[go: up one dir, main page]

JP2001156279A - Solid-state image pickup device and its manufacturing method - Google Patents

Solid-state image pickup device and its manufacturing method

Info

Publication number
JP2001156279A
JP2001156279A JP33844899A JP33844899A JP2001156279A JP 2001156279 A JP2001156279 A JP 2001156279A JP 33844899 A JP33844899 A JP 33844899A JP 33844899 A JP33844899 A JP 33844899A JP 2001156279 A JP2001156279 A JP 2001156279A
Authority
JP
Japan
Prior art keywords
insulating film
refractive index
solid
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33844899A
Other languages
Japanese (ja)
Inventor
Takeharu Okuno
丈晴 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP33844899A priority Critical patent/JP2001156279A/en
Publication of JP2001156279A publication Critical patent/JP2001156279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state image pickup device in which a lack of uniformity in spectral intensity of the transmitted light due to a lack of uniformity in the thickness of a second insulating film is restrained from occurring, by a method wherein a third insulating film possessed of optical characteristics is interposed between a first and a second insulating film, so as to restrain a conventional light reflecting interface from being formed and its manufacturing method. SOLUTION: Photoelectric conversion devices are formed on a semiconductor substrate, a first insulating film and a second insulating film whose light refractive index is different from that of the first insulating film are provided on the photoelectric conversion devices for the formation of a solid-state image pickup device, where a third insulating film is interposed between the first and second insulating film, and the third insulating film is equipped with a region whose refractive index changes continuously from that of the first insulating film to that of the second insulating film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体撮像素子に関
し、特に、その分光感度特性を改善した固体撮像素子お
よびその製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a solid-state imaging device, and more particularly to a solid-state imaging device having improved spectral sensitivity characteristics and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来の固体撮像素子は、図1の断面で示
すように、半導体基板1上に光電変換素子2が形成され
ており、その上部に第1の絶縁膜3と、第1の絶縁膜と
は光の屈折率が異なる第2の絶縁膜とを備えていて、第
2の絶縁膜で表面保護の役目を果たしている。しかし、
ここでは、第1の絶縁膜上に直接、第2の絶縁膜を形成
しているので、光の屈折が急峻に変化する界面が存在
し、その界面において、入射光の反射が発生するため、
第2の絶縁膜の膜厚に依存する光の干渉が起こる。そし
て、この時、例えば、固体撮像素子チップの中心部と周
辺部とで、第2の絶縁膜の膜厚に相違があった場合、干
渉条件の違いから、波長によって透過光の強度が異な
る。
2. Description of the Related Art In a conventional solid-state imaging device, as shown in the cross section of FIG. 1, a photoelectric conversion element 2 is formed on a semiconductor substrate 1, and a first insulating film 3 and a first insulating film 3 are formed thereon. The insulating film includes a second insulating film having a different refractive index of light, and the second insulating film plays a role of protecting the surface. But,
Here, since the second insulating film is formed directly on the first insulating film, there is an interface where light refraction changes sharply, and reflection of incident light occurs at the interface.
Light interference occurs depending on the thickness of the second insulating film. At this time, for example, when there is a difference in the thickness of the second insulating film between the central portion and the peripheral portion of the solid-state imaging device chip, the intensity of the transmitted light differs depending on the wavelength due to the difference in the interference condition.

【0003】[0003]

【発明が解決しようとする課題】このように、上述の従
来の固体撮像素子では、チップの中心部と周縁部とで、
分光感度特性が不均一になるという問題があった。
As described above, in the above-described conventional solid-state imaging device, the central portion and the peripheral portion of the chip are
There is a problem that the spectral sensitivity characteristics become non-uniform.

【0004】本発明は、上記事情に基づいてなされたも
ので、その目的とするところは、第1の絶縁膜と第2の
絶縁膜との層間に、光学的な特性を有する第3の絶縁膜
を設けて、従来の、光の反射が起こる界面の形成を抑制
して、第2の絶縁膜の膜厚バラ付きに起因する透過光の
分光強度の不均一を抑制した固体撮像素子およびその製
造方法を提供することにある。
The present invention has been made based on the above circumstances, and an object thereof is to provide a third insulating film having optical characteristics between a first insulating film and a second insulating film. A conventional solid-state imaging device in which a film is provided to suppress the formation of an interface at which light reflection occurs, and to suppress the unevenness of the spectral intensity of transmitted light due to the variation in the thickness of the second insulating film, and the related art. It is to provide a manufacturing method.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、半導体基板に複数の光電変換素子を形
成し、該光電変換素子上に、第1の絶縁膜と該絶縁膜と
は光の屈折率が異なる第2の絶縁膜とを備えている固体
撮像素子において、第1の絶縁膜と第2の絶縁膜の層間
に第3の絶縁膜を設けると共に、第3の絶縁膜は、その
屈折率が、第1の絶縁膜の屈折率から第2の絶縁膜の屈
折率へと連続的に、あるいは、2ステップ以上で段階的
に変化する領域を具備していることを特徴とする。
In order to achieve the above object, according to the present invention, a plurality of photoelectric conversion elements are formed on a semiconductor substrate, and a first insulating film and the insulating film are formed on the photoelectric conversion elements. In a solid-state imaging device including a second insulating film having a different refractive index of light, a third insulating film is provided between a first insulating film and a second insulating film, and a third insulating film is provided. Has a region in which the refractive index changes continuously from the refractive index of the first insulating film to the refractive index of the second insulating film, or in steps of two or more steps. And

【0006】この場合、本発明の好ましい実施の形態と
して、第1の絶縁膜がシリコン酸化膜であり、第2の絶
縁膜がシリコン窒化膜であること、また、第3の絶縁膜
の屈折率が、変化率0.01/Å以下で連続的に変化す
ることは有効である。
In this case, as a preferred embodiment of the present invention, the first insulating film is a silicon oxide film, the second insulating film is a silicon nitride film, and the refractive index of the third insulating film is However, it is effective that the rate of change continuously changes at a rate of change of 0.01 / Å or less.

【0007】また、本発明では、半導体基板に複数の光
電変換素子を形成し、該光電変換素子上に、第1の絶縁
膜と該絶縁膜とは光の屈折率が異なる第2の絶縁膜とを
備えている固体撮像素子の製造方法において、プラズマ
CVD法を用いて、第1の絶縁膜と第2の絶縁膜の層間
に第3の絶縁膜を形成する際に、ソースガスの組成の一
部あるいは全部を連続的に変化させ、第3の絶縁膜に、
その屈折率が第1の絶縁膜の屈折率から第2の絶縁膜の
屈折率へと連続的に、あるいは、2ステップ以上で段階
的に変化する領域を構成することを特徴とする。
In the present invention, a plurality of photoelectric conversion elements are formed on a semiconductor substrate, and a first insulating film and a second insulating film having different refractive indexes of light are formed on the photoelectric conversion elements. In the method for manufacturing a solid-state imaging device having the following, when the third insulating film is formed between the first insulating film and the second insulating film by using the plasma CVD method, By changing part or all continuously, the third insulating film
It is characterized in that a region whose refractive index changes from the refractive index of the first insulating film to the refractive index of the second insulating film continuously or in two or more steps is formed.

【0008】この場合、本発明の好ましい実施の形態と
して、ソースガスの組成の一部が、シランとN2Oを含
む組成から、シランとアンモニアを含む組成へと連続的
に変化される仕方で、第3の絶縁膜の領域を構成するこ
と、また、ソースガスの組成の一部が、シランと酸素を
含む組成から、シランとアンモニアを含む組成へと連続
的に変化される仕方で、第3の絶縁膜の領域を構成する
ことは有効である。
In this case, as a preferred embodiment of the present invention, a part of the composition of the source gas is continuously changed from a composition containing silane and N 2 O to a composition containing silane and ammonia. Forming a region of the third insulating film, and a method in which part of the composition of the source gas is continuously changed from a composition containing silane and oxygen to a composition containing silane and ammonia. It is effective to form the third insulating film region.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を、図
2を参照して、具体的に説明する。ここでの固体撮像素
子は、半導体基板1上に光電変換素子2を形成し、その
上部にシリコン酸化膜からなる第1の絶縁膜3と、第1
の絶縁膜とは光の屈折率が異なるシリコン窒化膜からな
る第2の絶縁膜4を備えている。なお、ここでの第2の
絶縁膜は表面保護の役割を果たす膜である。
Embodiments of the present invention will be specifically described below with reference to FIG. In the solid-state imaging device here, a photoelectric conversion element 2 is formed on a semiconductor substrate 1, and a first insulating film 3 made of a silicon oxide film and a first
Is provided with a second insulating film 4 made of a silicon nitride film having a different refractive index of light. Note that the second insulating film here is a film that plays a role of protecting the surface.

【0010】そして、本発明の第1の実施の形態として
は、これら絶縁膜3、4の層間に、第3の絶縁膜5を設
ける。この絶縁膜5は、その光の屈折率が、シリコン酸
化膜(第1の絶縁膜)の光の屈折率からシリコン窒化膜
(第2の絶縁膜)の光の屈折利率へと連続的に変化する
領域を構成している。
In the first embodiment of the present invention, a third insulating film 5 is provided between the insulating films 3 and 4. In the insulating film 5, the refractive index of the light continuously changes from the refractive index of light of the silicon oxide film (first insulating film) to the refractive index of light of the silicon nitride film (second insulating film). The area to be configured.

【0011】このことにより、本発明の固体撮像素子で
は、第1の絶縁膜3と第3の絶縁膜5の界面、および、
第3の絶縁膜5と第2の絶縁膜4の界面で、光の屈折率
の急峻な変化がなく、第2の絶縁物4の膜厚に依存した
光の干渉を抑制し、チップ全体に亘り、均一な分光感度
特性を有する構成とすることができる。
Thus, in the solid-state imaging device of the present invention, the interface between the first insulating film 3 and the third insulating film 5, and
At the interface between the third insulating film 5 and the second insulating film 4, there is no sharp change in the refractive index of light, and light interference depending on the thickness of the second insulator 4 is suppressed. A configuration having a uniform spectral sensitivity characteristic can be obtained over the entire range.

【0012】また、第2の実施の形態としては、これら
絶縁膜3、4の層間に、第3の絶縁膜5を設けるが、こ
の絶縁膜5は、その光の屈折率が、シリコン酸化膜(第
1の絶縁膜)の光の屈折率からシリコン窒化膜(第2の
絶縁膜)の光の屈折利率へと2ステップ以上で段階的に
変化する領域を構成している。そして、この場合も、第
1の実施の形態と同様に、第2の絶縁物4の膜厚に依存
した光の干渉を抑制し、チップ全体に亘り、均一な分光
感度特性を有する構成とすることができる。
In the second embodiment, a third insulating film 5 is provided between the insulating films 3 and 4, and the insulating film 5 has a light refractive index of a silicon oxide film. A region is formed in which the refractive index of light of the (first insulating film) changes stepwise in two or more steps from the refractive index of light of the silicon nitride film (second insulating film). Also in this case, similarly to the first embodiment, the configuration is such that light interference depending on the film thickness of the second insulator 4 is suppressed and uniform spectral sensitivity characteristics are provided over the entire chip. be able to.

【0013】次に、上述の固体撮像素子の製造に際して
(即ち、上述のように、半導体基板1に複数の光電変換
素子2を形成し、光電変換素子2上に、第1の絶縁膜3
と該絶縁膜とは光の屈折率が異なる第2の絶縁膜4とを
備えている固体撮像素子の製造方法において)、第3の
絶縁膜5の成膜条件について説明する。
Next, at the time of manufacturing the solid-state imaging device described above (that is, as described above, a plurality of photoelectric conversion elements 2 are formed on the semiconductor substrate 1 and the first insulating film 3
And a second insulating film 4 having a different refractive index of light from the insulating film) and the conditions for forming the third insulating film 5 will be described.

【0014】ここでは、プラズマCVD法を用いて、第
1の絶縁膜3と第2の絶縁膜4の層間に第3の絶縁膜5
を形成する際に、ソースガスの組成の一部あるいは全部
を連続的に変化させ、第3の絶縁膜5に、その屈折率が
第1の絶縁膜の屈折率から第2の絶縁膜の屈折率へと連
続的(あるいは、2ステップ以上で段階的)に変化する
領域を構成する。この屈折率の変化は、連続的な変化の
場合、変化率0.01/Å以下にし、段階的な変化の場
合、1ステップで、変化率0.05/Å以下にする。
Here, the third insulating film 5 is interposed between the first insulating film 3 and the second insulating film 4 by using a plasma CVD method.
Is formed, part or all of the composition of the source gas is continuously changed, and the refractive index of the third insulating film 5 is changed from the refractive index of the first insulating film to the refractive index of the second insulating film. It constitutes a region that changes continuously (or stepwise in two or more steps) to a rate. The change in the refractive index is 0.01 / Å or less in the case of a continuous change, and 0.05 / Å or less in one step in the case of a stepwise change.

【0015】このため、第3の絶縁膜の成膜を行うプラ
ズマCVD装置において、ソースガスの流量をシラン:
150sccm、N2:600sccmとし、N2OとNH3の流
量の和を900sccmに固定して、流量比:R=N2O/
(N2O+NH3)を連続的あるいは2ステップ以上で段
階的に変化させる(なお、この実施の形態では、N2
を用いたが、酸素に代えてもよい)。その際の、光の屈
折率の変化を図3に例示している。また、膜の組成比の
変化を図4に、そして、成膜速度の変化を図5に示す。
Therefore, in the plasma CVD apparatus for forming the third insulating film, the flow rate of the source gas is set to silane:
150 sccm, N 2 : 600 sccm, the sum of the flow rates of N 2 O and NH 3 was fixed at 900 sccm, and the flow rate ratio: R = N 2 O /
(N 2 O + NH 3 ) is changed continuously or stepwise in two or more steps (in this embodiment, N 2 O
Was used, but may be replaced by oxygen). FIG. 3 illustrates a change in the refractive index of light at that time. FIG. 4 shows the change in the composition ratio of the film, and FIG. 5 shows the change in the film formation rate.

【0016】この結果を用いて、第3の絶縁膜5の形成
を行う際、プラズマCVD装置のソースガスの流量を、
成膜中に、図6のように変化させることで、図7のよう
に、膜の表面からの深さ方向に対して、屈折率を連続的
(あるいは2ステップ以上で段階的)に変化させるので
ある。
When the third insulating film 5 is formed using the result, the flow rate of the source gas of the plasma CVD apparatus is set to
By changing the refractive index during film formation as shown in FIG. 6, the refractive index is changed continuously (or stepwise in two or more steps) in the depth direction from the film surface as shown in FIG. It is.

【0017】そして、最後に、第3の絶縁膜5の最上面
の成膜条件と同様の条件で、第2の絶縁膜4を形成する
ことにより、図2のような断面構造の固体撮像素子が得
られる。
Finally, the second insulating film 4 is formed under the same conditions as those for forming the uppermost surface of the third insulating film 5, so that the solid-state imaging device having a sectional structure as shown in FIG. Is obtained.

【0018】[0018]

【発明の効果】本発明は、以上詳述したようになり、固
体撮像素子において、各光電変換素子毎の透過光強度の
バラ付きを抑制し、チップ全体に亘り、感度が均一な撮
像を可能とすることができる。
The present invention has been described in detail above. In a solid-state image sensor, variation in transmitted light intensity of each photoelectric conversion element is suppressed, and imaging with uniform sensitivity over the entire chip can be performed. It can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術による固体撮像素子の断面を示す図で
ある。
FIG. 1 is a diagram showing a cross section of a solid-state imaging device according to a conventional technique.

【図2】本発明の実施の形態を示す固体撮像素子の断面
図である。
FIG. 2 is a cross-sectional view of the solid-state imaging device according to the embodiment of the present invention.

【図3】本発明における固体撮像素子の製造方法で適用
されるソースガス流量比と屈折率の変化の関係を示す図
である。
FIG. 3 is a diagram showing a relationship between a source gas flow ratio and a change in refractive index applied in the method for manufacturing a solid-state imaging device according to the present invention.

【図4】同じく、ソースガス流量比と膜組成比の関係を
示す図である。
FIG. 4 is a diagram showing a relationship between a source gas flow ratio and a film composition ratio.

【図5】同じく、ソースガス流量比と成膜速度の関係を
示す図である。
FIG. 5 is a diagram showing a relationship between a source gas flow ratio and a film forming rate.

【図6】同じく、成膜時間とソースガス流量比との関係
を示す図である。
FIG. 6 is a diagram showing a relationship between a film formation time and a source gas flow ratio.

【図7】同じく、第3の絶縁膜の表面側からの深さと屈
折率の変化を示す図である。
FIG. 7 is a diagram showing a change in the depth and the refractive index from the surface side of the third insulating film.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 光電変換素子 3 第1の絶縁膜 4 第2の絶縁膜 5 第3の絶縁膜 Reference Signs List 1 semiconductor substrate 2 photoelectric conversion element 3 first insulating film 4 second insulating film 5 third insulating film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04N 5/335 H01L 27/14 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H04N 5/335 H01L 27/14 A

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板に複数の光電変換素子を形成
し、該光電変換素子上に、第1の絶縁膜と該絶縁膜とは
光の屈折率が異なる第2の絶縁膜とを備えている固体撮
像素子において、第1の絶縁膜と第2の絶縁膜の層間に
第3の絶縁膜を設けると共に、第3の絶縁膜は、その屈
折率が、第1の絶縁膜の屈折率から第2の絶縁膜の屈折
率へと連続的に変化する領域を具備していることを特徴
とする固体撮像素子。
1. A semiconductor device comprising: a plurality of photoelectric conversion elements formed on a semiconductor substrate; and a first insulating film and a second insulating film having a different refractive index of light from the insulating film on the photoelectric conversion elements. In a solid-state imaging device, a third insulating film is provided between a first insulating film and a second insulating film, and the refractive index of the third insulating film is determined by the refractive index of the first insulating film. A solid-state imaging device comprising a region that continuously changes to a refractive index of a second insulating film.
【請求項2】 第1の絶縁膜がシリコン酸化膜であり、
第2の絶縁膜がシリコン窒化膜であることを特徴とする
請求項1に記載の固体撮像素子。
2. The method according to claim 1, wherein the first insulating film is a silicon oxide film,
The solid-state imaging device according to claim 1, wherein the second insulating film is a silicon nitride film.
【請求項3】 第3の絶縁膜の屈折率が、変化率0.0
1/Å以下で連続的に変化することを特徴とする請求項
1に記載の固体撮像素子。
3. The method according to claim 1, wherein the refractive index of the third insulating film is 0.0.
The solid-state imaging device according to claim 1, wherein the value continuously changes at 1 / Å or less.
【請求項4】 半導体基板に複数の光電変換素子を形成
し、該光電変換素子上に、第1の絶縁膜と該絶縁膜とは
光の屈折率が異なる第2の絶縁膜とを備えている固体撮
像素子において、第1の絶縁膜と第2の絶縁膜の層間に
第3の絶縁膜を設けると共に、第3の絶縁膜は、その屈
折率が、第1の絶縁膜の屈折率から第2の絶縁膜の屈折
率へと2ステップ以上で段階的に変化する領域を具備し
ていることを特徴とする固体撮像素子。
4. A plurality of photoelectric conversion elements are formed on a semiconductor substrate, and a first insulating film and a second insulating film having a different refractive index from light are provided on the photoelectric conversion elements. In a solid-state imaging device, a third insulating film is provided between a first insulating film and a second insulating film, and the refractive index of the third insulating film is determined by the refractive index of the first insulating film. A solid-state imaging device comprising a region that changes stepwise to a refractive index of a second insulating film in two or more steps.
【請求項5】 第1の絶縁膜がシリコン酸化膜であり、
第2の絶縁膜がシリコン窒化膜であることを特徴とする
請求項4に記載の固体撮像素子。
5. The method according to claim 1, wherein the first insulating film is a silicon oxide film,
The solid-state imaging device according to claim 4, wherein the second insulating film is a silicon nitride film.
【請求項6】 第3の絶縁膜の屈折率が、変化率0.0
5/Å以下で段階的に変化することを特徴とする請求項
4に記載の固体撮像素子。
6. The refractive index of the third insulating film is changed at a rate of 0.0
The solid-state imaging device according to claim 4, wherein the ratio changes stepwise at 5 / Å or less.
【請求項7】 半導体基板に複数の光電変換素子を形成
し、該光電変換素子上に、第1の絶縁膜と該絶縁膜とは
光の屈折率が異なる第2の絶縁膜とを備えている固体撮
像素子の製造方法において、プラズマCVD法を用い
て、第1の絶縁膜と第2の絶縁膜の層間に第3の絶縁膜
を形成する際に、ソースガスの組成の一部あるいは全部
を連続的に変化させ、第3の絶縁膜に、その屈折率が第
1の絶縁膜の屈折率から第2の絶縁膜の屈折率へと連続
的に変化する領域を構成することを特徴とする、固体撮
像素子の製造方法。
7. A plurality of photoelectric conversion elements are formed over a semiconductor substrate, and a first insulating film and a second insulating film having a different refractive index of light from the insulating film are provided over the photoelectric conversion elements. In a method of manufacturing a solid-state imaging device, when forming a third insulating film between a first insulating film and a second insulating film by using a plasma CVD method, a part or all of the composition of a source gas is formed. Is continuously changed, and a region where the refractive index of the third insulating film continuously changes from the refractive index of the first insulating film to the refractive index of the second insulating film is formed. To manufacture a solid-state imaging device.
【請求項8】 ソースガスの組成の一部が、シランとN
2Oを含む組成から、シランとアンモニアを含む組成へ
と連続的に変化される仕方で、第3の絶縁膜の領域を構
成することを特徴とする、請求項7に記載の固体撮像素
子の製造方法。
8. A part of the composition of the source gas is silane and N
The solid-state imaging device according to claim 7, wherein the region of the third insulating film is configured in such a manner as to be continuously changed from a composition containing 2 O to a composition containing silane and ammonia. Production method.
【請求項9】 ソースガスの組成の一部が、シランと酸
素を含む組成から、シランとアンモニアを含む組成へと
連続的に変化される仕方で、第3の絶縁膜の領域を構成
することを特徴とする、請求項7に記載の固体撮像素子
の製造方法。
9. A region of the third insulating film in which a part of the composition of the source gas is continuously changed from a composition containing silane and oxygen to a composition containing silane and ammonia. The method for manufacturing a solid-state imaging device according to claim 7, wherein:
【請求項10】 半導体基板に複数の光電変換素子を形
成し、該光電変換素子上に、第1の絶縁膜と該絶縁膜と
は光の屈折率が異なる第2の絶縁膜とを備えている固体
撮像素子の製造方法において、プラズマCVD法を用い
て、第1の絶縁膜と第2の絶縁膜の層間に第3の絶縁膜
を形成する際に、ソースガスの組成の一部あるいは全部
を2ステップ以上で段階的に変化させ、第3の絶縁膜
に、その屈折率が第1の絶縁膜の屈折率から第2の絶縁
膜の屈折率へと段階的に変化する領域を構成することを
特徴とする、固体撮像素子の製造方法。
10. A plurality of photoelectric conversion elements are formed on a semiconductor substrate, and a first insulating film and a second insulating film having a different refractive index of light from the insulating film are provided over the photoelectric conversion elements. In a method of manufacturing a solid-state imaging device, when forming a third insulating film between a first insulating film and a second insulating film by using a plasma CVD method, a part or all of the composition of a source gas is formed. Is changed stepwise by two or more steps, and a region where the refractive index changes stepwise from the refractive index of the first insulating film to the refractive index of the second insulating film is formed in the third insulating film. A method for manufacturing a solid-state imaging device, comprising:
【請求項11】 ソースガスの組成の一部が、シランと
2Oを含む組成から、シランとアンモニアを含む組成
へと2ステップ以上で段階的に変化される仕方で、第3
の絶縁膜の領域を構成することを特徴とする、請求項1
0に記載の固体撮像素子の製造方法。
11. The method according to claim 3, wherein a part of the composition of the source gas is stepwise changed in two or more steps from a composition containing silane and N 2 O to a composition containing silane and ammonia.
2. A region of the insulating film according to claim 1.
0. The method for manufacturing a solid-state imaging device according to item 0.
【請求項12】 ソースガスの組成の一部が、シランと
酸素を含む組成から、シランとアンモニアを含む組成へ
と2ステップ以上で段階的に変化される仕方で、第3の
絶縁膜の領域を構成することを特徴とする、請求項10
に記載の固体撮像素子の製造方法。
12. The region of the third insulating film in a manner that a part of the composition of the source gas is changed stepwise from at least two steps to a composition containing silane and ammonia from a composition containing silane and oxygen. 11. The method according to claim 10, wherein
3. The method for manufacturing a solid-state imaging device according to item 1.
JP33844899A 1999-11-29 1999-11-29 Solid-state image pickup device and its manufacturing method Pending JP2001156279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33844899A JP2001156279A (en) 1999-11-29 1999-11-29 Solid-state image pickup device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33844899A JP2001156279A (en) 1999-11-29 1999-11-29 Solid-state image pickup device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001156279A true JP2001156279A (en) 2001-06-08

Family

ID=18318258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33844899A Pending JP2001156279A (en) 1999-11-29 1999-11-29 Solid-state image pickup device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001156279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109490A (en) * 2003-09-29 2005-04-21 Hynix Semiconductor Inc Image sensor and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109490A (en) * 2003-09-29 2005-04-21 Hynix Semiconductor Inc Image sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6614479B1 (en) Solid-state image pickup device in-layer lens with antireflection film with intermediate index of refraction
US6171883B1 (en) Image array optoelectronic microelectronic fabrication with enhanced optical stability and method for fabrication thereof
JP5437432B2 (en) CMOS image sensor and method for forming an image sensor
TW513809B (en) Method of fabricating an image sensor
TWI399849B (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic device
US6461985B1 (en) Semiconductor wafer assemblies comprising silicon nitride, methods of forming silicon nitride, and methods of reducing stress on semiconductive wafers
US20050116271A1 (en) Solid-state imaging device and manufacturing method thereof
US7973347B2 (en) Complementary metal oxide silicon image sensor and method of fabricating the same
US6670695B1 (en) Method of manufacturing anti-reflection layer
JP2001060679A (en) Semiconductor image sensor including optical layer
JPH09116914A (en) Color filter for solid-state image pickup element and its manufacture
US8158452B2 (en) Backside-illuminated imaging device and manufacturing method of the same
JP2001156279A (en) Solid-state image pickup device and its manufacturing method
JP4243258B2 (en) Planarization method of insulating layer around metal pattern to increase optical efficiency
KR20040019995A (en) Method of fabricating a solid-state imaging device
JPS63116458A (en) Semiconductor device with photosenser and signal processing circuit
CN102007593B (en) Integrated circuit manufacturing method
JPH07106537A (en) Manufacture of solid-state image sensing device
JPS60262458A (en) Manufacturing method of solid-state imaging device
CN101431042B (en) Method for manufacturing image sensor
JPH10112532A (en) Image sensing device
JPH10173159A (en) Solid-state image pickup element and its manufacturing method
US12266676B2 (en) Solid-state imaging device with anti-reflection film
JPH06125069A (en) Solid-state image sensing element and manufacture thereof
JPH0158711B2 (en)