JP2001157951A - Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method - Google Patents
Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point methodInfo
- Publication number
- JP2001157951A JP2001157951A JP33979399A JP33979399A JP2001157951A JP 2001157951 A JP2001157951 A JP 2001157951A JP 33979399 A JP33979399 A JP 33979399A JP 33979399 A JP33979399 A JP 33979399A JP 2001157951 A JP2001157951 A JP 2001157951A
- Authority
- JP
- Japan
- Prior art keywords
- laser displacement
- laser
- displacement meter
- holding member
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 355
- 238000005259 measurement Methods 0.000 title claims abstract description 195
- 238000000034 method Methods 0.000 title claims abstract description 114
- 238000012545 processing Methods 0.000 claims abstract description 20
- 230000003287 optical effect Effects 0.000 claims description 43
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000001444 catalytic combustion detection Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 8
- 230000003746 surface roughness Effects 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 6
- 238000000691 measurement method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 101100115215 Caenorhabditis elegans cul-2 gene Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000036544 posture Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Abstract
(57)【要約】
【課題】 逐次2点法による測定にレーザ変位計を容易
に用い得るようにすることにある。
【解決手段】 二つのレーザ変位計4,5を、テーブル
1cに対して設定した測定線の延在方向に沿って一定間隔
をあけて整列させ、テーブル1cから概略等距離離間させ
てテーブル1cに向けて保持する変位計保持部材3と、そ
の変位計保持部材3を前記測定線に沿ってテーブル1cに
対し相対移動させる工作機械本体1aと、テーブル1cに照
射されるレーザ変位計4,5からのレーザビームの位置
を変位計保持部材3の相対移動に伴って順次に検出する
CCD2と、変位計保持部材3の相対移動に伴ってテー
ブル1cにおける一方のレーザ変位計4からのレーザビー
ムの位置に他方のレーザ変位計5からのレーザビームの
位置が一致するまでの変位計保持部材3の相対移動量か
ら求めた二つのレーザ変位計4,5の間隔に等しい距離
だけ変位計保持部材3が相対移動する毎に二つのレーザ
変位計4,5の出力信号を取り込み、それらの出力信号
を逐次2点法に基づいて演算処理してテーブル1cの真直
誤差曲線を求める制御装置1bと、を具えるものである。
(57) [Problem] To provide a laser displacement meter which can be easily used for measurement by a sequential two-point method. SOLUTION: Two laser displacement meters 4 and 5 are arranged on a table.
Displacement gauge holding member 3 that is aligned at regular intervals along the extension direction of the measurement line set for 1c, is held at an approximately equal distance from table 1c, and holds toward table 1c; The machine tool body 1a for moving the member 3 relative to the table 1c along the measurement line, and the positions of the laser beams from the laser displacement meters 4 and 5 applied to the table 1c are used for the relative movement of the displacement meter holding member 3. The position of the laser beam from the other laser displacement meter 5 coincides with the position of the laser beam from the other laser displacement meter 4 on the table 1c in accordance with the relative movement of the CCD 2 that is sequentially detected and the displacement meter holding member 3. The output of the two laser displacement meters 4 and 5 each time the displacement meter holding member 3 relatively moves by a distance equal to the distance between the two laser displacement meters 4 and 5 obtained from the relative movement amount of the displacement meter holding member 3 until the displacement. Faith Uptake, those comprising a control apparatus 1b by arithmetic processing based on those output signals sequentially two-point method determining the straightness error curve of the table 1c, and.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、逐次2点法によ
って工作機械等の真直精度や平面精度等の形状精度を測
定する装置に関し、特には、逐次2点法での測定にレー
ザ変位計を用いた形状精度測定装置に関するものであ
る。またこの発明は、逐次2点法による形状精度測定を
二つのレーザ変位計を用いて行うために、逐次2点法に
用いる変位計間隔として二つのレーザ変位計の間隔を求
める方法にも関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring shape accuracy such as straightness accuracy and plane accuracy of a machine tool or the like by a sequential two-point method. The present invention relates to a shape accuracy measuring device used. The present invention also relates to a method for determining the distance between two laser displacement meters as the distance between the displacement meters used in the sequential two-point method, in order to perform the shape accuracy measurement by the sequential two-point method using two laser displacement meters. It is.
【0002】[0002]
【従来の技術】工作機械の真直精度を測定する方法とし
ては従来、オートコリメータによる方法やレーザ干渉計
による方法等が知られているが、これらの方法にはそれ
ぞれ、以下の如き問題点がある。2. Description of the Related Art Conventionally, methods for measuring the straightness accuracy of a machine tool include a method using an autocollimator and a method using a laser interferometer. However, each of these methods has the following problems. .
【0003】オートコリメータによる測定法は、通常、
加工物の真直誤差曲線の測定のための現場の測定法とし
て標準的に用いられている方法である。これは、加工物
等の測定対象の真直度誤差曲線を評価すべき面に鏡面を
立てて望遠鏡によって狙い、鏡面の傾斜角を測定すると
いう作業を、その評価すべき面の、測定線(測定位置を
連ねた線)に沿った所要の測定位置について繰り返し行
い、測定された傾斜角を繋いで真直誤差曲線を求めるも
のである。問題は、鏡面を立てるのが測定線沿いの二点
に脚を持つ台上にであり、求められる傾斜面が厳密には
鏡面直下に於ける傾斜ではないことである。すなわち、
鏡面の傾斜は、脚が置かれる2点間の傾斜を求めている
こととなり、この点の誤差を含むことである。A measuring method using an autocollimator is usually
This is a standard method used as an on-site measurement method for measuring a straightness error curve of a workpiece. In this method, the work of setting a mirror surface on the surface of the object to be measured, such as a workpiece, on which the straightness error curve is to be evaluated, aiming with a telescope, and measuring the tilt angle of the mirror surface is referred to as a measurement line (measurement line) This is repeated for a required measurement position along a line connecting the positions, and a straightness error curve is obtained by connecting the measured inclination angles. The problem is that the mirror surface is raised on a table with legs at two points along the measurement line, and the required slope is not strictly the slope just below the mirror surface. That is,
The inclination of the mirror surface means that the inclination between the two points where the legs are placed is determined, and includes an error at this point.
【0004】また、オートコリメータによる測定法は、
望遠鏡の設定、反射鏡の設定等の作業を伴うものであ
り、真直度の測定に於いても、そして繰り返し測定を要
する平面度の評価についてはなおさらのこと、作業性の
面から誤差の入り込む余地が大きく、また、作業にも時
間を要する測定法であるというのが実態である。[0004] The measuring method using an autocollimator is as follows.
This involves setting the telescope, setting the reflector, and so on. Even in the measurement of straightness and the evaluation of flatness that requires repeated measurements, there is still room for errors in terms of workability. In fact, it is a measurement method that requires a large amount of time and requires time for work.
【0005】さらに、工作機械の真直運動誤差曲線を求
める方法としてオートコリメータを用いる場合には、鏡
面を工具台上の保持装置等によって保持して送り、工具
台の走行区間内で鏡面の傾斜を検出する方法が考えられ
るが、工具台の運動については、運動に応じて傾斜が生
じるとすれば2次的なものであり、真直度誤差曲線とし
ては、運動方向に直交する方向の変動がまず評価される
べきものである。従って、オートコリメータによって
は、工作機械側の真直運動誤差曲線を求めることは難し
い。Further, when an autocollimator is used as a method for obtaining a straight motion error curve of a machine tool, a mirror surface is held by a holding device or the like on a tool table and fed, and the inclination of the mirror surface in the travel section of the tool table is reduced. A method of detecting the movement is conceivable. However, the movement of the tool stand is secondary if the inclination is generated according to the movement, and as the straightness error curve, the fluctuation in the direction perpendicular to the movement direction is first. It should be evaluated. Therefore, it is difficult to obtain a straight motion error curve on the machine tool side depending on the autocollimator.
【0006】一方、レーザ干渉計による測定法は、オー
トコリメータによる測定と対照的であり、工作機械側に
干渉計を取り付け、それに向けてレーザ発振装置からレ
ーザを発射し、発振装置と反対側に反射鏡を置いて、干
渉計の移動に伴うレーザビームと直交方向の誤差運動を
検出するものである。しかしながらこれによって加工物
の真直形状誤差曲線を求めるには、加工物側に取り付け
た干渉計を、ビームが走る測定線(測定位置を連ねた
線)沿いに円滑に移動させる必要があるが、このように
するには、装置構成を対象物毎に作成するのに難がある
ことをはじめとして多くの困難があり、測定は実際には
不可能である。この結果、現状では工作機械の真直運動
誤差曲線を評価し、これが加工物に転写されるとして加
工物側の精度を考えているのが実態である。1本の真直
誤差曲線を測定するにもこの状況であるから、これを繰
り返して加工物の平面度を測定することは実際問題とし
ては不可能である。[0006] On the other hand, the measurement method using a laser interferometer is in contrast to the measurement using an autocollimator, in which an interferometer is mounted on a machine tool, a laser is emitted from the laser oscillation device toward the interferometer, and the laser is emitted on the opposite side to the oscillation device. With a reflecting mirror, an error motion in the direction orthogonal to the laser beam accompanying the movement of the interferometer is detected. However, in order to obtain the straight shape error curve of the workpiece by this, it is necessary to smoothly move the interferometer attached to the workpiece along the measurement line (line connecting the measurement positions) along which the beam runs. To do so, there are many difficulties, including the difficulty in creating a device configuration for each object, and measurement is not actually possible. As a result, at present, the straight motion error curve of the machine tool is evaluated, and the accuracy of the workpiece is considered as being transferred to the workpiece. Since this is the case even when measuring one straightness error curve, it is practically impossible to measure the flatness of the workpiece by repeating this process.
【0007】機械側の真直運動誤差曲線を求める場合で
あっても、以下の諸点で制約を受ける。すなわち、レー
ザ干渉計による測定法では、レーザビームが二分されて
反射鏡に向かう構成の中で、工具台が運動する範囲に対
応してビームスポットが反射鏡の中を移動するから、運
動誤差曲線が求められる測定範囲は、反射鏡の中をレー
ザビームが移動できる長さによって制限されることとな
る。しかもその測定精度は、反射鏡の鏡面加工精度に依
存する。また、ビームが長距離にわたって空間を通過す
る場合には、空気の擾乱を受け易く、測定値は揺らぎ、
測定結果の誤差要因となる。さらに、この方法は、レー
ザ干渉計等が設置されている機械各部の微小な振動にも
敏感であり、繰り返し測定の精度は後述する逐次2点法
ほどに安定しないのが実態である。[0007] Even when a straight-motion error curve on the machine side is obtained, there are restrictions on the following points. That is, in the measurement method using a laser interferometer, in a configuration in which a laser beam is split into two and directed toward a reflecting mirror, a beam spot moves in the reflecting mirror in accordance with the range in which the tool table moves, so that the motion error curve Is determined by the length that the laser beam can move in the reflecting mirror. Moreover, the measurement accuracy depends on the mirror processing accuracy of the reflecting mirror. Also, when the beam travels through space over long distances, it is susceptible to air disturbances, and the measurements fluctuate,
It becomes an error factor of the measurement result. Further, this method is also sensitive to minute vibrations of various parts of the machine on which the laser interferometer or the like is installed, and the accuracy of the repeated measurement is not as stable as the sequential two-point method described below.
【0008】これらの問題点を解決すべく、工作機械の
真直精度を測定する方法として本願発明者らが開発した
のが逐次2点法である。旋盤を例として見るに、逐次2
点法では、工具台に二つの変位計を、工具台の送り方向
に所定の間隔を空けて取り付ける。一方、加工物取付位
置には、加工物等の適当な測定対象を配置する。そして
上記変位計の取付間隔に等しいピッチで工具台の送りを
繰り返し、二つの変位計によって工具台と測定対象との
相対変位を測定する。これより、変位計の出力に基づく
二つのデータ列が得られ、これを簡潔なアルゴリズムで
処理することにより、工具台の運動と、加工物等の測定
対象との真直誤差曲線が同時に独立に求められる。In order to solve these problems, the present inventors have developed a sequential two-point method as a method for measuring the straightness accuracy of a machine tool. If you take a lathe as an example,
In the point method, two displacement meters are mounted on a tool stand at predetermined intervals in the feed direction of the tool stand. On the other hand, an appropriate measurement target such as a workpiece is arranged at the workpiece mounting position. Then, the feed of the tool table is repeated at a pitch equal to the mounting interval of the above-mentioned displacement meters, and the relative displacement between the tool table and the object to be measured is measured by the two displacement meters. As a result, two data trains based on the output of the displacement meter are obtained, and by processing them with a simple algorithm, the motion of the tool table and the straightness error curve of the workpiece or the like to be measured are simultaneously and independently obtained. Can be
【0009】従って、逐次2点法は、高精度の基準真直
尺を用いる必要がないこと、それゆえ測定範囲が真直尺
の長さに制約されず、長く取れること、加工物の回転、
モータの駆動等振動を考慮しなければならない状態でも
測定が可能であること、調整が容易であり、円筒度、平
面度等への展開が容易であること、測定の繰り返し精度
が良いこと、機能としてNC工作機械に適合しているこ
と等の特徴を有しており、これらの特徴は、従来の真直
誤差曲線測定法であるオートコリメータ、レーザ干渉計
等によっては得難いものである。逐次2点法とオートコ
リメータとの各々による測定結果の厳密な比較は難し
く、未だ実現していないが、逐次2点法による測定の特
徴は、明確で、繰り返し測定の精度も良い点にあり、一
旦測定装置が機械に設定され、作業者が習熟すれば、逐
次2点法による測定が標準としての地位を確立する可能
性は高い。Accordingly, the sequential two-point method does not require the use of a high-precision reference straight scale, and therefore the measurement range is not restricted by the length of the straight scale, but can be long, the rotation of the workpiece,
Measurement is possible even when vibration must be taken into consideration, such as motor drive, adjustment is easy, deployment to cylindricity, flatness, etc. is easy, measurement repeatability is good, function This is difficult to obtain with a conventional straight error curve measuring method such as an autocollimator, a laser interferometer, or the like. Strict comparison of the measurement results by each of the sequential two-point method and the autocollimator is difficult and has not yet been realized, but the characteristics of the sequential two-point method are clear and the accuracy of repeated measurement is good. Once the measuring device is set up on the machine and the operator is proficient, there is a high possibility that the sequential two-point measurement will establish itself as a standard.
【0010】以上のように、工作機械や加工物の真直度
の測定に関し、従来はオートコリメータやレーザ干渉計
による方法が一般的に用いられてきたが、機械上の測定
装置を備えること、平面度測定に展開すること、機械の
運動と加工物との両者について同時に測定し、相互の関
係に注目して機械の運用をすること、装置構成によって
MC(マシニングセンタ)の工具保持装置に工具に変え
て測定装置を保持し、作業行程の中での精度測定の実施
を可能とすること等に関しては、逐次2点法による測定
法が優れていることは明らかである。なお、逐次2点法
の詳細は、東京大学生産技術研究所が1982年6月に
発行した「生産研究」第34巻第6号中第25〜34頁
に本願発明者が発表した「真直度測定法の動向と逐次2
点法の展開」を参照されたい。As described above, the straightness of a machine tool or a workpiece is measured by a method using an autocollimator or a laser interferometer in general. To measure the movement of the machine and the workpiece at the same time, operate the machine paying attention to the mutual relationship, and change the tool to a tool holding device of MC (machining center) depending on the device configuration It is clear that the sequential two-point method is superior in terms of holding the measuring device and performing the accuracy measurement during the work process. The details of the sequential two-point method are described in “Straightness” published by the inventor of the present invention in “Research on Production”, Vol. 34, No. 6, pages 25-34, issued by the Institute of Industrial Science, The University of Tokyo in June 1982. Trends in Measurement Methods and Sequential 2
Point Method Development ”.
【0011】[0011]
【発明が解決しようとする課題】ところで、逐次2点法
の原理の確認の際には、変位計として静電容量型や渦電
流型等のものが用いられていたが、これらの変位計で
は、測定対象との間の距離を大きくできず、動作距離範
囲も小さいため、衝突を避けるような配慮が必要であっ
た。また、渦電流形の変位計は性能も良く使いやすい性
質を備えていたが、鉄系の材料を対象とする場合には残
留磁気の影響を受け、実用性に欠けていた。この一方、
近時のセンサ技術の発展によって、測定対象にレーザビ
ームを照射して測定対象から反射したレーザ光を光セン
サで受光し、その受光位置の移動量から三角測量の原理
で測定対象の変位量を求める小型のレーザ変位計が開発
され、かかるレーザ変位計によれば、測定対象との間の
距離や動作距離範囲を大きく取ることができるので、上
記の問題を回避して逐次2点法を適用することが可能と
なってきた。By the way, when the principle of the sequential two-point method is confirmed, displacement meters of the capacitance type or the eddy current type have been used. Since the distance from the object to be measured cannot be increased and the operating distance range is small, it is necessary to take measures to avoid collision. Also, the eddy current type displacement meter had good performance and was easy to use, but when it was used for iron-based materials, it was affected by residual magnetism and was not practical. On the other hand,
With the recent development of sensor technology, a laser beam is irradiated to the measurement object and the laser beam reflected from the measurement object is received by the optical sensor, and the displacement amount of the measurement object is calculated based on the principle of triangulation from the movement amount of the light receiving position. A small laser displacement meter to be sought has been developed. According to such a laser displacement meter, the distance to the object to be measured and the operating distance range can be made large, so the above-mentioned problem is avoided and the two-point method is applied successively. It has become possible to do.
【0012】しかしながら、レーザ変位計には、測定点
でのレーザビームのスポット径が数十μmと小さいとい
う不都合がある。すなわち、容量型あるいは渦電流型の
変位計では、直径は数mmから10mm前後であり、中心位置
を求めて逐次2点法用の測定装置として構成することが
容易であった。また、測定値は上記の径の領域に対する
平均値として検出されていると考えることができた。こ
れは、結果として加工面の表面粗さについての影響を平
均化しているとしてよい。一方、逐次2点法はその原理
として、二つの変位計による測定点に対し、一方のセン
サで測定した位置を他方のセンサで正確に測定すること
が必要である。However, the laser displacement meter has a disadvantage that the spot diameter of the laser beam at the measurement point is as small as several tens of μm. That is, in the displacement type displacement meter of the capacitance type or the eddy current type, the diameter is about several mm to about 10 mm, and it is easy to determine the center position and sequentially configure the measurement device for the two-point method. Further, it could be considered that the measured value was detected as an average value for the above-mentioned diameter region. This may average the effect on the surface roughness of the machined surface as a result. On the other hand, in principle, the sequential two-point method requires that the position measured by one sensor is accurately measured by the other sensor with respect to the measurement points by two displacement meters.
【0013】レーザ変位計の場合、測定点でのスポット
径が上記のように小さい結果、表面粗さの影響を受けや
すく、測定対象の材料や加工面粗さの状態による測定値
の揺らぎが大きいため、変位計としての機能を果たさな
い場合のあることが指摘されている。すなわち、鋳物の
ように表面に複合的性質が表れる材料では、乱反射の性
質によってスポットが特定され、測定値がより適切に評
価されるのに対し、切削面が反射面となって一見測定が
容易に見える鋼の加工面では、スポット位置が特定し難
くなることが示されている。このため、逐次2点法に基
づく測定が可能な装置をレーザ変位計によって構成して
測定を試みた結果、繰り返し測定したデータに劣化が表
れた。また、スポット径が小さいので、スポット径の中
心位置と装置本体との相対位置関係を保証するために高
精度の装置構成や多くの作業を要し、逐次2点法の原理
を満足するように、測定線に沿って所定の位置関係でレ
ーザ変位計を移動させてデータを得ることは容易でな
い。In the case of a laser displacement meter, as a result of the small spot diameter at the measurement point as described above, it is susceptible to the influence of the surface roughness, and the fluctuation of the measured value due to the material to be measured and the state of the processed surface roughness is large. Therefore, it has been pointed out that the function as the displacement meter may not be achieved. In other words, for a material such as a casting, which has a complex property on the surface, the spot is specified by the property of diffuse reflection, and the measured value is more appropriately evaluated. It is shown that it is difficult to identify the spot position on the steel work surface seen in FIG. For this reason, as a result of configuring a device capable of performing the measurement based on the sequential two-point method with the laser displacement meter and attempting the measurement, the data measured repeatedly showed deterioration. In addition, since the spot diameter is small, a high-precision apparatus configuration and a lot of work are required to guarantee the relative positional relationship between the center position of the spot diameter and the apparatus body, and the principle of the two-point method must be satisfied sequentially. It is not easy to obtain data by moving the laser displacement meter in a predetermined positional relationship along the measurement line.
【0014】この発明は、レーザ変位計を用いて逐次2
点法による精度測定装置を構成し、表面粗さ、材質等の
影響を避けつつ、工作機械、3次元測定装置等につい
て、真直度、平面度等の形状精度を測定することを可能
にし、さらに、これによって、加工能率、測定能率を保
ちつつ、加工精度、測定精度を上げることを目的とする
ものである。The present invention uses a laser displacement meter to sequentially perform two
The accuracy measurement device by the point method is constructed, and it is possible to measure the shape accuracy such as straightness and flatness of machine tools and three-dimensional measurement devices while avoiding the influence of surface roughness, material, etc. Accordingly, it is an object to increase the processing accuracy and the measurement accuracy while maintaining the processing efficiency and the measurement efficiency.
【0015】[0015]
【課題を解決するための手段およびその作用・効果】上
記目的達成のため、この発明の逐次2点法による形状精
度測定装置は、形状精度の測定対象に対して設定した測
定線の延在方向に沿って二つのレーザ変位計を一定間隔
をあけて整列させるとともにそれら二つのレーザ変位計
を前記測定対象から概略等距離離間させてその測定対象
に向けて保持する変位計保持部材と、前記変位計保持部
材を前記測定線に沿って前記測定対象に対し相対移動さ
せる保持部材相対移動手段と、前記測定対象に照射され
る前記二つのレーザ変位計からのレーザビームの位置を
前記変位計保持部材の相対移動に伴って順次に検出する
光センサと、前記変位計保持部材の相対移動に伴って前
記測定対象における前記二つのレーザ変位計のうちの一
方のレーザ変位計からのレーザビームの位置に他方のレ
ーザ変位計からのレーザビームの位置が一致するまでの
前記変位計保持部材の相対移動量から求めた前記二つの
レーザ変位計の間隔に等しい距離だけ前記変位計保持部
材が相対移動する毎に前記二つのレーザ変位計の出力信
号を取り込み、それらの出力信号を逐次2点法に基づい
て演算処理して前記測定対象の真直誤差曲線を求める演
算処理手段と、を具えることを特徴としている。In order to achieve the above object, the apparatus for measuring shape accuracy by the sequential two-point method according to the present invention is directed to an extending direction of a measuring line set for a measurement object of shape accuracy. A displacement meter holding member that aligns the two laser displacement meters along the line at a fixed interval, and holds the two laser displacement meters at approximately the same distance from the measurement target and holds toward the measurement target; and A holding member relative moving means for moving the meter holding member relative to the measurement object along the measurement line; and a displacement meter holding member for determining a position of the laser beam from the two laser displacement meters applied to the measurement object. An optical sensor for sequentially detecting the displacement sensor according to the relative movement of the laser displacement meter, and one of the two laser displacement meters in the measurement object according to the relative movement of the displacement meter holding member. The displacement meter by a distance equal to the distance between the two laser displacement meters obtained from the relative movement amount of the displacement meter holding member until the position of the laser beam from the other laser displacement meter matches the position of the laser beam. Each time the holding member moves relative to each other, the output signals of the two laser displacement meters are fetched, and the output signals are sequentially processed based on the two-point method to calculate a straightness error curve of the measurement object; It is characterized by having.
【0016】かかる装置にあっては、変位計保持部材
が、形状精度の測定対象に対して設定した測定線の延在
方向に沿って二つのレーザ変位計を一定間隔をあけて整
列させるとともにそれら二つのレーザ変位計を前記測定
対象から概略等距離離間させてその測定対象に向けて保
持し、保持部材相対移動手段が、前記変位計保持部材を
前記測定線に沿って前記測定対象に対し相対移動させ、
光センサが、前記測定対象に照射される前記二つのレー
ザ変位計からのレーザビームの位置を前記変位計保持部
材の相対移動に伴って順次に検出し、演算処理手段が、
前記変位計保持部材の相対移動に伴って前記測定対象に
おける前記二つのレーザ変位計のうちの一方のレーザ変
位計からのレーザビームの位置に他方のレーザ変位計か
らのレーザビームの位置が一致するまでの前記変位計保
持部材の相対移動量から求めた前記二つのレーザ変位計
の間隔に等しい距離だけ前記変位計保持部材が相対移動
する毎に前記二つのレーザ変位計の出力信号を取り込
み、それらの出力信号を逐次2点法に基づいて演算処理
して前記測定対象の真直誤差曲線を求め、それを出力す
る。In such an apparatus, the displacement meter holding member aligns the two laser displacement meters at a fixed interval along the extending direction of the measurement line set for the shape accuracy measurement object, and aligns them. The two laser displacement meters are separated from the measurement target by substantially equal distances and held toward the measurement target, and a holding member relative moving unit moves the displacement meter holding member relative to the measurement target along the measurement line. Move,
The optical sensor sequentially detects the position of the laser beam from the two laser displacement meters irradiated to the measurement object with the relative movement of the displacement meter holding member, and the arithmetic processing means,
With the relative movement of the displacement meter holding member, the position of the laser beam from one of the two laser displacement meters of the two laser displacement meters in the measurement object matches the position of the laser beam from the other laser displacement meter. Each time the displacement meter holding member relatively moves by a distance equal to the distance between the two laser displacement meters determined from the relative movement amount of the displacement meter holding member up to, capturing the output signals of the two laser displacement meters, The output signals are successively calculated based on the two-point method to obtain a straightness error curve of the object to be measured, and output it.
【0017】従ってこの発明の装置によれば、測定対象
に対する変位計保持部材の相対移動の際に二つのレーザ
変位計の小さなスポット径のレーザビームの位置を正確
に一致させて、それら二つのレーザ変位計から逐次2点
法による精度測定のための相対変位データを得ることが
できるので、繰り返し測定によるデータの劣化を防止す
ることができるとともに、スポット径中心位置と装置本
体との相対位置関係を保証するために高精度の装置構成
や多くの作業を要することなしに、逐次2点法の原理を
満足するように、測定線に沿い所定の位置関係でレーザ
変位計を移動させてデータを得ることができる。Therefore, according to the apparatus of the present invention, when the displacement meter holding member is relatively moved with respect to the object to be measured, the positions of the laser beams having the small spot diameters of the two laser displacement meters are accurately matched, and the two laser Since relative displacement data for accuracy measurement by the two-point method can be obtained sequentially from the displacement meter, it is possible to prevent data deterioration due to repeated measurement and to determine the relative positional relationship between the spot diameter center position and the apparatus body. Data is obtained by moving the laser displacement meter along a measurement line in a predetermined positional relationship along the measurement line so as to satisfy the principle of the two-point method without requiring a high-precision device configuration or a lot of work to guarantee. be able to.
【0018】なお、この発明の装置においては、前記光
センサは、前記レーザ変位計に向けられて前記測定対象
に固定された一次元または二次元の電荷結合素子(CC
D)であっても良く、また、前記光センサは、前記レー
ザ変位計に向けられて前記測定対象に固定された受光面
2分割光電変換素子もしくは受光面4分割光電変換素子
であっても良い。これらCCDや光電変換素子を用いれ
ば、レーザ変位計のレーザビームを正確にかつ安価に検
出することができる。そして、特に受光面4分割光電変
換素子を用いれば、二つの変位計のレーザスポットと、
それらの変位計を逐次2点法で送る方向に延在する送り
線との相互のずれについても検出し得るので、変位計の
位置調整を容易に行うことができる。In the apparatus according to the present invention, the optical sensor is a one-dimensional or two-dimensional charge-coupled device (CC) fixed to the object to be measured directed to the laser displacement meter.
D), and the optical sensor may be a light-receiving surface two-division photoelectric conversion element or a light-receiving surface four-division photoelectric conversion element which is fixed to the object to be measured while facing the laser displacement meter. . If these CCDs and photoelectric conversion elements are used, the laser beam of the laser displacement meter can be detected accurately and at low cost. In particular, if a light-receiving surface four-division photoelectric conversion element is used, the laser spots of the two displacement meters and
Mutual displacement between the displacement gauge and a feed line extending in the direction in which the displacement gauges are sequentially sent can also be detected, so that the position of the displacement gauge can be easily adjusted.
【0019】また、この発明の装置においては、前記光
センサは、前記測定対象に向けられて前記保持部材相対
移動手段の静止部位に固定された電子式カメラ(二次元
CCD等の受光素子を用いて離れた対象を撮像し、画像
信号を出力するカメラ)であっても良く、かかる構成に
よれば光センサの位置が定まっているので、装置の操作
性が向上するとともに、測定対象に対する変位計の使用
前後での装置側の精度変化の確認や、長期間にわたる当
該装置の使用の際の定期的な精度確認が可能になり、そ
れゆえ変位計の間隔精度に関する保守が容易になるの
で、精度測定作業の作業性を向上させることができる。In the apparatus according to the present invention, the optical sensor is an electronic camera (a light receiving element such as a two-dimensional CCD) fixed to a stationary portion of the holding member relative moving means so as to face the object to be measured. (A camera that captures an image of a distant object and outputs an image signal). According to such a configuration, the position of the optical sensor is fixed, so that the operability of the device is improved and the displacement meter for the measurement object is improved. It is possible to check the accuracy change of the device before and after use of the device and to periodically check the accuracy when using the device for a long period of time. The workability of the measurement work can be improved.
【0020】さらに、この発明の装置においては、前記
変位計保持部材は、前記二つのレーザ変位計の相対位置
および向きの少なくとも一方を微調整するレーザ変位計
微調整手段を有していても良く、かかる構成によれば、
精度測定作業の作業性をさらに向上させることができ
る。Further, in the apparatus of the present invention, the displacement meter holding member may have a laser displacement meter fine adjustment means for finely adjusting at least one of a relative position and an orientation of the two laser displacement meters. According to such a configuration,
The workability of the accuracy measurement work can be further improved.
【0021】そして、この発明の装置においては、前記
演算処理手段は、前記変位計保持部材が微小間隔で複数
回移動した際の前記二つのレーザ変位計の各々の複数の
出力信号を平均化して、前記逐次2点法に基づく演算処
理のための前記二つのレーザ変位計の出力信号とするも
のであっても良く、かかる構成によれば、加工面粗さや
加工面反射率、加工面材質等の影響を抑制して、逐次2
点法を適用することができる。In the apparatus of the present invention, the arithmetic processing means averages a plurality of output signals of each of the two laser displacement meters when the displacement meter holding member moves a plurality of times at minute intervals. The output signals of the two laser displacement meters for the arithmetic processing based on the sequential two-point method may be used. According to such a configuration, the processed surface roughness, the processed surface reflectance, the processed surface material, etc. To reduce the effect of
A point method can be applied.
【0022】そしてこの発明の逐次2点法による形状精
度測定装置は、形状精度の測定対象に対して設定した測
定線の延在方向に概略沿って二つのレーザ変位計を一定
間隔をあけて整列させるとともにそれら二つのレーザ変
位計を前記測定対象から概略等距離離間させてその測定
対象に向けて保持する変位計保持部材と、前記変位計保
持部材を前記測定対象に対し前記測定線の延在方向へ相
対移動させるとともに前記二つのレーザ変位計の整列方
向へ相対移動させる保持部材相対移動手段と、前記測定
対象に照射される前記二つのレーザ変位計からのレーザ
ビームの位置を前記変位計保持部材の相対移動に伴って
順次に検出する二次元光センサと、前記測定対象に対す
る前記変位計保持部材の前記測定線に沿う相対移動に伴
って、前記測定対象における前記二つのレーザ変位計の
うちの一方のレーザ変位計からのレーザビームが前記二
次元光センサ上に照射される位置から他方のレーザ変位
計からのレーザビームが前記二次元光センサ上に照射さ
れる位置までの前記変位計保持部材の相対移動量と、前
記二つのレーザ変位計からのレーザビームの前記二次元
光センサ上での照射位置とから前記二つのレーザ変位計
の間隔と整列方向とを求め、前記測定対象に対する前記
変位計保持部材の前記二つのレーザ変位計の整列方向へ
の相対移動に伴って前記二つのレーザ変位計の間隔に等
しい距離だけ前記変位計保持部材が相対移動する毎に前
記二つのレーザ変位計の出力信号を取り込み、それらの
出力信号を逐次2点法に基づいて演算処理して前記測定
対象の真直誤差曲線を求める演算処理手段と、を具える
ことを特徴とするものであっても良い。In the apparatus for measuring shape accuracy by the sequential two-point method according to the present invention, two laser displacement gauges are arranged at regular intervals along a direction in which a measuring line set for a shape accuracy measurement object extends. And a displacement meter holding member that holds the two laser displacement meters at approximately the same distance from the measurement object and holds the two laser displacement meters toward the measurement object, and extends the measurement line with respect to the measurement object. Holding means for relative movement in the direction of alignment of the two laser displacement meters and relative movement in the direction of alignment of the two laser displacement meters, and holding of the position of the laser beam from the two laser displacement meters applied to the object to be measured. A two-dimensional optical sensor that sequentially detects the relative position of the member, and the measurement pair corresponding to the relative movement of the displacement meter holding member with respect to the measurement object along the measurement line. The laser beam from the other laser displacement meter is irradiated on the two-dimensional optical sensor from the position where the laser beam from one of the two laser displacement meters is irradiated on the two-dimensional optical sensor. The distance and alignment direction of the two laser displacement meters from the relative movement amount of the displacement meter holding member to the position to be performed, and the irradiation position of the laser beam from the two laser displacement meters on the two-dimensional optical sensor. The displacement meter holding member is moved relative to the measurement target by a distance equal to the distance between the two laser displacement meters with the relative movement of the displacement meter holding member in the alignment direction of the two laser displacement meters. Every time, the output signals of the two laser displacement meters are fetched, and the output signals are sequentially processed based on the two-point method to calculate the straightness error curve of the object to be measured. Means, may be characterized in that it comprises a.
【0023】かかる装置にあっては、変位計保持部材
が、形状精度の測定対象に対して設定した測定線の延在
方向に概略沿って二つのレーザ変位計を一定間隔をあけ
て整列させるとともにそれら二つのレーザ変位計を前記
測定対象から概略等距離離間させてその測定対象に向け
て保持し、保持部材相対移動手段が、先ず前記変位計保
持部材を前記測定線に沿って前記測定対象に対し相対移
動させ、その後に前記二つのレーザ変位計の整列方向へ
相対移動させ、二次元光センサが、前記測定対象に照射
される前記二つのレーザ変位計からのレーザビームの位
置を前記変位計保持部材の相対移動に伴って順次に検出
し、演算処理手段が、前記測定対象に対する前記変位計
保持部材の前記測定線に沿う相対移動に伴って前記測定
対象における前記二つのレーザ変位計のうちの一方のレ
ーザ変位計からのレーザビームが前記二次元光センサ上
に照射される位置から他方のレーザ変位計からのレーザ
ビームが前記二次元光センサ上に照射される位置までの
前記変位計保持部材の相対移動量と、前記二つのレーザ
変位計からのレーザビームの前記二次元光センサ上での
照射位置とから前記二つのレーザ変位計の間隔と整列方
向とを求め、その求めた前記二つのレーザ変位計の間隔
に等しい距離だけ前記変位計保持部材がその求めた前記
二つのレーザ変位計の整列方向へ相対移動する毎に前記
二つのレーザ変位計の出力信号を取り込み、それらの出
力信号を逐次2点法に基づいて演算処理して前記測定対
象の真直誤差曲線を求め、それを出力する。In such an apparatus, the displacement meter holding member aligns the two laser displacement meters at regular intervals along the extending direction of the measurement line set with respect to the measurement object of the shape accuracy, and The two laser displacement meters are separated from the measurement target by an approximately equal distance and held toward the measurement target, and the holding member relative moving means firstly moves the displacement meter holding member to the measurement target along the measurement line. Relative displacement in the direction of alignment of the two laser displacement meters, and the two-dimensional optical sensor determines the position of the laser beam from the two laser displacement meters that irradiates the measurement object with the displacement meter. The detection is sequentially performed according to the relative movement of the holding member, and the arithmetic processing unit performs the second detection on the measurement object with the relative movement of the displacement meter holding member along the measurement line with respect to the measurement object. From the position where the laser beam from one of the laser displacement meters is irradiated onto the two-dimensional optical sensor to the position where the laser beam from the other laser displacement meter is irradiated onto the two-dimensional optical sensor From the relative movement amount of the displacement meter holding member up to and the irradiation position of the laser beam from the two laser displacement meters on the two-dimensional optical sensor, the interval and alignment direction of the two laser displacement meters are obtained. Every time the displacement meter holding member relatively moves in the direction of alignment of the determined two laser displacement meters by a distance equal to the determined distance between the two laser displacement meters, the output signal of the two laser displacement meters is determined. Then, the output signals are sequentially processed according to the two-point method to obtain a straightness error curve of the object to be measured and output.
【0024】従ってこの発明の装置によれば、測定対象
に対する変位計保持部材の相対移動の際に二つのレーザ
変位計の小さなスポット径のレーザビームの位置を正確
に一致させて、それら二つのレーザ変位計から逐次2点
法による精度測定のための相対変位データを得ることが
できるので、繰り返し測定によるデータの劣化を防止す
ることができるとともに、スポット径中心位置と装置本
体との相対位置関係を保証するために高精度の装置構成
や多くの作業を要することなしに、逐次2点法の原理を
満足するように、測定線に沿い所定の位置関係でレーザ
変位計を移動させてデータを得ることができる。Therefore, according to the apparatus of the present invention, when the displacement meter holding member is relatively moved with respect to the object to be measured, the positions of the laser beams having the small spot diameters of the two laser displacement meters are accurately matched, and the two laser Since relative displacement data for accuracy measurement by the two-point method can be obtained sequentially from the displacement meter, it is possible to prevent data deterioration due to repeated measurement and to determine the relative positional relationship between the spot diameter center position and the apparatus body. Data is obtained by moving the laser displacement meter along a measurement line in a predetermined positional relationship along the measurement line so as to satisfy the principle of the two-point method without requiring a high-precision device configuration or a lot of work to guarantee. be able to.
【0025】しかもこの発明の装置によれば、変位計保
持部材を正確にかつ自動的に二つのレーザ変位計の整列
方向に移動させ得るので、当該装置を工作機械等に搭載
して逐次2点法による形状精度測定を容易に行うことが
できる。Further, according to the apparatus of the present invention, the displacement gauge holding member can be accurately and automatically moved in the direction in which the two laser displacement gauges are aligned. The shape accuracy measurement by the method can be easily performed.
【0026】なお、この発明の上記の装置および先に述
べた装置においては、前記変位計保持部材は、互いに直
角な二つの方向に整列させて少なくとも三つのレーザ変
位計を保持するものであっても良く、このようにすれ
ば、それら少なくとも三つのレーザ変位計のうち、互い
に直角な二つの方向の何れかに整列する二つを選択的に
使用することで、レーザー変位計や変位計保持部材の付
け替えなしに平面度測定を行い得て、平面度測定を容易
に自動的にかつ高精度に行うことができる。In the above-described apparatus of the present invention and the above-described apparatus, the displacement meter holding member holds at least three laser displacement meters aligned in two directions perpendicular to each other. In this case, by selectively using two of the at least three laser displacement meters arranged in any one of two directions perpendicular to each other, a laser displacement meter or a displacement meter holding member can be used. The flatness can be measured without changing the flatness, and the flatness can be easily and automatically measured with high accuracy.
【0027】一方、この発明の上記の装置および先に述
べた装置は、前記変位計保持部材を90°回転させて前記
二つのレーザ変位計を互いに直角な二つの方向に選択的
に整列させる保持部材回転手段を具えていても良く、こ
のようにすれば、その保持部材回転手段で変位計保持部
材を90°回転させて、二つのレーザ変位計を互いに直角
な二つの方向の何れかに選択的に整列させることで、レ
ーザー変位計や変位計保持部材の付け替えなしに平面度
測定を行い得て、平面度測定を容易に自動的にかつ高精
度に行うことができる。On the other hand, the above-described apparatus of the present invention and the above-described apparatus are arranged such that the displacement meter holding member is rotated by 90 ° to selectively align the two laser displacement meters in two directions perpendicular to each other. A member rotating means may be provided, and in this case, the displacement meter holding member is rotated by 90 ° by the holding member rotating means, and the two laser displacement meters are selected in one of two directions perpendicular to each other. The flatness can be measured without replacement of the laser displacement meter or the displacement meter holding member, and the flatness measurement can be easily performed automatically and with high accuracy.
【0028】また、この発明の逐次2点法による形状精
度測定用レーザ変位計間隔測定方法は、逐次2点法によ
る形状精度測定を二つのレーザ変位計を用いて行うため
に、逐次2点法に用いる変位計間隔として前記二つのレ
ーザ変位計の間隔を求めるに際し、形状精度の測定対象
に対して設定した測定線の延在方向に沿って前記二つの
レーザ変位計を一定間隔をあけて整列させるとともにそ
れら二つのレーザ変位計を前記測定対象から概略等距離
離間させてその測定対象に向けて保持し、それら二つの
レーザ変位計を前記保持状態のまま前記測定線に沿って
前記測定対象に対し相対移動させ、前記測定対象に照射
される前記二つのレーザ変位計からのレーザビームの位
置を前記相対移動に伴って光センサで順次に検出し、前
記相対移動に伴って前記測定対象における前記二つのレ
ーザ変位計のうちの一方のレーザ変位計からのレーザビ
ームの位置に他方のレーザ変位計からのレーザビームの
位置が一致するまでの前記相対移動の移動量から前記二
つのレーザ変位計の間隔を求めることを特徴とするもの
である。Further, according to the laser displacement meter interval measuring method for shape accuracy measurement by the sequential two-point method of the present invention, the shape accuracy measurement by the sequential two-point method is performed by using two laser displacement meters. When obtaining the distance between the two laser displacement meters as the distance between the two laser displacement meters, the two laser displacement meters are aligned at regular intervals along the extending direction of the measurement line set for the measurement target of the shape accuracy. The two laser displacement meters are held at the same distance from the object to be measured and held toward the object to be measured, and the two laser displacement meters are attached to the object to be measured along the measurement line in the holding state. Relative movement, the position of the laser beam from the two laser displacement meters irradiated to the measurement object is sequentially detected by an optical sensor along with the relative movement, and the position is detected along with the relative movement. From the movement amount of the relative movement until the position of the laser beam from one of the two laser displacement meters of the two laser displacement meters in the measurement object coincides with the position of the laser beam from the other laser displacement meter. It is characterized in that an interval between two laser displacement meters is obtained.
【0029】かかる方法によれば、測定対象に対する二
つのレーザ変位計の相対移動の際にそれら二つのレーザ
変位計の小さなスポット径のレーザビームの位置を正確
に一致させて、それら二つのレーザ変位計から逐次2点
法による精度測定のための相対変位データを得ることが
できるので、繰り返し測定によるデータの劣化を防止す
ることができるとともに、スポット径中心位置と装置本
体との相対位置関係を保証するために高精度の装置構成
や多くの作業を要することなしに、逐次2点法の原理を
満足するように、測定線に沿い所定の位置関係でレーザ
変位計を移動させてデータを得ることができる。According to this method, when the two laser displacement meters are relatively moved with respect to the object to be measured, the positions of the laser beams having small spot diameters of the two laser displacement meters are made to exactly coincide with each other, and the two laser displacement meters are moved. Since relative displacement data for accuracy measurement by the two-point method can be obtained from the meter sequentially, it is possible to prevent data deterioration due to repeated measurement and to guarantee the relative positional relationship between the spot diameter center position and the device body. To obtain data by moving the laser displacement meter along a measurement line in a predetermined positional relationship so as to satisfy the principle of the sequential two-point method without requiring a high-precision device configuration or a lot of work. Can be.
【0030】そして、この発明の逐次2点法による形状
精度測定用レーザ変位計間隔測定方法は、逐次2点法に
よる形状精度測定を、二つのレーザ変位計を用いて行う
ために、逐次2点法に用いる変位計間隔として前記二つ
のレーザ変位計の間隔を求めるに際し、形状精度の測定
対象に対して設定した測定線の延在方向に概略沿って前
記二つのレーザ変位計を一定間隔をあけて整列させると
ともにそれら二つのレーザ変位計を前記測定対象から概
略等距離離間させてその測定対象に向けて保持し、それ
ら二つのレーザ変位計を前記保持状態のまま前記測定線
に沿って前記測定対象に対し相対移動させ、前記測定対
象に照射される前記二つのレーザ変位計からのレーザビ
ームの位置を前記相対移動に伴って二次元光センサで順
次に検出し、前記測定対象に対する前記変位計保持部材
の前記測定線に沿う相対移動に伴って、前記測定対象に
おける前記二つのレーザ変位計のうちの一方のレーザ変
位計からのレーザビームが前記二次元光センサ上に照射
される位置から他方のレーザ変位計からのレーザビーム
が前記二次元光センサ上に照射される位置までの前記変
位計保持部材の相対移動量と、前記二つのレーザ変位計
からのレーザビームの前記二次元光センサ上での照射位
置とから前記二つのレーザ変位計の間隔を求めることを
特徴とするものであっても良い。The laser displacement meter interval measuring method for measuring shape accuracy by the sequential two-point method of the present invention uses the two laser displacement meters to perform the shape accuracy measurement by the sequential two-point method. upon obtaining the interval between the two laser displacement meter as a displacement meter intervals used in law, at a certain distance the two laser displacement meter along schematically the extending direction of the measurement line set for measurement target shape accuracy The two laser displacement meters are held at the same distance from the object to be measured and held toward the object to be measured, and the two laser displacement meters are measured along the measurement line in the holding state. Move relative to the target, and sequentially detect the position of the laser beam from the two laser displacement meters irradiated to the measurement target with a two-dimensional optical sensor with the relative movement, the With the relative movement of the displacement meter holding member with respect to the fixed object along the measurement line, a laser beam from one of the two laser displacement meters of the measurement object on the two-dimensional optical sensor. The relative movement amount of the displacement meter holding member from the irradiation position to the position where the laser beam from the other laser displacement meter is irradiated onto the two-dimensional optical sensor, and the laser beam from the two laser displacement meters The distance between the two laser displacement meters may be obtained from the irradiation position on the two-dimensional optical sensor.
【0031】かかる方法によれば、測定対象に対する二
つのレーザ変位計の相対移動の際にそれら二つのレーザ
変位計の小さなスポット径のレーザビームの位置を正確
に一致させて、それら二つのレーザ変位計から逐次2点
法による精度測定のための相対変位データを得ることが
できるので、繰り返し測定によるデータの劣化を防止す
ることができるとともに、スポット径中心位置と装置本
体との相対位置関係を保証するために高精度の装置構成
や多くの作業を要することなしに、逐次2点法の原理を
満足するように、測定線に沿い所定の位置関係でレーザ
変位計を移動させてデータを得ることができる。According to this method, when the two laser displacement meters are relatively moved with respect to the object to be measured, the positions of the laser beams having a small spot diameter of the two laser displacement meters are made to exactly coincide with each other, and the two laser displacement meters are displaced. Since relative displacement data for accuracy measurement by the two-point method can be obtained from the meter sequentially, it is possible to prevent data deterioration due to repeated measurement and to guarantee the relative positional relationship between the spot diameter center position and the device body. To obtain data by moving the laser displacement meter along a measurement line in a predetermined positional relationship so as to satisfy the principle of the sequential two-point method without requiring a high-precision device configuration or a lot of work. Can be.
【0032】しかもこの方法によれば、当初設定する測
定線の延在方向と二つのレーザ変位計の整列方向とを正
確に一致させていなくても、二つのレーザ変位計の間隔
を正確に求め得るので、当該装置を工作機械等に搭載し
て逐次2点法による形状精度測定を容易に行うことがで
きる。In addition, according to this method, even if the initially set extending direction of the measurement line does not exactly match the alignment direction of the two laser displacement meters, the distance between the two laser displacement meters is accurately obtained. Therefore, the device can be mounted on a machine tool or the like, and the shape accuracy can be easily measured sequentially by the two-point method.
【0033】[0033]
【発明の実施の形態】以下に、この発明の実施の形態を
実施例によって、図面に基づき詳細に説明する。ここ
に、図1は、この発明の逐次2点法による形状精度測定
用レーザ変位計間隔測定方法の一実施例を実施するよう
に通常のNC(数値制御)工作機械(図示例では門型立
フライス盤)を用いて構成された、この発明の逐次2点
法による形状精度測定装置の一実施例を模式的に示す斜
視図であり、図中符号1で示すその工作機械は、工作機
械本体1aと、通常のコンピュータを有する制御装置1bと
を具え、ここにおける工作機械本体1aは、制御装置1bに
よる数値制御で、図示の三次元直角座標系において、加
工物を乗せるテーブル1cを水平なy軸方向(y軸に沿う
方向)へ、また門型コラム1dで支持した主軸ヘッド1eを
水平なx軸方向(x軸に沿う方向)へ、そしてその主軸
ヘッド1eの下端部から突出した図示しない主軸を垂直な
z軸方向(z軸に沿う方向)へ、それぞれ移動させるも
のである。Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Here, FIG. 1 shows a conventional NC (numerical control) machine tool (in the illustrated example, a portal type stand) so as to carry out an embodiment of a method of measuring a laser displacement gauge for measuring shape accuracy by a sequential two-point method of the present invention. FIG. 1 is a perspective view schematically showing an embodiment of a shape accuracy measuring apparatus according to the present invention, which is constituted by using a milling machine, and is a machine tool indicated by reference numeral 1 in the figure. And a control device 1b having an ordinary computer, wherein the machine tool main body 1a is a numerical control by the control device 1b, and in a three-dimensional rectangular coordinate system shown in FIG. In the direction (along the y-axis), the main shaft head 1e supported by the portal column 1d in the horizontal x-axis direction (the direction along the x-axis), and the main shaft (not shown) protruding from the lower end of the main shaft head 1e. In the vertical z-axis direction (along the z-axis). Direction).
【0034】この実施例の形状精度測定装置では、工作
機械本体1aのテーブル1c上の加工物あるいはそのテーブ
ル1c自身のy軸およびz軸を含む垂直面内の真直誤差曲
線を求めるべく、そのテーブル1c上に光センサとしての
二次元CCD2が上向きに固定され、その二次元CCD
2の出力信号が上記制御装置1bに入力される一方、工作
機械本体1aの主軸ヘッド1eの下端部から突出したラムの
下端部に変位計保持部材3が固定され、その変位計保持
部材3により二つの通常のレーザ変位計4,5が、所定
位置にy軸方向へ延在するよう設定された測定線上に概
略整列して互いに間隔をあけて保持されており、それら
のレーザ変位計4,5の出力信号も上記制御装置1bに入
力される。In the shape accuracy measuring apparatus of this embodiment, the table on the table 1c of the machine tool main body 1a or its table 1c is used to obtain a straightness error curve in a vertical plane including the y-axis and the z-axis. A two-dimensional CCD 2 as an optical sensor is fixed upward on 1c.
2 is input to the control device 1b, while the displacement meter holding member 3 is fixed to the lower end of the ram protruding from the lower end of the spindle head 1e of the machine tool main body 1a. Two ordinary laser displacement gauges 4 and 5 are held at a predetermined position on a measurement line set to extend in the y-axis direction and are spaced apart from each other. 5 is also input to the control device 1b.
【0035】図2(a),(b)および(c)は、上記
変位計保持部材3を拡大して示す正面図、下面図およ
び、正面図中のA−A線に沿う断面図である。この実施
例では図示のように、変位計保持部材3は四カ所の突出
部3aを有して概略H型をなし、その四カ所の突出部3aに
はそれぞれ、ガイド孔3bとマイクロメータ装着孔3cとが
形成されており、それら四カ所の突出部3aのうちの二カ
所について、ガイド孔3bにガイドロッド6が摺動自在に
嵌挿されるとともにマイクロメータ装着孔3cにマイクロ
メータ7の本体7aが装着され、それらのガイドロッド6
に断面T字形のブラケット8がそれぞれ固定され、それ
らのブラケット8に上記マイクロメータ7の測定子7bが
それぞれ固定され、そしてそれらのブラケット8に上記
レーザ変位計4,5がそれぞれ取り付けられている。な
お、図中符号4a, 5aは、上記レーザ変位計4,5の照射
口、Bは、それらの照射口4a, 5aから照射されるレーザ
ビームを示す。2 (a), 2 (b) and 2 (c) are a front view, a bottom view, and a cross-sectional view taken along line AA in the enlarged view of the displacement meter holding member 3. . In this embodiment, as shown in the figure, the displacement meter holding member 3 has four projections 3a to form a substantially H shape, and the four projections 3a have a guide hole 3b and a micrometer mounting hole, respectively. The guide rod 6 is slidably fitted into the guide hole 3b and the main body 7a of the micrometer 7 is fitted into the micrometer mounting hole 3c at two of the four projecting portions 3a. Are mounted, and their guide rods 6
The brackets 8 having a T-shaped cross section are fixed to each other, the tracing stylus 7b of the micrometer 7 is fixed to each of the brackets 8, and the laser displacement gauges 4 and 5 are attached to the brackets 8, respectively. In the drawings, reference numerals 4a and 5a indicate irradiation ports of the laser displacement meters 4 and 5, and B indicates a laser beam emitted from the irradiation ports 4a and 5a.
【0036】上記変位計保持部材3によれば、四カ所の
突出部3aで最大4つのレーザ変位計をそれぞれ保持し得
るので、4つのレーザ変位計を保持した場合にはそのま
までx軸方向およびy軸方向の測定線に沿って形状精度
測定を行い、それによって平面度測定を行うことができ
るとともに、マイクロメータ7を操作してガイドロッド
6による案内下で各ブラケット8ひいては各レーザ変位
計4,5を図中矢印Cで示す方向に移動させて測定対象
に対する各レーザ変位計4,5の距離を微調整すること
で、測定対象に対する二つのレーザ変位計4,5の距離
を容易に揃えることができる。なお、変位計保持部材3
は上記の距離調整に加えて、各ブラケット8への各レー
ザ変位計4,5の取付角度を同様にしてマイクロメータ
等で図中点線の矢印D,Eで示すように変化させること
にて各レーザ変位計4,5の姿勢ひいてはレーザビーム
の照射方向も微調整し得るように構成しても良く、この
ようにすれば、精度測定の準備作業の作業性をさらに向
上させることができる。According to the displacement gauge holding member 3, up to four laser displacement gauges can be respectively held by the four projecting portions 3a. The shape accuracy measurement is performed along the measurement line in the y-axis direction, whereby the flatness measurement can be performed. In addition, the micrometer 7 is operated to guide each bracket 8 and thus each laser displacement meter 4 under the guidance of the guide rod 6. , 5 are moved in the direction indicated by the arrow C in the figure to finely adjust the distance between the laser displacement gauges 4 and 5 with respect to the measurement target, so that the distance between the two laser displacement gauges 4 and 5 with respect to the measurement target is easily adjusted. be able to. The displacement meter holding member 3
In addition to the above distance adjustment, the mounting angle of each of the laser displacement meters 4 and 5 to each bracket 8 is similarly changed by a micrometer or the like as shown by dotted arrows D and E in the figure. The postures of the laser displacement meters 4 and 5 and thus the irradiation direction of the laser beam may be finely adjusted. In this case, the workability of the accuracy measurement preparation work can be further improved.
【0037】かかる構成を具えるこの実施例の形状精度
測定装置にあっては、逐次2点法によって真直誤差曲線
を求める前に、先ず、制御装置1bが、工作機械本体1aの
テーブル1cをy軸方向に適宜移動させるとともに主軸ヘ
ッド1eひいては変位計保持部材3をx軸方向に適宜移動
させて、二次元CCD2の上方に片方のレーザ変位計4
を位置させ、レーザ変位計4を作動させる。これによっ
て、そのレーザ変位計4のレーザビームBが二次元CC
D2上の一定位置を照射する。In the shape accuracy measuring apparatus of this embodiment having such a configuration, first, before obtaining the straightness error curve by the two-point method, the controller 1b firstly sets the table 1c of the machine tool main body 1a to y. By appropriately moving the spindle head 1e and thus the displacement meter holding member 3 in the x-axis direction, the one laser displacement meter 4 is placed above the two-dimensional CCD 2.
And the laser displacement meter 4 is operated. As a result, the laser beam B of the laser displacement meter 4 is changed to a two-dimensional CC.
A certain position on D2 is irradiated.
【0038】図3は、この実施例の形状精度測定装置に
おける、二次元CCD2の出力信号から二つのレーザ変
位計4,5間の距離を求める構成を機能的に示すブロッ
ク線図であり、図示のようにこの実施例では、制御装置
1bは、スポット中心位置検出部1fと作動制御部1gとを有
していて、あらかじめ与えられた作動プログラムに従
い、先ず、そのスポット中心位置検出部1fにより、上記
レーザ変位計4のレーザビームBで二次元CCD2上に
生じたレーザー光のスポット2aの中心位置の二次元CC
D2上での位置(x,y座標)を、その二次元CCD2
の出力信号に基づいて検出し、次いでその作動制御部1g
により、テーブル1cをy軸方向に移動させて、もう片方
のレーザ変位計5の下方に二次元CCD2を位置させ、
次いでスポット中心位置検出部1fにより、先にレーザ変
位計4のスポット中心位置を求めたのと同様にしてその
レーザ変位計5のスポット中心位置の二次元CCD2上
での位置を求め、スポット中心位置がy軸方向で、先に
レーザ変位計4について求めた二次元CCD2上での位
置と同じになるところまで、さらに作動制御部1gによ
り、テーブル1cをy軸方向に移動させる。FIG. 3 is a block diagram functionally showing a configuration for obtaining the distance between the two laser displacement gauges 4 and 5 from the output signal of the two-dimensional CCD 2 in the shape accuracy measuring apparatus of this embodiment. As in this embodiment, the control device
1b has a spot center position detecting section 1f and an operation control section 1g. According to an operation program given in advance, first, the spot center position detecting section 1f uses the laser beam B of the laser displacement meter 4 by the spot center position detecting section 1f. Two-dimensional CC at the center of laser beam spot 2a generated on two-dimensional CCD 2
The position (x, y coordinates) on D2 is represented by the two-dimensional CCD2
Detection based on the output signal of the
By moving the table 1c in the y-axis direction, the two-dimensional CCD 2 is positioned below the other laser displacement meter 5,
Next, the spot center position of the laser displacement meter 5 is determined on the two-dimensional CCD 2 by the spot center position detection unit 1f in the same manner as the spot center position of the laser displacement meter 4 is determined in advance. The table 1c is further moved in the y-axis direction by the operation control unit 1g until the position in the y-axis direction becomes the same as the position on the two-dimensional CCD 2 previously obtained for the laser displacement meter 4.
【0039】この結果、作動制御部1gでテーブル1cを移
動させた量により、変位計4,5のスポット中心位置の
スポット間距離を求めることが可能となり、制御装置1b
は、そのテーブル1cの移動量から、逐次2点法による測
定を実施する際の変位計間距離に高精度に対応すべきテ
ーブル1cの送り量を求め、その送り量づつテーブル1cを
y軸方向に移動させた時の二つのレーザ変位計4,5の
出力信号から、逐次2点法により測定対象の真直誤差曲
線を演算で求める。As a result, the distance between the spots at the center positions of the spots of the displacement meters 4 and 5 can be obtained from the amount by which the table 1c is moved by the operation control unit 1g.
Calculates the feed amount of the table 1c which should correspond to the distance between the displacement gauges when performing the measurement by the two-point method sequentially from the movement amount of the table 1c, and moves the table 1c by the feed amount in the y-axis direction. From the output signals of the two laser displacement meters 4 and 5 at the time of the movement, the straight error curve of the object to be measured is sequentially calculated by the two-point method.
【0040】なお、二つのレーザ変位計4,5の出力信
号は、上記送り量づつテーブル1cをy軸方向に断続的に
移動させて、テーブル1cの各停止時に制御装置1bに取り
込ませるようにしても良く、またテーブル1cを一々停止
させずy軸方向に連続的に移動させながら、テーブル1c
が上記送り量ずつ移動する時点に取り込み時期を同期さ
せて制御装置1bに取り込ませるようにしても良い。The output signals of the two laser displacement meters 4 and 5 are intermittently moved in the y-axis direction by the above-mentioned feed amount by the table 1c so as to be taken into the control device 1b when the table 1c stops. The table 1c may be moved continuously in the y-axis direction without stopping the table 1c.
May be taken into the control device 1b by synchronizing the take-in timing with the point at which the object moves by the feed amount.
【0041】ところで、先に述べた測定線に対して二つ
のレーザ変位計4,5が正確に整列していなかったため
に、テーブル1cをy軸方向に移動させた後のレーザ変位
計5のスポット中心位置がCCD2上で、先にレーザ変
位計4のスポット中心位置について求めた位置からx軸
方向へずれた場合には、そのずれ量とテーブル1cのy軸
方向への移動量とから、あるいはテーブル1cをx軸方向
に移動させてレーザ変位計5のスポット中心位置をCC
D2上で、先にレーザ変位計4のスポット中心位置につ
いて求めた位置に正確に一致させた時のテーブル1cのx
軸方向への移動量と先のy軸方向への移動量とから、二
つのレーザ変位計4,5の整列方向の上記測定線に対す
るずれ角を求めて、そのずれ角分、二つのレーザ変位計
4,5の整列方向を回転させるか、あるいは上記測定線
の方を回転させることで、それらのレーザ変位計4,5
を上記測定線上に整列させるようにする必要がある。By the way, since the two laser displacement meters 4 and 5 were not accurately aligned with the above-mentioned measurement line, the spot of the laser displacement meter 5 after the table 1c was moved in the y-axis direction. If the center position on the CCD 2 is shifted in the x-axis direction from the position previously obtained for the spot center position of the laser displacement meter 4, the shift amount and the movement amount of the table 1 c in the y-axis direction, or Move the table 1c in the x-axis direction to set the spot center position of the laser displacement meter 5 to CC.
On D2, the x of the table 1c at the time when the position exactly matches the position previously obtained for the spot center position of the laser
From the amount of movement in the axial direction and the amount of movement in the previous y-axis direction, the deviation angle of the two laser displacement gauges 4 and 5 in the alignment direction with respect to the measurement line is obtained, and the two laser displacements are calculated by the deviation angle. By rotating the alignment directions of the total of the laser displacement meters 4 and 5 or by rotating the measurement lines,
Must be aligned on the measurement line.
【0042】この場合の、逐次2点法による測定を実施
する際のテーブル1cの送り量は、三角法により、先にテ
ーブルを1cをy軸方向に移動させた時の移動量の二乗と
スポット中心位置のx軸方向へのずれ量の二乗との和の
平方根で求めても良く、あるいは二つのレーザ変位計
4,5の整列方向を回転させた後、再度上述したCCD
2上でスポット位置を一致させる操作を行って、その時
のテーブル1cのy軸方向の移動量から求めても良い。そ
して上記測定線の方を回転させた場合には、テーブル1c
をy軸方向へ移動させながらx軸方向へも移動させるこ
とで、二つのレーザ変位計4,5がその測定線に沿って
測定対象に対し相対移動するようにして、その後の逐次
2点法による測定を実施する。In this case, the feed amount of the table 1c when the measurement is sequentially performed by the two-point method is represented by the square of the shift amount when the table 1c is first moved in the y-axis direction and the spot by the trigonometric method. The center position may be determined by the square root of the sum of the square of the shift amount in the x-axis direction and the square of the displacement amount in the x-axis direction.
An operation may be performed to match the spot positions on the table 2, and the spot position may be obtained from the movement amount of the table 1c in the y-axis direction at that time. When the measurement line is rotated, the table 1c
Is also moved in the x-axis direction while moving in the y-axis direction, so that the two laser displacement gauges 4 and 5 move relative to the measurement object along the measurement line. The measurement is performed according to.
【0043】従って、この実施例においては工作機械本
体1aが保持部材相対移動手段に相当するとともに制御装
置1bが演算処理手段に相当し、かかる実施例の形状精度
測定装置およびレーザ変位計間隔測定方法によれば、測
定対象に対する変位計保持部材3の相対移動の際に二つ
のレーザ変位計4,5の小さなスポット径のレーザビー
ムBのスポット中心位置を正確に一致させて、それら二
つのレーザ変位計4,5から逐次2点法による精度測定
のための相対変位データを得ることができるので、繰り
返し測定によるデータの劣化を防止することができると
ともに、スポット径中心位置と装置本体との相対位置関
係を保証するために高精度の装置構成や多くの作業を要
することなしに、逐次2点法の原理を満足するように、
測定線に沿い所定の位置関係でレーザ変位計を移動させ
てデータを得ることができる。Therefore, in this embodiment, the machine tool main body 1a corresponds to the holding member relative moving means and the control device 1b corresponds to the arithmetic processing means. According to the method, when the displacement meter holding member 3 is relatively moved with respect to the measurement object, the spot center positions of the laser beams B having the small spot diameters of the two laser displacement meters 4 and 5 are accurately matched, and the two laser displacements are changed. Since relative displacement data for accuracy measurement by the two-point method can be obtained sequentially from the total 4 and 5, data deterioration due to repeated measurement can be prevented, and the relative position between the spot diameter center position and the apparatus main body can be prevented. In order to satisfy the principle of the sequential two-point method without requiring a high-precision device configuration and a lot of work to guarantee the relationship,
Data can be obtained by moving the laser displacement meter along a measurement line in a predetermined positional relationship.
【0044】しかもこの実施例の装置によれば、光セン
サとして、比較的安価な二次元CCD2を、レーザ変位
計4,5に向けて測定対象に固定して用いているので、
レーザ変位計4,5のレーザビームスポットを正確に、
かつ安価に検出することができる。Moreover, according to the apparatus of this embodiment, the relatively inexpensive two-dimensional CCD 2 is used as the optical sensor fixed to the object to be measured toward the laser displacement meters 4 and 5, so that it is used.
The laser beam spots of the laser displacement meters 4 and 5 can be accurately
It can be detected at low cost.
【0045】ところで、上記実施例ではレーザビームス
ポットの検出に二次元CCD2を用いる場合を例示した
が、二次元CCD2の代わりに受光面2分割光電変換素
子を用い、分割線の延在方向をx軸方向に合わせて、レ
ーザビームスポットをその光電変換素子にあてた時の分
割線の両側の出力信号レベルが同じになるようにレーザ
変位計4の位置を合わせた後、テーブル1cを移動させ、
レーザ変位計5のレーザビームスポットでも同様な出力
信号レベルを示すようにレーザ変位計5の位置を定める
ようにして、両変位計の間隔を工作機械の制御装置で求
めるようにしても良い。In the above embodiment, the case where the two-dimensional CCD 2 is used for detecting the laser beam spot has been exemplified. However, instead of the two-dimensional CCD 2, a light receiving surface two-part photoelectric conversion element is used, and the extending direction of the dividing line is x. After adjusting the position of the laser displacement meter 4 so that the output signal level on both sides of the dividing line when the laser beam spot is applied to the photoelectric conversion element in the axial direction is the same, the table 1c is moved.
The position of the laser displacement meter 5 may be determined so that the laser beam spot of the laser displacement meter 5 exhibits the same output signal level, and the interval between the two displacement meters may be obtained by the control device of the machine tool.
【0046】また、上記実施例ではテーブルおよび主軸
ヘッドの両者駆動型の工作機械を用いているが、テーブ
ル固定・門型構造駆動の工作機械やテーブル駆動・主軸
ヘッド固定の工作機械、あるいは同様の駆動系をもつ三
次元測定装置でも、上述した相対移動を行い得て、この
発明の形状精度測定装置を構成することができる。In the above embodiment, a machine tool driven by both the table and the spindle head is used. However, a machine tool with a fixed table and a gate-type structure, a machine tool with a fixed table drive and a fixed spindle head, or a similar machine tool Even with a three-dimensional measuring device having a drive system, the above-described relative movement can be performed, and the shape accuracy measuring device of the present invention can be configured.
【0047】図4は、この発明の逐次2点法による形状
精度測定装置の他の一実施例を模式的に示す斜視図であ
り、図中、先の実施例と同様の部分はそれと同一の符号
にて示す。この実施例の形状精度測定装置では、先の実
施例で測定対象に二次元CCD2を設けたのに代えて、
保持部材相対移動手段としての工作機械本体1a上の適当
な静止部位、例えば門形コラム1dに、二次元CCDおよ
び光学系を持つ電子式カメラとしてのテレビカメラ9が
固定されている。FIG. 4 is a perspective view schematically showing another embodiment of the shape accuracy measuring device according to the sequential two-point method of the present invention. In the drawing, the same parts as those in the previous embodiment are the same. Indicated by reference numerals. In the shape accuracy measuring device of this embodiment, instead of providing the two-dimensional CCD 2 as a measurement object in the previous embodiment,
A television camera 9 as an electronic camera having a two-dimensional CCD and an optical system is fixed to an appropriate stationary portion on the machine tool main body 1a as a holding member relative moving means, for example, a portal column 1d.
【0048】先の実施例では、二次元CCD2がテーブ
ル1c上に配置されているが、これを配置するには、それ
に応じた作業を要すること、加工中はこれを撤去しなけ
ればならないこと等に課題が残る。かかる課題を解決す
る方法として、この実施例では上記のように門形コラム
1dにテレビカメラ9を配置固定し、そのテレビカメラ9
で、レーザ変位計4,5からテーブル1c上に投射された
レーザビームのスポットBSを直接的に拡大観測し、その
テレビカメラ9の出力する画像信号を制御装置1bに入力
するようにしている。なお、スポットBSの観測が容易に
なるように、レーザ変位計4,5の間隔に概略対応する
テーブル1c上の位置にZ軸方向高さを同一として適当な
反射面を設けるようにしても良い。In the above embodiment, the two-dimensional CCD 2 is arranged on the table 1c. To arrange the two-dimensional CCD 2, it is necessary to perform an operation corresponding to the two-dimensional CCD 2, and it is necessary to remove it during processing. Challenges remain. As a method for solving such a problem, in this embodiment, a column-shaped column is provided as described above.
Place and fix the TV camera 9 in 1d, and
Then, the spot BS of the laser beam projected on the table 1c from the laser displacement meters 4 and 5 is directly magnified and observed, and the image signal output from the television camera 9 is input to the control device 1b. In order to facilitate observation of the spot BS, a suitable reflecting surface may be provided at a position on the table 1c substantially corresponding to the distance between the laser displacement meters 4 and 5 with the same height in the Z-axis direction. .
【0049】この実施例の装置は、かかるテレビカメラ
9で、一方のレーザ変位計4のレーザビームスポットBS
からの乱反射光あるいは正反射光を撮影することで、テ
レビカメラ9が出力する画像信号から、そのレーザ変位
計4のスポットBSの中心位置の、テーブル1c上での位置
(x,y座標)を求め、その後にテーブル1cをy軸方向
へ移動させ、もう一方のレーザ変位計5に対してテレビ
カメラ9の視野内にレーザビームスポットBSをとらえ、
同様な過程でテーブル1c上での位置を求める。これによ
ってレーザ変位計4,5間の間隔を高精度に求め、逐次
2点法を実施することができる。The apparatus of this embodiment uses the television camera 9 and the laser beam spot BS of one of the laser displacement meters 4.
From the image signal output by the television camera 9, the position (x, y coordinates) of the center position of the spot BS on the table 1 c on the table 1 c is obtained from the image signal output by the television camera 9 by capturing the irregular reflection light or the specular reflection light from the camera. After that, the table 1c is moved in the y-axis direction, and the laser beam spot BS is captured in the visual field of the television camera 9 with respect to the other laser displacement meter 5,
The position on the table 1c is obtained in a similar process. As a result, the distance between the laser displacement meters 4 and 5 can be determined with high accuracy, and the two-point method can be sequentially performed.
【0050】テーブル1c上に二次元CCDを設置するの
ではなく、テレビカメラ9を工作機械本体1aの静止部位
に設置するこの実施例の装置によれば、テレビカメラ9
の位置が定まっていることから、操作性が向上するのみ
ならず、変位計の測定使用前後の確認(測定対象への測
定使用の前と後で装置側の精度が変化していないことの
確認)や、長期間にわたる当該装置の使用の際の定期的
な精度確認が可能になり、それゆえ変位計の間隔精度に
関する保守が容易になるので、精度測定作業の作業性を
向上させることができる。According to the apparatus of this embodiment in which the television camera 9 is installed on a stationary part of the machine tool main body 1a instead of installing the two-dimensional CCD on the table 1c, the television camera 9
Since the position of the measurement is fixed, not only the operability is improved, but also the confirmation before and after the use of the displacement meter (confirmation that the accuracy of the device has not changed before and after the measurement use on the measurement object) ) And periodic accuracy confirmation when the device is used for a long period of time, which facilitates maintenance relating to the displacement accuracy of the displacement gauge, thereby improving the workability of the accuracy measurement work. .
【0051】ところで、レーザ変位計によれば、変位計
からレーザを照射する測定対象までの距離を大きく取る
ことができ、変位計を誤って加工物に衝突させてしまう
ような事態をなくすことが可能となる。しかしながらレ
ーザ変位計は、スポット径が小さく、レーザ光の特性と
相俟って、加工面粗さ、加工面反射率、加工面材質等の
影響を受け、測定値が不安定となるという不都合を有す
る。従って、レーザビームのスポット位置を送り間隔に
正確に合わせて、逐次2点方の測定原理を満足する装置
を構成しても、上記の影響により測定精度が劣化する場
合がある。By the way, according to the laser displacement meter, the distance from the displacement meter to the object to be irradiated with the laser can be made large, and it is possible to eliminate a situation where the displacement meter collides with a workpiece by mistake. It becomes possible. However, the laser displacement meter has a disadvantage that the measured value becomes unstable due to the small spot diameter and the influence of the processed surface roughness, the processed surface reflectance, the processed surface material, etc., in combination with the characteristics of the laser beam. Have. Therefore, even if the spot position of the laser beam is accurately adjusted to the feed interval and a device that satisfies the measurement principle of two points sequentially is configured, the measurement accuracy may be deteriorated due to the above-described influence.
【0052】図5は、かかる不都合を解消するべく改良
した測定方法を示す説明図である。すなわち、通常の逐
次2点法では、測定線に沿って4−5の組合せでレーザ
変位計を送りながらデータを取得して行く。これに対し
改良した測定方法では、4−5に定めた点の前後で送り
を細かくして測定し、この間のデータを平均して、4−
5の逐次2点取得データの代表値として、真直度誤差曲
線を求める。そしてその細かい測定の間に、加工面粗
さ、加工面反射率、加工面材質等により測定値の出力が
欠落したり、あるいは振幅が平均的値から極度に大きく
なったりしたような場合には、これを除去して平均化す
る操作を行う。FIG. 5 is an explanatory diagram showing a measuring method improved to eliminate such inconvenience. That is, in the ordinary sequential two-point method, data is acquired while sending the laser displacement meter along the measurement line in a combination of 4-5. On the other hand, in the improved measuring method, the feed is finely measured before and after the point defined in 4-5, and the data during this period is averaged to obtain a value of 4-5.
A straightness error curve is obtained as a representative value of the five successively acquired two points data. And during the fine measurement, if the output of the measured value is missing due to the processed surface roughness, the processed surface reflectance, the processed surface material, etc., or if the amplitude becomes extremely large from the average value, Then, an operation of removing and averaging is performed.
【0053】上記の改良した測定方法によれば、加工面
粗さ、加工面反射率、加工面材質等の影響を抑制して逐
次2点法を適用することができるので、これらに広がり
のある工作機械実機に測定装置を搭載することを可能な
らしめることができる。According to the improved measuring method, the two-point method can be applied successively while suppressing the effects of the processed surface roughness, the processed surface reflectance, the processed surface material, and the like. It is possible to mount the measuring device on the actual machine tool.
【0054】図6(a)および(b)は、この発明の形
状精度測定装置のさらに他の実施例を示す平面図および
正面図であり、この実施例では、工作機械1の、テーブ
ル固定・門型構造駆動型工作機械本体1aの主軸ヘッド1e
の下端部から突出した主軸の下端部に、アタッチメント
1hが交換可能に装着され、さらにそのアタッチメント1h
に、工具1iが交換可能に装着され、交換可能なアタッチ
メント1hがアタッチメントホルダ1jに複数収納され、ま
た交換可能な工具1iが工具マガジン1kに複数収納されて
いて、それらアタッチメント1hおよび工具1iが、図示し
ない自動交換装置により、図中点線の矢印で示すような
径路を経て自動的に交換されるようになっており、上記
複数のアタッチメント1hの中に、変位計保持部材3を介
して二個のレーザ変位計が固定されたアタッチメント1h
が含まれている。なお、アタッチメント1hに代えて、複
数の工具1iの中に、変位計保持部材3を介して二個のレ
ーザ変位計が固定された工具1iを含めるようにしても良
い。FIGS. 6 (a) and 6 (b) are a plan view and a front view, respectively, showing still another embodiment of the shape accuracy measuring apparatus according to the present invention. Spindle head 1e of gate type structure driven machine tool body 1a
Attach the attachment to the lower end of the spindle protruding from the lower end of the
1h is exchangeably mounted, and its attachment 1h
In addition, a tool 1i is exchangeably mounted, a plurality of exchangeable attachments 1h are stored in an attachment holder 1j, and a plurality of exchangeable tools 1i are stored in a tool magazine 1k.These attachments 1h and tools 1i are An automatic exchange device (not shown) automatically exchanges the components through a path shown by a dotted arrow in the figure. Two of the attachments 1h are provided via the displacement meter holding member 3 in the plurality of attachments 1h. 1h attachment with laser displacement meter fixed
It is included. Note that, instead of the attachment 1h, a tool 1i to which two laser displacement meters are fixed via the displacement meter holding member 3 may be included in the plurality of tools 1i.
【0055】かかる実施例の装置によれば、真直誤差曲
線や平面誤差曲面の評価を、加工工程の中で容易に実現
することができる。According to the apparatus of this embodiment, the evaluation of the straightness error curve and the flat error surface can be easily realized in the machining process.
【0056】なお、アタッチメント1hまたは工具1iに固
定する変位計保持部材3の上記四カ所の突出部3aのうち
三カ所または四カ所全てに、先に述べたようにしてレー
ザ変位計を装着して、それら三つまたは四つのレーザ変
位計を互いに直角な二つの方向に整列させるようにして
も良く、このようにすれば、それら三つまたは四つのレ
ーザ変位計のうち、互いに直角な二つの方向の何れかに
整列する二つを選択的に使用することで、レーザー変位
計や変位計保持部材の付け替えなしに平面度測定を行い
得て、平面度測定を容易に自動的にかつ高精度に行うこ
とができる。As described above, the laser displacement meter is mounted on three or all four of the four projecting portions 3a of the displacement meter holding member 3 fixed to the attachment 1h or the tool 1i. The three or four laser displacement meters may be aligned in two directions perpendicular to each other, so that the two directions perpendicular to one another among the three or four laser displacement meters By selectively using the two that are aligned with any of the above, flatness measurement can be performed without replacing the laser displacement meter or displacement meter holding member, and the flatness measurement can be easily and automatically performed with high accuracy It can be carried out.
【0057】一方、変位計保持部材3が保持するレーザ
変位計は二つとし、その変位計保持部材3が固定された
アタッチメント1hまたは工具1iを、保持部材回転手段に
相当する上記主軸ヘッド1eでの駆動による主軸の回転に
よって90°回転させて、それら二つのレーザ変位計を互
いに直角な二つの方向に選択的に整列させるようにして
も良く、このようにすれば、レーザー変位計や変位計保
持部材の付け替えなしに平面度測定を行い得て、平面度
測定を容易に自動的にかつ高精度に行うことができる。On the other hand, the displacement meter holding member 3 holds two laser displacement meters, and the attachment 1h or the tool 1i to which the displacement meter holding member 3 is fixed is attached to the spindle head 1e corresponding to the holding member rotating means. The two laser displacement meters may be selectively aligned in two directions perpendicular to each other by rotating the main shaft 90 ° by the rotation of the main shaft by the drive of the laser. The flatness can be measured without replacing the holding member, and the flatness can be easily and automatically measured with high accuracy.
【0058】そしてそれらの場合に、先ずX軸またはY
軸方向について逐次2点法による測定を行い、その後、
その各測定点から残るY軸またはX軸方向について逐次
2点法による測定を行えば、平面度測定をより高精度に
行うことができる。In those cases, the X-axis or Y-axis
In the axial direction, measurement is performed sequentially by the two-point method, and then
If the measurement by the two-point method is sequentially performed in the Y-axis or X-axis direction remaining from each measurement point, the flatness measurement can be performed with higher accuracy.
【0059】かくしてこの発明によれば、これまでその
長所が認められながらも変位計に伴う問題点のために工
作機械、三次元測定装置等では実用に至っていなかった
逐次2点真直度測定法について、レーザ変位計を用い得
るようにして問題点を克服したので、工作機械の加工精
度および加工能率の向上を図ることができ、また、三次
元測定装置ではキャリブレーションに用いることで、誤
差空間の評価と測定精度の向上、測定精度の維持、管理
等を行うことができる。Thus, according to the present invention, a sequential two-point straightness measuring method which has not been put to practical use with a machine tool, a three-dimensional measuring device or the like due to a problem associated with a displacement meter, although its advantages have been recognized so far. In order to overcome the problems of using a laser displacement meter, it was possible to improve the machining accuracy and machining efficiency of machine tools. Evaluation, measurement accuracy improvement, measurement accuracy maintenance, management, etc. can be performed.
【0060】以上、図示例に基づき説明したが、この発
明は上述の例に限定されるものでなく、例えば上記実施
例では、工作機械の制御装置が、レーザ変位計間隔の演
算処理および逐次2点法の演算処理を行っているが、そ
れらの演算処理を、制御装置と別途に設けたコンピュー
タで行うようにしても良い。また、上記実施例では、光
センサとして2次元CCDを用いているが、機構的に二
つのレーザ変位計を測定線上に正確に整列させ得る場合
には、y軸方向へ延在するように一次元CCD(いわゆ
るラインセンサ)を配置して用いても良い。Although the present invention has been described above with reference to the illustrated examples, the present invention is not limited to the above-described examples. Although the arithmetic processing of the point method is performed, the arithmetic processing may be performed by a computer provided separately from the control device. Further, in the above embodiment, the two-dimensional CCD is used as the optical sensor. However, if two laser displacement meters can be mechanically accurately aligned on the measurement line, the primary laser is extended so as to extend in the y-axis direction. An original CCD (so-called line sensor) may be arranged and used.
【0061】また、この発明においては、光センサとし
て上記二次元CCDやそれを内蔵した上記テレビカメラ
等の二次元光センサを用いて形状精度測定装置を構成
し、レーザ変位計の間隔を求める際に変位計保持部材
が、形状精度の測定対象に対して設定した測定線の延在
方向に概略沿って二つのレーザ変位計を一定間隔をあけ
て整列させるとともにそれら二つのレーザ変位計を前記
測定対象から概略等距離離間させてその測定対象に向け
て保持し、保持部材相対移動手段が、先ず前記変位計保
持部材を前記測定線に沿って前記測定対象に対し相対移
動させ、その後に前記二つのレーザ変位計の整列方向へ
相対移動させ、二次元光センサが、前記測定対象に照射
される前記二つのレーザ変位計からのレーザビームの位
置を前記変位計保持部材の相対移動に伴って順次に検出
するようにするとともに、演算処理手段が、前記測定対
象に対する前記変位計保持部材の前記測定線に沿う相対
移動に伴って前記測定対象における前記二つのレーザ変
位計のうちの一方のレーザ変位計からのレーザビームが
前記二次元光センサ上に照射される位置から他方のレー
ザ変位計からのレーザビームが前記二次元光センサ上に
照射される位置までの前記変位計保持部材の相対移動量
と、前記二つのレーザ変位計からのレーザビームの前記
二次元光センサ上での照射位置とから前記二つのレーザ
変位計の間隔と整列方向とを求め、その求めた前記二つ
のレーザ変位計の間隔に等しい距離だけ前記変位計保持
部材がその求めた前記二つのレーザ変位計の整列方向へ
相対移動する毎に前記二つのレーザ変位計の出力信号を
取り込み、それらの出力信号を逐次2点法に基づいて演
算処理して前記測定対象の真直誤差曲線を求め、それを
出力するようにしても良い。Further, according to the present invention, a shape accuracy measuring device is constituted by using a two-dimensional optical sensor such as the above-mentioned two-dimensional CCD or the above-mentioned television camera incorporating the same as an optical sensor to determine the distance between laser displacement meters. The displacement gauge holding member aligns the two laser displacement gauges at regular intervals along the direction of extension of the measurement line set for the measurement target of the shape accuracy, and measures the two laser displacement gauges for the measurement. The holding member relative movement means moves the holding member relative to the measurement object along the measurement line, and then moves the holding member relative to the measurement object at approximately the same distance from the object and holds it toward the measurement object. The two laser displacement meters are moved relative to each other in the alignment direction, and the two-dimensional optical sensor sets the position of the laser beam from the two laser displacement meters illuminated on the measurement object to the displacement meter holding unit. The two laser displacement meters in the measurement object are detected in accordance with the relative movement of the displacement meter holding member with respect to the measurement object along the measurement line, while sequentially detecting the two laser displacement meters with the relative movement of the measurement object. The displacement from the position where the laser beam from one of the laser displacement meters is irradiated on the two-dimensional optical sensor to the position where the laser beam from the other laser displacement meter is irradiated on the two-dimensional optical sensor The distance and alignment direction of the two laser displacement meters were determined from the relative movement amount of the gauge holding member and the irradiation position of the laser beam from the two laser displacement meters on the two-dimensional optical sensor, and the obtained values were obtained. Each time the displacement meter holding member relatively moves in the direction in which the two laser displacement meters are aligned by a distance equal to the distance between the two laser displacement meters, the two laser displacements are set. Uptake output signal, obtains a straight error curve of the measurement target by arithmetic processing based on those output signals sequentially two-point method, may output it.
【0062】このようにすれば、先の実施例と同様に、
繰り返し測定によるデータの劣化を防止することができ
るとともに、スポット径中心位置と装置本体との相対位
置関係を保証するために高精度の装置構成や多くの作業
を要することなしに、逐次2点法の原理を満足するよう
に、測定線に沿い所定の位置関係でレーザ変位計を移動
させてデータを得ることができるとともに、特に、変位
計保持部材を正確にかつ自動的に二つのレーザ変位計の
整列方向に移動させ得るので、当該装置を工作機械等に
搭載して逐次2点法による形状精度測定を容易に行うこ
とができる。In this way, similar to the previous embodiment,
The data can be prevented from being deteriorated due to repeated measurement, and the two-point method can be performed successively without requiring a high-precision device configuration or a lot of work to guarantee the relative positional relationship between the spot diameter center position and the device body. In order to satisfy the principle, the data can be obtained by moving the laser displacement meter in a predetermined positional relationship along the measurement line, and in particular, the displacement meter holding member can be accurately and automatically moved to the two laser displacement meters. Therefore, the device can be mounted on a machine tool or the like, and the shape accuracy can be easily measured sequentially by the two-point method.
【図1】 この発明の逐次2点法による形状精度測定用
レーザ変位計間隔測定方法の一実施例を実施するように
NC工作機械を用いて構成された、この発明の逐次2点
法による形状精度測定装置の一実施例を模式的に示す斜
視図である。FIG. 1 is a diagram showing a configuration of a laser displacement meter for measuring shape accuracy by a sequential two-point method using an NC machine tool according to an embodiment of the present invention. It is a perspective view showing typically an example of an accuracy measuring device.
【図2】 (a),(b)および(c)は、上記実施例
の装置で使用している変位計保持部材を拡大して示す正
面図、下面図および、正面図中のA−A線に沿う断面図
である。FIGS. 2A, 2B, and 2C are enlarged front views, bottom views, and AA in a front view showing a displacement meter holding member used in the apparatus of the above embodiment. It is sectional drawing which follows a line.
【図3】 上記実施例の装置における、二次元CCDの
出力信号から二つのレーザ変位計間の距離を求める構成
を機能的に示すブロック線図である。FIG. 3 is a block diagram functionally showing a configuration for obtaining a distance between two laser displacement meters from an output signal of a two-dimensional CCD in the apparatus of the embodiment.
【図4】 この発明の逐次2点法による形状精度測定装
置の他の一実施例を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing another embodiment of the shape accuracy measuring apparatus according to the sequential two-point method of the present invention.
【図5】 レーザ変位計を用いた逐次2点法における改
良した測定方法を示す説明図である。FIG. 5 is an explanatory diagram showing an improved measurement method in a sequential two-point method using a laser displacement meter.
【図6】 (a)および(b)は、この発明の形状精度
測定装置のさらに他の実施例を示す平面図および正面図
である。FIGS. 6 (a) and (b) are a plan view and a front view showing still another embodiment of the shape accuracy measuring device of the present invention.
1 工作機械 1a 工作機械本体 1b 制御装置 1c テーブル 1d 門形コラム 1e 主軸ヘッド 1h アタッチメント 1i 工具 1j アタッチメントホルダ 1k 工具マガジン 2 CCD 3 変位計保持部材 4,5 レーザ変位計 6 ガイドロッド 7 マイクロメータ 8 ブラケット 9 テレビカメラ DESCRIPTION OF SYMBOLS 1 Machine tool 1a Machine tool main body 1b Control device 1c Table 1d Gate column 1e Spindle head 1h Attachment 1i Tool 1j Attachment holder 1k Tool magazine 2 CCD 3 Displacement gauge holding member 4, 5 Laser displacement gauge 6 Guide rod 7 Micrometer 8 Bracket 9 TV camera
───────────────────────────────────────────────────── フロントページの続き (72)発明者 平上 照康 静岡県沼津市大岡2068−3 東芝機械株式 会社沼津事業所内 Fターム(参考) 2F065 AA02 AA06 AA47 BB02 BB15 BB29 DD03 FF09 FF61 GG04 HH04 JJ03 JJ19 JJ26 MM02 PP05 PP12 3C029 BB01 BB10 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Teruyasu Hiragami 2068-3 Ooka, Numazu-shi, Shizuoka Pref. JJ26 MM02 PP05 PP12 3C029 BB01 BB10
Claims (11)
した測定線の延在方向に沿って二つのレーザ変位計
(4, 5)を一定間隔をあけて整列させるとともにそれ
ら二つのレーザ変位計を前記測定対象から概略等距離離
間させてその測定対象に向けて保持する変位計保持部材
(3)と、 前記変位計保持部材を前記測定線に沿って前記測定対象
に対し相対移動させる保持部材相対移動手段(1a)と、 前記測定対象に照射される前記二つのレーザ変位計から
のレーザビームの位置を前記変位計保持部材の相対移動
に伴って順次に検出する光センサ(2)と、 前記変位計保持部材の相対移動に伴って前記測定対象に
おける前記二つのレーザ変位計のうちの一方のレーザ変
位計からのレーザビームの位置に他方のレーザ変位計か
らのレーザビームの位置が一致するまでの前記変位計保
持部材の相対移動量から求めた前記二つのレーザ変位計
の間隔に等しい距離だけ前記変位計保持部材が相対移動
する毎に前記二つのレーザ変位計の出力信号を取り込
み、それらの出力信号を逐次2点法に基づいて演算処理
して前記測定対象の真直誤差曲線を求める演算処理手段
(1b)と、 を具えることを特徴とする、逐次2点法による形状精度
測定装置。1. Two laser displacement gauges (4, 5) are aligned at regular intervals along the extension direction of a measurement line set for a shape accuracy measurement object (1c), and the two laser displacement meters are aligned. A displacement meter holding member (3) for holding the displacement gauge at an approximately equal distance from the measurement object and holding the displacement meter toward the measurement object; and moving the displacement meter holding member relative to the measurement object along the measurement line. Holding member relative movement means (1a); and an optical sensor (2) for sequentially detecting the position of the laser beam from the two laser displacement meters illuminating the measurement object with the relative movement of the displacement meter holding member And the position of the laser beam from one of the two laser displacement meters of the two laser displacement meters in the measurement object along with the relative movement of the displacement meter holding member, and the position of the laser beam from the other laser displacement meter. Each time the displacement meter holding member relatively moves by a distance equal to the distance between the two laser displacement meters obtained from the relative movement amount of the displacement meter holding member until the output signals of the two laser displacement meters are compared, And a processing means (1b) for calculating the straightness error curve of the object to be measured by sequentially processing the output signals based on the two-point method. Accuracy measuring device.
けられて前記測定対象に固定された一次元または二次元
の電荷結合素子(2)であることを特徴とする、請求項
1記載の逐次2点法による形状精度測定装置。2. The device according to claim 1, wherein the optical sensor is a one-dimensional or two-dimensional charge-coupled device fixed to the object to be measured directed to the laser displacement meter. Shape accuracy measuring device by sequential two-point method.
けられて前記測定対象に固定された受光面2分割光電変
換素子または受光面4分割光電変換素子であることを特
徴とする、請求項1記載の逐次2点法による形状精度測
定装置。3. The photoelectric conversion device according to claim 2, wherein the light sensor is a light-receiving surface two-division photoelectric conversion element or a light-receiving surface four-division photoelectric conversion element fixed to the object to be measured facing the laser displacement meter. A shape accuracy measuring device according to the sequential two-point method according to 1.
れて前記保持部材相対移動手段の静止部位に固定された
電子式カメラ(9)であることを特徴とする、請求項1
記載の逐次2点法による形状精度測定装置。4. The electronic camera according to claim 1, wherein the optical sensor is an electronic camera fixed to a stationary portion of the holding member relative moving means, facing the object to be measured.
A shape accuracy measuring device according to the described sequential two-point method.
ザ変位計の相対位置および向きの少なくとも一方を微調
整するレーザ変位計微調整手段(7)を有することを特
徴とする、請求項1から請求項4までの何れか記載の逐
次2点法による形状精度測定装置。5. The laser displacement meter fine adjusting means (7) for finely adjusting at least one of a relative position and an orientation of the two laser displacement meters. A shape accuracy measuring apparatus according to any one of claims 1 to 4, wherein the shape accuracy measuring apparatus is a sequential two-point method.
材が微小間隔で複数回移動した際の前記二つのレーザ変
位計の各々の複数の出力信号を平均化して、前記逐次2
点法に基づく演算処理のための前記二つのレーザ変位計
の出力信号とすることを特徴とする、請求項1から請求
項5までの何れか記載の逐次2点法による形状精度測定
装置。6. The arithmetic processing means averages a plurality of output signals of each of the two laser displacement meters when the displacement meter holding member moves a plurality of times at minute intervals, and calculates
6. An apparatus according to claim 1, wherein said output signals are output signals of said two laser displacement meters for arithmetic processing based on a point method.
した測定線の延在方向に概略沿って二つのレーザ変位計
(4, 5)を一定間隔をあけて整列させるとともにそれ
ら二つのレーザ変位計を前記測定対象から概略等距離離
間させてその測定対象に向けて保持する変位計保持部材
(3)と、 前記変位計保持部材を前記測定対象に対し前記測定線の
延在方向へ相対移動させるとともに前記二つのレーザ変
位計の整列方向へ相対移動させる保持部材相対移動手段
(1a)と、 前記測定対象に照射される前記二つのレーザ変位計から
のレーザビームの位置を前記変位計保持部材の相対移動
に伴って順次に検出する二次元光センサ(2)と、 前記測定対象に対する前記変位計保持部材の前記測定線
に沿う相対移動に伴って、前記測定対象における前記二
つのレーザ変位計のうちの一方のレーザ変位計からのレ
ーザビームが前記二次元光センサ上に照射される位置か
ら他方のレーザ変位計からのレーザビームが前記二次元
光センサ上に照射される位置までの前記変位計保持部材
の相対移動量と、前記二つのレーザ変位計からのレーザ
ビームの前記二次元光センサ上での照射位置とから前記
二つのレーザ変位計の間隔と整列方向とを求め、前記測
定対象に対する前記変位計保持部材の前記二つのレーザ
変位計の整列方向への相対移動に伴って前記二つのレー
ザ変位計の間隔に等しい距離だけ前記変位計保持部材が
相対移動する毎に前記二つのレーザ変位計の出力信号を
取り込み、それらの出力信号を逐次2点法に基づいて演
算処理して前記測定対象の真直誤差曲線を求める演算処
理手段(1b)と、 を具えることを特徴とする、逐次2点法による形状精度
測定装置。7. The two laser displacement gauges (4, 5) are arranged at regular intervals along the extension direction of the measurement line set for the shape accuracy measurement object (1c), and the two laser displacement gauges are aligned. A displacement meter holding member (3) for holding the laser displacement meter at a distance of approximately the same distance from the object to be measured and holding it toward the object to be measured; Holding member relative movement means (1a) for relatively moving and relatively moving in the direction in which the two laser displacement meters are aligned, and for measuring the position of the laser beam from the two laser displacement meters irradiated to the object to be measured by the displacement meter A two-dimensional optical sensor (2) that sequentially detects the relative position of the holding member, and the two-dimensional optical sensor (2) of the measuring object along with the relative movement of the displacement meter holding member along the measurement line with respect to the measuring object. From the position where the laser beam from one of the laser displacement meters is irradiated onto the two-dimensional optical sensor to the position where the laser beam from the other laser displacement meter is irradiated onto the two-dimensional optical sensor From the relative movement amount of the displacement meter holding member up to and the irradiation position of the laser beam from the two laser displacement meters on the two-dimensional optical sensor, the interval and alignment direction of the two laser displacement meters are obtained. Each time the displacement meter holding member relatively moves by a distance equal to the distance between the two laser displacement meters with the relative movement of the displacement meter holding member relative to the measurement target in the alignment direction of the two laser displacement meters. An arithmetic processing means (1b) for taking in output signals of the two laser displacement meters and sequentially processing the output signals based on a two-point method to obtain a straightness error curve of the object to be measured; And wherein the obtaining, shape accuracy measuring device according to the sequential two-point method.
つの方向に整列させて少なくとも三つのレーザ変位計を
保持することを特徴とする、請求項1から7までの何れ
か記載の逐次2点法による形状精度測定装置。8. The sequential sensor according to claim 1, wherein the displacement meter holding member holds at least three laser displacement meters aligned in two directions perpendicular to each other. Shape accuracy measuring device by point method.
記二つのレーザ変位計を互いに直角な二つの方向に選択
的に整列させる保持部材回転手段を具えることを特徴と
する、請求項1から7までの何れか記載の逐次2点法に
よる形状精度測定装置。9. The apparatus according to claim 1, further comprising a holding member rotating means for rotating said holding member by 90 ° to selectively align said two laser displacement meters in two directions perpendicular to each other. 8. A shape accuracy measuring device according to any one of items 1 to 7 according to the sequential two-point method.
つのレーザ変位計を用いて行うために、逐次2点法に用
いる変位計間隔として前記二つのレーザ変位計の間隔を
求めるに際し、 形状精度の測定対象に対して設定した測定線の延在方向
に沿って前記二つのレーザ変位計を一定間隔をあけて整
列させるとともにそれら二つのレーザ変位計を前記測定
対象から概略等距離離間させてその測定対象に向けて保
持し、 それら二つのレーザ変位計を前記保持状態のまま前記測
定線に沿って前記測定対象に対し相対移動させ、 前記測定対象に照射される前記二つのレーザ変位計から
のレーザビームの位置を前記相対移動に伴って光センサ
で順次に検出し、 前記相対移動に伴って前記測定対象における前記二つの
レーザ変位計のうちの一方のレーザ変位計からのレーザ
ビームの位置に他方のレーザ変位計からのレーザビーム
の位置が一致するまでの前記相対移動の移動量から前記
二つのレーザ変位計の間隔を求めることを特徴とする、
逐次2点法による形状精度測定用レーザ変位計間隔測定
方法。10. In order to measure the shape accuracy by the sequential two-point method using two laser displacement meters, when determining the interval between the two laser displacement meters as the displacement meter interval used in the sequential two-point method, The two laser displacement meters are aligned at regular intervals along the extending direction of the measurement line set for the measurement object of accuracy, and the two laser displacement meters are separated from the measurement object by substantially equal distances. Holding the two laser displacement meters toward the measurement object, moving the two laser displacement meters relative to the measurement object along the measurement line in the holding state, and irradiating the measurement object with the two laser displacement meters. The position of the laser beam is sequentially detected by the optical sensor in accordance with the relative movement, and one of the two laser displacement meters in the measurement object is measured in accordance with the relative movement. And obtaining the distance of the two laser displacement meter from the amount of movement of the relative movement to the position of the laser beam coincides from the laser beam while the laser displacement meter at a position of a total of,
A laser displacement meter interval measuring method for shape accuracy measurement by a sequential two-point method.
つのレーザ変位計を用いて行うために、逐次2点法に用
いる変位計間隔として前記二つのレーザ変位計の間隔を
求めるに際し、 形状精度の測定対象に対して設定した測定線の延在方向
に概略沿って前記二つのレーザ変位計を一定間隔をあけ
て整列させるとともにそれら二つのレーザ変位計を前記
測定対象から概略等距離離間させてその測定対象に向け
て保持し、 それら二つのレーザ変位計を前記保持状態のまま前記測
定線に沿って前記測定対象に対し相対移動させ、 前記測定対象に照射される前記二つのレーザ変位計から
のレーザビームの位置を前記相対移動に伴って二次元光
センサで順次に検出し、 前記測定対象に対する前記変位計保持部材の前記測定線
に沿う相対移動に伴って、前記測定対象における前記二
つのレーザ変位計のうちの一方のレーザ変位計からのレ
ーザビームが前記二次元光センサ上に照射される位置か
ら他方のレーザ変位計からのレーザビームが前記二次元
光センサ上に照射される位置までの前記変位計保持部材
の相対移動量と、前記二つのレーザ変位計からのレーザ
ビームの前記二次元光センサ上での照射位置とから前記
二つのレーザ変位計の間隔を求めることを特徴とする、
逐次2点法による形状精度測定用レーザ変位計間隔測定
方法。11. In order to measure the shape accuracy by the sequential two-point method by using two laser displacement meters, when determining the interval between the two laser displacement meters as the displacement meter interval used in the sequential two-point method, The two laser displacement gauges are aligned at regular intervals along the direction of extension of the measurement line set for the accuracy measurement object, and the two laser displacement meters are separated from the measurement object by substantially equal distances. And holding the two laser displacement meters relative to the measurement object along the measurement line while maintaining the holding state, and the two laser displacement meters irradiated to the measurement object With the relative movement, the position of the laser beam is sequentially detected by a two-dimensional optical sensor, and with the relative movement of the displacement meter holding member along the measurement line with respect to the measurement object, From the position where the laser beam from one of the two laser displacement meters of the two laser displacement meters in the measurement object is irradiated on the two-dimensional optical sensor, the laser beam from the other laser displacement meter is used as the two-dimensional optical sensor. The distance between the two laser displacement meters from the relative movement amount of the displacement meter holding member up to the position where the two laser displacement meters are irradiated, and the irradiation position of the laser beam from the two laser displacement meters on the two-dimensional optical sensor. Characterized by seeking
A laser displacement meter interval measuring method for shape accuracy measurement by a sequential two-point method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33979399A JP4571256B2 (en) | 1999-11-30 | 1999-11-30 | Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33979399A JP4571256B2 (en) | 1999-11-30 | 1999-11-30 | Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001157951A true JP2001157951A (en) | 2001-06-12 |
JP4571256B2 JP4571256B2 (en) | 2010-10-27 |
Family
ID=18330870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33979399A Expired - Lifetime JP4571256B2 (en) | 1999-11-30 | 1999-11-30 | Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4571256B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6937336B2 (en) | 2002-08-15 | 2005-08-30 | Black & Decker, Inc. | Optical alignment system for power tool |
US7073268B1 (en) | 2002-04-18 | 2006-07-11 | Black & Decker Inc. | Level apparatus |
US7137327B2 (en) | 2002-10-31 | 2006-11-21 | Black & Decker Inc. | Riving knife assembly for a dual bevel table saw |
US7243440B2 (en) | 2004-10-06 | 2007-07-17 | Black & Decker Inc. | Gauge for use with power tools |
US7290474B2 (en) | 2003-04-29 | 2007-11-06 | Black & Decker Inc. | System for rapidly stopping a spinning table saw blade |
US7359762B2 (en) | 2002-04-18 | 2008-04-15 | Black & Decker Inc. | Measurement and alignment device including a display system |
US7369916B2 (en) | 2002-04-18 | 2008-05-06 | Black & Decker Inc. | Drill press |
KR100936263B1 (en) * | 2008-01-17 | 2010-01-12 | 인하대학교 산학협력단 | Measuring device for micro end mill tools |
KR100950535B1 (en) | 2008-03-27 | 2010-03-30 | 인하대학교 산학협력단 | Machine tool installation error measuring device |
US8004664B2 (en) | 2002-04-18 | 2011-08-23 | Chang Type Industrial Company | Power tool control system |
JP2012154673A (en) * | 2011-01-24 | 2012-08-16 | Panasonic Corp | Linearity checkup method |
CN105081888A (en) * | 2015-09-02 | 2015-11-25 | 上海交通大学 | Two-dimensional vibration auxiliary laser scanning in-situ detection system and detection method thereof |
CN106767398A (en) * | 2016-11-21 | 2017-05-31 | 国网四川省电力公司电力科学研究院 | A kind of suspension insulator comprehensive parameters detection means and detection method |
CN109425313A (en) * | 2017-08-30 | 2019-03-05 | 上汽通用汽车有限公司 | Hand-held glossometer positioning device and hand-held glossometer external member |
WO2020105218A1 (en) * | 2018-11-19 | 2020-05-28 | Dmg森精機株式会社 | Measurement method |
CN112525082A (en) * | 2020-11-26 | 2021-03-19 | 合肥工业大学 | Device and method for simultaneously detecting positioning accuracy and straightness of linear displacement table |
CN116661163A (en) * | 2023-07-28 | 2023-08-29 | 成都飞机工业(集团)有限责任公司 | Collimation device and method for laser interferometer |
CN116989732A (en) * | 2023-09-26 | 2023-11-03 | 山东省建设建工集团装饰装璜有限公司 | Curtain wall flatness measuring equipment |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104128846B (en) * | 2014-07-21 | 2016-04-20 | 华中科技大学 | A kind of high-precision cutter bias On-line Measuring Method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01156845U (en) * | 1988-04-20 | 1989-10-27 |
-
1999
- 1999-11-30 JP JP33979399A patent/JP4571256B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01156845U (en) * | 1988-04-20 | 1989-10-27 |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8004664B2 (en) | 2002-04-18 | 2011-08-23 | Chang Type Industrial Company | Power tool control system |
US7073268B1 (en) | 2002-04-18 | 2006-07-11 | Black & Decker Inc. | Level apparatus |
US7359762B2 (en) | 2002-04-18 | 2008-04-15 | Black & Decker Inc. | Measurement and alignment device including a display system |
US7369916B2 (en) | 2002-04-18 | 2008-05-06 | Black & Decker Inc. | Drill press |
US6937336B2 (en) | 2002-08-15 | 2005-08-30 | Black & Decker, Inc. | Optical alignment system for power tool |
US7137327B2 (en) | 2002-10-31 | 2006-11-21 | Black & Decker Inc. | Riving knife assembly for a dual bevel table saw |
US7290474B2 (en) | 2003-04-29 | 2007-11-06 | Black & Decker Inc. | System for rapidly stopping a spinning table saw blade |
US7243440B2 (en) | 2004-10-06 | 2007-07-17 | Black & Decker Inc. | Gauge for use with power tools |
KR100936263B1 (en) * | 2008-01-17 | 2010-01-12 | 인하대학교 산학협력단 | Measuring device for micro end mill tools |
KR100950535B1 (en) | 2008-03-27 | 2010-03-30 | 인하대학교 산학협력단 | Machine tool installation error measuring device |
JP2012154673A (en) * | 2011-01-24 | 2012-08-16 | Panasonic Corp | Linearity checkup method |
CN105081888B (en) * | 2015-09-02 | 2017-06-16 | 上海交通大学 | A kind of two-dimension vibration auxiliary laser scans in-place detection system and its detection method |
CN105081888A (en) * | 2015-09-02 | 2015-11-25 | 上海交通大学 | Two-dimensional vibration auxiliary laser scanning in-situ detection system and detection method thereof |
CN106767398A (en) * | 2016-11-21 | 2017-05-31 | 国网四川省电力公司电力科学研究院 | A kind of suspension insulator comprehensive parameters detection means and detection method |
CN106767398B (en) * | 2016-11-21 | 2019-10-11 | 国网四川省电力公司电力科学研究院 | A comprehensive parameter detection device and detection method of a suspension insulator |
CN109425313A (en) * | 2017-08-30 | 2019-03-05 | 上汽通用汽车有限公司 | Hand-held glossometer positioning device and hand-held glossometer external member |
CN109425313B (en) * | 2017-08-30 | 2022-12-13 | 上汽通用汽车有限公司 | Handheld gloss appearance positioner and handheld gloss appearance external member |
WO2020105218A1 (en) * | 2018-11-19 | 2020-05-28 | Dmg森精機株式会社 | Measurement method |
JP2020082231A (en) * | 2018-11-19 | 2020-06-04 | Dmg森精機株式会社 | Measuring method |
CN112525082A (en) * | 2020-11-26 | 2021-03-19 | 合肥工业大学 | Device and method for simultaneously detecting positioning accuracy and straightness of linear displacement table |
CN112525082B (en) * | 2020-11-26 | 2022-04-29 | 合肥工业大学 | Device and method for simultaneously detecting positioning accuracy and straightness of linear displacement table |
CN116661163A (en) * | 2023-07-28 | 2023-08-29 | 成都飞机工业(集团)有限责任公司 | Collimation device and method for laser interferometer |
CN116661163B (en) * | 2023-07-28 | 2023-12-08 | 成都飞机工业(集团)有限责任公司 | Collimation device and method for laser interferometer |
CN116989732A (en) * | 2023-09-26 | 2023-11-03 | 山东省建设建工集团装饰装璜有限公司 | Curtain wall flatness measuring equipment |
CN116989732B (en) * | 2023-09-26 | 2023-12-22 | 山东省建设建工集团装饰装璜有限公司 | Curtain wall flatness measuring equipment |
Also Published As
Publication number | Publication date |
---|---|
JP4571256B2 (en) | 2010-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001157951A (en) | Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method | |
KR102005626B1 (en) | Optical detecting apparatus for detecting a degree of freedom error of a spindle and a detecting method thereof | |
US10415955B2 (en) | Measuring system | |
EP3249350A1 (en) | Laser measurement system and method capable of detecting 21 geometric errors | |
JP3678915B2 (en) | Non-contact 3D measuring device | |
CN108527007B (en) | On-machine measuring system and method for vertical machining center based on optical triangulation | |
US6839975B2 (en) | Accuracy measuring apparatus for machine tool | |
CN110530296B (en) | Method for determining line laser installation error angle | |
JP2014087882A (en) | Method for measuring tool length, and machine tool | |
CN111928776A (en) | Multi-sensor-based non-contact online measurement system and method for numerical control machine tool | |
US6727986B1 (en) | Method and device for measuring a folding angle of a sheet in a folding machine | |
JP3657252B2 (en) | Shape measurement system using workpiece shape measuring device | |
JP4791118B2 (en) | Image measuring machine offset calculation method | |
US6351313B1 (en) | Device for detecting the position of two bodies | |
JPH0123041B2 (en) | ||
JP2017053793A (en) | Measurement device, and manufacturing method of article | |
JP6757391B2 (en) | Measuring method | |
JP2004012430A (en) | Non-contact measurement method and measurement device | |
TWI483804B (en) | The detection and processing device of the fixed seat and its working method | |
JP2010201581A (en) | Workpiece attitude control device of machine tool | |
US20240302159A1 (en) | Coordinate measuring machine and in-line measurement system | |
JPS6129709A (en) | Measuring method of shape | |
JP4159809B2 (en) | Non-contact measuring method and measuring apparatus | |
US20250003732A1 (en) | Cmm with tunable focal lens | |
TWI745730B (en) | Device, method and computer program for geometric measurement of object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061129 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070418 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100803 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100812 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4571256 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |