JP2001150334A - Semiconductor wafer polishing method and abrasive - Google Patents
Semiconductor wafer polishing method and abrasiveInfo
- Publication number
- JP2001150334A JP2001150334A JP2000311504A JP2000311504A JP2001150334A JP 2001150334 A JP2001150334 A JP 2001150334A JP 2000311504 A JP2000311504 A JP 2000311504A JP 2000311504 A JP2000311504 A JP 2000311504A JP 2001150334 A JP2001150334 A JP 2001150334A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- sol
- colloidal silica
- sio
- semiconductor wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 99
- 239000004065 semiconductor Substances 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 61
- 239000008119 colloidal silica Substances 0.000 claims abstract description 55
- 235000012431 wafers Nutrition 0.000 claims description 46
- 239000002245 particle Substances 0.000 claims description 35
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 239000003082 abrasive agent Substances 0.000 abstract 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 64
- 229910004298 SiO 2 Inorganic materials 0.000 description 39
- 239000007864 aqueous solution Substances 0.000 description 23
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000007788 liquid Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 230000002378 acidificating effect Effects 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 239000004744 fabric Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 8
- 239000003513 alkali Substances 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000004115 Sodium Silicate Substances 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000000635 electron micrograph Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 229910052911 sodium silicate Inorganic materials 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 125000001453 quaternary ammonium group Chemical group 0.000 description 4
- -1 silica sol Chemical compound 0.000 description 4
- 235000019353 potassium silicate Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001340 alkali metals Chemical group 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- ZPDRQAVGXHVGTB-UHFFFAOYSA-N gallium;gadolinium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Gd+3] ZPDRQAVGXHVGTB-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】 本発明は、コロイダルシリ
カによる半導体ウェーハーの研磨方法の改良に関する。
特に、本発明の研磨方法は、珪素等単体の半導体、ガリ
ウム砒素等化合物の半導体などのウェーハーを高速度で
鏡面状に磨き上げるのに好適である。The present invention relates to an improvement in a method for polishing a semiconductor wafer using colloidal silica.
In particular, the polishing method of the present invention is suitable for polishing a wafer such as a simple substance semiconductor such as silicon or a compound semiconductor such as gallium arsenide in a mirror-like manner at a high speed.
【0002】[0002]
【従来の技術】 半導体素子の製造には、鏡面状の平滑
度を有する半導体ウェーハーが用いられている。このよ
うな鏡面を有するウェーハー、例えば、珪素ウェーハー
は、単結晶珪素棒を薄い円板状に切断した後、逐次、こ
の薄い円板を鏡面状を呈するまで磨き上げて行くことに
より造られている。通常、この研磨には、上記切断直後
の粗い表面に施されるラッピング工程と、これに続く精
密研磨のためのポリシング工程が採用されている。そし
てこのポリシング工程において、粗研磨と最終研磨が行
われ、鏡面状を呈する半導体ウェーハーが造られてい
る。上記ラッピング工程には主としてアルミナ粉末等が
使用されるが、上記粗研磨及び最終研磨にはコロイダル
シリカ、特にシリカゾルが使用されることが多い。そし
てこの粗研磨と最終研磨では、通常、研磨布とウェーハ
ー表面とを圧接下に相対運動させながら、この接触面に
シリカゾルを供給する方法でウェーハー表面の研磨が行
われる。2. Description of the Related Art A semiconductor wafer having a mirror-like smoothness is used for manufacturing a semiconductor device. A wafer having such a mirror surface, for example, a silicon wafer, is manufactured by cutting a single-crystal silicon rod into a thin disk shape, and then polishing the thin disk until it has a mirror surface. . Usually, this polishing employs a lapping step performed on the rough surface immediately after the cutting, followed by a polishing step for precision polishing. In this polishing step, rough polishing and final polishing are performed, and a semiconductor wafer having a mirror-like shape is produced. Alumina powder or the like is mainly used for the lapping step, but colloidal silica, particularly silica sol, is often used for the rough polishing and the final polishing. In the rough polishing and the final polishing, the wafer surface is usually polished by a method of supplying silica sol to the contact surface while relatively moving the polishing cloth and the wafer surface under pressure.
【0003】米国特許第4462188 号明細書には、珪素ウ
ェーハー等を、4〜100 ナノメートル (以下、nmで表
す。) の粒子径を有するシリカゾルと水溶性アミンと第
4級アンモニウム塩基又はその塩とを含有する研磨剤で
研磨することによって、研磨速度を高めるという改良さ
れた方法が開示されている。特開平 4-313224 号公報に
は、珪素ウェーハーの研磨効率の低下を防止できる改良
された研磨剤として、7〜100 nmの粒子径を有するシリ
カゾルと水溶性アミンと弱酸のアルカリ金属塩を含有す
る組成物が開示されている。US Pat. No. 4,462,188 discloses a silicon wafer or the like, a silica sol having a particle size of 4 to 100 nanometers (hereinafter, represented by nm), a water-soluble amine, a quaternary ammonium base or a salt thereof. An improved method has been disclosed in which the polishing rate is increased by polishing with an abrasive containing JP-A-4-313224 discloses a silica sol having a particle size of 7 to 100 nm, a water-soluble amine and an alkali metal salt of a weak acid as an improved abrasive capable of preventing a reduction in the polishing efficiency of a silicon wafer. A composition is disclosed.
【0004】[0004]
【発明が解決しようとする課題】 上記米国特許第4462
188 号明細書に開示の研磨剤には、研磨速度を高めるた
めにシリカゾル中にアミンや第4級アンモニウム塩基又
はその塩が添加されているが、この研磨剤を、上記鏡面
を有するウェーハーを造るための粗研磨及び最終研磨に
使用しても、十分な研磨速度が得られない。上記特開平
4-313224 号公報に開示の研磨剤を使用してもやはり同
様である。The above-mentioned US Patent No. 4462
In the polishing agent disclosed in the specification of JP-A-188, an amine or a quaternary ammonium base or a salt thereof is added to a silica sol in order to increase a polishing rate, and this polishing agent is used to produce a wafer having the above-mentioned mirror surface. Even if it is used for rough polishing and final polishing, a sufficient polishing rate cannot be obtained. The above JP
The same is true even when the abrasive disclosed in JP-A-4-313224 is used.
【0005】本発明は、シリカゾルによる半導体ウェー
ハーの粗研磨及び最終研磨において、これら研磨工程に
要する時間を短縮できる如き改良された研磨剤及び研磨
方法を提供しようとするものである。特に、研磨後の半
導体ウェーハーが鏡面を呈する高精度に、このウェーハ
ーを短時間に研磨することができるような安定なシリカ
ゾルからなる研磨剤を提供しようとするものである。An object of the present invention is to provide an improved polishing agent and a polishing method which can reduce the time required for these polishing steps in rough polishing and final polishing of a semiconductor wafer using silica sol. In particular, an object of the present invention is to provide a polishing agent made of a stable silica sol that can polish a semiconductor wafer after polishing in a short time with high precision such that the semiconductor wafer exhibits a mirror surface.
【0006】[0006]
【課題を解決するための手段】 本発明の半導体ウェー
ハーの研磨方法は、7〜1000 nm の長径と 0.3〜0.8 の
短径/長径比を有するコロイダルシリカ、好ましくはそ
の安定なゾルを用いて研磨することを特徴とする。本発
明の研磨方法に用いられるコロイダルシリカ粒子は、電
子顕微鏡写真に現れた画像により容易に観察することが
できる。このコロイダルシリカ粒子は球形ではなく、短
い径と長い径を有する歪な形状を有する。このコロイダ
ルシリカの短い径と長い径の比は、短径/長径の比で表
して 0.3〜0.8 、特に 0.5〜0.8 程度が好ましい。そし
てこのコロイダルシリカ粒子としては、7〜1000 nm 、
特に10〜500 nmの長径を有する粒子が好ましい。コロイ
ダルシリカの大きさは、比表面積によっても表すことが
でき、10〜550 m2/gの比表面積を有するコロイダルシリ
カが好ましい。The method for polishing a semiconductor wafer according to the present invention comprises polishing using colloidal silica having a major axis of 7 to 1000 nm and a minor axis / major axis ratio of 0.3 to 0.8, preferably a stable sol thereof. It is characterized by doing. The colloidal silica particles used in the polishing method of the present invention can be easily observed by an image appearing in an electron micrograph. The colloidal silica particles are not spherical but have a distorted shape having a short diameter and a long diameter. The ratio of the short diameter to the long diameter of the colloidal silica, expressed as the ratio of the short diameter to the long diameter, is preferably about 0.3 to 0.8, and more preferably about 0.5 to 0.8. And as the colloidal silica particles, 7 to 1000 nm,
Particularly, particles having a long diameter of 10 to 500 nm are preferable. The size of the colloidal silica can also be represented by a specific surface area, and a colloidal silica having a specific surface area of 10 to 550 m 2 / g is preferable.
【0007】本発明の研磨方法に用いられるコロイダル
シリカとしては、その粒子の短径/長径比と長径がなる
べく揃っていることが好ましい。上記のような歪な形状
を有するコロイダルシリカ粒子の他に、0.8 以上の短径
/長径比と1000 nm 以下の長径を有する球状〜略球状の
コロイダルシリカ粒子、或いは 0.3以下の短径/長径比
と1000 nm 以下の長径を有する細長いコロイダルシリカ
粒子などの異粒子が混在していてもよいが、その混在粒
子数はなるべく少ないのがよく、上記歪な形状を有する
コロイダルシリカ粒子の数が全粒子中50%以上を占める
ようなコロイダルシリカが好ましい。このような粒子数
の割合は、コロイダルシリカの電子顕微鏡写真の画像解
析により求めることができる。[0007] The colloidal silica used in the polishing method of the present invention preferably has a particle having a ratio of minor axis / major axis and major axis as uniform as possible. In addition to the colloidal silica particles having a distorted shape as described above, spherical to substantially spherical colloidal silica particles having a minor axis / major axis ratio of 0.8 or more and a major axis of 1000 nm or less, or a minor axis / major axis ratio of 0.3 or less. And foreign particles such as elongated colloidal silica particles having a long diameter of 1000 nm or less may be mixed, but the number of the mixed particles is preferably as small as possible, and the number of the colloidal silica particles having the above-mentioned distorted shape is all particles. Colloidal silica occupying 50% or more of them is preferred. Such a ratio of the number of particles can be determined by image analysis of an electron micrograph of colloidal silica.
【0008】本発明の研磨方法には、コロイダルシリカ
を、安定なゾルの形態で、特に、安定な水性ゾルとして
用いるのが好ましい。この安定なゾルのSiO2濃度として
は、0.5〜50重量%程度、特に 0.5〜30重量%が好まし
い。そしてこの安定なゾルとしては、好ましい研磨が達
成される限り、任意の成分、例えば、溶解したアルカリ
性物質、溶解した酸性物質、溶解した塩などを含有する
ことができる。In the polishing method of the present invention, it is preferable to use colloidal silica in the form of a stable sol, particularly as a stable aqueous sol. The SiO 2 concentration of this stable sol is preferably about 0.5 to 50% by weight, particularly preferably 0.5 to 30% by weight. The stable sol can contain any component, for example, a dissolved alkaline substance, a dissolved acidic substance, a dissolved salt, and the like, as long as preferable polishing is achieved.
【0009】珪素半導体ウェーハーの研磨には、上記歪
な形状を有するコロイダルシリカを7〜11.5、特に 8.5
〜11.5のpHを有するアルカリ性の安定な水性ゾルとして
用いるのが好ましい。このようなアルカリ性の水性ゾル
は、例えば、NaOHなどアルカリ金属水酸化物、アンモニ
ア、モノエタノールアミンなどアミン類、テトラメチル
アンモニウム水酸化物など第4級アンモニウム水酸化物
類等、シリカゾルに通常加えられる水溶性のアルカリ性
物質をゾル中に含有させることにより得られる。For polishing a silicon semiconductor wafer, colloidal silica having the above-mentioned distorted shape is used in an amount of 7 to 11.5, particularly 8.5.
It is preferably used as an alkaline stable aqueous sol having a pH of 111.5. Such alkaline aqueous sols are usually added to silica sols, for example, alkali metal hydroxides such as NaOH, ammonia, amines such as monoethanolamine, quaternary ammonium hydroxides such as tetramethylammonium hydroxide. It is obtained by including a water-soluble alkaline substance in a sol.
【0010】[0010]
【発明の実施の形態】本発明の研磨方法に用いられるア
ルカリ性の安定な水性ゾルは、種々の方法で造ることが
できる。その例としては、水ガラスなどのアルカリ金属
珪酸塩の水溶液を脱陽イオン処理することにより得られ
るSiO2濃度2〜6重量%程度の活性珪酸の酸性水溶液
に、アルカリ土類金属、例えば、Ca、Mg、Baなどの塩を
その酸化物換算で上記活性珪酸のSiO2に対し 100〜1500
ppmの重量比に添加し、更にこの液中SiO2/M2O (M は、
アルカリ金属原子、NH4 又は第4級アンモニウム基を表
す。) モル比が20〜150 となる量の上記アルカリ物質を
添加することにより得られる液を当初ヒール液とし、上
記同様にして得られる2〜6重量%のSiO2濃度と20〜15
0 のSiO2/M2O (M は、上記に同じ。) モル比を有する活
性珪酸水溶液をチャージ液として、60〜150 ℃で上記当
初ヒール液に上記チャージ液を、1時間当たり、チャー
ジ液SiO2/当初ヒール液SiO2の重量比として0.05〜1.0
の速度で、液から水を蒸発除去しながら又はせずに、添
加する方法が挙げられる。上記の水を蒸発除去しながら
造る方法では、加えられたチャージ液とヒール液の全容
積が一定となるような速度でチャージ液を添加するのが
好ましい。BEST MODE FOR CARRYING OUT THE INVENTION The alkaline stable aqueous sol used in the polishing method of the present invention can be prepared by various methods. As an example, an alkaline earth metal such as Ca is added to an acidic aqueous solution of activated silicic acid having a SiO 2 concentration of about 2 to 6% by weight obtained by decationizing an aqueous solution of an alkali metal silicate such as water glass. , Mg, salts of Ba, etc., in terms of oxides, based on the SiO 2 of the active silicic acid, 100 to 1500
ppm by weight, and SiO 2 / M 2 O (M is
Represents an alkali metal atom, NH 4 or a quaternary ammonium group. A liquid obtained by adding an amount of the above-mentioned alkali substance in a molar ratio of 20 to 150 is initially used as a heel liquid, and a SiO 2 concentration of 2 to 6% by weight obtained in the same manner as described above and 20 to 15
Using an aqueous solution of activated silicic acid having a molar ratio of SiO 2 / M 2 O (M is the same as above) of 0 as a charge solution, the charge solution is added to the initial heel solution at 60 to 150 ° C. per hour. SiO 2 / originally from 0.05 to 1.0 as the weight ratio of the heel solution SiO 2
And with or without evaporation of water from the liquid at a rate of. In the above-mentioned method of producing while evaporating and removing water, it is preferable to add the charge liquid at such a rate that the total volume of the added charge liquid and heel liquid becomes constant.
【0011】別の例としては、水ガラス等のアルカリ金
属珪酸塩の水溶液を脱陽イオン処理することにより得ら
れるSiO2濃度2〜6重量%程度の活性珪酸の酸性水溶液
に、アルカリ土類金属、例えば、Ca、Mg、Baなどの塩を
その酸化物換算で上記活性珪酸のSiO2に対し 100〜1500
ppmの重量比に添加し、更にこの液中SiO2/M2O (M は、
上記に同じ。) モル比が20〜200 となる量の上記アルカ
リ物質を添加した後、70〜150 ℃で加熱することにより
一旦シリカゾルを生成させ、最後にこのシリカゾルにア
ルカリ金属水酸化物、水溶性有機塩基等を加え、そして
このアルカリ添加のシリカゾルを70〜150 ℃に保ちなが
ら、攪拌下に、上記と同じ活性珪酸の酸性水溶液を上記
ゾル中のSiO2に対し活性珪酸のSiO2の重量比が、1時間
当たり、0.01〜10となる速度でゾル中のSiO2/M2O (M
は、上記に同じ。) モル比が20〜200 となるまで加える
方法が挙げられる。As another example, an alkaline aqueous solution of an active silicic acid having an SiO 2 concentration of about 2 to 6% by weight obtained by decationizing an aqueous solution of an alkali metal silicate such as water glass is used. , for example, Ca, Mg, and the like salts Ba in the oxide equivalent to SiO 2 of the active silicic acid 100-1500
ppm by weight, and SiO 2 / M 2 O (M is
Same as above. ) After adding the alkali substance in an amount such that the molar ratio becomes 20 to 200, the mixture is heated at 70 to 150 ° C to once generate silica sol, and finally, the silica sol is added to an alkali metal hydroxide, a water-soluble organic base, etc. was added and while maintaining the silica sol of the alkali addition to 70 to 150 ° C., under stirring, the weight ratio of SiO 2 in the active silicic acid aqueous solution of the same active silicic acid to SiO 2 of the sol as above, 1 At a rate of 0.01 to 10 per hour, the SiO 2 / M 2 O (M
Is the same as above. ) The method of adding until the molar ratio becomes 20-200.
【0012】化合物半導体ウェーハーの研磨には、上記
歪な形状を有するアルカリ性ゾルのみならず、酸性の、
好ましくは 1.5〜5のpHを有する安定な水性ゾルとして
用いることもできる。このような酸性の水性ゾルは、上
記アルカリ性の水性ゾルに、例えば、水溶性の酸性物質
を含有させることにより、或いは上記アルカリ性の水性
ゾルを脱陽イオン処理することにより得られる。更に、
上記アルカリ性又は酸性の水性シリカゾルに水溶性のア
ルミニウム塩やジルコニウム塩などを添加して、コロイ
ダルシリカ表面をこれらアルミニウムイオンやジルコニ
ウムイオンなどで被覆した安定なゾルも使用することが
できる。For polishing compound semiconductor wafers, not only alkaline sol having the above-mentioned distorted shape but also acidic sol is used.
Preferably, it can be used as a stable aqueous sol having a pH of 1.5 to 5. Such an acidic aqueous sol can be obtained, for example, by adding a water-soluble acidic substance to the alkaline aqueous sol, or by subjecting the alkaline aqueous sol to decation treatment. Furthermore,
A stable sol obtained by adding a water-soluble aluminum salt or zirconium salt to the above-mentioned alkaline or acidic aqueous silica sol and coating the colloidal silica surface with these aluminum ions or zirconium ions can also be used.
【0013】本発明による研磨の対象とする半導体とし
ては、珪素、ゲルマニウムなどの単体からなる半導体、
ガリウム砒素等化合物からなる半導体など従来から知ら
れているものでよい。本発明の半導体ウェーハーの研磨
方法は、通常の半導体ウェーハーの研磨装置を使用して
行うことができる。例えば、上方に設置された回転でき
るセラミックス製定盤と下方に設置された研磨布張設の
回転ディスクからなる研磨装置を使用して、このセラミ
ックス製定盤に半導体ウェーハーを固定した後、このウ
ェーハーの表面が 0.1〜1.0 kg/cm2程度の圧力を受ける
ように、ウェーハー表面と研磨布とを接触させ、この研
磨布上に上記シリカゾルを供給しながら、セラミックス
製定盤とディスクを回転させる方法で行うことができ
る。The semiconductor to be polished according to the present invention is a semiconductor made of a simple substance such as silicon or germanium,
A conventionally known material such as a semiconductor made of a compound such as gallium arsenide may be used. The method for polishing a semiconductor wafer of the present invention can be carried out using a general semiconductor wafer polishing apparatus. For example, a semiconductor wafer is fixed to the ceramic surface plate using a polishing device including a rotatable ceramic surface plate installed above and a rotating disk with a polishing cloth installed below, and then the surface of the wafer is fixed. so they receive a pressure of about 0.1 to 1.0 kg / cm 2, is brought into contact with the polishing pad and the wafer surface, while supplying the silica sol onto the polishing cloth, it is carried out by a method of rotating the ceramic plate and the disc Can be.
【0014】通常、球形を有するコロイダルシリシカの
ゾルが市販され、半導体ウェーハーの研磨にも、この球
形のコロイダルシリカのゾルが使用されていたが、これ
に替えて、上記歪な形状を有するコロイダルシリカのゾ
ルを半導体ウェーハーの研磨に使用すると、粗研磨及び
最終研磨において研磨速度が顕著に向上することが見出
された。Usually, a sol of colloidal silica having a spherical shape is commercially available, and the sol of spherical colloidal silica has been used for polishing a semiconductor wafer. Instead, a colloidal silica having the above-mentioned distorted shape is used. It has been found that the use of silica sol for polishing semiconductor wafers significantly improves the polishing rate in rough polishing and final polishing.
【0015】この意外な効果は、恐らく、上記のように
研磨布と半導体ウェーハーとが圧接下相対運動するとき
に、この布材料表面とウェーハー表面との間に挟まれて
介在するコロイダルシリカ粒子は回転するが、その際、
この歪形状のコロイダルシリカ粒子は、球形のコロイダ
ルシリカ粒子に比べて回転しにくいので、その結果、布
材料表面とウェーハー表面との間の摩擦力が著しく増大
する。しかし、研磨布と半導体ウェーハーとの圧接下の
相対運動速度は一定に保たれるから、この増大した摩擦
力によってウェーハー表面の研磨量が顕著に高まるもの
と考えられる。This unexpected effect is probably due to the fact that when the polishing cloth and the semiconductor wafer relatively move under pressure as described above, the colloidal silica particles interposed between the cloth material surface and the wafer surface are interposed. It rotates,
The deformed colloidal silica particles are less likely to rotate than the spherical colloidal silica particles, and as a result, the frictional force between the cloth material surface and the wafer surface is significantly increased. However, since the relative movement speed of the polishing cloth and the semiconductor wafer under pressure contact is kept constant, it is considered that the increased frictional force significantly increases the polishing amount on the wafer surface.
【0016】けれども、 0.3〜0.8 の短径/長径の比は
有していても、1000 nm より大きい長径を有するコロイ
ダルシリカは、1000 nm より小さい長径のコロイダルシ
リカに比べて、同一SiO2濃度では、研磨速度を増加させ
ない。コロイダルシリカ粒子の長径が小さい程、そのコ
ロイダルシリカは研磨速度を増加せしめるが、7nmより
小さい長径を有するコロイダルシリカでは、繰り返し使
用の場合の安定性に乏しい。0.3 より小さい短径/長径
比を有するコロイダルシリカも、研磨速度を顕著には増
加させない。However, although having a minor axis / major axis ratio of 0.3-0.8, colloidal silica having a major axis of greater than 1000 nm has a lower SiO 2 concentration than colloidal silica having a major axis of less than 1000 nm. , Does not increase the polishing rate. The smaller the major axis of the colloidal silica particle, the higher the polishing rate of the colloidal silica. However, the colloidal silica having a major axis of less than 7 nm has poor stability when repeatedly used. Colloidal silica having a minor axis / major axis ratio of less than 0.3 does not significantly increase the polishing rate.
【0017】半導体ウェーハーの研磨に、50重量%を越
える程の高濃度にSiO2を含有するシリカゾルを使用する
と、このようなゾルは研磨中にゲル化を起こし易く、好
ましくは30重量%以下のSiO2濃度を有するシリカゾルを
使用するのがよい。しかし、0.5 重量%以下のSiO2濃度
を有するシリカゾルを使用すると、やはり十分な研磨速
度が得られない。When a silica sol containing SiO 2 at a high concentration exceeding 50% by weight is used for polishing a semiconductor wafer, such a sol is liable to gel during polishing, and preferably has a concentration of 30% by weight or less. It is preferable to use a silica sol having a SiO 2 concentration. However, if a silica sol having a SiO 2 concentration of 0.5% by weight or less is used, a sufficient polishing rate cannot be obtained.
【0018】珪素半導体ウェーハーの研磨には、コロイ
ダルシリカによる研磨が行われる限り、酸性、アルカリ
性のいずれのゾルも使用できるが、8.5 以下のpHを有す
るシリカゾルを使用すると、化学研磨に貢献するアルカ
リ分が不足し、十分な研磨速度が得られない。ゾル中の
アルカリ分が多いゾル程、そのようなゾルは大きい研磨
速度を与えるが、そのpHが11.5を越える程の強アルカリ
性のシリカゾルを使用すると、研磨中に、この強アルカ
リによってゾル中のコロイダルシリカが溶解することが
あり、ゾルの増粘を引き起こす原因となるばかりでな
く、珪素半導体ウェーハー表面に新たな荒れを生じさせ
易い。For polishing a silicon semiconductor wafer, any acidic or alkaline sol can be used as long as polishing with colloidal silica is performed. However, when a silica sol having a pH of 8.5 or less is used, an alkali component contributing to chemical polishing can be used. Is insufficient, and a sufficient polishing rate cannot be obtained. The higher the alkali content of the sol, the higher the polishing rate of such a sol.However, if a strongly alkaline silica sol having a pH of more than 11.5 is used, the colloidal content of the sol is increased by the strong alkali during polishing. Silica may be dissolved, not only causing the sol to thicken, but also easily causing new roughness on the surface of the silicon semiconductor wafer.
【0019】一般に、長径が小さくなる程シリカゾルの
安定性は低下する傾向にあり、20〜30 nm 程度の長径を
有するコロイダルシリカをSiO2として20重量%程度以上
に含有するシリカゾルは、pH5〜7の中性付近で不安定
であるが、SiO2として20重量%以下であればpH5〜7を
有していても使用することができる。また、30nmより大
きい長径を有するコロイダルシリカのゾルでは、20重量
%以上の高濃度でも、pH5〜7の中性付近で使用するこ
とができる。In general, the smaller the major axis, the lower the stability of the silica sol. The silica sol containing colloidal silica having a major axis of about 20 to 30 nm at about 20% by weight or more as SiO 2 has a pH of 5 to 7%. of but near neutral is unstable, can be used have a pH5~7 if 20 wt% or less as SiO 2. In addition, a sol of colloidal silica having a major axis longer than 30 nm can be used in the vicinity of neutral pH 5 to 7 even at a high concentration of 20% by weight or more.
【0020】化合物半導体ウェーハーの研磨には、7〜
11.5のpHを有するアルカリ性シリカゾル又は 1.5〜5の
pHを有する酸性シリカゾルを使用するのが好ましい。
1.5以下のpHを有するシリカゾルは、その強い酸性によ
って研磨装置に用いられている鉄材に腐蝕を起こさせ易
く好ましくない。For polishing a compound semiconductor wafer, 7 to
Alkaline silica sol having a pH of 11.5 or 1.5 to 5
It is preferred to use an acidic silica sol having a pH.
Silica sol having a pH of 1.5 or less is not preferred because its strong acidity tends to cause corrosion of the iron material used in the polishing apparatus.
【0021】[0021]
【実施例】実施例1 この例では、半導体ウェーハーの研磨に使用するための
下記6種類のシリカゾル(S1)、(S2)、(S3)、(S4)、(S5)
及び(S6)が調製された。 シリカゾル(S1)の調製:29.8重量%のSiO2濃度と9.6 重
量%のNa2O濃度を有する市販の水ガラス溶液に水を加え
ることにより、 4.0重量%のSiO2濃度を有する珪酸ナト
リウム水溶液を調製した。EXAMPLES Example 1 In this example, the following six types of silica sols (S 1 ), (S 2 ), (S 3 ), (S 4 ), and (S 5 ) for use in polishing a semiconductor wafer were used.
And (S 6 ) were prepared. Preparation of silica sol (S 1 ): by adding water to a commercial water glass solution having a SiO 2 concentration of 29.8% by weight and a Na 2 O concentration of 9.6% by weight, an aqueous solution of sodium silicate having a SiO 2 concentration of 4.0% by weight Was prepared.
【0022】次いで、この珪酸ナトリウム水溶液を、陽
イオン交換樹脂のカラムに通すことにより、 2.6のpHと
4.0 重量%のSiO2濃度を有する活性珪酸水溶液を調製し
た。この活性珪酸水溶液に、塩化マグネシウム水溶液を
MgO として上記活性珪酸のSiO2に対し400 ppm の重量比
に添加し、更に水酸化ナトリウムを加えることにより、
90のSiO2/Na2O モル比を有するアルカリ安定化活性珪酸
水溶液(A) を調製した。Next, the aqueous solution of sodium silicate was passed through a column of a cation exchange resin to adjust the pH to 2.6.
An activated silicic acid aqueous solution having a SiO 2 concentration of 4.0% by weight was prepared. An aqueous solution of magnesium chloride is added to this aqueous solution of activated silicic acid.
By adding MgO as a 400 ppm weight ratio with respect to SiO 2 of the activated silicic acid and further adding sodium hydroxide,
An alkali-stabilized activated silicic acid aqueous solution (A) having a SiO 2 / Na 2 O molar ratio of 90 was prepared.
【0023】この水溶液(A) からその900gをヒール液と
してガラス製反応器に投入し、加熱することにより液の
沸点の温度に到達させた。次いで、別途採取された上記
水溶液(A) をチャージ液として、攪拌下のこのヒール液
中に、1時間当たり85g の添加速度で48時間にわたり連
続的に添加することによりシリカゾルを調製した。この
間、反応器内の液容積が一定となるように液から水を蒸
発除去した。900 g of the aqueous solution (A) was introduced into a glass reactor as a heel solution and heated to reach the boiling point of the solution by heating. Next, a silica sol was prepared by continuously adding the separately collected aqueous solution (A) as a charge solution to the heel solution with stirring at an addition rate of 85 g per hour for 48 hours. During this time, water was evaporated from the liquid so that the liquid volume in the reactor was constant.
【0024】得られたシリカゾルは、1.131 の比重、2
0.5重量%のSiO2濃度、9.7 のpH、3.0cp の25℃粘度及
び160m2/g の比表面積を有していた。このゾルのコロイ
ダルシリカ粒子を電子顕微鏡写真に撮影し、画像解析装
置を使用して形状を解析したところ、 0.3〜0.8 の短径
/長径比を有するコロイダルシリカ粒子の数は71%を占
めていた。残りのコロイダルシリカ粒子は殆どが球形に
近いものであった。この写真に撮影されたコロイダルシ
リカ粒子は、20〜40nmの範囲の長径を有していた。The obtained silica sol has a specific gravity of 1.131, 2
It had a SiO 2 concentration of 0.5% by weight, a pH of 9.7, a viscosity at 25 ° C. of 3.0 cp and a specific surface area of 160 m 2 / g. When the colloidal silica particles of this sol were photographed in an electron micrograph and the shape was analyzed using an image analyzer, the number of colloidal silica particles having a minor axis / major axis ratio of 0.3 to 0.8 accounted for 71%. . Most of the remaining colloidal silica particles were nearly spherical. The colloidal silica particles taken in this photograph had a major axis in the range of 20-40 nm.
【0025】このシリカゾルに水を加えることにより、
2.0重量%のSiO2濃度と9.3 のpHを有するシリカゾル(S
1)を調製した。 シリカゾル(S2)の調製:ゾル(S1)の調製と同様にして得
られた 2.6のpHと4.0 重量%のSiO2濃度を有する活性珪
酸水溶液2000g に、攪拌下、10重量%の塩化マグネシウ
ム水溶液を1.8gを加えた後、更に10重量%の水酸化ナト
リウム水溶液13.3g を加えることにより、80のSiO2/Na2
O モル比を有する変性された活性珪酸水溶液を調製し
た。この変性された水溶液を3リットルのステンレス製
オートクレーブに仕込み、150 ℃で6時間の加熱を行う
ことにより第1段のシリカゾルを生成させた。By adding water to the silica sol,
Silica sol with a SiO 2 concentration of 2.0% by weight and a pH of 9.3 (S
1 ) was prepared. Preparation of silica sol (S 2 ): To 2000 g of an active silicic acid aqueous solution having a pH of 2.6 and a SiO 2 concentration of 4.0% by weight obtained in the same manner as the preparation of sol (S 1 ), add 10% by weight of magnesium chloride with stirring. After adding 1.8 g of the aqueous solution, 13.3 g of a 10% by weight aqueous solution of sodium hydroxide was further added to obtain 80 SiO 2 / Na 2.
A modified aqueous solution of activated silicic acid having an O mole ratio was prepared. This modified aqueous solution was charged into a 3 liter stainless steel autoclave, and heated at 150 ° C. for 6 hours to produce a first-stage silica sol.
【0026】次いで、この生成ゾルを冷却後、限外ろ過
装置により、SiO2濃度20.5重量%まで濃縮した。この濃
縮ゾル138gと水762gを、攪拌機及び蒸発管を備えたがラ
ス製反応器に投入し、更にゾル(S1)の調製に用いられた
SiO2濃度4.0 重量%の珪酸ナトリウム水溶液29.4g を除
々に投入した後、反応器内を沸騰状態に保った。この反
応器中へ、上記調製直後の活性珪酸の水溶液を、1時間
当たり100gの速度で7.2 時間を要して添加すると同時
に、容器内の水を蒸発除去することにより容器内の液量
を一定に保った。この添加終了後、0.5 時間同温度で加
熱を行うことにより第2段のシリカゾルを生成させた。Next, after cooling the produced sol, it was concentrated to an SiO 2 concentration of 20.5% by weight by an ultrafiltration apparatus. 138 g of this concentrated sol and 762 g of water were equipped with a stirrer and an evaporating tube, but were charged into a lath reactor, and further used for preparing the sol (S 1 )
After gradually adding 29.4 g of an aqueous solution of sodium silicate having a SiO 2 concentration of 4.0% by weight, the inside of the reactor was kept in a boiling state. Into this reactor, an aqueous solution of activated silicic acid immediately after the above preparation was added at a rate of 100 g per hour over a period of 7.2 hours, and at the same time, the amount of liquid in the container was kept constant by evaporating off the water in the container. Kept. After completion of the addition, heating was performed at the same temperature for 0.5 hour to produce a second-stage silica sol.
【0027】次いで、この反応器中の第2段のゾルに、
上記と同じ珪酸ナトリウム水溶液52.1g を除々に添加
し、上記調製直後の活性珪酸の水溶液を、1時間当たり
100gの速度で14時間を要して添加すると同時に、容器内
の水を蒸発除去することにより容器内の液量を一定に保
った。この添加終了後、0.5 時間同温度で加熱を行うこ
とにより第3段のシリカゾルを生成させた。Next, the second stage sol in the reactor
52.1 g of the same aqueous sodium silicate solution as described above was gradually added, and the aqueous solution of activated silicic acid immediately after the preparation was added per hour.
The addition was performed at a rate of 100 g in 14 hours, and at the same time, the amount of liquid in the container was kept constant by evaporating and removing the water in the container. After completion of the addition, heating was performed at the same temperature for 0.5 hour to produce a third-stage silica sol.
【0028】次いで、この反応器中の第3段のゾルに、
上記と同じ珪酸ナトリウム水溶液48.8g を除々に添加
し、上記調製直後の活性珪酸の水溶液を、1時間当たり
100gの速度で15.8時間を要して添加すると同時に、容器
内の水を蒸発除去することにより容器内の液量を一定に
保った。この添加終了後、2時間同温度で加熱を行うこ
とにより最終のシリカゾルを生成させた。Next, the sol in the third stage in this reactor is
48.8 g of the same aqueous sodium silicate solution as above was gradually added, and the aqueous solution of activated silicic acid immediately after the preparation was added per hour.
The addition was performed at a rate of 100 g in 15.8 hours, and at the same time, the amount of liquid in the container was kept constant by evaporating and removing the water in the container. After completion of the addition, heating was performed at the same temperature for 2 hours to produce a final silica sol.
【0029】得られた最終のシリカゾルは、1.130 の比
重、20.4重量%のSiO2濃度、10.5のpH、2.1cp の25℃粘
度、及び75m2/gの比表面積を有していた。上記同様にし
て、コロイダルシリカ粒子の形状を解析したところ、
0.3〜0.8の短径/ 長径比を有するコロイダルシリカ粒子
の数は58%を占めていた。残りのコロイダルシリカ粒子
は、殆どが球形に近いものであった。電子顕微鏡写真に
撮影されたコロイダルシリカ粒子は45〜80nmの範囲の長
径を有していた。The final silica sol obtained had a specific gravity of 1.130, a SiO 2 concentration of 20.4% by weight, a pH of 10.5, a viscosity at 25 ° C. of 2.1 cp and a specific surface area of 75 m 2 / g. In the same manner as above, when the shape of the colloidal silica particles was analyzed,
The number of colloidal silica particles having a minor axis / major axis ratio of 0.3 to 0.8 accounted for 58%. Most of the remaining colloidal silica particles were nearly spherical. Colloidal silica particles taken in electron micrographs had major diameters in the range of 45-80 nm.
【0030】このゾルに水を加えることにより、4.0 重
量%のSiO2濃度と10.3のpHを有するシリカゾル(S2)を調
製した。 シリカゾル(S3)の調製:ゾル(S1)の調製と同様にして得
られた20.5重量%のSiO2濃度を有するシリカゾルに、モ
ノエタノールアミンを加えることにより、20重量%のSi
O2濃度と11.1のpHを有するシリカゾル(S3)を調製した。By adding water to the sol, a silica sol (S 2 ) having a SiO 2 concentration of 4.0% by weight and a pH of 10.3 was prepared. Preparation of silica sol (S 3 ): To a silica sol having an SiO 2 concentration of 20.5% by weight obtained in the same manner as in the preparation of sol (S 1 ), 20% by weight of Si was added by adding monoethanolamine.
A silica sol (S 3 ) having an O 2 concentration and a pH of 11.1 was prepared.
【0031】シリカゾル(S4)の調製:上記同様にして調
製されたシリカゾル(S1)を陽イオン交換樹脂で処理し
て、アルカリの一部を除去することにより、 2.0重量%
のSiO2濃度と7.8 のpHを有するシリカゾル(S4)を調製し
た。 シリカゾル(S5)の調製:ゾル(S1)の調製と同様にして得
られた20.5重量%のSiO2濃度を有するシリカゾルに、水
とNaOHを加えることにより、 8.0重量%のSiO2濃度と1
1.8のpHを有するシリカゾル(S5)を調製した。Preparation of silica sol (S 4 ): The silica sol (S 1 ) prepared in the same manner as described above was treated with a cation exchange resin to remove 2.0% by weight of alkali.
A silica sol (S 4 ) having a concentration of SiO 2 and a pH of 7.8 was prepared. Preparation of silica sol (S 5 ): A silica sol having a SiO 2 concentration of 20.5% by weight obtained in the same manner as the preparation of sol (S 1 ) was added with water and NaOH to obtain a SiO 2 concentration of 8.0% by weight. 1
It was prepared silica sol (S 5) having a pH of 1.8.
【0032】シリカゾル(S6)の調製:市販の水性シリカ
ゾル (日産化学工業株式会社製の商品名スノーテックス
-30)に水を加えることにより、 2.0重量%のSiO2濃度と
9.4のpHを有するシリカゾル(S6)を調製した。このゾル
のコロイダルシリカは、230m2/g の比表面積を有し、電
子顕微鏡写真に撮影された粒子の画像によれば、殆どの
粒子は球形に近く、そして画像解析の結果によれば、
0.3〜0.8 以下の短径/長径比を有する粒子の数は22%
であった。Preparation of silica sol (S 6 ): commercially available aqueous silica sol (trade name Snowtex manufactured by Nissan Chemical Industries, Ltd.)
-30) by adding water to achieve a SiO 2 concentration of 2.0% by weight.
A silica sol (S 6 ) having a pH of 9.4 was prepared. The colloidal silica of this sol has a specific surface area of 230 m 2 / g, most of the particles are nearly spherical according to the images of the particles taken in electron micrographs, and according to the results of the image analysis,
22% of particles having a minor axis / major axis ratio of 0.3 to 0.8 or less
Met.
【0033】実施例2 この例は、上記ゾル(S1)〜(S6)を研磨剤として使用し
て、珪素半導体ウェーハーを研磨した例である。従来か
ら使用されている通常の研磨装置が用意された。この装
置は、上方に設置された回転できるセラミックス製定盤
と下方に設置された研磨布張設の回転ディスクを備えて
いる。Example 2 In this example, a silicon semiconductor wafer was polished using the above sols (S 1 ) to (S 6 ) as an abrasive. An ordinary polishing apparatus conventionally used was prepared. This apparatus includes a rotatable ceramic surface plate installed above and a rotating disk with a polishing cloth installed below.
【0034】この研磨装置のセラミックス製定盤に、 5
00ミクロンの厚さと5インチの直径を有する珪素半導体
ウェーハーを取り付けた。研磨布に十分の研磨剤が保持
されるように研磨剤を注ぎながら、接触圧 350g/cm2 で
20分間研磨を続けた後、研磨を停止して、研磨前後のウ
ェーハーの厚みの差から研磨厚さを測定し研磨量を算出
した。第1表には、用いられたゾルのSiO2濃度 (%)、
pH、コロイダルシリカの比表面積(m2/g)、及び 0.3〜0.
8 の短径/長径比を有する歪な形状の粒子数の%と共
に、ゾル(S6)の研磨量を 100としたときのゾル(S1)〜(S
5)の研磨量の相対値を示した。The ceramic surface plate of this polishing apparatus has 5
A silicon semiconductor wafer having a thickness of 00 microns and a diameter of 5 inches was mounted. While pouring a polishing agent as well abrasive is retained on the polishing cloth in the contact pressure of 350 g / cm 2
After polishing was continued for 20 minutes, the polishing was stopped, and the polishing thickness was measured from the difference between the thicknesses of the wafer before and after polishing to calculate the polishing amount. Table 1 shows the SiO 2 concentration (%) of the sol used,
pH, specific surface area of the colloidal silica (m 2 / g), and 0.3 to 0.
8 the number of particles per cent of distorted shape having a minor axis / major axis ratio with the sol sol is 100 polishing amount of (S 6) (S 1) ~ (S
The relative value of the polishing amount of 5 ) is shown.
【0035】尚、ゾル(S5)を使用した例では、研磨終了
後のウェーハー表面に新たな荒れが発生していた。In the case of using the sol (S 5 ), a new roughness was generated on the wafer surface after the polishing.
【0036】[0036]
【表1】 [Table 1]
【0037】[0037]
【発明の効果】 7〜1000 nm の長径と 0.3〜0.8 の短
径/長径比を有する歪な形状のコロイダルシリカを研磨
剤として、半導体ウェーハーの精密研磨に使用すると、
単位時間当たりの研磨量が著しく増加し、研磨された半
導体ウェーハーの生産能率を顕著に高めることができ
る。そしてこの歪な形状のコロイダルシリカからなる研
磨剤は、従来の半導体ウェーハーの精密研磨に使用され
る装置に適用することがでる。According to the present invention, when a colloidal silica having a major axis of 7-1000 nm and a minor axis / major axis ratio of 0.3-0.8 is used as a polishing agent for precise polishing of a semiconductor wafer,
The polishing amount per unit time is significantly increased, and the production efficiency of the polished semiconductor wafer can be significantly increased. The abrasive made of the distorted shape of colloidal silica can be applied to an apparatus used for precision polishing of a conventional semiconductor wafer.
【0038】この歪な形状のコロイダルシリカは、その
安定な水性ゾルの形態で研磨に提供することができる。
このゾルにアルカリ性物質を含有させることにより、半
導体ウェーハーの研磨に好ましいアルカリ性のゾルが得
られる。酸性のシリカゾルは、このアルカリ性のゾルに
水溶性酸性物質を添加することにより、或いはこのアル
カリ性のゾルを脱陽イオン処理することにより得られ、
化合物半導体ウェーハーの研磨に使用することができ
る。The distorted colloidal silica can be provided for polishing in the form of its stable aqueous sol.
By adding an alkaline substance to this sol, an alkaline sol suitable for polishing a semiconductor wafer can be obtained. The acidic silica sol is obtained by adding a water-soluble acidic substance to the alkaline sol, or by subjecting the alkaline sol to decation treatment,
It can be used for polishing compound semiconductor wafers.
【0039】この歪な形状のコロイダルシリカは、球状
コロイダルシリカよりも研磨力が高いので、半導体ウェ
ーハーのみならず種々の材料、例えば、サファイア等基
板材料、リチウムタンタレート等電気光学材料、ガドリ
ニウムガリウムガーネット等磁気材料、磁気ディスク用
のアルミニウム、ガラス等の精密研磨にも有用である。Since the deformed colloidal silica has a higher polishing force than the spherical colloidal silica, not only semiconductor wafers but also various materials such as sapphire substrate materials, lithium tantalate, electro-optical materials, gadolinium gallium garnet, and the like. It is also useful for precision polishing of isomagnetic materials, aluminum and glass for magnetic disks, and the like.
【手続補正書】[Procedure amendment]
【提出日】平成12年12月5日(2000.12.
5)[Submission date] December 5, 2000 (200.12.
5)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項1[Correction target item name] Claim 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
Claims (2)
/長径比を有するコロイダルシリカ粒子の数が全粒子中
50%以上を占めるコロイダルシリカで研磨することを特
徴とする半導体ウェーハーの研磨方法。1. The number of colloidal silica particles having a major axis of 7 to 1000 nm and a minor axis / major axis ratio of 0.3 to 0.8 in all particles
A method for polishing a semiconductor wafer, characterized by polishing with colloidal silica occupying 50% or more.
/長径比を有するコロイダルシリカ粒子の数が全粒子中
50%以上を占めるコロイダルシリカからなる半導体ウェ
ーハーの研磨剤。2. The number of colloidal silica particles having a major axis of 7 to 1000 nm and a minor axis / major axis ratio of 0.3 to 0.8 is out of all particles.
Polishing agent for semiconductor wafers composed of colloidal silica accounting for 50% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000311504A JP2001150334A (en) | 2000-10-12 | 2000-10-12 | Semiconductor wafer polishing method and abrasive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000311504A JP2001150334A (en) | 2000-10-12 | 2000-10-12 | Semiconductor wafer polishing method and abrasive |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01286994A Division JP3441142B2 (en) | 1994-02-04 | 1994-02-04 | Polishing method for semiconductor wafer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003409704A Division JP2004140394A (en) | 2003-12-09 | 2003-12-09 | Polishing agent and polishing method for semiconductor wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001150334A true JP2001150334A (en) | 2001-06-05 |
Family
ID=18791251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000311504A Withdrawn JP2001150334A (en) | 2000-10-12 | 2000-10-12 | Semiconductor wafer polishing method and abrasive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001150334A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003100672A (en) * | 2001-09-21 | 2003-04-04 | Rodel Nitta Co | Abrasive slurry |
JP2004288732A (en) * | 2003-03-19 | 2004-10-14 | Rodel Nitta Co | Semiconductor polishing slurry |
JP2004311652A (en) * | 2003-04-04 | 2004-11-04 | Rodel Nitta Co | Slurry for polishing |
WO2008143225A1 (en) | 2007-05-18 | 2008-11-27 | Hitachi Metals, Ltd. | Process for producing ceramic honeycomb structure and ceramic honeycomb structure |
US8118898B2 (en) | 2006-10-12 | 2012-02-21 | Jgc Catalysts And Chemicals Ltd. | Spinous silica-based sol and method of producing the same |
US8187351B2 (en) | 2006-11-30 | 2012-05-29 | Jgc Catalysts And Chemicals Ltd. | Sol of spinous inorganic oxide particles, method of producing the sol, and polishing agent containing the sol |
US8431633B2 (en) | 2011-07-06 | 2013-04-30 | Fuji Xerox Co., Ltd. | Silica particles, manufacturing method thereof and resin particles |
US8871344B2 (en) | 2010-06-25 | 2014-10-28 | Fuji Xerox Co., Ltd. | Hydrophobization treatment of silica particles |
US8962139B2 (en) | 2011-01-20 | 2015-02-24 | Fuji Xerox Co., Ltd. | Resin particle and method for producing the same |
JPWO2013121932A1 (en) * | 2012-02-17 | 2015-05-11 | 株式会社フジミインコーポレーテッド | Polishing composition and method for producing semiconductor substrate |
US9157011B2 (en) | 2010-08-31 | 2015-10-13 | Fujimi Incorporated | Polishing composition |
US9187502B2 (en) | 2010-06-24 | 2015-11-17 | Fuji Xerox Co., Ltd. | Silica particles and method for producing the same |
US9243145B2 (en) | 2013-01-28 | 2016-01-26 | Fuji Xerox Co., Ltd. | Silica composite particles and method of preparing the same |
US9272916B2 (en) | 2007-11-30 | 2016-03-01 | Jgc Catalysts And Chemicals Ltd. | Non-spherical silica sol, process for producing the same, and composition for polishing |
US9394413B2 (en) | 2011-01-19 | 2016-07-19 | Fuji Xerox Co., Ltd. | Resin particle and method for producing the same |
US9416015B2 (en) | 2010-06-23 | 2016-08-16 | Fuji Xerox Co., Ltd. | Method of producing silica particles |
US9708191B2 (en) | 2011-12-01 | 2017-07-18 | Fuji Xerox Co., Ltd. | Silica composite particles and method of preparing the same |
CN113444454A (en) * | 2020-03-25 | 2021-09-28 | 山口精研工业株式会社 | Abrasive composition |
CN113881347A (en) * | 2021-10-15 | 2022-01-04 | 深圳市科玺化工有限公司 | Chemical mechanical precision polishing liquid for silicon wafers |
KR20230117130A (en) | 2020-12-09 | 2023-08-07 | 닛키 쇼쿠바이카세이 가부시키가이샤 | Dispersion of heterogeneous silica-based fine particles and method for producing the same, dispersion of particle-linked silica fine particles and method for producing the same, and abrasive dispersion for polishing |
-
2000
- 2000-10-12 JP JP2000311504A patent/JP2001150334A/en not_active Withdrawn
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003100672A (en) * | 2001-09-21 | 2003-04-04 | Rodel Nitta Co | Abrasive slurry |
JP2004288732A (en) * | 2003-03-19 | 2004-10-14 | Rodel Nitta Co | Semiconductor polishing slurry |
JP2004311652A (en) * | 2003-04-04 | 2004-11-04 | Rodel Nitta Co | Slurry for polishing |
US8118898B2 (en) | 2006-10-12 | 2012-02-21 | Jgc Catalysts And Chemicals Ltd. | Spinous silica-based sol and method of producing the same |
US8187351B2 (en) | 2006-11-30 | 2012-05-29 | Jgc Catalysts And Chemicals Ltd. | Sol of spinous inorganic oxide particles, method of producing the sol, and polishing agent containing the sol |
WO2008143225A1 (en) | 2007-05-18 | 2008-11-27 | Hitachi Metals, Ltd. | Process for producing ceramic honeycomb structure and ceramic honeycomb structure |
EP2159209A4 (en) * | 2007-05-18 | 2014-10-29 | Hitachi Metals Ltd | PROCESS FOR PRODUCING A BEES NICKEL CERAMIC STRUCTURE AND A HONEYCOMB CERAMIC STRUCTURE |
US10160894B2 (en) | 2007-11-30 | 2018-12-25 | Jgc Catalysts And Chemicals Ltd. | Non-spherical silica sol, process for producing the same, and composition for polishing |
US9272916B2 (en) | 2007-11-30 | 2016-03-01 | Jgc Catalysts And Chemicals Ltd. | Non-spherical silica sol, process for producing the same, and composition for polishing |
US9416015B2 (en) | 2010-06-23 | 2016-08-16 | Fuji Xerox Co., Ltd. | Method of producing silica particles |
US9187502B2 (en) | 2010-06-24 | 2015-11-17 | Fuji Xerox Co., Ltd. | Silica particles and method for producing the same |
US8871344B2 (en) | 2010-06-25 | 2014-10-28 | Fuji Xerox Co., Ltd. | Hydrophobization treatment of silica particles |
KR101805238B1 (en) | 2010-08-31 | 2017-12-06 | 가부시키가이샤 후지미인코퍼레이티드 | Polishing composition |
US9157011B2 (en) | 2010-08-31 | 2015-10-13 | Fujimi Incorporated | Polishing composition |
US9394413B2 (en) | 2011-01-19 | 2016-07-19 | Fuji Xerox Co., Ltd. | Resin particle and method for producing the same |
US8962139B2 (en) | 2011-01-20 | 2015-02-24 | Fuji Xerox Co., Ltd. | Resin particle and method for producing the same |
US8431633B2 (en) | 2011-07-06 | 2013-04-30 | Fuji Xerox Co., Ltd. | Silica particles, manufacturing method thereof and resin particles |
US9708191B2 (en) | 2011-12-01 | 2017-07-18 | Fuji Xerox Co., Ltd. | Silica composite particles and method of preparing the same |
JPWO2013121932A1 (en) * | 2012-02-17 | 2015-05-11 | 株式会社フジミインコーポレーテッド | Polishing composition and method for producing semiconductor substrate |
US9243145B2 (en) | 2013-01-28 | 2016-01-26 | Fuji Xerox Co., Ltd. | Silica composite particles and method of preparing the same |
CN113444454A (en) * | 2020-03-25 | 2021-09-28 | 山口精研工业株式会社 | Abrasive composition |
CN113444454B (en) * | 2020-03-25 | 2024-04-05 | 山口精研工业株式会社 | Abrasive composition |
KR20230117130A (en) | 2020-12-09 | 2023-08-07 | 닛키 쇼쿠바이카세이 가부시키가이샤 | Dispersion of heterogeneous silica-based fine particles and method for producing the same, dispersion of particle-linked silica fine particles and method for producing the same, and abrasive dispersion for polishing |
CN113881347A (en) * | 2021-10-15 | 2022-01-04 | 深圳市科玺化工有限公司 | Chemical mechanical precision polishing liquid for silicon wafers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3441142B2 (en) | Polishing method for semiconductor wafer | |
JP2001150334A (en) | Semiconductor wafer polishing method and abrasive | |
JP5587957B2 (en) | Konpira sugar-like sol | |
TWI229117B (en) | Aqueous dispersion containing cerium oxide-coated silicon powder, process for the production thereof and use | |
JP4132432B2 (en) | Polishing composition | |
JP5495508B2 (en) | Abrasive particle dispersion and method for producing the same | |
WO2010052945A1 (en) | Aspherical silica sol, process for producing the same, and composition for polishing | |
EP0947469A2 (en) | Abrasive | |
JPH08512357A (en) | Activated polishing composition | |
EP1428862A1 (en) | CERIUM−BASED ABRASIVE MATERIAL SLURRY AND METHOD FOR PRODUCING CERIUM−BASED ABRASIVE MATERIAL SLURRY | |
JP6603142B2 (en) | Silica composite fine particle dispersion, method for producing the same, and polishing slurry containing silica composite fine particle dispersion | |
JP2002338232A (en) | Secondary aggregated colloidal silica, method for producing the same, and abrasive composition using the same | |
JP3551238B2 (en) | Polishing liquid for silicon wafer and polishing method using the same | |
JP2012516911A (en) | Polishing composition for nickel-phosphorus memory disk | |
JP6207345B2 (en) | Method for producing silica particles | |
JP6385307B2 (en) | Plate-like particle and polishing composition containing the plate-like particle | |
JP2004140394A (en) | Polishing agent and polishing method for semiconductor wafer | |
JP2002338951A (en) | Hydrothermally treated colloidal silica for abrasives | |
JP3950491B2 (en) | Semiconductor wafer polishing method | |
JP4462593B2 (en) | Polishing liquid composition | |
TW200424275A (en) | Polishing composition | |
JPH09137155A (en) | Polishing composition and polishing method | |
JP4507141B2 (en) | Polishing composition, production method thereof and polishing method using the same | |
JP7490628B2 (en) | Particle-linked ceria-based composite microparticle dispersion, its manufacturing method, and abrasive dispersion for polishing containing particle-linked ceria-based composite microparticle dispersion | |
JP7620504B2 (en) | Ceria-based composite microparticle dispersion, its manufacturing method and polishing abrasive dispersion containing the ceria-based composite microparticle dispersion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20031210 |