A method for producing a lithium manganese oxide having a spinel structure, which is not more than 1/20.
をリチウム原料として使用することを特徴とする請求項
17に記載のスピネル構造リチウムマンガン酸化物の製
造方法。18. The method for producing a lithium manganese oxide having a spinel structure according to claim 17, wherein lithium carbonate having an average particle diameter of 5 μm or less is used as a lithium raw material.
をリチウム原料として使用することを特徴とする請求項
18に記載のスピネル構造リチウムマンガン酸化物の製
造方法。19. The method for producing a lithium manganese oxide having a spinel structure according to claim 18, wherein lithium carbonate having an average particle diameter of 2 μm or less is used as a lithium raw material.
料を使用することを特徴とする請求項17に記載のスピ
ネル構造リチウムマンガン酸化物の製造方法。20. The method for producing a lithium manganese oxide having a spinel structure according to claim 17, wherein a manganese raw material having an average particle diameter of 30 μm or less is used.
ムマンガン酸化物の製造方法において、リチウム原料と
マンガン原料を30℃以下の温度で攪拌混合することを
特徴とするスピネル構造リチウムマンガン酸化物の製造
方法。21. The method for producing a lithium manganese oxide having a spinel structure according to claim 17, wherein the lithium raw material and the manganese raw material are stirred and mixed at a temperature of 30 ° C. or less. Method.
ムマンガン酸化物の製造方法において、リチウム原料と
マンガン原料を30℃以下の温度で攪拌混合し、造粒体
を作製することを特徴とするスピネル構造リチウムマン
ガン酸化物造粒体の製造方法。22. The method for producing a lithium manganese oxide having a spinel structure according to claim 21, wherein a lithium material and a manganese material are stirred and mixed at a temperature of 30 ° C. or less to produce a granulated body. Method for producing granulated lithium manganese oxide.
ウムマンガン酸化物を正極として使用することを特徴と
するLi二次電池。23. A Li secondary battery using the spinel-structured lithium manganese oxide according to claim 1 as a positive electrode.
脱ドープする炭素系材料を負極とすることを特徴とする
請求項23に記載のLi二次電池。24. Electrolyte doped with lithium ions.
24. The Li secondary battery according to claim 23, wherein the undoped carbon-based material is used as a negative electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000300584A JP4714978B2 (en) | 1999-10-01 | 2000-09-28 | Lithium manganese oxide, method for producing the same, and secondary battery using the same |
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-281625 | 1999-10-01 | ||
JP11-281622 | 1999-10-01 | ||
JP28162699 | 1999-10-01 | ||
JP28162599 | 1999-10-01 | ||
JP28162299 | 1999-10-01 | ||
JP1999281623 | 1999-10-01 | ||
JP11-281626 | 1999-10-01 | ||
JP1999281622 | 1999-10-01 | ||
JP1999281624 | 1999-10-01 | ||
JP1999281625 | 1999-10-01 | ||
JP1999281626 | 1999-10-01 | ||
JP28162499 | 1999-10-01 | ||
JP28162399 | 1999-10-01 | ||
JP11-281623 | 1999-10-01 | ||
JP11-281624 | 1999-10-01 | ||
JP2000300584A JP4714978B2 (en) | 1999-10-01 | 2000-09-28 | Lithium manganese oxide, method for producing the same, and secondary battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001163622A true JP2001163622A (en) | 2001-06-19 |
JP4714978B2 JP4714978B2 (en) | 2011-07-06 |
Family
ID=27554418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000300584A Expired - Lifetime JP4714978B2 (en) | 1999-10-01 | 2000-09-28 | Lithium manganese oxide, method for producing the same, and secondary battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4714978B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001206721A (en) * | 2000-01-21 | 2001-07-31 | Nippon Chem Ind Co Ltd | Method for producing lithium manganese composite oxide, positive electrode plate for lithium secondary battery, and lithium secondary battery |
WO2004105162A1 (en) * | 2003-05-26 | 2004-12-02 | Nec Corporation | Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery |
CN100376048C (en) * | 2003-12-26 | 2008-03-19 | 余姚市金和实业有限公司 | Method for synthesizing LiCoxMn2-xO4 as anode material of lithium-ion secondary battery |
WO2011024765A1 (en) * | 2009-08-24 | 2011-03-03 | 東ソー株式会社 | Electrolytic manganese dioxide, method for producing same, and use of same |
WO2011105361A1 (en) * | 2010-02-23 | 2011-09-01 | 戸田工業株式会社 | Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery |
WO2011136466A3 (en) * | 2010-04-30 | 2012-01-12 | 삼성정밀화학(주) | Method for manufacturing lithium manganese oxide |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09306493A (en) * | 1996-05-21 | 1997-11-28 | Mitsubishi Chem Corp | Non-aqueous electrolyte secondary battery |
JPH10241687A (en) * | 1997-02-25 | 1998-09-11 | Asahi Chem Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JPH10245230A (en) * | 1997-03-05 | 1998-09-14 | Kyushu Ceramics Kogyo Kk | Lithium magnesium oxide for anode of lithium secondary battery |
JPH10294099A (en) * | 1997-04-21 | 1998-11-04 | Sony Corp | Non-aqueous electrolyte secondary cell |
JPH1145711A (en) * | 1997-05-28 | 1999-02-16 | Showa Denko Kk | Positive electrode active material and nonaqueous secondary battery using same |
JPH1171115A (en) * | 1997-06-19 | 1999-03-16 | Tosoh Corp | Spinel-structured lithium manganese-based oxide containing another element, method for producing the same, and use thereof |
JPH11509827A (en) * | 1996-04-05 | 1999-08-31 | エフエムシー・コーポレイション | Spinel Li lower 1 + x Mn lower 2-x 0 lower 4 + y |
JPH11302020A (en) * | 1998-04-20 | 1999-11-02 | Ube Ind Ltd | Lithium manganese composite oxide, method for producing the same and use thereof |
JP2000501688A (en) * | 1995-12-05 | 2000-02-15 | エフエムシー・コーポレイション | Highly uniform spinel Li lower 1 + X Mn lower 2-X O lower 4 interlayer compound and method for producing same |
-
2000
- 2000-09-28 JP JP2000300584A patent/JP4714978B2/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000501688A (en) * | 1995-12-05 | 2000-02-15 | エフエムシー・コーポレイション | Highly uniform spinel Li lower 1 + X Mn lower 2-X O lower 4 interlayer compound and method for producing same |
JPH11509827A (en) * | 1996-04-05 | 1999-08-31 | エフエムシー・コーポレイション | Spinel Li lower 1 + x Mn lower 2-x 0 lower 4 + y |
JPH09306493A (en) * | 1996-05-21 | 1997-11-28 | Mitsubishi Chem Corp | Non-aqueous electrolyte secondary battery |
JPH10241687A (en) * | 1997-02-25 | 1998-09-11 | Asahi Chem Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JPH10245230A (en) * | 1997-03-05 | 1998-09-14 | Kyushu Ceramics Kogyo Kk | Lithium magnesium oxide for anode of lithium secondary battery |
JPH10294099A (en) * | 1997-04-21 | 1998-11-04 | Sony Corp | Non-aqueous electrolyte secondary cell |
JPH1145711A (en) * | 1997-05-28 | 1999-02-16 | Showa Denko Kk | Positive electrode active material and nonaqueous secondary battery using same |
JPH1171115A (en) * | 1997-06-19 | 1999-03-16 | Tosoh Corp | Spinel-structured lithium manganese-based oxide containing another element, method for producing the same, and use thereof |
JPH11302020A (en) * | 1998-04-20 | 1999-11-02 | Ube Ind Ltd | Lithium manganese composite oxide, method for producing the same and use thereof |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001206721A (en) * | 2000-01-21 | 2001-07-31 | Nippon Chem Ind Co Ltd | Method for producing lithium manganese composite oxide, positive electrode plate for lithium secondary battery, and lithium secondary battery |
WO2004105162A1 (en) * | 2003-05-26 | 2004-12-02 | Nec Corporation | Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery |
US7556889B2 (en) | 2003-05-26 | 2009-07-07 | Nec Corporation | Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery |
JP4742866B2 (en) * | 2003-05-26 | 2011-08-10 | 日本電気株式会社 | Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery |
CN100376048C (en) * | 2003-12-26 | 2008-03-19 | 余姚市金和实业有限公司 | Method for synthesizing LiCoxMn2-xO4 as anode material of lithium-ion secondary battery |
WO2011024765A1 (en) * | 2009-08-24 | 2011-03-03 | 東ソー株式会社 | Electrolytic manganese dioxide, method for producing same, and use of same |
US9103044B2 (en) | 2009-08-24 | 2015-08-11 | Tosoh Corporation | Electrolytic manganese dioxide, and method for its production and its application |
WO2011105361A1 (en) * | 2010-02-23 | 2011-09-01 | 戸田工業株式会社 | Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery |
WO2011136466A3 (en) * | 2010-04-30 | 2012-01-12 | 삼성정밀화학(주) | Method for manufacturing lithium manganese oxide |
Also Published As
Publication number | Publication date |
---|---|
JP4714978B2 (en) | 2011-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3221352B2 (en) | Method for producing spinel-type lithium manganese composite oxide | |
JP3489685B2 (en) | Lithium manganate, method for producing the same, and lithium battery using the same | |
JP4788579B2 (en) | Lithium-nickel-manganese composite oxide, method for producing the same, and use thereof | |
JP5678482B2 (en) | Manganese oxide and method for producing the same | |
JP2016162601A (en) | Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
KR100639060B1 (en) | Method for preparing spinel type lithium manganate | |
US6475672B1 (en) | Lithium manganese oxide, and process for its production and secondary cell employing it | |
WO2018181967A1 (en) | Manganese oxide, production method therefor, and lithium secondary battery | |
JPH10182159A (en) | Lithium manganese oxide, method for producing the same, and lithium secondary battery using the lithium manganese oxide as a positive electrode | |
JP4714978B2 (en) | Lithium manganese oxide, method for producing the same, and secondary battery using the same | |
JP5811233B2 (en) | Manganese oxide and method for producing lithium manganate using the same | |
JP2016175825A (en) | Manganese oxide, method for producing the same, and lithium secondary battery using the same | |
WO2022138702A1 (en) | Spinel-type lithium manganese, method for producing same, and use of same | |
CN116417590A (en) | Positive electrode material of anion-cation co-doped coated sodium-ion battery and preparation method thereof | |
JPH082921A (en) | Lithium manganese composite oxide, method for producing the same, and use thereof | |
JP4320808B2 (en) | Lithium manganese oxide having spinel structure, method for producing the same, and use thereof | |
JPH06295724A (en) | Manufacture of lithium manganate for lithium secondary battery | |
JP2001240417A (en) | Method for manufacturing lithium manganate and lithium cell using the same | |
JPH0521063A (en) | Manufacture of manganese dioxide for lithium secondary battery | |
JP7417675B1 (en) | Metal composite hydroxide particles, method for producing metal composite compound, and method for producing positive electrode active material for lithium secondary batteries | |
JP7359911B1 (en) | Precursor and method for producing positive electrode active material for lithium secondary batteries | |
JP7416897B1 (en) | Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries | |
JP5544798B2 (en) | Method for producing lithium manganate and manganese dioxide used therefor | |
JP7192397B2 (en) | Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same | |
JP6578682B2 (en) | Trimanganese tetraoxide and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100702 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101005 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101013 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110314 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |